【蛋白质与酶工程复习提纲】

合集下载

蛋白质工程复习要点

蛋白质工程复习要点

1:蛋白质工程与基因工程的区别基因工程:把外源基因转入适当的生物体内,从而表达出蛋白质蛋白质工程:对蛋白质的基因进行改造,从而改造其编码的蛋白质2创造和改造蛋白质的方法改造1活性部位2结构顺序方法:物理化学法_通过变性复性,修饰蛋白质侧链基团,分割肽链,改变表面电荷分布。

生物化学法_利用蛋白酶选择性分割蛋白质;用转糖苷酶,酯酶,酰酶等改变化学集团;用转酰胺酶是蛋白质发生胶连。

基因重组法。

3:氨基酸分类,蛋白质结构分类①氨基酸分类依据一:R基结构,分为脂肪族氨基酸、芳香族、杂环族、杂环亚依据二:R基极性,分为非极性中性氨基酸(甘丙缬亮蛋色苯丙异亮)与极性氨基酸②1极性中性_R基不解离(丝苏酪半胱谷氨天门冬)2酸性3碱性(组赖精)蛋白质结构分类:按结构域分类1α型(α螺旋含量>60%)2β型(桶状或柱状)3α/β型(α包围β,αβα样式)4α+β,α与β空间分离,位于分子不同部位4:蛋白质折叠过程动力学有哪些障碍动力学途径指导折叠过程,避免大量无规则构象的筛取.但会对正确折叠产生障碍:1中间体通过外漏疏水集团结合2不正确的二硫键形成3脯氨酸残基的异构化(分子伴侣等消除此不利)5:蛋白质二级结构,结构域,超二级结构,疏水内核二级结构:多肽链借助氢键形成的局部结构,有α螺旋,β折叠等。

超二级结构:邻近的二级结构在空间折叠上靠近,形成的二级结构聚合体(αα,βββ,βαβ)。

结构域:蛋白质亚基中明显分开的紧密球状结构。

疏水内核:蛋白质结构共同特征,在分子内部,都有一个由疏水侧链堆积形成的结构。

有稳定结构的作用。

6:蛋白质结构测定方法,分子伴侣,增加蛋白质结构稳定性的途径①结构测定方法:X-ray,核磁共振,荧光转移法_纤维衍射法_理论建模法②帮助蛋白质和正确折叠然后离开的蛋白质分子③降低折叠态与非折叠态的熵差,以减少非折叠态的构象(引入二硫键;增加Pro,替换Ala);稳定α螺旋(通过残基替换抵消电荷);填充疏水内核7:蛋白质设计目标及怎样解决1热稳定性(引入二硫桥增加氢键数目与表面盐桥改善内部疏水堆积)2对氧化的稳定性(把Cys-Ala、Ser_Met-Val_Trp-Phe)3对重金属的稳定性(Cys-Ala、Ser_ Met-Val_替换表面羧基)4PH稳定性(替换表面电荷基团_内离子对置换_内His,Cys,Tyr的置换)5提高酶学的性质(增加逆转数_改变酸碱度)热氧化金属PH酶目的:为蛋白质工程提供指导性信息与探索蛋白质折叠机理。

蛋白质工程复习要点

蛋白质工程复习要点

1.定点突变技术:它以单链的克隆基因为模板在一段含有一个或几个错配碱基的寡核苷酸引物存在下合成双链闭环DNA分子。

用该双链闭环DNA分子转入宿主细胞,可解链成两条单链,各自可进行复制,合成自己的互补链,从而可得到野生型和突变型两种环状DNA,分离出突变型基因, 并引入到表达载体中就可经转化利用宿主细胞获得突变型的目的蛋白质。

2.杂合蛋白技术:原理:将不同来源的功能结构域经过组合,产生具有新的生物学功能的杂合多肽举例:鼠源scFv+大肠杆菌β-半乳糖苷酶N-末端3.易错PCR(error prone PCR, EP PCR):利用低保真度TaqDNA 聚合酶,或者改变PCR 反应体系的条件,在新链DNA 聚合过程中随机引入错配碱基,经多轮PCR 扩增,构建序列多种多样的突变库。

