河北省鸡泽县第一中学2017届高三数学(理)押题卷(一)
河北省鸡泽县第一中学高考等比数列专题及答案doc

一、等比数列选择题1.十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12(,)33,记为第一次操作;再将剩下的两个区间1[0,]3,2[,1]3分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于910,则需要操作的次数n 的最小值为( )(参考数据:lg 20.3010=,lg30.4771=)A .4B .5C .6D .72.已知数列{}n a 满足112a =,*11()2n na a n N +=∈.设2n n nb a λ-=,*n N ∈,且数列{}n b 是单调递增数列,则实数λ的取值范围是( )A .(,1)-∞B .3(1,)2-C .3(,)2-∞D .(1,2)-3.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( ) A .-3+(n +1)×2n B .3+(n +1)×2n C .1+(n +1)×2nD .1+(n -1)×2n4.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都等于六个单音的频率为f ,则( ) A .第四个单音的频率为1122f - B .第三个单音的频率为142f - C .第五个单音的频率为162fD .第八个单音的频率为1122f5.设n S 为等比数列{}n a 的前n 项和,若110,,22n n a a S >=<,则等比数列{}n a 的公比的取值范围是( ) A .30,4⎛⎤ ⎥⎝⎦B .20,3⎛⎤ ⎥⎝⎦C .30,4⎛⎫ ⎪⎝⎭D .20,3⎛⎫ ⎪⎝⎭6.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,667711,01a a a a -><-,则下列结论正确的是( ) A .681a a >B .01q <<C .n S 的最大值为7SD .n T 的最大值为7T7.在数列{}n a 中,12a =,对任意的,m n N *∈,m n m n a a a +=⋅,若1262n a a a ++⋅⋅⋅+=,则n =( )A .3B .4C .5D .68.在数列{}n a 中,32a =,12n n a a +=,则5a =( ) A .32 B .16 C .8 D .49.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9=( ) A .4B .5C .8D .1510.数列{a n }满足211232222n n na a a a -+++⋯+=(n ∈N *),数列{a n }前n 和为S n ,则S 10等于( )A .5512⎛⎫ ⎪⎝⎭B .10112⎛⎫- ⎪⎝⎭C .9112⎛⎫- ⎪⎝⎭ D .6612⎛⎫ ⎪⎝⎭11.题目文件丢失!12..在等比数列{}n a 中,若11a =,54a =,则3a =( ) A .2B .2或2-C .2-D13.设等差数列{}n a 的公差10,4≠=d a d ,若k a 是1a 与2k a 的等比中项,则k =( ) A .3或6 B .3 或-1 C .6D .314.古代数学名著《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:一女子善于织布,每天织的布是前一天的2倍,已知她5天共织布5尺,问该女子每天分别织布多少?由此条件,若织布的总尺数不少于20尺,该女子需要的天数至少为 ( ) A .6 B .7 C .8 D .9 15.已知1,a ,x ,b ,16这五个实数成等比数列,则x 的值为( )A .4B .-4C .±4D .不确定16.已知等比数列的公比为2,其前n 项和为n S ,则33S a =( ) A .2B .4C .74 D .15817.数列{}n a 满足119211021119n n n n a n --⎧≤≤=⎨≤≤⎩,,,则该数列从第5项到第15项的和为( )A .2016B .1528C .1504D .99218.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:“一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯多少?”现有类似问题:一座5层塔共挂了363盏灯,且相邻两层中的下一层灯数是上一层灯数的3倍,则塔的中间一层共有灯( ) A .3盏B .9盏C .27盏D .81盏19.等比数列{}n a 中各项均为正数,n S 是其前n 项和,且满足312283S a a =+,416a =,则6S =( )A .32B .63C .123D .12620.已知数列{}n a ,{}n b 满足12a =,10.2b =,111233n n n a b a ++=+,11344n n n b a b +=+,则使0.01n n a b -<成立的最小正整数n 为( ) A .5B .7C .9D .11二、多选题21.已知等差数列{}n a ,其前n 项的和为n S ,则下列结论正确的是( ) A .数列|n S n ⎧⎫⎨⎬⎩⎭为等差数列 B .数列{}2na 为等比数列C .若,()m n a n a m m n ==≠,则0m n a +=D .若,()m n S n S m m n ==≠,则0m n S += 22.已知数列{},{}n n a b 均为递增数列,{}n a 的前n 项和为,{}n n S b 的前n 项和为,n T 且满足*112,2()n n n n n a a n b b n N +++=⋅=∈,则下列结论正确的是( )A .101a <<B.11b <<C .22n n S T <D .22n n S T ≥23.若数列{}n a 的前n 项和是n S ,且22n n S a =-,数列{}n b 满足2log n n b a =,则下列选项正确的为( ) A .数列{}n a 是等差数列B .2nn a =C .数列{}2na 的前n 项和为21223n +-D .数列11n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,则1n T <24.已知集合{}*21,A x x n n N==-∈,{}*2,nB x x n N ==∈将AB 的所有元素从小到大依次排列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的可能取值为( ) A .25B .26C .27D .2825.已知数列是{}n a是正项等比数列,且3723a a +=,则5a 的值可能是( )A .2B .4C .85D .8326.已知等比数列{}n a 中,满足11a =,2q ,n S 是{}n a 的前n 项和,则下列说法正确的是( )A .数列{}2n a 是等比数列B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列 C .数列{}2log n a 是等差数列 D .数列{}n a 中,10S ,20S ,30S 仍成等比数列27.在公比为q 等比数列{}n a 中,n S 是数列{}n a 的前n 项和,若521127,==a a a ,则下列说法正确的是( ) A .3q = B .数列{}2n S +是等比数列 C .5121S =D .()222lg lg lg 3n n n a a a n -+=+≥28.已知数列{a n },11a =,25a =,在平面四边形ABCD 中,对角线AC 与BD 交于点E ,且2AE EC =,当n ≥2时,恒有()()1123n n n n BD a a BA a a BC -+=-+-,则( ) A .数列{a n }为等差数列 B .1233BE BA BC =+ C .数列{a n }为等比数列D .14nn n a a +-=29.设{}n a 是各项均为正数的数列,以n a ,1n a +为直角边长的直角三角形面积记为n S ()n *∈N ,则{}n S 为等比数列的充分条件是( )A .{}n a 是等比数列B .1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅或 2a ,4a ,⋅⋅⋅ ,2n a ,⋅⋅⋅是等比数列C .1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅和 2a ,4a ,⋅⋅⋅,2n a ,⋅⋅⋅均是等比数列D .1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅和 2a ,4a ,⋅⋅⋅ ,2n a ,⋅⋅⋅均是等比数列,且公比相同 30.在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.则下列说法正确的是( ) A .此人第六天只走了5里路B .此人第一天走的路程比后五天走的路程多6里C .此人第二天走的路程比全程的14还多1.5里 D .此人走的前三天路程之和是后三天路程之和的8倍31.在《增删算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法正确的是( ) A .此人第二天走了九十六里路B .此人第三天走的路程站全程的18C .此人第一天走的路程比后五天走的路程多六里D .此人后三天共走了42里路32.数列{}n a 为等比数列( ). A .{}1n n a a ++为等比数列 B .{}1n n a a +为等比数列 C .{}221n n a a ++为等比数列D .{}n S 不为等比数列(n S 为数列{}n a 的前n 项)33.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,781a a >,87101a a -<-.则下列结论正确的是( ) A .01q <<B .791a a <C .n T 的最大值为7TD .n S 的最大值为7S34.已知正项等比数列{}n a 满足12a =,4232a a a =+,若设其公比为q ,前n 项和为n S ,则( )A .2qB .2nn a = C .102047S = D .12n n n a a a +++<35.已知数列{}n a 是等比数列,则下列结论中正确的是( ) A .数列2{}n a 是等比数列B .若32a =,732a =,则58a =±C .若123a a a <<,则数列{}n a 是递增数列D .若数列{}n a 的前n 和13n n S r -=+,则1r =-【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.C 【分析】依次求出第次去掉的区间长度之和,这个和构成一个等比数列,再求其前n 项和,列出不等式解之可得. 【详解】第一次操作去掉的区间长度为13;第二次操作去掉两个长度为19的区间,长度和为29;第三次操作去掉四个长度为127的区间,长度和为427;…第n 次操作去掉12n -个长度为13n 的区间,长度和为123n n -,于是进行了n 次操作后,所有去掉的区间长度之和为1122213933nn n n S -⎛⎫=++⋅⋅⋅+=- ⎪⎝⎭, 由题意,902131n⎛⎫-≥ ⎪⎝⎭,即21lg lg1031n ≤=-,即()lg3lg21n -≥,解得:115.679lg3lg 20.47710.3010n ≥=≈--,又n 为整数,所以n 的最小值为6. 故选:C . 【点睛】本题以数学文化为背景,考查等比数列通项、前n 项和等知识及估算能力,属于中档题. 2.C 【分析】 由*11()2n n a a n N +=∈可知数列{}n a 是公比为2的等比数列,12n n a =,得2(2)2n n nn b n a λλ-==-,结合数列{b n }是单调递增数列,可得1n n b b +>对于任意的*n N ∈*恒成立,参变分离后即可得解.【详解】 由*11()2n n a a n N +=∈可知数列{}n a 是公比为2的等比数列, 所以1111()222n n n a -==, 2(2)2n n nn b n a λλ-==- ∵数列{n b 是单调递增数列, ∴1n n b b +>对于任意的*n N ∈*恒成立, 即1(12)2(2)2n n n n λλ++->-,整理得:22n λ+<32λ∴< ,故选:C. 【点睛】本题主要考查了已知数列的单调性求参,一般研究数列的单调性的方法有: 一、利用数列单调性的定义,由1n n a a +>得数列单增,1n n a a +<得数列单减; 二、借助于函数的单调性研究数列的单调性. 3.D 【分析】利用已知条件列出方程组求解即可得1,a q,求出数列{a n}的通项公式,再利用错位相减法求和即可.【详解】设等比数列{a n}的公比为q,易知q≠1,所以由题设得()()3136161711631a qSqa qSq⎧-⎪==-⎪⎨-⎪==⎪-⎩,两式相除得1+q3=9,解得q=2,进而可得a1=1,所以a n=a1q n-1=2n-1,所以na n=n×2n-1.设数列{na n}的前n项和为T n,则T n=1×20+2×21+3×22+…+n×2n-1,2T n=1×21+2×22+3×23+…+n×2n,两式作差得-T n=1+2+22+…+2n-1-n×2n=1212n---n×2n=-1+(1-n)×2n,故T n=1+(n-1)×2n.故选:D.【点睛】本题主要考查了求等比数列的通项公式问题以及利用错位相减法求和的问题.属于较易题. 4.B【分析】根据题意得该单音构成公比为四、五、八项即可得答案.【详解】解:根据题意得该单音构成公比为因为第六个单音的频率为f,141422ff-==.661122ff-==.所以第五个单音的频率为1122f=.所以第八个单音的频率为1262f f=故选:B.5.A设等比数列{}n a 的公比为q ,依题意可得1q ≠.即可得到不等式1102n q -⨯>,1(1)221n q q-<-,即可求出参数q 的取值范围;【详解】解:设等比数列{}n a 的公比为q ,依题意可得1q ≠.110,2n a a >=,2n S <, ∴1102n q -⨯>,1(1)221n q q-<-, 10q ∴>>. 144q ∴-,解得34q. 综上可得:{}n a 的公比的取值范围是:30,4⎛⎤ ⎥⎝⎦.故选:A . 【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程. 6.B 【分析】根据11a >,667711,01a a a a -><-,分0q < ,1q ≥,01q <<讨论确定q 的范围,然后再逐项判断. 【详解】若0q <,因为11a >,所以670,0a a <>,则670a a ⋅<与671a a ⋅>矛盾, 若1q ≥,因为11a >,所以671,1a a >>,则67101a a ->-,与67101a a -<-矛盾, 所以01q <<,故B 正确; 因为67101a a -<-,则6710a a >>>,所以()26870,1a a a =∈,故A 错误; 因为0n a >,01q <<,所以111n n a q a S q q=---单调递增,故C 错误; 因为7n ≥时,()0,1n a ∈,16n ≤≤时,1n a >,所以n T 的最大值为6T ,故D 错误; 故选:B关键点点睛:本题的关键是通过穷举法确定01q <<. 7.C 【分析】令1m =,可得112+=⋅=n n n a a a a ,可得数列{}n a 为等比数列,利用等比数列前n 项和公式,求解即可. 【详解】因为对任意的,m n N *∈,都有m n m n a a a +=⋅,所以令1m =,则112+=⋅=n n n a a a a , 因为10a ≠,所以0n a ≠,即12n na a +=, 所以数列{}n a 是以2为首项,2为公比的等比数列,所以2(12)6212n -=-,解得n =5,故选:C 8.C 【分析】根据12n n a a +=,得到数列{}n a 是公比为2的等比数列求解. 【详解】 因为12n n a a +=,所以12n na a +=, 所以数列{}n a 是公比为2的等比数列. 因为32a =,所以235328a a q ===. 故选:C 9.C 【分析】由等比中项,根据a 3a 11=4a 7求得a 7,进而求得b 7,再利用等差中项求解. 