特点:不改变基因长度,突变频率控制在适度范围,能有效地获得有益突变体举例:厌氧菌N. patriciarum 中,木聚糖酶4.DNA 改组技术(DNA shuffling):原理:先切割产生随机大小的DNA 片段,再用无引物PCR 将其连接成为接近目的基因长度的DNA分子,最后进行扩增得全长基因举例:α-干扰素5.交错延伸( Stagger extension process):原理:a.在PCR 反应中把常规的退火和延伸合并为一步,并大大缩短其反应时间(55 →5s),从而只能合成出非常短的新生链,b.经变性的新生链再作为引物与体系内同时存在的不同模板退火而继续延伸。

c.此过程反复进行,产生间隔的含不同模板序列的新生DNA 分子。

酯酶KCTC1767稳定性和底物耐受性。

6.酶工程:是酶学基本原理与化学工程相结合而形成的一门新兴的技术科学。

研究酶制剂大规模生产及应用所涉及的理论与技术方法。

7.蛋白质工程:通过对蛋白质已知结构和功能的了解,借助计算机辅助设计,利用基因定位诱变等技术,特异性地对蛋白质结构基因进行改造,产生具有新的特性的蛋白质的技术,并由此深入研究蛋白质的结构与功能的关系,并使蛋白质更好地造福于人类。

(完整word版)酶工程考试复习题及答案

(完整word版)酶工程考试复习题及答案

酶工程考试复习题及答案一、名词解释题1.酶活力: 是指酶催化一定化学反应的能力。

酶活力的大小可用在一定条件下,酶催化某一化学反应的速度来表示,酶催化反应速度愈大,酶活力愈高,反之活力愈低。

2.酶的专一性: 是指一种酶只能对一种底物或一类底物起催化作用,对其他底物无催化作用的性质,一般又可分为绝对专一性和相对专一性。

3.酶的转换数:是指每个酶分子每分钟催化底物转化的分子数,即是每摩尔酶每分钟催化底物转变为产物的摩尔数,是酶的一个指标。

4.酶的发酵生产:是指通过对某些特定微生物进行发酵培养后,利用微生物生长发酵过程中特定的代谢反应生成生产所需要的酶,最后通过提取纯化过程得到酶制剂的过程称为酶的发酵生产。

5.酶的反馈阻遏:6.细胞破碎:是指利用机械、物理、化学、酶解等方法,使目标细胞的细胞膜或细胞壁得以破坏,细胞中的目标产物得以选择性或全部释放便于后续收集和分离的过程称为细胞破碎。

7.酶的提取: 是指在一定的条件下,用适当的溶剂处理含酶原料,使酶充分溶解到溶剂中的过程,也称作酶的抽提,是酶分离纯化过程常用的手段之一。

8.沉淀分离:是通过改变某些条件,使溶液中某种溶质的溶解度降低,从溶液中沉淀析出,而与其他溶质分离的方法,常用语酶的初步提取与分离。

9.层析分离: 亦称色谱分离,是一种利用混合物中各组分的物理化学性质的差别,使各组分以不同程度分布在两个相中,其中一个相为固定的(称为固定相),另一个相则流过此固定相(称为流动相)并使各组分由于与固定相和流动相作用力的不同以不同速度移动,从而达到分离的物理分离方法。

10.凝胶层析: 又称为凝胶过滤,分子排阻层析,分子筛层析等。

是指以各种多孔凝胶为固定相,在流动相冲洗过程中混合物中所含各种组分的相对分子质量和分子大小不同,在固定相凝胶微孔中移动的距离不同,从而依次从层析柱中分离出来,达到物质分离的一种层析技术。

11.亲和层析: 是利用生物分子与配基之间所具有的专一而又可逆的亲和力,将混合物装入层析柱中利用流动相的冲洗作用和目标分子与固定相配基亲和作用力不同而使生物分子分离纯化的技术。