【详解】 ∵a 3a 11=4a 7, ∴27a =4a 7, ∵a 7≠0, ∴a 7=4, ∴b 7=4, ∴b +b =2b =8.10.B 【分析】根据题意得到22123112222n n n a a a a ---++++=,(2n ≥),与条件两式作差,得到12n n a =,(2n ≥),再验证112a =满足12n n a =,得到12nna =()*n N ∈,进而可求出结果. 【详解】 因为数列{}n a 满足211232222n n n a a a a -++++=, 22123112222n n n a a a a ---++++=,(2n ≥) 则1112222--=-=n n n n a ,则12n n a =,(2n ≥), 又112a =满足12n n a =,所以12n n a =()*n N ∈, 因此1010210123101011111112211222212S a a a a ⎛⎫- ⎪⎛⎫⎝⎭++=+++==- ⎪+⎝-=⎭.故选:B11.无12.A 【分析】由等比数列的性质可得2315a a a =⋅,且1a 与3a 同号,从而可求出3a 的值【详解】解:因为等比数列{}n a 中,11a =,54a =,所以23154a a a =⋅=,因为110a =>,所以30a >, 所以32a =, 故选:A 13.D 【分析】由k a 是1a 与2k a 的等比中项及14a d =建立方程可解得k . 【详解】a 是a 与a 的等比中项212k k a a a ∴=,()()2111121a k d a a k d ⎡⎤∴+-=+-⎣⎦⎡⎤⎣⎦()()223423k d d k d ∴+=⨯+,3k ∴=.故选:D 【点睛】本题考查等差数列与等比数列的基础知识,属于基础题. 14.B 【分析】设女子第一天织布1a 尺,则数列{}n a 是公比为2的等比数列,由题意得515(12)512a S -==-,解得1531a =,由此能求出该女子所需的天数至少为7天. 【详解】设女子第一天织布1a 尺,则数列{}n a 是公比为2的等比数列,由题意得515(12)512a S -==-,解得1531a =, 5(12)312012n n S -∴=-,解得2125n . 因为6264=,72128=∴该女子所需的天数至少为7天.故选:B 15.A 【分析】根据等比中项的性质有216x =,而由等比通项公式知2x q =,即可求得x 的值. 【详解】由题意知:216x =,且若令公比为q 时有20x q =>,∴4x =, 故选:A 16.C 【分析】利用等比数列的通项公式和前n 项和公式代入化简可得答案 【详解】解:因为等比数列的公比为2,所以31312311(12)7712244a S a a a a --===⋅, 故选:C 17.C【分析】利用等比数列的求和公式进行分项求和,最后再求总和即可 【详解】因为119211021119n n n n a n --⎧≤≤=⎨≤≤⎩,,,所以,41049104561022222212a a a -+++=++==--,498448941112152222222212a a a -+++=++=++==--,该数列从第5项到第15项的和为10494465422222(2121)2(64322)16941504-+-=⨯-+-=⨯+-=⨯=故选:C 【点睛】解题关键在于利用等比数列的求和公式进行求解,属于基础题 18.C 【分析】根据题意,设塔的底层共有x 盏灯,分析可得每层灯的数目构成以x 为首项,13为公比的等比数列,由等比数列的前n 项和公式可得x 的值,即可得答案. 【详解】根据题意,设塔的底层共有x 盏灯,则每层灯的数目构成以x 为首项,13为公比的等比数列,则有51(1)3363113x S ⨯-==-, 解可得:243x =,所以中间一层共有灯21243()273⨯=盏. 故选:C 【点睛】思路点睛:要求中间一层的灯的数量,只需求等比数列的首项,根据等比数列的和求出数列的首项即可. 19.D 【分析】根据等比数列的通项公式建立方程,求得数列的公比和首项,代入等比数列的求和公式可得选项. 【详解】设等比数列{}n a 的公比为(0)q q >.∵312283S a a =+, ∴123122()83a a a a a ++=+,即321260a a a --=. ∴2260q q --=,∴2q 或32q =-(舍去),∵416a =,∴4132a a q==, ∴6616(1)2(12)126112a q S q --===--, 故选:D. 20.C 【分析】令n n n c a b =-,由111233n n n a b a ++=+,11344n n n b a b +=+可知数列{}n c 是首项为1.8,公比为12的等比数列,即11.812n n c -⎛⎫ ⎪⎝⎭=⨯,则110.0121.8n -⎛⎫< ⎪⎝⎭⨯,解不等式可得n 的最小值. 【详解】令n n n c a b =-,则11120.2 1.8c a b =-=-=111113131344444121233343n n n n n n n n n n nn c a b a b a b b a a a b ++++⎛⎫=-=+--=+-- ⎪⎝+⎭111222n n n a b c -== 所以数列{}n c 是首项为1.8,公比为12的等比数列,所以11.812n n c -⎛⎫ ⎪⎝⎭=⨯由0.01n n a b -<,即110.0121.8n -⎛⎫< ⎪⎝⎭⨯,整理得12180n ->由72128=,82256=,所以18n -=,即9n =故选:C. 【点睛】本题考查了等比数列及等比数列的通项公式,解题的关键是根据已知的数列递推关系式,利用等比数列的定义,得到数列{}n c 为等比数列,考查了学生的分析问题能力能力与运算求解能力,属于中档题.二、多选题21.ABC 【分析】设等差数列{}n a 的首项为1a ,公差为d , ()11n a a n d +-=,其前n 项和为()112n n n S na d -=+,结合等差数列的定义和前n 项的和公式以及等比数列的定义对选项进行逐一判断可得答案. 【详解】 设等差数列{}n a 的首项为1a ,公差为d , ()11n a a n d +-= 其前n 项和为()112n n n S na d -=+选项A. 112n S n a d n -=+,则+1111+1222n n S S n n d a d a d n n -⎛⎫⎛⎫-=+-+= ⎪ ⎪⎝⎭⎝⎭(常数) 所以数列|n S n ⎧⎫⎨⎬⎩⎭为等差数列,故A 正确. 选项B. ()1122n a n da +-=,则112222n n n na a a d a ++-==(常数),所以数列{}2n a为等比数列,故B正确.选项C. 由,m na n a m ==,得()()1111m n a a m d na a n d m⎧=+-=⎪⎨=+-=⎪⎩ ,解得11,1a m n d =+-=- 所以()()()111110m n a a n m d n m n m +=++-=+-++-⨯-=,故C 正确. 选项D. 由,m n S n S m ==,则()112n n n n S a d m -=+=,()112m m m m S a d n -=+=将以上两式相减可得:()()()2212dm n a m m n n n m ⎡⎤-+---=-⎣⎦()()()112dm n a m n m n n m -+-+-=-,又m n ≠所以()1112d a m n ++-=-,即()1112dm n a +-=-- ()()()()()()()111112m n m n m n dS m n a m n a m n a m n +++-=++=+++--=-+,所以D 不正确. 故选:ABC 【点睛】关键点睛:本题考查等差数列和等比数列的定义的应用以及等差数列的前n 项和公式的应用,解答本题的关键是利用通项公式得出()()1111m n a a m d na a n d m⎧=+-=⎪⎨=+-=⎪⎩,从中解出1,a d ,从而判断选项C ,由前n 项和公式得到()112n n n n S a d m -=+=,()112m m m m S a d n -=+=,然后得出()1112dm n a +-=--,在代入m n S +中可判断D ,属于中档题. 22.ABC 【分析】利用数列单调性及题干条件,可求出11,a b 范围;求出数列{},{}n n a b 的前2n 项和的表达式,利用数学归纳法即可证明其大小关系,即可得答案. 【详解】因为数列{}n a 为递增数列, 所以123a a a <<,所以11222a a a <+=,即11a <, 又22324a a a <+=,即2122a a =-<, 所以10a >,即101a <<,故A 正确; 因为{}n b 为递增数列, 所以123b b b <<,所以21122b b b <=,即1b <又22234b b b <=,即2122b b =<, 所以11b >,即11b <<,故B 正确;{}n a 的前2n 项和为21234212()()()n n n S a a a a a a -=++++⋅⋅⋅++= 22(121)2[13(21)]22n n n n +-++⋅⋅⋅+-==,因为12n n n b b +⋅=,则1122n n n b b +++⋅=,所以22n n b b +=,则{}n b 的2n 项和为13212422()()n n n b b b b b b T -=++⋅⋅⋅++++⋅⋅⋅+=1101101122(222)(222)()(21)n n nb b b b --++⋅⋅⋅++++⋅⋅⋅+=+-1)1)n n>-=-,当n =1时,222,S T =>,所以22T S >,故D 错误; 当2n ≥时假设当n=k时,21)2k k ->21)k k ->, 则当n=k +11121)21)21)2k k k k k ++-=+-=->2221(1)k k k >++=+所以对于任意*n N ∈,都有21)2k k ->,即22n n T S >,故C 正确 故选:ABC【点睛】本题考查数列的单调性的应用,数列前n 项和的求法,解题的关键在于,根据数列的单调性,得到项之间的大小关系,再结合题干条件,即可求出范围,比较前2n 项和大小时,需灵活应用等差等比求和公式及性质,结合基本不等式进行分析,考查分析理解,计算求值的能力,属中档题. 23.BD 【分析】根据22n nS a =-,利用数列通项与前n 项和的关系得1,1,2n n S n a S n =⎧=⎨≥⎩,求得通项n a ,然后再根据选项求解逐项验证. 【详解】当1n =时,12a =,当2n ≥时,由22n n S a =-,得1122n n S a --=-, 两式相减得:12n n a a -=, 又212a a =,所以数列{}n a 是以2为首项,以2为公比的等比数列, 所以2n n a =,24nn a =,数列{}2na的前n 项和为()141444143n n n S +--'==-, 则22log log 2nn n b a n ===,所以()1111111n n b b n n n n +==-⋅⋅++,所以 1111111 (11123411)n T n n n =-+-++-=-<++, 故选:BD 【点睛】方法点睛:求数列的前n 项和的方法 (1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11nn na q S a q q q=⎧⎪=-⎨≠⎪-⎩;(2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 24.CD 【分析】由题意得到数列{}n a 的前n 项依次为231,2,3,2,5,7,2,9,利用列举法,结合等差数列以及等比数列的求和公式,验证即可求解. 【详解】由题意,数列{}n a 的前n 项依次为231,2,3,2,5,7,2,9,利用列举法,可得当25n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,2,4,8,16,32,可得52520(139)2(12)40062462212S ⨯+-=+=+=-,2641a =,所以2612492a =,不满足112n n S a +>; 当26n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,2,4,8,16,32,可得52621(141)2(12)44162503212S ⨯+-=+=+=-,2743a =,所以2612526a =,不满足112n n S a +>; 当27n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,43,2,4,8,16,32,可得52722(143)2(12)48462546212S ⨯+-=+=+=-,2845a =,所以2712540a =,满足112n n S a +>; 当28n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,43,45,2,4,8,16,32,可得52823(145)2(12)52962591212S ⨯+-=+=+=-,2947a =,所以2812564a =,满足112n n S a +>,所以使得112n n S a +>成立的n 的可能取值为27,28. 故选:CD.【点睛】本题主要考查了等差数列和等比数列的前n 项和公式,以及“分组求和法”的应用,其中解答中正确理解题意,结合列举法求得数列的前n 项和,结合选项求解是解答的关键,着重考查推理与运算能力. 25.ABD 【分析】根据基本不等式的相关知识,结合等比数列中等比中项的性质,求出5a 的范围,即可得到所求. 【详解】解:依题意,数列是{}n a 是正项等比数列,30a ∴>,70a >,50a >,∴2373752323262a a a a a +=, 因为50a >,所以上式可化为52a ,当且仅当3a =,7a = 故选:ABD . 【点睛】本题考查了等比数列的性质,考查了基本不等式,考查分析和解决问题的能力,逻辑思维能力.属于中档题. 26.AC 【分析】 由已知得12n na 可得以2122n n a -=,可判断A ;又1111122n n n a --⎛⎫== ⎪⎝⎭,可判断B ;由122log log 21n n a n -==-,可判断C ;求得10S ,20S ,30S ,可判断D.【详解】等比数列{}n a 中,满足11a =,2q,所以12n n a ,所以2122n n a -=,所以数列{}2n a 是等比数列,故A 正确;又1111122n n n a --⎛⎫== ⎪⎝⎭,所以数列1n a ⎧⎫⎨⎬⎩⎭是递减数列,故B 不正确; 因为122log log 21n n a n -==-,所以{}2log n a 是等差数列,故C 正确;数列{}n a 中,101010111222S -==--,202021S =-,303021S =-,10S ,20S ,30S 不成等比数列,故D 不正确; 故选:AC . 【点睛】本题综合考查等差、等比数列的定义、通项公式、前n 项和公式,以及数列的单调性的判定,属于中档题. 27.ACD 【分析】根据等比数列的通项公式,结合等比数列的定义和对数的运算性质进行逐一判断即可. 【详解】因为521127,==a a a ,所以有431127273q a q q q a ⋅=⋅⇒=⇒=,因此选项A 正确;因为131(31)132nn n S -==--,所以131+2+2(3+3)132nn n S -==-, 因为+1+111(3+3)+222=1+1+21+3(3+3)2n nn n n S S -=≠常数, 所以数列{}2n S +不是等比数列,故选项B 不正确; 因为551(31)=1212S =-,所以选项C 正确; 11130n n n a a q --=⋅=>,因为当3n ≥时,22222lg lg =lg()=lg 2lg n n n n n n a a a a a a -+-++⋅=,所以选项D 正确. 故选:ACD 【点睛】本题考查了等比数列的通项公式的应用,考查了等比数列前n 项和公式的应用,考查了等比数列定义的应用,考查了等比数列的性质应用,考查了对数的运算性质,考查了数学运算能力. 28.BD 【分析】 证明1233BE BA BC =+,所以选项B 正确;设BD tBE =(0t >),易得()114n n n n a a a a +--=-,显然1n n a a --不是同一常数,所以选项A 错误;数列{1n n a a --}是以4为首项,4为公比的等比数列,所以14nn n a a +-=,所以选项D 正确,易得321a =,选项C 不正确.