酶工程复习要点

酶工程复习要点

1、酶的催化作用特点:具有专一性,催化效率高和反应条件温和等显著特点。

2、酶研究的两个方向:理论研究方向和应用研究方向。

理论研究方向:酶的理化性质、催化性质、催化机制等。

应用研究:促进了酶工程的形成。

3、酶工程的定义:利用酶或者微生物细胞,动植物细胞,细胞器,借助于酶的催化作用,通过工程学手段生产产品或提供社会服务的科学体系。

4、酶工程的应用范围:①对生物资源中天然酶的开发和生产②自然酶的分离纯化与鉴定技术③酶的固定化技术④酶反应器的研制与应用⑤与其它生物技术领域的交叉与渗透。

5、酶工程的组成:①酶的发酵生产②酶的分离纯化③酶分子修饰④酶和细胞固定化⑤酶反应器和酶的应用等方面。

6、酶工程的主要任务:通过预先设计,经过人工操作控制而获得大量所需的酶,并通过各种方法使酶发挥其最大的催化功能。

8、酶的分类:第1类,氧化还原酶;第2类,转移酶;第3类,水解酶;第4类,裂合酶;第5类,异构酶;第6类,合成酶;第7类,核酸类酶。

9、酶的作用机制:酶的催化机理可能与几种因素有关:酶与底物结合时,两者构象的改变使它们互相契合,底物分子适当地向酶分子活性中心靠近,并且趋向于酶的催化部位,使活性中心这一局部地区额底物浓度大大增高,并使底物分子发生扭曲,易于断裂。

在另一些情况中,可能还有一些其他的因素使酶反应速度稍有一些提高,如酶与底物形成有一定稳定度的过渡态中间物——共价的ES中间物,这种ES中间物又可迅速地分解成产物,又如酶活性中心的质子供体和质子受体对底物分子进行了广义的酸碱催化等。

10、酶的催化能力:酶仅能改变化学反应的速度,并不不能改变化学反应的平衡点。

酶本身在反应前后也不发生变化例如肽键遇水自发地进行水解的反应极为缓慢,当有蛋白酶存在时,这个反应则进行得十分迅速,可降低反应的活化能。

在一个化学反应体系中,反应开始时,反应物(S)分子的平均能量水平较低为“初态”,在反应的任何一瞬间反应物中都有一部分分子具有了比初态更高一些的能量,高出的这一部分能量称为活化能,使这些分子进入“过渡态”,这时就能形成或打破一些化学键,形成新的物质——产物(P)。

酶工程复习

酶工程复习

酶工程复习一、名词解释1、诱导与阻遏:诱导是加进某种物质,使酶的生物合成开始或加速进行的过程。

阻遏是容易利用的碳源的分解代谢的产物阻遏某些酶(主要是诱导酶)生物合成的现象。

2、最适生长温度与最适生产温度:最适生长温度是在该温度下,微生物细胞的生长速率最大。

最适产酶温度低于最适生长温度,在较低温度下,提高酶的稳定性,延长细胞产酶时间。

3、生长因子:细胞生长繁殖不可缺少的微量有机化合物,如aa, 嘌呤,嘧啶,激素4、等电点沉淀利用两性电解质在等电点时溶解度最低,以及不同的两性电解质有不同的等电点这一特性,通过调节溶液的pH值,使酶或杂质沉淀析出,从而使酶与杂质分离的方法称为等电点沉淀。

5、盐析沉淀是利用不同蛋白质在不同的盐浓度条件下溶解度不同的特点,通过在酶液中添加一定浓度的中性盐,使酶或杂质从溶液中析出沉淀,从而使酶与杂质分离的过程。

6、酶分子修饰:通过各种方法使酶分子的结构发生某些改变,从而改变酶的某些特性和功能的技术过程称为酶分子修饰。

7、分子内交联修饰:含有双功能基团的化合物(双功能试剂)如戊二醛、己二胺、葡聚糖二乙醛等,可以在酶蛋白分子中相距较近的两个侧链基团之间形成共价交联,从而提高酶的稳定性的修饰方法称为分子内交联修饰。

8、酶的有限水解修饰:在肽链的限定位点进行水解,使酶的空间结构发生某些精细的改变,从而改变酶的特性和功能的方法,称为肽链有限水解修饰。

9、酶的定点突变技术:定点突变技术是指在DNA序列中的某一特定位点上进行碱基的改变从而获得突变基因的的操作技术。

10、侧链基团修饰:采用一定的方法(一般为化学法)使酶分子的侧链基团发生改变,从而改变酶分子的特性和功能的修饰方法称为侧链基团修饰。

11、抗体酶(Catalytic antibody) ,又称催化抗体,是指通过一系列化学与生物技术方法制备出的具有催化活性的抗体,它除了具有相应免疫学性质,还类似于酶,能催化某种活性反应,是一种新型人工酶制剂,是一种具有催化功能的抗体分子。