【详解】因为2AE EC =,所以23AE AC =, 所以2()3AB BE AB BC +=+, 所以1233BE BA BC =+,所以选项B 正确;设BD tBE =(0t >),则当n ≥2时,由()()1123n n n n BD tBE a a BA a a BC -+==-+-,所以()()111123n n n n BE a a BA a a BC t t-+=-+-, 所以()11123n n a a t --=,()11233n n a a t +-=, 所以()11322n n n n a a a a +--=-, 易得()114n n n n a a a a +--=-,显然1n n a a --不是同一常数,所以选项A 错误; 因为2a -1a =4,114n nn n a a a a +--=-,所以数列{1n n a a --}是以4为首项,4为公比的等比数列,所以14nn n a a +-=,所以选项D 正确,易得321a =,显然选项C 不正确. 故选:BD 【点睛】本题主要考查平面向量的线性运算,考查等比数列等差数列的判定,考查等比数列通项的求法,意在考查学生对这些知识的理解掌握水平. 29.AD 【分析】根据{}n S 为等比数列等价于2n na a +为常数,从而可得正确的选项. 【详解】{}n S 为等比数列等价于1n n S S +为常数,也就是等价于12+1n n n n a a a a ++即2n na a +为常数.对于A ,因为{}n a 是等比数列,故22n na q a +=(q 为{}n a 的公比)为常数,故A 满足; 对于B ,取21221,2nn n a n a -=-=,此时满足2a ,4a ,⋅⋅⋅ ,2n a ,⋅⋅⋅是等比数列,1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅不是等比数列,2121n n a a +-不是常数,故B 错. 对于C ,取2123,2n n n n a a -==,此时满足2a ,4a ,⋅⋅⋅ ,2n a ,⋅⋅⋅是等比数列,1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅是等比数列,21213n n a a +-=,2222n n a a +=,两者不相等,故C 错. 对于D ,根据条件可得2n na a +为常数. 故选:AD.【点睛】 本题考查等比数列的判断,此类问题应根据定义来处理,本题属于基础题.30.BCD【分析】设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为12q =的等比数列,由6=378S 求得首项,然后逐一分析四个选项得答案.【详解】解:根据题意此人每天行走的路程成等比数列,设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为12q =的等比数列. 所以661161[1()](1)2=3781112a a q S q --==--,解得1192a =. 选项A:5561119262a a q ⎛⎫==⨯= ⎪⎝⎭,故A 错误, 选项B:由1192a =,则61378192186S a -=-=,又1921866-=,故B 正确. 选项C:211192962a a q ==⨯=,而6194.54S =,9694.5 1.5-=,故C 正确. 选项D:2123111(1)192(1)33624a a a a q q ++=++=⨯++=, 则后3天走的路程为378336=42-,而且336428÷=,故D 正确.故选:BCD【点睛】 本题考查等比数列的性质,考查等比数列的前n 项和,是基础题.31.ACD【分析】若设此人第n 天走n a 里路,则数列{}n a 是首项为1a ,公比为12q =的等比数列,由6378S =求得首项,然后分析4个选项可得答案.【详解】解:设此人第n 天走n a 里路,则数列{}n a 是首项为1a ,公比为12q =的等比数列, 因为6378S =,所以1661(1)2=378112a S -=-,解得1192a =, 对于A ,由于21192962a =⨯=,所以此人第二天走了九十六里路,所以A 正确; 对于B ,由于 3148119248,43788a =⨯=>,所以B 不正确; 对于C ,由于378192186,1921866-=-=,所以此人第一天走的路程比后五天走的路程多六里,所以C 正确;对于D ,由于4561111924281632a a a ⎛⎫++=⨯++=⎪⎝⎭,所以D 正确, 故选:ACD【点睛】此题考查等比数的性质,等比数数的前项n 的和,属于基础题.32.BCD【分析】举反例,反证,或按照等比数列的定义逐项判断即可.【详解】解:设{}n a 的公比为q ,A. 设()1n n a =-,则10n n a a ++=,显然{}1n n a a ++不是等比数列.B. 2211n n n n a a q a a +++=,所以{}1n n a a +为等比数列. C. ()()24222221222211n n n n n n a q q a a q a a a q +++++==++,所以{}221n n a a ++为等比数列. D. 当1q =时,n S np =,{}n S 显然不是等比数列;当1q ≠时,若{}n S 为等比数列,则()222112n n n S S n S -+=≥, 即()()()211111111111nn n a q a q a q q q q -+⎛⎫⎛⎫⎛⎫--- ⎪ ⎪⎪= ⎪ ⎪⎪---⎝⎭⎝⎭⎝⎭,所以1q =,与1q ≠矛盾,综上,{}n S 不是等比数列.故选:BCD.【点睛】考查等比数列的辨析,基础题.33.ABC【分析】由11a >,781a a >,87101a a -<-,可得71a >,81a <.由等比数列的定义即可判断A ;运用等比数列的性质可判断B ;由正数相乘,若乘以大于1的数变大,乘以小于1的数变小,可判断C; 因为71a >,801a <<,可以判断D.【详解】11a >,781a a >,87101a a -<-, 71a ∴>,801a <<,∴A.01q <<,故正确;B.27981a a a =<,故正确; C.7T 是数列{}n T 中的最大项,故正确.D. 因为71a >,801a <<,n S 的最大值不是7S ,故不正确.故选:ABC .【点睛】本题考查了等比数列的通项公式及其性质、递推关系、不等式的性质,考查了推理能力与计算能力,属于中档题.34.ABD【分析】由条件可得32242q q q =+,解出q ,然后依次计算验证每个选项即可. 【详解】由题意32242q q q =+,得220q q --=,解得2q (负值舍去),选项A 正确; 1222n n n a -=⨯=,选项B 正确;()12212221n n n S +⨯-==--,所以102046S =,选项C 错误;13n n n a a a ++=,而243n n n a a a +=>,选项D 正确.故选:ABD【点睛】本题考查等比数列的有关计算,考查的是学生对基础知识的掌握情况,属于基础题. 35.AC【分析】在A 中,数列{}2n a 是等比数列;在B 中,58a =;在C 中,若123a a a <<,则1q >,数列{}n a 是递增数列;在D 中,13r =-. 【详解】由数列{}n a 是等比数列,知: 在A 中,22221n n a a q -=,22221122221nn n n a a q q a a q+-∴==是常数, ∴数列{}2n a 是等比数列,故A 正确; 在B 中,若32a =,732a =,则58a =,故B 错误; 在C 中,若1230a a a <<<,则1q >,数列{}n a 是递增数列;若1230a a a <<<,则01q <<,数列{}n a 是递增数列,故C 正确;在D 中,若数列{}n a 的前n 和13n n S r -=+,则111a S r ==+, ()()221312a S S r r =-=+-+=, ()()332936a S S r r =-=+-+=, 1a ,2a ,3a 成等比数列, 2213a a a ∴=,()461r ∴=+, 解得13r =-,故D 错误. 故选:AC .【点睛】本题考查等比数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.。
【全国百强校】河北省衡水中学2017年高考猜题卷(一)数学(理)试题(解析版)

2017年高考衡水猜题卷理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集,且,则满足条件的集合的个数是()A. B. C. D.【答案】D【解析】,所以满足的集合有个,故选D.2. 已知是虚数单位,复数的虚部为()A. B. C. D.【答案】B【解析】因为,所以复数的虚部为,故选B.3. 某样本中共有个个体,其中四个值分别为,第五个值丢失,但该样本的平均数为,则样本方差为()A. B. C. D.【答案】A【解析】设丢失的数据为,则这组数据的平均数是,解得,根据方差计算公式得,故选A.4. 双曲线的离心率为,焦点到渐近线的距离为,则的焦距等于()A. B. C. D.【答案】A【解析】由题意知,取双曲线的渐近线,焦点,则,又,则,解得,故选C.5. 若不等式组表示的平面区域是一个直角三角形,则该直角三角形的面积是()A. B. C. D. 或【答案】D【解析】试题分析:由题意可知与垂直或与垂直,所以或,时三角形面积是,时与交点,三角形面积为考点:线性规划点评:线性规划题目结合图形分析6. 已知,则()...A. B. C. D.【答案】C【解析】∵,∴,,化简得,∴,故选C.7. 《九章算术》是我国古代的数学名著,体现了古代劳动人民的数学智慧,其中第六章“均输”中,有一竹节容量问题,某教师根据这一问题的思想设计了如图所示的程序框图,若输出的值为,则输入的值为()A. B. C. D.【答案】A【解析】起始阶段有,,第一次循环后,,;第二次循环后,,;第三次循环后,,;接着计算,跳出循环,输出.令,得.选A.8. 如图,过抛物线的焦点的直线交抛物线于点,交其准线于点,若,且,则此抛物线方程为()A. B. C. D.【答案】C【解析】如图分别过点作准线的垂线,分别交准线于点,设,则由已知得:,由抛物线定义得:,故,在直角三角形中,,从而得,因此抛物线方程为 ,故选C.9. 已知以下三视图中有三个同时表示某一个三棱锥,则不是..该三棱锥的三视图的是()A. B. C. D.【答案】D【解析】三棱锥的三视图均为三角形,四个答案均满足;且四个三视图均表示一个高为3,底面为两直角边长分别为的棱锥,与中俯视图正好旋转,故应是从相反方向进行观察,而其正视图和侧视图中三角形斜边倾斜方向相反,满足实际情况,故表示同一棱锥,设观察的正方向为标准正方向,以表示从后面观察该棱锥;与中俯视图正好旋转,故应是从相反方向进行观察,但侧视图中三角形斜边倾斜方向相同,不满足实际情况,故中有一个不与其它三个一样表示同一个棱锥,根据中正视图与中侧视相同,侧视图与中正视图相同,可判断是从左边观察该棱锥,故选D.10. 在中,,则的值所在区间为()A. B. C. D.【答案】A【解析】设,,中中,,化为,令,则,可得在上递增,,,故选A.11. 已知符号函数那么的大致图象是()A. B. C. D.【答案】D【解析】令,则,,,,,可排除,又,,可排除,故选D.12. 已知函数,对于任意的,且恒成立,则实数的取值范围是()A. B. C. D.【答案】B【解析】由任意的,且,由,则函数单调递增,当在上是增函数,则,解得,当时,,令,解得,由对勾函数的单调递增区间为,故,解得,综上可知:的取值范围为,故选B....【方法点睛】本题主要考查函数的单调性、分类讨论思想,属于难题.分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.本题解答的关键是将不确定的,分两种情况讨论,从而确定函数的单调性,进而求解.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知,则的值是__________.【答案】【解析】取可得;取可得,应填答案。
【全国百强校】河北省衡水中学2017届高三高考押题理数试题(原卷版)

2017年普通高等学校招生全国统一考试模拟试题理科数学(Ⅰ)第Ⅰ卷一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则=()A. B. C. D.2. 已知为虚数单位,若复数在复平面内对应的点在第四象限,则的取值范围为()A. B. C. D.3. 下列函数中,既是偶函数,又在内单调递增的为()A. B. C. D.4. 已知双曲线:与双曲线:,给出下列说法,其中错误的是()A. 它们的焦距相等B. 它们的焦点在同一个圆上C. 它们的渐近线方程相同D. 它们的离心率相等5. 在等比数列中,“,是方程的两根”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6. 执行如图的程序框图,则输出的值为()A. 1009B. -1009C. -1007D. 10087. 已知一几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.8. 已知函数的部分图象如图所示,则函数图象的一个对称中心可能为()A. B. C. D.9. 《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点在半圆上,点在直径上,且,设,,则该图形可以完成的无字证明为()A. B.C. D. ...10. 为迎接中国共产党的十九大的到来,某校举办了“祖国,你好”的诗歌朗诵比赛.该校高三年级准备从包括甲、乙、丙在内的7名学生中选派4名学生参加,要求甲、乙、丙这3名同学中至少有1人参加,且当这3名同学都参加时,甲和乙的朗诵顺序不能相邻,那么选派的4名学生不同的朗诵顺序的种数为()A. 720B. 768C. 810D. 81611. 焦点为的抛物线:的准线与轴交于点,点在抛物线上,则当取得最大值时,直线的方程为()A. 或B.C. 或D.12. 定义在上的函数满足,且当时,,对,,使得,则实数的取值范围为()A. B.C. D.第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答.第22题和第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13. 已知,,若向量与共线,则在方向上的投影为_________.14. 已知实数,满足不等式组且的最大值为,则=__________.15. 在中,角,,的对边分别为,,,,且,的面积为,则的值为__________.16. 已知球是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)的外接球,,,点在线段上,且,过点作圆的截面,则所得截面圆面积的取值范围是__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17. 已知的展开式中的系数恰好是数列的前项和.(1)求数列的通项公式;(2)数列满足,记数列的前项和为,求证:.18. 如图,点在以为直径的圆上,垂直与圆所在平面,为的垂心.(1)求证:平面平面;(2)若,求二面角的余弦值.19. 2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?20. 已知椭圆:的长轴长为6,且椭圆与圆:的公共弦长为.(1)求椭圆的方程....(2)过点作斜率为的直线与椭圆交于两点,,试判断在轴上是否存在点,使得为以为底边的等腰三角形.若存在,求出点的横坐标的取值范围,若不存在,请说明理由.21. 已知函数.(1)讨论函数的单调性;(2)当时,若函数的导函数的图象与轴交于,两点,其横坐标分别为,,线段的中点的横坐标为,且,恰为函数的零点,求证:.请考生在第22、23题中任选一题作答.并用2B铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分.22. 选修4-4:坐标系与参数方程已知直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为,直线与圆交于,两点.(1)求圆的直角坐标方程及弦的长;(2)动点在圆上(不与,重合),试求的面积的最大值.23. 选修4-5:不等式选讲.已知函数.(1)求函数的值域;(2)若,试比较,,的大小.。
2017鸡泽一中高三数学(文)保温题