蛋白质工程复习资料

蛋白质工程复习资料

蛋白质工程复习资料一级结构:蛋白质多肽链中氨基酸残基的排列顺序。

二级结构:一段连续的肽单位借助于氢键,排列成的具有周期性结构的构象。

超二级结构:相邻的二级结构单位组合在一起,彼此相互作用,行为规则排列的组合体,以同一结构模式出现在不同的蛋白质中。

结构域:二级结构和结构模体以特定的方式组织连接,在蛋白质分子中形成两个或多个在空间上可以明显区分的三级折叠实体。

三级结构:蛋白质的多肽链在各种二级结构的基础上再进一步盘曲或折叠形成具有一定规律的三维空间结构。

四级结构:由两条或两条以上具有独立三级结构的多肽链组成的蛋白质就是寡聚蛋白质分子中多肽链间通过次级键相互组合而形成的空间结构。

蛋白质的变性:天然蛋白质分子受到某些物理因素或者化学因素的影响时,会引起蛋白质天然构象的破坏,导致生物活性的降低或完全丧失的过程。

蛋白质的复性:当变性因素除去后,变性蛋白又可以重新恢复到天然构象的现象。

第二遗传密码:氨基酸顺序与蛋白质三维结构之间存在着对应关系。

分子伴侣:一类可介导蛋白质的正确折叠与装配,但并不构成被介导的蛋白质组分的蛋白。

小改:进行蛋白质修饰或基因定位突变中改:进行蛋白质分子裁剪拼接晶体:离子,原子和分子这些微粒在三维空间中周期性重复排列形成的结构。

盐析现象:蛋白质在高浓度中性盐溶液中会沉淀析出的现象。

盐溶现象:在蛋白质水溶液中加入晒量的中性盐(如硫酸铵,硫酸钠,氯化钠)会增加蛋白质分子表面的电荷,增强蛋白质分子与水分子的作用,从而使蛋白质在水溶液中的溶解度增大的现象。

蛋白质芯片:也叫蛋白质微阵列,是将大量蛋白质有规则地固定到某种介质载体上,利用蛋白质与蛋白质,酶与底物,蛋白质与其他小分子之间的相互作用检测分析蛋白质的一种芯片。

噬菌体技术:将目的基因克隆在丝状噬菌体衣壳蛋白的基因中,是外源基因产物与衣壳蛋白融合,伸展在噬菌体表面,可用来直接检测表达产物的某些活性。

蛋白质组:基因组表达的全部蛋白质及其存在方式。

酶工程复习资料

由活细胞产生的生物催化剂,具有特殊作用的蛋白质,能在生命体内(包括动物、植物和微生物)催化一切化学反应,维持生命特征。

是酶学基本原理与化学工程相结合而形成的一门新兴的技术科学, 以应用目的为出发点来研究酶, 利用酶的催化特性并通过工程化将相应原料转化为目的物质的技术。

水溶性酶经物理或者化学方法处理后成为不溶于水的但仍 具有酶活性的一种酶的衍生物,在催化反应中以固相状态作用于底物。

表示酶活力大小的尺度;一个国际单位(IU)是指在特定条件下(25℃),每分钟内转化 1mol 底物或者催化形成 1mol 产物所需的酶量。

一个 Kat(卡塔尔,酶活性国 际单位)是指每秒钟内转化 1mol 底物所需的酶量, 1 Kat = 6107 IU 。

(酶活力:指酶催化一定化学反应的能力;用在一定条件下, 所催化的反应初速度来表示; 是研究酶的特性,酶制剂生产应用以及分离纯化时的一项必不可少的指标。

) 是酶纯度的量度,是指单位分量酶蛋白所具有的酶活力,单位为 IU/mg 。

比活力越大,酶纯度越高。

比活力=活力单位数/每毫克酶蛋白。

可产生一种组成型调节蛋白(regulatory protein) (一种变构蛋白),通过与效应物(effector) (包括诱导物和辅阻遏物)的特异结合而发生变构作用,从而改变它与控制基因的结合力。

调节基因常位于调控区的上游。

位于启动基因和结构基因之间的一段碱基顺序,能特异性地与调节基因产生的变构蛋白结合,控制酶合成的时机与速度。

决定某一多肽的 DNA 模板,与酶有各自的对应关系,其中的遗传信息可转录为mRNA ,再翻译为蛋白质。

是指在一定的条件下,用适当的溶剂或者溶液处理含酶原料,使酶充分溶解到 溶剂或者溶液中的过程。

是指在份子水平上不同粒径份子的混合物在通过半透膜时,实现选择分离的技术,半透膜又称为分离膜,膜壁弥漫小孔,根据孔径大小可以分为:微滤膜( )、超滤膜(uF)、纳滤膜(NF)、反渗透膜(RO)等,分离都采用错流过滤方式。

蛋白质与酶工程


♦ 没有酶的专一性,细胞中有秩序的物质代谢将不复存
在。酶的专一性对酶工程的发展具有重要意义。
♦ 酶可催化正、逆双向反应。
返回
(3)酶活性可调节
♦ 生命是严格有序的 一方面这种有序过程依赖于酶的催化作用; 另一方面,酶又必然受到这个有序过程的严格调控。
♦ 酶的量、酶的半衰期、酶的活性都是可以控制的 酶水平的调控是代谢调控的基本方式。
6.分子伴侣
♦ 蛋白质中二硫键的形成和少数蛋白质的折叠有赖于 叫做分子伴侣(chaperon)的酶或蛋白质的协助。
返回
第三节 蛋白质工程的类型
一、蛋白质的设计及改造
1.全新设计——按照人的意志设计合成自然界从未有的 蛋白质 蛋白质工程中最有意义、最为困难的操作类型。
♦ 往往应用于蛋白质类药物研究 如,艾滋病。人们根据艾滋病毒壳蛋白的结构,设计出 能够将其水解的酶。
3.天花粉蛋白改造 ♦ 优点 抑制肿瘤细胞的生长和艾滋病病毒的复制 ♦ 缺点 毒副作用强,造成过敏 ♦ 结构特点 引起毒副作用的结构部分和有用的活
性部分可分开 ♦ 改造设想 降低毒性,单独合成天花粉蛋白的治
病部分,其毒副作用即可排除。
4.抗体蛋白人源化 ♦ 当前用鼠等动物生产人的抗体容易引起不利的
链接
1.Anfinsen一级结构决定空间结构理论 ♦ 只要合成了某种蛋白质的一级结构,空间结构自
动形成 ♦ 人工合成胰岛素的实践初步证实了这一论断
但许多蛋白质从一级结构到空间结构的折叠 过程并非像胰岛素和牛胰核糖核酸酶那样简单。
返回
2.同源蛋白、蛋白质家族
♦ 蛋白质有结构上的分子进化同源性 ♦ 在预测一种新的蛋白质空间结构时,首先可以在
♦ 大部分酶的特性不适合于工业应用 ♦ 水解酶和异构酶是工业应用的首选酶 ♦ 世界上销售量最大的5种酶 细菌蛋白酶、葡萄糖淀粉

蛋白质与酶工程

蛋白质与酶工程重点1. 蛋白质工程:以蛋白质结构与功能的关系研究为基础,利用基因工程技术或化学修饰技术对现有蛋白质加以改造,组建成新型蛋白质的现代生物技术。

2. 酶工程:利用酶、细胞器或细胞的特异催化功能,通过适当的反应器工业化生产人类所需产品或达到某种特殊目的的一门技术科学。

3. 酶工程研究的主要内容:1)化学酶工程2)生物酶工程3)固定化酶与细胞4)酶反应器与传感器5)酶的非水相催化4. 蛋白质的融合:将编码一种蛋白质的部分基因重组到另一种蛋白质基因上,或将不同蛋白质基因的片段组合在一起,经基因克隆和表达产生新的融合蛋白。

5. 蛋白质的融合的作用:1)用于表达产物的分离纯化;2)提高表达产物的溶解度;3)提高蛋白质稳定性。

6. 蛋白质晶体学:利用X 射线衍射技术,进行生物大分子结构研究的工程,是结构生物学的一个重要组成部分。

8. 定点突变:通过分子克隆手段定点的改变特定基因的局部核苷酸序列,通常被用来研究蛋白质的功能结构以及用于目的蛋白的改造。

10. 酶工程的研究范围:1)各类自然酶的开发和生产;2)酶的分离纯化和鉴定技术;3)固定化技术;4)利用其他的生物技术领域交叉渗透;5)多酶反应器的研制和应用。