2017鸡泽一中高三数学(文)一.选择题1. 集合}{022≤--=x x x A ,}{1<=x xB ,则)(BC A R I =A.}{1x x > B.}{12x x <≤ C.}{1x x ≥ D. }{12x x ≤≤ 2.若iiz 21+=,则复数z = A.2 B.3 C.5 D. 53.已知,x y 满足约束条件⎪⎩⎪⎨⎧≤--≥-≥+2211y x y x y x ,若目标函数23 z x y =-的最大值A.2B.3C.4D.5 4.设n S 是等差数列{}n a 的前n 项和,5283()S a a =+,则53a a 的值为 A.16 B. 13 C. 35 D. 565.函数)321sin(2π+=x y 在一个周期内的图像是A BC D6.一个长方体被一个平面截去一部分后所剩几何体的正视图和俯视图如图所示,则该几何体的侧视图可以为正视图俯视图 第6题图A.B.C.D.7.椭圆131222=+y x 的焦点为21,F F ,点P 在椭圆上,如果线段2PF 的中点在y 轴上,那么2PF 是1PF 的A.7倍B. 5倍C.4倍D.3倍 8.已知实数[]10,1∈x ,执行如图所示的流程图,则输出的x 不小于63的概率为 A.97 B.73C.51D.319. 若),0(πα∈,且)4sin(2cos 2παα+=,则α2sin 的值为A.1-或87B. 87 C.1- D.1或87-10.下列命题中真命题是A.命题“存在02,2≥--∈x x R x ”的否定是:“不存在02,2<--∈x x R x ”.B.线性回归直线a x b yˆˆˆ+=恒过样本中心),(y x ,且至少过一个样本点. C.存在)2,0(π∈x ,使31cos sin =+x x . D.函数xx x f )21()(31-=的零点在区间)21,31(内.11.双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,若P 为其上一点,且212PF PF =,321π=∠PF F ,则双曲线的离心率为A.2B.2C.3D.312.已知直线)0)(1(>+=k x k y 与函数x y sin =的图象恰有四个公共点),(11y x A ,),(22y x B ,),(33y x C ,),(44y x D 其中4321x x x x <<<,则有A.1sin 4=xB.444cos )1(sin x x x +=C.44cos sin x k x =D. 444tan )1(sin x x x +=第Ⅱ卷(非选择题 共90分)二.填空题13.已知等比数列{}n a 是递增数列,n S 是{}n a 的前n 项和.若31,a a 是方程09102=+-x x 的两个根,则=6S _________ .14.已知C B A 、、三点在球心为0的球面上,2==AC AB ,ο90=∠BAC ,球心0到平面ABC 的距离为2,则球0的表面积为 _________ .15.如图,在ABC ∆中,1,2,120===∠AC AB BAC ο,D 是边BC 上一点,BD DC 2=,则⋅= _________ .16.已知)(x f 是定义在[-1,1]上的奇函数且2)1(=f ,当[]1121,、-∈x x ,且021≠+x x 时,有0)()(2121>++x x x f x f ,若52)(2--≥am m x f 对所有]1,1[-∈x 、]1,1[-∈a 恒成立,则实数m 的取值范围是 _________ .三、简答题17.在ABC ∆中,角C B A 、、所对的边分别为c b a 、、, 向量(sin sin ,sin sin ),B C A B =+-m (sin sin ,B C =-n A sin ),且⊥m n .(I)求角C 的大小; (II)若4sin 5A =,求cosB 的值.18. 在某大学联盟的自主招生考试中,报考文史专业的考生参加了人文基础学科考试科目“语文”和“数学”的考试. 某考场考生的两科考试成绩数据统计如下图所示,本次考试中成绩在]100,90[内的记为A ,其中“语文”科目成绩在)90,80[内的考生有10人.ABCD图2E(I)求该考场考生数学科目成绩为A 的人数;(II)已知参加本场测试的考生中,恰有两人的两科成绩均为A .在至少一科成绩为A 的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A 的概率.19.如图1,在直角梯形ABCD 中,90ADC ∠=︒,//CD AB ,122AD CD AB ===, 点E 为AC 中点,将ADC ∆沿AC 折起, 使平面ADC ⊥平面ABC ,得到几何体D ABC -,如图2所示.(I)在CD 上找一点F ,使//AD 平面EFB ; (II)求点C 到平面ABD 的距离.20. 已知函数1ln )1(21)(2+++-=x a x a x x f(I)若3=x 是)(x f 的极值点,求)(x f 的极大值;(II)求a 的范围,使得1)(≥x f 恒成立.21.已知抛物线)0(22>=p py x 的焦点为F ,点A 为抛物线上的一点,其纵坐标为1,45=AF . (I)求抛物线的方程;(II)设C B ,为抛物线上不同于A 的两点,且AB AC ⊥,过,B C 两点分别作抛物线的切线,记两切线的交点为D ,求OD 的最小值. 22.(本小题10分)选修4—4:坐标系与参数方程已知平面直角坐标系xOy ,以O 为极点, x 轴的非负半轴为极轴建立极坐标系, ,曲线C 的参数方程为2cos ,()22sin ,x y ϕϕϕ=⎧⎨=+⎩为参数。
精品解析:【全国百强校】河北省衡水中学2017届高三高考押题理数试题(解析版)

2017年普通高等学校招生全国统一考试模拟试题理科数学(Ⅰ)第Ⅰ卷一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则=()A. B. C. D.【答案】B【解析】由题知,,则故本题答案选.2.已知为虚数单位,若复数在复平面内对应的点在第四象限,则的取值范围为()A. B. C. D.【答案】B【解析】由题.又对应复平面的点在第四象限,可知,解得.故本题答案选.3.下列函数中,既是偶函数,又在内单调递增的为()A. B. C. D.【答案】D【解析】为非奇非偶函数,排除;为偶函数,但在内单调递减,排除;为奇函数,排除.故本题答案选.4.已知双曲线:与双曲线:,给出下列说法,其中错误的是()A.它们的焦距相等B.它们的焦点在同一个圆上C.它们的渐近线方程相同D.它们的离心率相等【答案】D【解析】由题知.则两双曲线的焦距相等且,焦点都在圆的圆上,其实为圆与坐标轴交点.渐近线方程都为,由于实轴长度不同故离心率不同.故本题答案选,5.在等比数列中,“,是方程的两根”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】由韦达定理知,则,则等比数列中,则.在常数列或中,不是所给方程的两根.则在等比数列中,“,是方程的两根”是“”的充分不必要条件.故本题答案选.6.执行如图的程序框图,则输出的值为()A.1009B.-1009C.-1007D.1008学_科_网...【答案】B【解析】由程序框图则,由规律知输出.故本题答案选.7.已知一几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.【答案】C【解析】观察三视图可知,几何体是一个圆锥的与三棱锥的组合体,其中圆锥的底面半径为,高为.三棱锥的底面是两直角边分别为的直角三角形,高为.则几何体的体积.故本题答案选.8.已知函数的部分图象如图所示,则函数图象的一个对称中心可能为()A. B. C. D.【答案】C【解析】由图象最高点与最低点的纵坐标知,又,即,所以.则,图象过点,则,即,所以,又,则.故,令,得,令,可得其中一个对称中心为.故本题答案选.9.《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点在半圆上,点在直径上,且,设,,则该图形可以完成的无字证明为()A. B.C. D.【答案】D【解析】令,可得圆的半径,又,则,再根据题图知,即.故本题答案选.10.为迎接中国共产党的十九大的到来,某校举办了“祖国,你好”的诗歌朗诵比赛.该校高三年级准备从包括甲、乙、丙在内的7名学生中选派4名学生参加,要求甲、乙、丙这3名同学中至少有1人参加,且当这3名同学都参加时,甲和乙的朗诵顺序不能相邻,那么选派的4名学生不同的朗诵顺序的种数为()A.720 B.768 C.810 D.816【答案】B【解析】由题知结果有三种情况.甲、乙、丙三名同学全参加,有种情况,其中甲、乙相邻的有种情况,所以甲、乙、丙三名同学全参加时,甲和乙的朗诵顺序不能相邻顺序有种情况;甲、乙、丙三名同学恰有一人参加,不同的朗诵顺序有种情况;甲、乙、丙三名同学恰有二人参加时,不同的朗诵顺序有种情况.则选派的4名学生不同的朗诵顺序有种情况,故本题答案选11.焦点为的抛物线:的准线与轴交于点,点在抛物线上,则当取得最大值时,直线的方程为()A.或B.C.或D.【答案】A【解析】过作与准线垂直,垂足为,则,则当取得最大值时,必须取得最大值,此时直线与抛物线相切,可设切线方程为与联立,消去得,所以,得.则直线方程为或.故本题答案选.点睛:抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离,抛物线上的点到准线的距离)进行等量转化,如果问题中涉及抛物线上的点到焦点或到准线的距离,那么用抛物线定义就能解决问题.本题就是将到焦点的距离转化成到准线的距离,将比值问题转化成切线问题求解.学_科_网...12.定义在上的函数满足,且当时,,对,,使得,则实数的取值范围为()A. B.C. D.【答案】D【解析】由题知问题等价于函数在上的值域是函数在上的值域的子集.当时,,由二次函数及对勾函数的图象及性质,得此时,由,可得,当时,.则在的值域为.当时,,则有,解得,当时,,不符合题意;当时,,则有,解得.综上所述,可得的取值范围为.故本题答案选.点睛:求解分段函数问题应对自变量分类讨论,讨论的标准就是自变量与分段函数所给出的范围的关系,求解过程中要检验结果是否符合讨论时的范围.讨论应该不重复不遗漏.第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答.第22题和第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.已知,,若向量与共线,则在方向上的投影为_________.【答案】【解析】由题知,又与共线,可得,得,则方向上的投影为.故本题应填.14.已知实数,满足不等式组且的最大值为,则=__________.【答案】【解析】作出可行域,目标函数可变为,令,作出,由平移可知直线过时取最大值,则.则.故本题应填.15.在中,角,,的对边分别为,,,,且,的面积为,则的值为__________.【答案】【解析】由正弦定理,原等式可化为,进一步化为,则,即.在三角形中.由面积公式,可知,由余弦定理,代入可得.故本题应填.点睛:本题主要考查正余弦定理.在利用正,余弦定理解三角形的过程中,当所给的等式中既有正弦又有余弦时,常利用正弦定理将边的关系转化为角的关系;如果出现边的平方或者两边长的乘积时可考虑使用余弦定理判断三角形的形状.解三角形问题时,要注意正,余弦定理的变形应用,解题思路有两个:一个是角化为边,二是边化为角.选择余弦定理和面积时,要以已知角的为主.16.已知球是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)的外接球,,,点在线段上,且,过点作圆的截面,则所得截面圆面积的取值范围是__________.【答案】【解析】令的中心为,球的半径为,连接,易求得,则,在中,由勾股定理得,解得,由,知,所以,所以.当截面与垂直时,截面的面积最小,此时截面圆的半径,此时截面面积为.当截面过球心时,截面圆的面积最大,此时截面圆的面积为.故本题应填.点睛:解决球与其他几何体的内切,外接问题的关系在于仔细观察,分析几何体的结构特征,搞清相关元素的位置关系和数量关系,选准最佳角度做出截面(要使这个截面尽可能多地包含球和其他几何体的各种元素,尽可能的体现这些元素之间的关系),达到空间问题平面化的目的.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知的展开式中的系数恰好是数列的前项和.(1)求数列的通项公式;(2)数列满足,记数列的前项和为,求证:.【答案】(1);(2)见解析.【解析】试题分析:(1)由二项展开式可知各项中的系数,求和后可得,利用与间的关系可得数列的通项公式;(2)由的通项公式可求得的通项公式,对进行裂项,用裂项法可求得,利用放缩法可证明不等式.学_科_网...试题解析:(1)的展开式中的系数为,即,所以当时,;当时,也适合上式,所以数列的通项公式为.(2)证明:,所以,所以.18.如图,点在以为直径的圆上,垂直与圆所在平面,为的垂心.(1)求证:平面平面;(2)若,求二面角的余弦值.【答案】(1)见解析;(2).【解析】试题分析:(1)延长交于点,由重心性质及中位线性质可得,再结合圆的性质得,由已知,可证平面,进一步可得平面平面(2)以点为原点,,,方向分别为,,轴正方向建立空间直角坐标系,写出各点坐标,利用二面角与二个半平面的法向量的夹角间的关系可求二面角的余弦值.试题解析:(1)如图,延长交于点.因为为的重心,所以为的中点.因为为的中点,所以.因为是圆的直径,所以,所以.因为平面,平面,所以.又平面,平面=,所以平面.即平面,又平面,所以平面平面.(2)以点为原点,,,方向分别为,,轴正方向建立空间直角坐标系,则,,,,,,则,.平面即为平面,设平面的一个法向量为,则令,得.过点作于点,由平面,易得,又,所以平面,即为平面的一个法向量.在中,由,得,则,.所以,.所以.设二面角的大小为,则.点睛:若分别二面角的两个半平面的法向量,则二面角的大小满足,二面角的平面角的大小是的夹角(或其补角,需根据观察得出结论).在利用向量求空间角时,建立合理的空间直角坐标系,正确写出各点坐标,求出平面的法向量是解题的关键.19.2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?【答案】(1);(2)见解析.【解析】试题分析:(1)选择方案一可以免单,但需要摸出三个红球,利用古典概型求出摸出三个红球的概率,再利用两个相互独立事件同时发生的概率应该是两事件的概率乘积可求得两位顾客均享受免单优惠的概率;(2)分别写出两种方案下付款金额的分布列,再求出期望值,利用期望值的大小,进行合理选择.试题解析:(1)选择方案一若享受到免单优惠,则需要摸出三个红球,设顾客享受到免单优惠为事件,则,所以两位顾客均享受到免单的概率为.(2)若选择方案一,设付款金额为元,则可能的取值为0,600,700,1000.,,,,故的分布列为,所以(元).学_科_网...若选择方案二,设摸到红球的个数为,付款金额为,则,由已知可得,故,所以(元).因为,所以该顾客选择第一种抽奖方案更合算.20.已知椭圆:的长轴长为6,且椭圆与圆:的公共弦长为.(1)求椭圆的方程.(2)过点作斜率为的直线与椭圆交于两点,,试判断在轴上是否存在点,使得为以为底边的等腰三角形.若存在,求出点的横坐标的取值范围,若不存在,请说明理由.【答案】(1);(2)见解析.【解析】试题分析:(1)由长轴长可得值,公共弦长恰为圆直径,可知椭圆经过点,利用待定系数法可得椭圆方程;(2)可令直线的解析式为,设,的中点为,将直线方程与椭圆方程联立,消去,利用根与系数的关系可得,由等腰三角形中,可得,得出中.由此可得点的横坐标的范围.试题解析:(1)由题意可得,所以.由椭圆与圆:的公共弦长为,恰为圆的直径,可得椭圆经过点,所以,解得.所以椭圆的方程为.(2)直线的解析式为,设,的中点为.假设存在点,使得为以为底边的等腰三角形,则.由得,故,所以,.因为,所以,即,所以.当时,,所以;当时,,所以.综上所述,在轴上存在满足题目条件的点,且点的横坐标的取值范围为.点睛:本题主要考查椭圆的标准方程和几何性质,直线与椭圆的位置关系,基本不等式,及韦达定理的应用.解析几何大题的第一问一般都是确定曲线的方程,常见的有求参数确定方程和求轨迹确定方程,第二问一般为直线与椭圆的位置关系,解决此类问题一般需要充分利用数形结合的思想转化给出的条件,可将几何条件转化为代数关系,从而建立方程或者不等式来解决.21.已知函数.(1)讨论函数的单调性;(2)当时,若函数的导函数的图象与轴交于,两点,其横坐标分别为,,线段的中点的横坐标为,且,恰为函数的零点,求证:.【答案】(1)当时,在内单调递增;当时,在内单调递减,在,内单调递增;(2)见解析.【解析】试题分析:(1)对函数求导后,利用导数与函数单调性的关系,对进行讨论可得函数单调性;(2)由函数的导函数可知,又是的零点,代入相减化简得,对求导,.令,求得函数.不等式得证.试题解析:(1)由于的定义域为,则.对于方程,其判别式.当,即时,恒成立,故在内单调递增.当,即,方程恰有两个不相等是实,令,得或,此时单调递增;令,得,此时单调递减.综上所述,当时,在内单调递增;当时,在内单调递减,在,内单调递增.(2)由(1)知,,所以的两根,即为方程的两根.因为,所以,,.又因为,为的零点,所以,,两式相减得,得.而,所以.令,由得,因为,两边同时除以,得,因为,故,解得或,所以.设,所以,则在上是减函数,所以,即的最小值为.所以.请考生在第22、23题中任选一题作答.并用2B铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分.22.选修4-4:坐标系与参数方程已知直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为,直线与圆交于,两点.(1)求圆的直角坐标方程及弦的长;(2)动点在圆上(不与,重合),试求的面积的最大值.【答案】(1);(2).【解析】试题分析:(1)利用平面直角坐标系与极坐标系间的转化关系,可得圆的直角坐标方程,将直线的参数方程代入,利用参数的几何意义可求得弦的长;(2)写出圆的参数方程,利用点到直线的距离公式,可得,可求出的最大值,即求得的面积的最大值.学_科_网...试题分析:(1)由得,所以,所以圆的直角坐标方程为.将直线的参数方程代入圆,并整理得,解得,.所以直线被圆截得的弦长为.(2)直线的普通方程为.圆的参数方程为(为参数),可设曲线上的动点,则点到直线的距离,当时,取最大值,且的最大值为.所以,即的面积的最大值为.23.选修4-5:不等式选讲.已知函数.(1)求函数的值域;(2)若,试比较,,的大小.【答案】(1);(2).根据函数的单调性可知,当时,.所以函数的值域.(2)因为,所以,所以.又,所以,知,,所以,所以,所以.。
【全国百强校】河北省衡水中学2017届高三高考押题理数试题附详细解析 必考经典题型

2017年普通高等学校招生全国统一考试模拟试题理科数学(Ⅰ)第Ⅰ卷一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则=()A. B. C. D.2.已知为虚数单位,若复数在复平面内对应的点在第四象限,则的取值范围为()A. B. C. D.3.下列函数中,既是偶函数,又在内单调递增的为()A. B. C. D.4.已知双曲线:与双曲线:,给出下列说法,其中错误的是()A.它们的焦距相等B.它们的焦点在同一个圆上C.它们的渐近线方程相同D.它们的离心率相等5.在等比数列中,“,是方程的两根”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.执行如图的程序框图,则输出的值为()A.1009B.-1009C.-1007D.10087.已知一几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.8.已知函数的部分图象如图所示,则函数图象的一个对称中心可能为()A. B. C. D.9.《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点在半圆上,点在直径上,且,设,,则该图形可以完成的无字证明为()A. B.C. D.学。
科。
网...10.为迎接中国共产党的十九大的到来,某校举办了“祖国,你好”的诗歌朗诵比赛.该校高三年级准备从包括甲、乙、丙在内的7名学生中选派4名学生参加,要求甲、乙、丙这3名同学中至少有1人参加,且当这3名同学都参加时,甲和乙的朗诵顺序不能相邻,那么选派的4名学生不同的朗诵顺序的种数为()A.720B.768C.810D.81611.焦点为的抛物线:的准线与轴交于点,点在抛物线上,则当取得最大值时,直线的方程为()A.或B.C.或D.12.定义在上的函数满足,且当时,,对,,使得,则实数的取值范围为()A. B.C. D.第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答.第22题和第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.已知,,若向量与共线,则在方向上的投影为_________.14.已知实数,满足不等式组且的最大值为,则=__________.15.在中,角,,的对边分别为,,,,且,的面积为,则的值为__________.16.已知球是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)的外接球,,,点在线段上,且,过点作圆的截面,则所得截面圆面积的取值范围是__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知的展开式中的系数恰好是数列的前项和.(1)求数列的通项公式;(2)数列满足,记数列的前项和为,求证:.18.如图,点在以为直径的圆上,垂直与圆所在平面,为的垂心.(1)求证:平面平面;(2)若,求二面角的余弦值.19.2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?20.已知椭圆:的长轴长为6,且椭圆与圆:的公共弦长为.(1)求椭圆的方程.学。
河北省邯郸市鸡泽一中2017年高考数学模拟试卷(文科)(二)Word版含解析
2017年河北省邯郸市鸡泽一中高考数学模拟试卷(文科)(二)一、选择题:本题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合,集合B={x|(x﹣1)x>0},则A∩∁R B=()A.{x|0≤x≤1}B.{x|0<x<1}C.{0}D.∅2.(5分)已知复数z满足,则复数z在复平面内对应点在()A.第一、二象限B.第三、四象限C.实轴D.虚轴3.(5分)为了得到函数y=cos2x的图象,可将函数的图象()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度4.(5分)某公司准备招聘一批员工,有20人经过初试,其中有5人是与公司所需专业不对口,其余都是对口专业,在不知道面试者专业的情况下,现依次选取2人进行第二次面试,第一个人已面试后,则第二次选到与公司所需专业不对口的概率是()A.B.C.D.5.(5分)《九章算术》中“开立圆术”曰:“置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径”.“开立圆术”相当于给出了已知球的体积V,求其直径d,公式为.如果球的半径为,根据“开立圆术”的方法求球的体积为()A. B.C.D.6.(5分)若变量x,y满足不等式组,则(x,y)的整数解有()A.6 B.7 C.8 D.97.(5分)某几何体的三视图如图所示,设正方形的边长为a,则该三棱锥的表面积为()A.a2B.C.D.8.(5分)已知等差数列{a n}的前n项和为S n,且S2=4,S4=16,数列{b n}满足b n=a n+a n+1,则数列{b n}的前9和T9为()A.20 B.80 C.166 D.1809.(5分)已知直线l:y=2x+1与圆C:x2+y2=1交于两点A,B,不在圆上的一点M(﹣1,m),若,则m的值为()A.﹣1,B.1,C.1,﹣D.﹣1,10.(5分)已知函数f(x)=(x2﹣2x)e x,关于f(x)的性质,有以下四个推断:①f(x)的定义域是(﹣∞,+∞);②函数f(x)是区间(0,2)上的增函数;③f(x)是奇函数;④函数f(x)在上取得最小值.其中推断正确的个数是()A.0 B.1 C.2 D.311.(5分)已知椭圆的标准方程为+=1,F1,F2为椭圆的左右焦点,P是椭圆在第一象限的点,则|PF1|﹣|PF2|的取值范围是()A.(0,6) B.(1,6) C.(0,)D.(0,2)12.(5分)已知正方体ABCD﹣A1B1C1D1的棱长为1,E为棱CC1的中点,F为棱AA1上的点,且满足A1F:FA=1:2,点F、B、E、G、H为面MBN过三点B、E、F的截面与正方体ABCD﹣A1B1C1D1在棱上的交点,则下列说法错误的是()A.HF∥BE B.C.∠MBN的余弦值为D.△MBN的面积是二、填空题:本大题共4小题,每小题5分.13.(5分)如图所示,在梯形ABCD中,∠A=,,BC=2,点E为AB的中点,则=.14.(5分)执行如图所示的程序框图,若输出S的值为.15.(5分)已知数列{a n}为1,3,7,15,31,…,2n﹣1,数列{b n}满足b1=1,b n=a n﹣a n﹣1,则数列的前n﹣1项和S n﹣1为.16.(5分)如图:已知△ABC,AC=15,M在AB边上,且CM=3,cos∠ACM=,sinα=,(α为锐角),则△ABC的面积为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)已知锐角三角形ABC的内角A,B,C的对边分别为a,b,c,且满足cos2B﹣cos2C﹣sin2A=﹣sinAsinB,sin(A﹣B)=cos(A+B).(1)求角A、B、C;(2)若a=,求三角形ABC的边长b的值及三角形ABC的面积.18.(12分)2017年4月1日,中共中央、国务院决定设立的国家级新区﹣﹣雄安新区.雄安新区建立后,在该区某街道临近的A路口和B路口的车流量变化情况,如表所示:(1)求前5天通过A路口车流量的平均值和通过B路口的车流量的方差,(2)根据表中数据我们认为这两个临近路口有较强的线性相关关系,第10日在A路口测得车流量为3百辆时,你能估计这一天B路口的车流量吗?大约是多少呢?(最后结果保留两位小数)(参考公式:,,)19.(12分)如图所示,直棱柱ABCD﹣A1B1C1D1,底面ABCD是平行四边形,AA1=AB=B1D1=3,BC=2,E是边B1C1的中点,F是边CC1上的动点,(1)当C1F=BC时,求证:BF⊥平面D1EF;(2)若BE⊥EF,求三棱锥B﹣D1EF体积.20.(12分)设椭圆的左顶点为(﹣2,0),且椭圆C与直线相切,(1)求椭圆C的标准方程;(2)过点P(0,1)的动直线与椭圆C交于A,B两点,设O为坐标原点,是否存在常数λ,使得?请说明理由.21.(12分)设函数f(x)=.(1)求曲线y=f(x)在点(e,f(e))处的切线方程;(2)当x≥1时,不等式f(x)﹣≥恒成立,求a的取值范围.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.(10分)已知极坐标系的极点在直角坐标系的原点处,极轴与x轴非负半轴重合,直线l的极坐标方程为3ρcosθ+ρsinθ﹣6=0,圆C的参数方程为,(1)求直线l和圆C的直角坐标系方程;(2)若相交,求出直线被圆所截得的弦长.23.已知点P(a,b)在圆C:x2+y2=x+y(x,y∈(0,+∞))上,(1)求的最小值;(2)是否存在a,b,满足(a+1)(b+1)=4?如果存在,请说明理由.2017年河北省邯郸市鸡泽一中高考数学模拟试卷(文科)(二)参考答案与试题解析一、选择题:本题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合,集合B={x|(x﹣1)x>0},则A∩∁R B=()A.{x|0≤x≤1}B.{x|0<x<1}C.{0}D.∅【分析】化简集合A、B,根据补集、交集的定义计算即可.【解答】解:集合={0},集合B={x|(x﹣1)x>0}={x|x>1或x<0},所以∁R B={x|0≤x≤1},所以A∩∁R B={0}.故选:C.【点评】本题考查了集合的化简与运算问题,是基础题.2.(5分)已知复数z满足,则复数z在复平面内对应点在()A.第一、二象限B.第三、四象限C.实轴D.虚轴【分析】利用复数的运算法则、几何意义、复数相等即可得出.【解答】解:设复数z=a+bi,(a,b∈R),因为,所以zi+i=z﹣1,所以(a+1)i﹣b=a+bi﹣1,可得,解得,所以z=i,所以复数z在复平面内对应点(0,1)在虚轴上.故选:D.【点评】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.3.(5分)为了得到函数y=cos2x的图象,可将函数的图象()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度【分析】利用诱导公式将函数名化相同,根据三角函数图象平移变换规律可得答案.【解答】解:∵,∴将函数的图象向左平移个单位可得.故选:D.【点评】本题考查了诱导公式的化简和三角函数图象平移变换规律的运用.属于基础题.4.(5分)某公司准备招聘一批员工,有20人经过初试,其中有5人是与公司所需专业不对口,其余都是对口专业,在不知道面试者专业的情况下,现依次选取2人进行第二次面试,第一个人已面试后,则第二次选到与公司所需专业不对口的概率是()A.B.C.D.【分析】利用古典概型概率计算公式,能求出第二次选到与公司所需专业不对口的概率.【解答】解:∵有20人经过初试,其中有5人是与公司所需专业不对口,其余都是对口专业,在不知道面试者专业的情况下,现依次选取2人进行第二次面试,第一个人已面试后,由古典概型概率计算公式,得:第二次选到与公司所需专业不对口的概率是:p==.故选:C.【点评】本题考查概率的求法,考查古典概型概率计算公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.(5分)《九章算术》中“开立圆术”曰:“置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径”.“开立圆术”相当于给出了已知球的体积V,求其直径d,公式为.如果球的半径为,根据“开立圆术”的方法求球的体积为()A. B.C.D.【分析】根据公式得,,解得v即可【解答】解:根据公式得,,解得.故选D.【点评】本题考查了数学文化,属于基础题.6.(5分)若变量x,y满足不等式组,则(x,y)的整数解有()A.6 B.7 C.8 D.9【分析】画出约束条件的可行域,即可找出(x,y)的整数解的个数.【解答】解:如图:易知:共9个整数点.故选:D.【点评】本题考查线性规划的简单应用,考查数形结合以及计算能力.7.(5分)某几何体的三视图如图所示,设正方形的边长为a,则该三棱锥的表面积为()A.a2B.C.D.【分析】由已知中的三视图可得:该几何体是一个正方体切去各个角后得到的正四面体,进而可得其表面积.【解答】解:由已知中的三视图可得:该几何体是一个正方体切去各个角后得到的正四面体,∵正方形的边长为a,故正四面体的棱长为:a,故正四面体的表面积:S=4×=,故选:D【点评】本题考查的知识点是棱锥的体积和表面积,空间几何体的三视图,难度中档.8.(5分)已知等差数列{a n}的前n项和为S n,且S2=4,S4=16,数列{b n}满足b n=a n+a n+1,则数列{b n}的前9和T9为()A.20 B.80 C.166 D.180【分析】利用已知条件求出数列的首项与公差,求出通项公式,然后求解数列{b n}的前9和T9.【解答】解:等差数列{a n}的前n项和为S n,且S2=4,S4=16,可得,解得d=2,a1=1,a n=2n﹣1,b n=a n+a n+1=4n.数列{b n}的前9和T9=4×=180.故选:D.【点评】本题考查数列的递推关系式与数列求和,考查计算能力.9.(5分)已知直线l:y=2x+1与圆C:x2+y2=1交于两点A,B,不在圆上的一点M(﹣1,m),若,则m的值为()A.﹣1,B.1,C.1,﹣D.﹣1,【分析】求出A,B坐标,然后利用向量的数量积列出方程,求解即可.【解答】解:将直线l的方程与圆C的方程联立得,化简得5x2+4x=0,解得x=0或,所以A(0,1),,所以,,根据,所以,化简5m2﹣2m﹣7=0,解得或m2=﹣1.故选:A.【点评】本题考查直线与圆的位置关系以及向量的数量积的求法,考查计算能力.10.(5分)已知函数f(x)=(x2﹣2x)e x,关于f(x)的性质,有以下四个推断:①f(x)的定义域是(﹣∞,+∞);②函数f(x)是区间(0,2)上的增函数;③f(x)是奇函数;④函数f(x)在上取得最小值.其中推断正确的个数是()A.0 B.1 C.2 D.3【分析】求出函数的定义域,判断①的正误;利用函数的导数判断函数的单调性以及最值,判断②④的正误;函数的奇偶性的定义判断③的正误;【解答】解:根据题意可得,函数f(x)的定义域为(﹣∞,+∞),所以①为正确;因为f'(x)=(2x﹣2)e x+(x2﹣2x)e x=(x2﹣2)e x,当时,f'(x)<0,所以函数f(x)在为单调递减函数,当或时,f'(x)>0,在,为单调递增函数,又y=x2﹣2x在(﹣∞,0),(2,+∞)上为正,在(0,2)上为负,所以函数在上取得最小值,所以④正确,②错误.f(﹣x)=(x2+2x)e﹣x,可见f(x)是非奇非偶函数,所以③错误.故选:C.【点评】本题考查函数的导数的应用,函数的单调性以及函数的最值函数的判断,考查计算能力.11.(5分)已知椭圆的标准方程为+=1,F1,F2为椭圆的左右焦点,P是椭圆在第一象限的点,则|PF1|﹣|PF2|的取值范围是()A.(0,6) B.(1,6) C.(0,)D.