11. 酶的稳定性和稳定化:(一)引起酶失活的原因:1)酶的活性中心一些特定氨基酸残基被化学修饰,使酶活性丧失(微观);2)外部环境的影响,酶活性中心出现空间障碍,使其不能与底物结合;3)酶的高级结构发生变化(螺旋、折叠发生变化);4)多肽链的断裂(很强烈);(二)酶的稳定化:1)低温保存(酶的本身不易变性,不易使其他酶把目的蛋白降解);2)添加盐类(高浓度(NH4)2SO4 );3)添加底物辅酶等配体;4)添加强变性剂(保护一级结构,使用时可复活);5)结晶化。

12. 微生物作为酶源的优越性:1)容易获得酶需要的酶类;2)容易获得高产菌株;3)生产周期短;4)生产成本低;5)生产易管理;6)提高微生物产酶的途径比较多。

酶工程复习整理

电泳:根据各种蛋白质解离、电学性质上的差异,利用它们在电场中的迁移方向与迁移速度不同而进行纯化的一类方法。
固定化的方法有哪些
1.载体结合法:将酶结合于水不溶性载体的一种固定化方法。
根据结合的方式不同,又可分为物理吸附、离子结合和共价结合三种。
A.物理吸附:作用力:氢键、范德华力、疏水键等。吸附剂包括无机吸附剂(高岭土、皂土、硅酸、氧化铝等)和有机吸附剂(纤维素、胶原等)比较受重视。
b.序列随机机制:两种底物不按一定的顺序结合,产物的释放也是随机的。某些激酶例如肌酸激酶等就服从随机反应机理。
乒乓机制:酶首先和一个底物结合,释放出一个产物以后,再与另一个底物结合,并释放出产物,不形成三元配合物。转氨酶、某些黄素酶在内的许多酶都具乒乓反应机制
酶抑制作用的类型:
A.可逆抑制作用(reversible inhibition):抑制剂与酶以非共价键结合,用透析、超滤或凝胶过滤等方法可以除去抑制剂,恢复酶活性。
几何异构专一性:酶能识别顺反异构体。
键专一性:酶只要求作用于一定的键,对键两端的基团无要求。
基团专一性(族专一性):除了对键要求以外,还要求键一侧的基团为特定的基团。
绝对专一性:对唯一的底物催化唯一的反应。
酶活性中心的构成:
酶的活性中心(active center):酶分子上与催化活性直接相关的少数氨基酸残基组成的催化区域。包括结合部位Binding site:酶分子中与底物结合的部位或区域(结合部位决定酶的专一性)以及活性中心-催化部位catalytic site:酶分子中促使底物发生化学变化的部位(催化部位决定酶所催化反应的性质。)
Kcat型不可逆抑制剂(自杀底物):既能与活性中心结合,又能被活性中心催化反应,反应后在抑制剂分子上产生活性基团,再与活性中心的必需基团反应,产生共价修饰。专一性高
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蛋白质与酶工程复习提纲
题型:选择1’*5=5’
填空0.5’*40=20’
名词3’*8=24’
解答5’*7=35’
举例8’*2=16’
戴大章办公室 5#724
大作业酶工程和蛋白质工程在现代工业中的应用

考点:
蛋白质工程、酶工程研究内容,历史概况;
常见氨基酸结构、性质;
蛋白质基本组件、各自特性,其三维结构形成的热力学、动力学原因;
结构域domain、结构膜体motif、beta层;
蛋白质设计原理、分类、环节;
蛋白质修饰的途径、原理、分类形式、注意事项;
蛋白质常见表达系统;
融合蛋白、噬菌体式技术?;
突变、稳定性与折叠关系;
蛋白质内含子、分子伴侣概念;
维持蛋白质各级结构的作用力;
影响蛋白质稳定性的因素、机制?;
蛋白质不可逆失活的原理、各自机制;
蛋白质稳定化方法、机制;

酶的分类、组成、结构特点;
酶高效性、转移性的机制;
运用米氏方程的应用与酶学性质;
测米氏常数的方法;
抑制酶作用的类型、特点、机制;
酶促反应类型、调节方式;
酶促反应合成调节机制;
人工调控代谢、提高产量的方法;
常见产酶发酵动力学模型的特征;
酶提取、分离、纯化的特征、原理、方法;
酶组合分离、纯化方法,设计已知蛋白分离纯化方法的大致步骤;
固定化酶的优缺点;
酶的固定化的方法、特点;
固定化酶对酶性质的影响机制;
非水相反应体系的优点、条件、反应体系、影响因素、调控策略、反应类型;

相关文档
最新文档