(0,2)【分析】由已知椭圆方程求出焦距,画出图形,分析当P在第一象限无限靠近y 轴和当P在第一象限无限靠近x轴时|PF1|﹣|PF2|的取值情况得答案.【解答】解:如图,由椭圆的标准方程为+=1,得,∴2c=2.当P在第一象限无限靠近y轴时,|PF1|﹣|PF2|的值大于0且无限接近于0;当P在第一象限无限靠近x轴时,|PF1|﹣|PF2|的值无限接近于2c=2.∴|PF1|﹣|PF2|的取值范围是(0,2).故选:D.【点评】本题考查椭圆的简单性质,考查数形结合的解题思想方法,属中档题.12.(5分)已知正方体ABCD﹣A1B1C1D1的棱长为1,E为棱CC1的中点,F为棱AA1上的点,且满足A1F:FA=1:2,点F、B、E、G、H为面MBN过三点B、E、F的截面与正方体ABCD﹣A1B1C1D1在棱上的交点,则下列说法错误的是()A.HF∥BE B.C.∠MBN的余弦值为D.△MBN的面积是【分析】利用直线与平面平行的判断与性质判断A正误;通过求解三角形判断B、C的正误;通过三角形的面积判断D的正误;【解答】解:因为面AD1∥面BC1,且面AD1与面MBN的交线为FH,面BC1与面MBN的交线为BE,所以HF∥BE,A正确;因为A1F∥BB1,且A1F:FA=1:2,所以MA1:A1B1=1:2,所以,所以,在Rt△BB1M中,=,所以B正确;在Rt△BB1N中,E为棱CC1的中点,所以C1为棱NB1上的中点,所以C1N=1,在Rt△C1EN中,,所以;因为,在△BMN中,=,所以C错误;=×因为,所以,所以S△BMN.所以D正确.故选:C.【点评】本题考查命题的真假的判断与应用,考查空间想象能力以及计算能力.二、填空题:本大题共4小题,每小题5分.13.(5分)如图所示,在梯形ABCD中,∠A=,,BC=2,点E为AB的中点,则=﹣2.【分析】以B为原点,BC为x轴,AB为y轴建系,求出相关点的坐标,求出向量即可求解数量积.【解答】解:以B为原点,BC为x轴,AB为y轴建系,C(2,0),,B(0,0),,∴,,所以.故答案为:﹣2.【点评】本题考查向量的数量积的应用,考查计算能力.14.(5分)执行如图所示的程序框图,若输出S的值为.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟程序的运行,可得S=0,n=1执行循环体,S=,n=2不满足条件n>5,执行循环体,S=+,n=3不满足条件n>5,执行循环体,S=++1,n=4不满足条件n>5,执行循环体,S=++1+,n=5不满足条件n>5,执行循环体,S=++1++=,n=6此时满足条件n>5,退出循环,输出S的值为.故答案为:.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.15.(5分)已知数列{a n}为1,3,7,15,31,…,2n﹣1,数列{b n}满足b1=1,b n=a n﹣a n﹣1,则数列的前n﹣1项和S n﹣1为2﹣22﹣n(n≥2).【分析】a n=2n﹣1.数列{b n}满足b1=1,n≥2时b n=a n﹣a n﹣1=2n﹣1﹣(2n﹣1﹣1)=2n﹣1,(n=1时也成立).可得b n=2n﹣1.利用等比数列的求和公式即可得出.【解答】解:a n=2n﹣1.数列{b n}满足b1=1,n≥2时b n=a n﹣a n﹣1=2n﹣1﹣(2n﹣1﹣1)=2n﹣1,(n=1时也成立).∴b n=2n﹣1.∴=.=1+=2﹣22﹣n(n≥2).∴数列的前n﹣1项和S n﹣1故答案为:2﹣22﹣n(n≥2).【点评】本题考查了等比数列的通项公式与求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.16.(5分)如图:已知△ABC,AC=15,M在AB边上,且CM=3,cos∠ACM=,sinα=,(α为锐角),则△ABC的面积为225.【分析】利用余弦定理求出AM,利用正弦定理求解∠MAC,求出AB,然后求解三角形的面积.【解答】解:在△AMC中,由余弦定理可得AM2=AC2+CM2﹣2AC•CMcos∠ACM=72,得,在△AMC中,由正弦定理,解得,所以,在△ABC中,,由正弦定理可得,解得,所以△ABC的面积为=225.故答案为:225.【点评】本题考查正弦定理以及余弦定理的应用,考查计算能力.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)已知锐角三角形ABC的内角A,B,C的对边分别为a,b,c,且满足cos2B﹣cos2C﹣sin2A=﹣sinAsinB,sin(A﹣B)=cos(A+B).(1)求角A、B、C;(2)若a=,求三角形ABC的边长b的值及三角形ABC的面积.【分析】(1)利用余弦定理表示出cosC,把已知等式利用正弦定理化简,整理后代入计算求出cosC的值,即可确定出C的度数,由sin(A﹣B)=cos(A+B),可得sinA=cosA,由A为锐角,可得A,利用三角形内角和定理可求B的值.(2)利用正弦定理可求b,进而根据三角形面积公式即可计算得解.(1)∵△ABC的三个内角为A,B,C,且cos2B﹣cos2C﹣sin2A=﹣sinAsinB.【解答】解:可得:sin2C+sinAsinB=sin2A+sin2B,∴由正弦定理化简得:c2+ab=a2+b2,∴cosC===,∵0<C<π,∴C=.∵sin(A﹣B)=cos(A+B).即sinAcosB﹣cosAsinB=cosAcosB﹣sinAsinB,∴sinA(sinB+cosB)=cosA(sinB+cosB),∴sinA=cosA,∴由A为锐角,可得A=,B=π﹣A﹣C=.(2)∵a=,A=,B=,∴由正弦定理可得:b==,∴三角形ABC的面积S=absinC=×=.【点评】本题考查了正弦定理、余弦定理、三角形面积计算公式,考查了转化思想,推理能力与计算能力,属于中档题.18.(12分)2017年4月1日,中共中央、国务院决定设立的国家级新区﹣﹣雄安新区.雄安新区建立后,在该区某街道临近的A路口和B路口的车流量变化情况,如表所示:(1)求前5天通过A路口车流量的平均值和通过B路口的车流量的方差,(2)根据表中数据我们认为这两个临近路口有较强的线性相关关系,第10日在A路口测得车流量为3百辆时,你能估计这一天B路口的车流量吗?大约是多少呢?(最后结果保留两位小数)(参考公式:,,)【分析】(1)首先求解A,B路口的平均值,然后结合平均值求解方差即可;(2)结合题意求得回归方程,然后利用回归方程预测这一天B路口的车流量即可.【解答】解:(1)由题意可知,(百辆),(百辆),所以通过B路口的车流量的方差为(百辆2).故前5天通过A路口车流量的平均值为0.70百辆和通过B路口的车流量的方差为0.24(百辆2);(2)根据题意可得,,所以,所以A路口车流量和B路口的车流量的线性回归方程为y=1.38x﹣0.28,当x=3时,y=1.38×3﹣0.28=3.86(百辆).故这一天B路口的车流量大约是3.86百辆.【点评】本题考查回归方程的应用,平均值、方差的计算等,重点考查学生对基础概念的理解和计算能力,属于中等题.19.(12分)如图所示,直棱柱ABCD﹣A1B1C1D1,底面ABCD是平行四边形,AA1=AB=B1D1=3,BC=2,E是边B1C1的中点,F是边CC1上的动点,(1)当C1F=BC时,求证:BF⊥平面D1EF;(2)若BE⊥EF,求三棱锥B﹣D1EF体积.【分析】(1)证明D1E⊥B1C1,D1E⊥CC1,推出D1E⊥平面B1BCC1得到D1E⊥BF,证明BF⊥EF,即可证明BF⊥平面D1EF.(2)通过Rt△BB1E∽Rt△FC1E,推出,求出EF,利用等体积法转化求解即可.【解答】(本小题满分12分)解:(1)因为底面A1B1C1D1是平行四边形,所以AB=B1D1=D1C1=3,E是B1C1的中点,所以D1E⊥B1C1…(1分)在直棱柱ABCD﹣A1B1C1D1,因为CC1⊥底面A1B1C1D1,D1E⊂底面A1B1C1D1,所以D1E⊥CC1,又因为B1C1∩CC1=C1,所以D1E⊥平面B1BCC1,…(2分)又BF⊂平面B1BCC1,所以D1E⊥BF…(3分)在矩形BB1C1C中,因为CF=C1E=1,BC=C1F=2,∴Rt△BCF≌Rt△FC1E.∴∠CFB=∠FEC1,∠CBF=∠C1FE,∴∠BFE=90°,∴BF⊥EF,…(5分)又∵D1E∩EF=E,∴BF⊥平面D1EF…(6分)(2)因为D 1E⊥平面BEF,所以D1E是三棱锥B﹣D1EF的高,且,•(7分)因为,…(8分)因为BE⊥EF,所以Rt△BB1E∽Rt△FC1E,所以,所以,…(10分)所以…(12分)【点评】本题考查直线与平面垂直的判定定理以及性质定理的应用,几何体的体积的求法,考查空间想象能力以及逻辑推理能力.20.(12分)设椭圆的左顶点为(﹣2,0),且椭圆C与直线相切,(1)求椭圆C的标准方程;(2)过点P(0,1)的动直线与椭圆C交于A,B两点,设O为坐标原点,是否存在常数λ,使得?请说明理由.【分析】(1)由a=2,将直线方程代入椭圆方程,由△=0,即可求得b的值,即可求得椭圆C的标准方程;(2)设直线AB的方程为y=kx+1,代入椭圆方程,利用韦达定理及向量数量积的坐标运算,可知当λ=2时,,当过点P的直线AB的斜率不存在时,直线即与y轴重合,此时,则,当λ=2时,等式成立,综上所述,当λ=2时,.【解答】解:(1)根据题意可知a=2,所以,由椭圆C与直线相切,联立得,消去y可得:,由△=0,即,解得:b2=0(舍)或b2=3.∴椭圆的标准方程为.(2)当过点P的直线AB的斜率存在时,设直线AB的方程为y=kx+1,设A,B 两点的坐标分别为(x1,y1),(x2,y2),联立得,化简(3+4k2)x2+8kx﹣8=0,所以,所以=(1+λ)(1+k2)x1x2+k(x1+x2)+1,=,=,=,∴当λ=2时,当过点P的直线AB的斜率不存在时,直线即与y轴重合,此时,所以,所以当λ=2时,,综上所述,当λ=2时,.【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,向量的坐标运算,考查分类讨论思想,属于中档题.21.(12分)设函数f(x)=.(1)求曲线y=f(x)在点(e,f(e))处的切线方程;(2)当x≥1时,不等式f(x)﹣≥恒成立,求a的取值范围.【分析】(1)f′(x)=,可得f′(e)=,又f(e)=,利用点斜式即可得出.(2)不等式f(x)﹣≥恒成立,x≥1,即lnx﹣a(x2﹣1)≥0,令g (x)=lnx﹣a(x2﹣1),g(1)=0.g′(x)=﹣2ax.对a分类讨论即可得出.【解答】解:(1)∵f′(x)=,∴f′(e)=,又f(e)=,∴曲线y=f(x)在点(e,f(e))处的切线方程为,即;(2)不等式f(x)﹣≥恒成立,x≥1,即lnx﹣a(x2﹣1)≥0,令g(x)=lnx﹣a(x2﹣1),g(1)=0.g′(x)=﹣2ax.①a≤0时,g′(x)≥0,此时函数g(x)单调递增,∴g(x)≥g(1)=0.满足条件,∴a≥0.②a>0时,g′(x)═.可得x>时,函数g(x)单调递减,x→+∞时,g(x)→﹣∞.不符合g(x)≥0,舍去.综上可得:a的取值范围是(﹣∞,a].【点评】本题考查了利用导数研究函数的单调性极值与最值、分类讨论方法、不等式的解法,考查了推理能力与计算能力,属于难题.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.(10分)已知极坐标系的极点在直角坐标系的原点处,极轴与x轴非负半轴重合,直线l的极坐标方程为3ρcosθ+ρsinθ﹣6=0,圆C的参数方程为,(1)求直线l和圆C的直角坐标系方程;(2)若相交,求出直线被圆所截得的弦长.【分析】(1)消去参数,求出直线和圆的普通方程即可;(2)求出圆心和半径,根据点到直线的距离求出d,从而求出弦长即可.【解答】解:(1)将圆C的参数方程化为直角坐标系方程:x2+y2﹣2y﹣4=0,化为标准方程是x2+(y﹣1)2=5,…(3分)直线l:3x+y﹣6=0…(5分)(2)由x2+(y﹣1)2=5,所以圆心C(0,1),半径;所以圆心C到直线l:3x+y﹣6=0的距离是;(10分)直线l被圆C所截得的弦长为.【点评】本题考查了参数方程和普通方程的转化,考查直线和圆的位置关系以及点到的直线的距离,是一道中档题.23.已知点P(a,b)在圆C:x2+y2=x+y(x,y∈(0,+∞))上,(1)求的最小值;(2)是否存在a,b,满足(a+1)(b+1)=4?如果存在,请说明理由.【分析】(1)整理所给的代数式,结合均值不等式的结论即可求得最小值;(2)利用题意首先求得a+b的范围,然后结合均值不等式的结论求解原问题即可.【解答】解:(1),当且仅当a=b=1时,等号成立.所以的最小值为2.(2)存在.因为a2+b2≥2ab,所以(a+b)2≤2(a2+b2)=2(a+b),所以(a+b)2﹣2(a+b)≤0,又a,b∈(0,+∞),所以0<a+b≤2.从而有,因此存在a=1,b=1,满足(a+1)(b+1)=4.【点评】本题考查均值不等式及其应用,重点考查学生对基础概念的理解和计算能力,属于基础题.。
【全国百强校】河北省衡水中学2017届高三高考押题理数试题(原卷版)
2017年普通高等学校招生全国统一考试模拟试题理科数学(Ⅰ)第Ⅰ卷一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则=()A. B. C. D.2. 已知为虚数单位,若复数在复平面内对应的点在第四象限,则的取值范围为()A. B. C. D.3. 下列函数中,既是偶函数,又在内单调递增的为()A. B. C. D.4. 已知双曲线:与双曲线:,给出下列说法,其中错误的是()A. 它们的焦距相等B. 它们的焦点在同一个圆上C. 它们的渐近线方程相同D. 它们的离心率相等5. 在等比数列中,“,是方程的两根”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6. 执行如图的程序框图,则输出的值为()A. 1009B. -1009C. -1007D. 10087. 已知一几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.8. 已知函数的部分图象如图所示,则函数图象的一个对称中心可能为()A. B. C. D.9. 《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点在半圆上,点在直径上,且,设,,则该图形可以完成的无字证明为()A. B.C. D. ...10. 为迎接中国共产党的十九大的到来,某校举办了“祖国,你好”的诗歌朗诵比赛.该校高三年级准备从包括甲、乙、丙在内的7名学生中选派4名学生参加,要求甲、乙、丙这3名同学中至少有1人参加,且当这3名同学都参加时,甲和乙的朗诵顺序不能相邻,那么选派的4名学生不同的朗诵顺序的种数为()A. 720B. 768C. 810D. 81611. 焦点为的抛物线:的准线与轴交于点,点在抛物线上,则当取得最大值时,直线的方程为()A. 或B.C. 或D.12. 定义在上的函数满足,且当时,,对,,使得,则实数的取值范围为()A. B.C. D.第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答.第22题和第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13. 已知,,若向量与共线,则在方向上的投影为_________.14. 已知实数,满足不等式组且的最大值为,则=__________.15. 在中,角,,的对边分别为,,,,且,的面积为,则的值为__________.16. 已知球是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)的外接球,,,点在线段上,且,过点作圆的截面,则所得截面圆面积的取值范围是__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17. 已知的展开式中的系数恰好是数列的前项和.(1)求数列的通项公式;(2)数列满足,记数列的前项和为,求证:.18. 如图,点在以为直径的圆上,垂直与圆所在平面,为的垂心.(1)求证:平面平面;(2)若,求二面角的余弦值.19. 2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?20. 已知椭圆:的长轴长为6,且椭圆与圆:的公共弦长为.(1)求椭圆的方程....(2)过点作斜率为的直线与椭圆交于两点,,试判断在轴上是否存在点,使得为以为底边的等腰三角形.若存在,求出点的横坐标的取值范围,若不存在,请说明理由.21. 已知函数.(1)讨论函数的单调性;(2)当时,若函数的导函数的图象与轴交于,两点,其横坐标分别为,,线段的中点的横坐标为,且,恰为函数的零点,求证:.请考生在第22、23题中任选一题作答.并用2B铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分.22. 选修4-4:坐标系与参数方程已知直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为,直线与圆交于,两点.(1)求圆的直角坐标方程及弦的长;(2)动点在圆上(不与,重合),试求的面积的最大值.23. 选修4-5:不等式选讲.已知函数.(1)求函数的值域;(2)若,试比较,,的大小.。
【全国百强校】河北省衡水中学2017届高三高考押题理数试题(解析版)
2017年普通高等学校招生全国统一考试模拟试题理科数学(Ⅰ)第Ⅰ卷一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则=()A. B. C. D.【答案】B【解析】由题知,,则故本题答案选.2. 已知为虚数单位,若复数在复平面内对应的点在第四象限,则的取值范围为()A. B. C. D.【答案】B【解析】由题.又对应复平面的点在第四象限,可知,解得.故本题答案选.3. 下列函数中,既是偶函数,又在内单调递增的为()A. B. C. D.【答案】D【解析】为非奇非偶函数,排除;为偶函数,但在内单调递减,排除;为奇函数,排除.故本题答案选.4. 已知双曲线:与双曲线:,给出下列说法,其中错误的是()A. 它们的焦距相等B. 它们的焦点在同一个圆上C. 它们的渐近线方程相同D. 它们的离心率相等【答案】D【解析】由题知.则两双曲线的焦距相等且,焦点都在圆的圆上,其实为圆与坐标轴交点.渐近线方程都为,由于实轴长度不同故离心率不同.故本题答案选,5. 在等比数列中,“,是方程的两根”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】由韦达定理知,则,则等比数列中,则.在常数列或中,不是所给方程的两根.则在等比数列中,“,是方程的两根”是“”的充分不必要条件.故本题答案选.6. 执行如图的程序框图,则输出的值为()A. 1009B. -1009C. -1007D. 1008...【答案】B【解析】由程序框图则,由规律知输出.故本题答案选.7. 已知一几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.【答案】C【解析】观察三视图可知,几何体是一个圆锥的与三棱锥的组合体,其中圆锥的底面半径为,高为.三棱锥的底面是两直角边分别为的直角三角形,高为.则几何体的体积.故本题答案选.8. 已知函数的部分图象如图所示,则函数图象的一个对称中心可能为()A. B. C. D.【答案】C【解析】由图象最高点与最低点的纵坐标知,又,即,所以.则,图象过点,则,即,所以,又,则.故,令,得,令,可得其中一个对称中心为.故本题答案选.9. 《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点在半圆上,点在直径上,且,设,,则该图形可以完成的无字证明为()A. B.C. D.【答案】D【解析】令,可得圆的半径,又,则,再根据题图知,即.故本题答案选.10. 为迎接中国共产党的十九大的到来,某校举办了“祖国,你好”的诗歌朗诵比赛.该校高三年级准备从包括甲、乙、丙在内的7名学生中选派4名学生参加,要求甲、乙、丙这3名同学中至少有1人参加,且当这3名同学都参加时,甲和乙的朗诵顺序不能相邻,那么选派的4名学生不同的朗诵顺序的种数为()A. 720 B. 768 C. 810 D. 816【答案】B【解析】由题知结果有三种情况.甲、乙、丙三名同学全参加,有种情况,其中甲、乙相邻的有种情况,所以甲、乙、丙三名同学全参加时,甲和乙的朗诵顺序不能相邻顺序有种情况;甲、乙、丙三名同学恰有一人参加,不同的朗诵顺序有种情况;甲、乙、丙三名同学恰有二人参加时,不同的朗诵顺序有种情况.则选派的4名学生不同的朗诵顺序有种情况,故本题答案选11. 焦点为的抛物线:的准线与轴交于点,点在抛物线上,则当取得最大值时,直线的方程为()A. 或B.C. 或D.【答案】A【解析】过作与准线垂直,垂足为,则,则当取得最大值时,必须取得最大值,此时直线与抛物线相切,可设切线方程为与联立,消去得,所以,得.则直线方程为或.故本题答案选.点睛:抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离,抛物线上的点到准线的距离)进行等量转化,如果问题中涉及抛物线上的点到焦点或到准线的距离,那么用抛物线定义就能解决问题.本题就是将到焦点的距离转化成到准线的距离,将比值问题转化成切线问题求解....12. 定义在上的函数满足,且当时,,对,,使得,则实数的取值范围为()A. B.C. D.【答案】D【解析】由题知问题等价于函数在上的值域是函数在上的值域的子集.当时,,由二次函数及对勾函数的图象及性质,得此时,由,可得,当时,.则在的值域为.当时,,则有,解得,当时,,不符合题意;当时,,则有,解得.综上所述,可得的取值范围为.故本题答案选.点睛:求解分段函数问题应对自变量分类讨论,讨论的标准就是自变量与分段函数所给出的范围的关系,求解过程中要检验结果是否符合讨论时的范围.讨论应该不重复不遗漏.第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答.第22题和第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13. 已知,,若向量与共线,则在方向上的投影为_________.【答案】【解析】由题知,又与共线,可得,得,则方向上的投影为.故本题应填.14. 已知实数,满足不等式组且的最大值为,则=__________.【答案】【解析】作出可行域,目标函数可变为,令,作出,由平移可知直线过时取最大值,则.则.故本题应填.15. 在中,角,,的对边分别为,,,,且,的面积为,则的值为__________.【答案】【解析】由正弦定理,原等式可化为,进一步化为,则,即.在三角形中.由面积公式,可知,由余弦定理,代入可得.故本题应填.点睛:本题主要考查正余弦定理.在利用正,余弦定理解三角形的过程中,当所给的等式中既有正弦又有余弦时,常利用正弦定理将边的关系转化为角的关系;如果出现边的平方或者两边长的乘积时可考虑使用余弦定理判断三角形的形状.解三角形问题时,要注意正,余弦定理的变形应用,解题思路有两个:一个是角化为边,二是边化为角.选择余弦定理和面积时,要以已知角的为主.16. 已知球是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)的外接球,,,点在线段上,且,过点作圆的截面,则所得截面圆面积的取值范围是__________.【答案】【解析】令的中心为,球的半径为,连接,易求得,则,在中,由勾股定理得,解得,由,知,所以,所以.当截面与垂直时,截面的面积最小,此时截面圆的半径,此时截面面积为.当截面过球心时,截面圆的面积最大,此时截面圆的面积为.故本题应填.点睛:解决球与其他几何体的内切,外接问题的关系在于仔细观察,分析几何体的结构特征,搞清相关元素的位置关系和数量关系,选准最佳角度做出截面(要使这个截面尽可能多地包含球和其他几何体的各种元素,尽可能的体现这些元素之间的关系),达到空间问题平面化的目的.三、解答题:解答应写出文字说明,证明过程或演算步骤.17. 已知的展开式中的系数恰好是数列的前项和.(1)求数列的通项公式;(2)数列满足,记数列的前项和为,求证:.【答案】(1);(2)见解析.【解析】试题分析:(1)由二项展开式可知各项中的系数,求和后可得,利用与间的关系可得数列的通项公式;(2)由的通项公式可求得的通项公式,对进行裂项,用裂项法可求得,利用放缩法可证明不等式....试题解析:(1)的展开式中的系数为,即,所以当时,;当时,也适合上式,所以数列的通项公式为.(2)证明:,所以,所以.18. 如图,点在以为直径的圆上,垂直与圆所在平面,为的垂心.(1)求证:平面平面;(2)若,求二面角的余弦值.【答案】(1)见解析;(2) .【解析】试题分析:(1)延长交于点,由重心性质及中位线性质可得,再结合圆的性质得,由已知,可证平面,进一步可得平面平面(2)以点为原点,,,方向分别为,,轴正方向建立空间直角坐标系,写出各点坐标,利用二面角与二个半平面的法向量的夹角间的关系可求二面角的余弦值.试题解析:(1)如图,延长交于点.因为为的重心,所以为的中点.因为为的中点,所以.因为是圆的直径,所以,所以.因为平面,平面,所以.又平面,平面=,所以平面.即平面,又平面,所以平面平面.(2)以点为原点,,,方向分别为,,轴正方向建立空间直角坐标系,则,,,,,,则,.平面即为平面,设平面的一个法向量为,则令,得.过点作于点,由平面,易得,又,所以平面,即为平面的一个法向量.在中,由,得,则,.所以,.所以.设二面角的大小为,则.点睛:若分别二面角的两个半平面的法向量,则二面角的大小满足,二面角的平面角的大小是的夹角(或其补角,需根据观察得出结论).在利用向量求空间角时,建立合理的空间直角坐标系,正确写出各点坐标,求出平面的法向量是解题的关键.19. 2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?【答案】(1) ;(2)见解析.【解析】试题分析:(1)选择方案一可以免单,但需要摸出三个红球,利用古典概型求出摸出三个红球的概率,再利用两个相互独立事件同时发生的概率应该是两事件的概率乘积可求得两位顾客均享受免单优惠的概率;(2)分别写出两种方案下付款金额的分布列,再求出期望值,利用期望值的大小,进行合理选择.试题解析:(1)选择方案一若享受到免单优惠,则需要摸出三个红球,设顾客享受到免单优惠为事件,则,所以两位顾客均享受到免单的概率为.(2)若选择方案一,设付款金额为元,则可能的取值为0,600,700,1000.,,,,故的分布列为,所以(元)....若选择方案二,设摸到红球的个数为,付款金额为,则,由已知可得,故,所以(元).因为,所以该顾客选择第一种抽奖方案更合算.20. 已知椭圆:的长轴长为6,且椭圆与圆:的公共弦长为.(1)求椭圆的方程.(2)过点作斜率为的直线与椭圆交于两点,,试判断在轴上是否存在点,使得为以为底边的等腰三角形.若存在,求出点的横坐标的取值范围,若不存在,请说明理由.【答案】(1);(2)见解析.【解析】试题分析:(1)由长轴长可得值,公共弦长恰为圆直径,可知椭圆经过点,利用待定系数法可得椭圆方程;(2)可令直线的解析式为,设,的中点为,将直线方程与椭圆方程联立,消去,利用根与系数的关系可得,由等腰三角形中,可得,得出中.由此可得点的横坐标的范围.试题解析:(1)由题意可得,所以.由椭圆与圆:的公共弦长为,恰为圆的直径,可得椭圆经过点,所以,解得.所以椭圆的方程为.(2)直线的解析式为,设,的中点为.假设存在点,使得为以为底边的等腰三角形,则.由得,故,所以,.因为,所以,即,所以.当时,,所以;当时,,所以.综上所述,在轴上存在满足题目条件的点,且点的横坐标的取值范围为.点睛:本题主要考查椭圆的标准方程和几何性质,直线与椭圆的位置关系,基本不等式,及韦达定理的应用.解析几何大题的第一问一般都是确定曲线的方程,常见的有求参数确定方程和求轨迹确定方程,第二问一般为直线与椭圆的位置关系,解决此类问题一般需要充分利用数形结合的思想转化给出的条件,可将几何条件转化为代数关系,从而建立方程或者不等式来解决.21. 已知函数.(1)讨论函数的单调性;(2)当时,若函数的导函数的图象与轴交于,两点,其横坐标分别为,,线段的中点的横坐标为,且,恰为函数的零点,求证:.【答案】(1)当时,在内单调递增;当时,在内单调递减,在,内单调递增;(2)见解析.【解析】试题分析:(1)对函数求导后,利用导数与函数单调性的关系,对进行讨论可得函数单调性;(2)由函数的导函数可知,又是的零点,代入相减化简得,对求导,.令,求得函数.不等式得证.试题解析:(1)由于的定义域为,则.对于方程,其判别式.当,即时,恒成立,故在内单调递增.当,即,方程恰有两个不相等是实,令,得或,此时单调递增;令,得,此时单调递减.综上所述,当时,在内单调递增;当时,在内单调递减,在,内单调递增.(2)由(1)知,,所以的两根,即为方程的两根.因为,所以,,.又因为,为的零点,所以,,两式相减得,得.而,所以.令,由得,因为,两边同时除以,得,因为,故,解得或,所以.设,所以,则在上是减函数,所以,即的最小值为.所以.请考生在第22、23题中任选一题作答.并用2B铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分.22. 选修4-4:坐标系与参数方程已知直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为,直线与圆交于,两点.(1)求圆的直角坐标方程及弦的长;(2)动点在圆上(不与,重合),试求的面积的最大值.【答案】(1);(2).【解析】试题分析:(1)利用平面直角坐标系与极坐标系间的转化关系,可得圆的直角坐标方程,将直线的参数方程代入,利用参数的几何意义可求得弦的长;(2)写出圆的参数方程,利用点到直线的距离公式,可得,可求出的最大值,即求得的面积的最大值....试题分析:(1)由得,所以,所以圆的直角坐标方程为.将直线的参数方程代入圆,并整理得,解得,.所以直线被圆截得的弦长为.(2)直线的普通方程为.圆的参数方程为(为参数),可设曲线上的动点,则点到直线的距离,当时,取最大值,且的最大值为.所以,即的面积的最大值为.23. 选修4-5:不等式选讲.已知函数.(1)求函数的值域;(2)若,试比较,,的大小.【答案】(1);(2).根据函数的单调性可知,当时,. 所以函数的值域.(2)因为,所以,所以.又,所以,知,,所以,所以,所以.。
河北省鸡泽县2018届高三数学上学期第一次月考试题理201710090577
2017-2018学年第一学期第一次月考高三数学试题(理科)测试时间:120分钟满分:150分第Ⅰ卷(选择题,共60分)一、选择题(本题共12小题,每小题5分,共60分,每小题只有一个选项符合题意)1.已知集合A={x|y=4x-x2},B={x||x|≤2},则A∪B=()A.[-2,2] B.[-2,4] C.[0,2] D.[0,4]2.下列说法中,正确的是()A.命题“若am2<bm2,则a<b”的逆命题是真命题B.命题“∃x∈R,x2-x>0”的否定是“∀x∈R,x2-x≤0”C.命题“p或q”为真命题,则命题p和命题q均为真命题D.已知x∈R,则“x>1”是“x>2”的充分不必要条件13.若tanα=,则sin4α-cos4α的值为()21 1 3 3A.- B. C. D.-5 5 5 54.已知向量a=(1,2)与b=(4,k)垂直,且a-b与a+b的夹角为θ,则cosθ等于()8 1 7 3A. B. C.-D.-25 3 9 52∫t2d t的零点所在的区间是()5.函数g(x)=2e x+x-31A.(-3,-1) B.(-1,1) C.(1,2) D.(2,3)π6.设函数f(x)=A sin(ωx+φ),其中A>0,|φ|< 的2图象如图所示,为了得到g(x)=sin2x的图象,则只需将f(x)的图象()ππA.向右平移个单位长度B.向右平移个单位长度6 12ππC.向左平移个单位长度D.向左平移个单位长度6 127如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则在该几何体中,最长的棱的长度是()A.4 2 B.2 5 C.6 D.4 318.已知实数x,y满足Error!若不等式ax-y≤3恒成立,则实数a的取值范围为()3 3A.(-∞,4] B.(-∞,2] C.[,2 ]D.[2,4]29.已知数列{a n}满足a n=Error!若对于任意的n∈N*都有a n>a n+1,则实数a的取值范围是()1 1 1 1 1A.(0,3 )B.(0,C. 2 )D.(,1 )2 )(,3 210.已知定义在R上的函数f(x)满足f(1)=4,且f(x)的导函数f′(x)<3,则不等式f(lnx)>3ln x+1的解集为()A.(1,+∞)B.(0,e)C.(0,1) D.(e,+∞)11.已知四面体P-ABC中,PA=4,AC=2 7,PB=BC=2 3,PA⊥平面PBC,则四面体P-ABC的外接球半径为()A.2 2 B.2 3 C.4 2 D.4 312.已知曲线f(x)=k e-2x在点x=0处的切线与直线x-y-1=0垂直,若x 1,x2是函数g(x)=f(x)-|ln x|的两个零点,则()1 2A.1<x1x2< e B. <x1x2<1C.2<x1x2<2 D. <x1x2<2ee e第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于________.π14.若函数f(x)=4sin5ax-4 3cos5ax的图象的相邻两条对称轴之间的距离为,则实3数a的值为________.15甲船在A处观察乙船,乙船在它的北偏东60°的方向,两船相距a海里的B处,乙船正向北行驶,若甲船是乙船速度的3倍,甲船为了尽快追上乙船,则应取北偏东________(填角度)的方向前进.16.已知函数f(x)=Error!则函数g(x)=2|x|f(x)-2的零点个数为________个.三、解答题(共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17. ](本小题满分10分)已知函数f(x)=(x2+mx)e x(其中e为自然对数的底数).(1)当m=-2时,求函数f(x)的单调递增区间;(2)若函数f(x)在区间[1,3]上单调递减,求m的取值范围.2118 (本小题满分12分)在△ABC中,角A、B、C的对边分别为a,b,c,a+=4cos C,ba=1.(1)若A=90°,求△ABC的面积;3(2)若△ABC的面积为,求a,c.219.(本小题满分12分)在等比数列{a n}中,a n>0(n∈N*),a1a3=4,且a3+1是a2和a4的等差中项,若b n=log2a n+1.(1)求数列{b n}的通项公式;1(2)若数列{c n}满足c n=a n+1+,求数列{c n}的前n项和.b2n-1·b2n+120.(本小题满分12分)已知长方形ABCD中,AB=1,AD=2.现将长方形沿对角线BD折起,使AC=a,得到一个四面体A-BCD,如图所示.3(1)试问:在折叠的过程中,异面直线AB与CD,AD与BC能否垂直?若能垂直,求出相应的a值;若不垂直,请说明理由.(2)当四面体A-BCD体积最大时,求二面角A-CD-B的余弦值.21.(本小题满分12分)已知向量m=(3sin x,cos x),n=(-cos x,3cos x),f(x)=m·n 3-.2(1)求函数f(x)的最大值及取得最大值时x的值;π[0,2]上有两个不同的实数根,求实数a的取值范围.(2)若方程f(x)=a在区间22.(本小题满分12分)已知函数f(x)=ax-ln x-4(a∈R).(1)讨论f(x)的单调性;1(2)当a=2时,若存在区间[m,n]⊆[,+∞),使f(x)在[m,n]上的值域是2k k[n+1],,求k的取值范围.m+14答案 B B D D C A D B D B A B112.解析依题意得f′(x)=-2k e-2x,f′(0)=-2k=-1,k=.在同一坐标系下画出21函数y=f(x)=e-2x与y=|ln x|的大致图象,结合图象不难看出,这两条曲线的两个交点中,2其中一个交点横坐标属于区间(0,1),另一个交点横坐标属于区间(1,+∞),不妨设x1∈1 1 1 1(0,1),x2∈(1,+∞),则有e-2x1=|ln x1|=-ln x1∈2),e-2x2=|ln x2|=ln x22 (e-2,2 21 1 1 1- 1 ∈(0,e-2),e-2x2-2e-2x1=ln x2+ln x1=ln (x1x2)∈(-,0),于是有e <x1x2<e0,即2 2 2 e <x1x2<1,313.2n-1;14.± ;15. 30°16.25解析由g(x)=2|x|f(x)-2=0,得f(x)=21-|x|,画出y=Error!与y=21-|x|的图象,可知,它们有2个交点,所以零点个数为2.17.解(1)当m=-2时,f(x)=(x2-2x)e x,f′(x)=(2x-2)e x+(x2-2x)e x=(x2-2)e x,(1分)令f′(x)≥0,即x2-2≥0,解得x≤-2或x≥ 2.所以函数f(x)的单调递增区间是(-∞,-2]和[ 2,+∞).(4分)(2)依题意,f′(x)=(2x+m)e x+(x2+mx)e x=[x2+(m+2)x+m]e x,(5分)因为f′(x)≤0对于x∈[1,3]恒成立,x2+2x 1所以x2+(m+2)x+m≤0,即m≤-=-(x+1)+.(7分)x+1 x+11 1令g(x)=-(x+1)+,则g′(x)=-1-<0恒成立,x+1 x+1215所以g(x)在区间[1,3]上单调递减,g(x)min=g(3)=-,故m的取值范围是415(-∞,-4].(10分)51 a2+b2-c2 2a2+1-c218.解(1)a+=4cos C=4×=,a2ab a∵b=1,∴2c2=a2+1.(2分)又∵A=90°,∴a2=b2+c2=c2+1,∴2c2=a2+1=c2+2,∴c=2,a=3,(4分)1 1 1 2∴S△ABC=bc sin A=bc=×1×=.(6分)22 2 2 21 1 3 3(2)∵S△ABC=ab sin C=a sin C=,则sin C=.2 2 2 a1 3∵a+=4cos C,sin C=,a a1 1 3∴[4(a+a)]2+(a)2=1,化简得(a2-7)2=0,1 12 7(a+a)=,∴a=7,从而cos C=472 7∴c=a2+b2-2bc cos C=7+1-2 ×7 × 1 ×=2.(12分)719.解(1)设等比数列{a n}的公比为q,且q>0,在等比数列{a n}中,由a n>0,a1a3=4,得a2=2,①(2分)又a3+1是a2和a4的等差中项,所以2(a3+1)=a2+a4,②把①代入②,得2(2q+1)=2+2q2,解得q=2或q=0(舍去),(4分)所以a n=a2q n-2=2n-1,则b n=log2a n+1=log22n=n.(6分)1 1 1 1 1),(8分) (2)由(1)得c n=a n+1+=2n+=2n+2n+12(-b2n-1·b2n+1 2n-12n+12n-11 1 1 1所以数列{c n}的前n项和S n=2+22+…+2n+1-3Error!+( 5 )+…+-2 31 1 21-2n 1 1 n)2(1-2n+1)(-Error!=+=2n+1-2+.(12分)2n-1 1-2 2n+120.解(1)若AB⊥CD,因为AB⊥AD,AD∩CD=D,所以AB⊥面ACD⇒AB⊥AC.即AB2+a2=BC2⇒12+a2=( 2)2⇒a=1.(2分)若AD⊥BC,因为AD⊥AB,AB∩BC=B,所以AD⊥面ABC⇒AD⊥AC,即AD2+a2=CD2⇒( 2)2+a2=12⇒a2=-1,无解,故AD⊥BC不成立.(4分)2(2)要使四面体A-BCD体积最大,因为△BCD面积为定值,所以只需三棱锥A-BCD的2高最大即可,此时面ABD⊥面BCD.(6分)过A作AO⊥BD于O,则AO⊥面BCD,以O为原点建立空间直角坐标系Oxyz(如图),666 32 3则易知 A(0,0, 3),C (,0),D(0,,0,),3 3 3 →6 显然,面BCD 的法向量为OA =(0,0, 3).(8分)设面 ACD 的法向量为 n =(x ,y ,z ).→ 6 3 → 2 36 因为CD = ,, =, ,(-,0) DA (0,- 3)3 33所以Error!令 y = 2,得 n =(1,2,2),(10分) 故二面角 A -CD -B 的余弦值即为2 6→ 32 7 |cos 〈OA ,n 〉|= = .(12分) 6 7· 1+2+4 33 3 3 321.解(1)f (x )=m ·n - =-3sin x cos x + 3cos 2x - =- sin2x + (1+cos2x )- 2 2 2 232335π=- sin2x + cos2x = 3sin (2x + 6 ).2 25π π π当 2x + =2k π+ ,即 x =k π- ,k ∈Z 时,函数 f (x )取得最大值 3. 6 2 6π5π 5π 11π (2)由于 x ∈[, 2]时,2x +∈ 6 ].6[, 65π 3π而函数 g (x )= 3sin x 在区间[上单调递减,在, 2]63π 11π区间[上单调递增. ,6]211π33π5π 3 又g( 6 )=- 2,g (2 )=- 3,g (6 )=.2 π 结合图象(如图),所以方程 f (x )=a 在区间[0, 2]上有两个不同的实数根时,a ∈(- 3,- 32].ax-122.解(1)函数f(x)的定义域是(0,+∞),f′(x)=,x当a≤0时,f′(x)≤0,所以f(x)在(0,+∞)上为减函数,1 1当a>0时,令f′(x)=0,则x=,当x∈时,f′(x)<0,f(x)为减函数,a(0,a)1当x∈(,+∞)时,f′(x)>0,f(x)为增函数,(3分)a1(0,a)上为减函数,在∴当a≤0时,f(x)在(0,+∞)上为减函数;当a>0时,f(x)在71(,+∞)上为增函数.(4分)a1(2)当 a =2时,f (x )=2x -ln x -4,由(1)知:f (x )在(,+∞)上为增函数,而[m ,n ]⊆21[,+∞),2kk∴f (x )在[m ,n ]上为增函数,结合 f (x )在[m ,n ]上的值域是[,知:f (m )=m +1 n +1]kk 1k 1,f (n )=,其中 ≤m <n ,则 f (x )=x +1在[,+∞)上至少有两个不同的实数根,(6 m +1n+1 2 2分)k由 f (x )= ,得 k =2x 2-2x -(x +1)ln x -4,x +111记 φ(x )=2x 2-2x -(x +1)ln x -4,x ∈[,+∞),则 φ′(x )=4x - -ln x -3,2 x14x 2-x +12x -12+3x记 F (x )=φ′(x )=4x - -ln x -3,则 F ′(x )= =>0,xx 2 x 211 ∴F (x )在[,+∞)上为增函数,即 φ′(x )在[,+∞)上为增函数,而 φ′(1)=0,221∴当 x ∈(,1 )时,φ′ (x )<0,当 x ∈(1,+∞)时,φ′(x )>0,2 1∴φ(x )在(,1 )上为减函数,在(1,+∞)上为增函数,(10分)213ln 2-9而 φ(2 )=,φ(1)=-4,当 x →+∞时,φ(x )→+∞,故结合图象得:2 13ln 2-9 3ln 2-9φ(1)<k ≤φ(2)⇒-4<k ≤2,∴k 的取值范围是(-4,2].(12分)8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017理 科 数 学(一)
本试题卷共6页,23题(含选考题)。全卷满分150分。考试用时120分钟。
第Ⅰ卷
一、选择题:本题共12小题,每小题5分。在每小题给出的四个选项中,
只有一项是符合题目要求的。
1.已知复数z是一元二次方程2220xx的一个根,则z的值为( )
A.1 B.2 C.0 D.2
2.已知集合|14xxA,集合|2,ByyxxA,集合
2|ln1xCxyx
,则集合BC( )
A.|11xx B.|11xx≤≤ C.|12xx D.|12xx≤
3.已知等差数列na,36S,9111360aaa,则13S的值为( )
A.66 B.42 C.169 D.156
4.世界最大单口径射电望远镜FAST于2016年9月25日在贵州省黔南州落成启用,它被
誉为“中国天眼”,从选址到启用历经22年,FAST选址从开始一万多个地方逐一审查.为了
加快选址工作进度,将初选地方分配给工作人员.若分配给某个研究员8个地方,其中有三
个地方是贵州省的,问:某月该研究员从这8个地方中任选2个地方进行实地研究,则这个
月他能到贵州省的概率为( )
A.328 B.1528 C.37 D.914
5.某几何体的三视图如图所示,则它的表面积是( )
A.43 B.75 C.55 D.725
(第5题图) (第6题图)
6.如图,在三棱锥ABCD中,AB面BCD,45ACB,30ADB,
120BCD,40CD
,则AB( )
A.10 B.20 C.30 D.40
7.已知函数yfx,满足yfx和2yfx是偶函数,且π13f,设
Fxfx
fx
,则(3)F( )
A.π3 B.2π3 C.π D.4π3
8.已知抛物线220ypxp,过点4,0C作抛物线的两条切线CA,CB,
A、B为切点,若直线AB经过抛物线22ypx的焦点,CAB△的面积为24
,
则以直线AB为准线的抛物线标准方程是( )
A.24yx B.24yx
C.28yx D.28yx
9.根据右边流程图输出的值是( )
A.11 B. 31 C.51 D.79
10.在长方体1111ABCDABCD中,11111,2AAADaABa,点P在线段
1
AD
上运动,当异面直线CP与1BA所成的角最大时,则三棱锥11CPAD的体积为
( )
A.34a B.33a C.32a D.3a
(第9题图)
11.已知函数sin()fxxπ0,,02的周期为π,将函数fx的图像
沿着y轴向上平移一个单位得到函数gx图像.设1gx,对任意的ππ,312x恒
成立,当取得最小值时,π4g的值是( )
A.12 B.1 C.32 D.2
12.已知函数2lnxfxxx,有下列四个命题;
①函数fx是奇函数;
②函数fx在,00,是单调函数;
③当0x时,函数0fx恒成立;
④当0x时,函数fx有一个零点,
其中正确的个数是( )
A.1 B.2 C.3 D.4
第Ⅱ卷
本卷包括必考题和选考题两部分。第13~21题为必考题,每个试题考
生都必须作答。第22~23题为选考题,考生根据要求作答。
二、填空题:本大题共4小题,每小题5分。
13.共享单车是指企业与政府合作,在公共服务区等地方提供自行车单车共享服务.现从6
辆黄色共享单车和4辆蓝色共享单车中任取4辆进行检查,则至少有两个蓝色共享单车的取
法种数是_____________.
14.如图所示,在南海上有两座灯塔AB、,这两座灯塔之间的距离为60千米,有个货船
从岛P处出发前往距离120千米岛Q处,行驶致一半路程时刚好到达M处,恰巧M处在灯
塔A的正南方,也正好在灯塔B的正西方,向量PQ⊥BA,则AQBP=_____________.
(第14题图)
15.若x,y满足约束条件13030xxyxy≥≤≤,设224xyx的最大值点为A,则经过点A和
(2,3)B
的直线方程为_______________.
16.已知数列na满足*1*,,nnnnadkanqakNN(*kN,2k≥,且qd、为常数),若
n
a
为等比数列,且首项为0aa,则na的通项公式为________________.
三、解答题:解答应写出文字说明、证明过程或演算步骤。
17.(本小题满分12分)在ABC△中,设向量sinsinsinmABC,,
sinsinsinnABC,
,3sinsinmnAB.
(1)求C的值;
(2)求sinsinAB的取值范围.
18.(本小题满分12分)某研究所设计了一款智能机器人,为了检验设计方案中机器人动作
完成情况.现委托某工厂生产500个机器人模型,并对生产的机器人进行编号:001,
002,……,500,采用系统抽样的方法抽取一给容量为50个机器人样本.试验小组对50
个机器人样本的动作个数进行分组,频率分布直方图及频率分布表中的部分数组如图所示,
请据此回答如下问题:
分组 机器人数 频率
[50,60)
0.08
[60,70)
10
[70,80)
10
[80,90)
[90,100]
6
(1)补全频率分布表,画出频率分布直方图;
(2)若随机抽的号码为003,这500个机器人分别放在A,B,C三个房间,从001到200
在A房间,从201到355在B房间,从356到500在C房间,求B房间被抽中的人数是多
少?
(3)从动作个数不低于80的机器人中随机选取2个机器人,该2个机器人中动作个数不低
于90的机器人数记为,求的分布列与数学期望.
19.(本小题满分12分)已知正方体1111ABCDABCD的棱长为1, S是11AC的中点,M
是SD上的点,且SD⊥MC.
(1)求证:SD⊥面MAC
(2)求平面SAB与平面SCD夹角的余弦值.
20.(本小题满分12分)已知椭圆C:22221xyab(a>b>0)的离心率为12,其中一个顶
点是双曲线221916xy的焦点,
(1)求椭圆C的标准方程;
(2)过点(0,3)P的直线l与椭圆C相交于不同的两点A,B,过点A,B分别作椭圆的两条
切线,求其交点的轨迹方程.
21.(本小题满分12分)已知函数2e1axfxx(a是常数),
(1)求函数yfx的单调区间;
(2)当0,16x时,函数fx有零点,求a的取值范围.
请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分。
22.(本小题满分10分)已知在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立
极坐标系,曲线C1的参数方程为:212222xtyt,曲线C2的极坐标方程:
22
1sin8
,
(1)写出C1和C2的普通方程;
(2)若C1与C2交于两点A,B,求AB的值.
23.(本小题满分10分)已知函数213fxx,
(1)若不等式fxxa≥-恒成立,求实数a的取值范围;
(2)若对于实数x,y,有113xy≤,1233y≤,求证:23fx≤.