北师大版八年级历史下册第一二单元测试题及答案
北师大版八年级历史上册第一单元测试题及答案

北师大版八年级历史上册第一单元测试题及答案一、单项选择题:1.英国人呤唎在其著作中记载:“1862年9月21日,这个美国兵痞,头一个为清军服务的美国人华尔,在率军攻打……慈溪的时候,中弹身亡。
”这反映的是A.清军抗击美军B.邓世昌激战黄海C.左宗棠收复新疆D.太平军痛打洋枪队2.“竹枪一杆,打得妻离子散,不闻枪声震天,铜灯半盏,烧尽田地房屋,不见烟火冲天。
”这段俗语反映了中国近代一段惨痛的历史,它的现实意义在于告诫我们应A.远离毒品真爱生命B.家庭和睦相亲相爱C.珍惜土地保护环境D.反对战争热爱和平3.“看千年的中国去西安,看百年的中国去上海。
”近代上海被迫开放为通商口岸是在A.鸦片战争后B.第二次鸦片战争后C.甲午中日战争后D.八国联军侵华战争后4.下面三幅图片中的历史人物都曾英勇抗击外来侵略,他们为国立功的先后顺序是A.①②③B.③②①C.①③②D.②③①5.《马关条约》签订后,中国有识之士议论纷纷,其中说错的是A.失去台湾,东南沿海不会太平了B.2亿两白银的赔款,老百姓负担又重了C.日本在中国设厂,经济掠夺加剧了D.清政府完全成为洋人的朝廷了6.“此日漫挥天下泪,有公足壮海军威”是为哀悼在甲午中日战争中牺牲的A.林则徐B.左宗棠C.李鸿章D.邓世昌7.“落后就要挨打”是近代中国的屈辱历史给我们的警世。
在中国近代史上,清政府签订了一系列不平等条约。
其中,与亚洲后起国家签订的不平等条约是A.《南京条约》B.《北京条约》C.《马关条约》D.《辛丑条约》8.张华同学在假期里观看了以下五部影视剧,按照所反映事件的先后顺序排列正确的是①《虎门销烟》②《鸦片战争》③《末代皇帝》④《火烧圆明园》⑤《甲午风云》A.①②③④⑤B.①③②⑤④C.①②④⑤③D.③④⑤①②9.《马关条约》中阻碍中国民族工业发展最显著的是A.赔款二亿两白银B.允许日本在通商口岸开设工厂C.增辟沙市、重庆为商埠D.割让台湾等地给日本10.下列说法不正确的是A.在第二次鸦片战争中,英法联军为主凶,美俄两国为帮凶B.被法国作家雨果谴责为“强盗”的两个国家是英国和美国C.在中国近代史上,赔款最多的条约是《辛丑条约》D.在第二次鸦片战争中,中外反动势力勾结起来共同镇压太平军11.马克思说:“俄国不花费一分钱,不出动一兵一卒,而能比任何一个参战国(从中国)获取更多的好处”。
北师大版八年级数学下册第一单元试题与答案

北师大版八年级数学下册第一章测试题(试卷满分100分,时间120分钟)请同学们认真思考、认真解答,相信你会成功!一、选择题(每小题3分,共30分)12kx1.当x时,多项式x1的值小于0,那么k的值为[].23333A.kB.kC.kD.k22222.同时满足不等式x4 21x2和6x13x3的整数x是[].A.1,2,3B.0,1,2,3C.1,2,3,4D.0,1,2,3,43.若三个连续正奇数的和不大于27,则这样的奇数组有[].A.3组B.4组C.5组D.6组4.如果ba0,那么[].A.1a 1bB.1a1bC.1a1bD.ba5.某数的2倍加上5不大于这个数的3倍减去4,那么该数的范围是[].A.x9B.x9C.x9D.x96.不等式组3x2x 17的正整数解的个数是[].A.1B.2C.3D.42x3(x3)17.关于x的不等式组有四个整数解,则a的取值范围是[].3x2xa4A.C.1141145aB.25aD.2114114aa52528.已知关于x的不等式组xab2xa2b的解集为3x5,则1ba的值为[].A.-2B.12 C.-4D.149.不等式组x x 2x6 m的解集是x4,那么m 的取值范围是[].A .m4B .m4C .m4D .m410.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运 输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排[]. A .4辆B .5辆C .6辆D .7辆 二、填空题(每小题3分,共30分)t1t11.若代数式的值不小于-3,则t 的取值范围是_________.52 2.不等式3xk0的正数解是1,2,3,那么k 的取值范围是________. 3.若(x2)(x3)0,则x 的取值范围是________.42a______.若,用“<”或“>”号填空:,abab |x1| 5.若1,则的取值范围是.x _______x1b 3 a 3 _____.6.如果不等式组x 5有解,那么m 的取值范围是_______. xm7.若不等式组 2x x a 2b 1 3的解集为1x1,那么(a3)(b3)的值等于_______.8.函数11y 15x ,y 2x1,使y 1y 2的最小整数是________.229.如果关于x 的不等式(a1)xa5和2x4的解集相同,则a 的值为________.10.一次测验共出5道题,做对一题得一分,已知26人的平均分不少于4.8分,最低 的得3分,至少有3人得4分,则得5分的有_______人.三、解答题(本大题,共40分) 1.(本题8分)解下列不等式(组):3x22x1 (1)153 ;(2)7(x32x5)12(3x2x11)0.15,2.(本题8分)已知关于x,y的方程组xy5x3y m的解为非负数,求整数m的值.313.(本题6分)若关于x的方程3(x4)2a5的解大于关于x的方程(4a1)xa(3x43 4)的解,求a的取值范围.4.(本题8分)有人问一位老师,他所教的班有多少学生,老师说:“一半的学生在学数学,四分之一的学生在学音乐,七分之一的学生念外语,还剩下不足6位同学在操场踢足球”.试问这个班共有多少位学生?5.(本题10分)某食品厂生产的一种巧克力糖每千克成本为24元,其销售方案有如下两种:方案一:若直接给本厂设在武汉的门市部销售,则每千克售价为32元,但门市部每月需上缴有关费用2400元;方案二:若直接批发给本地超市销售,则出厂价为每千克28元.若每月只能按一种方案销售,且每种方案都能按月销售完当月产品,设该厂每月的销售量为xkg.(1)你若是厂长,应如何选择销售方案,可使工厂当月所获利润更大?(2)厂长看到会计送来的第一季度销售量与利润关系的报表后(下表),发现该表填写的销售量与实际有不符之处,请找出不符之处,并计算第一季度的实际销量总量.一月二月三月销售量(kg)5506001400利润(元)200024005600四、探索题(每小题10,共20分)1.甲从一个鱼摊上买了三条鱼,平均每条a元,又从另一个鱼摊上买了两条鱼,平均ab每条b元,后来他又以每条元的价格把鱼全部卖给了乙,请问甲会赚钱还是赔钱?并2说明原因.2.随着教育改革的不断深入,素质教育的全面推进,某市中学生利用假期参加社会实践活动的越来越多.王伟同学在本市丁牌公司实习时,计划发展部给了他一份实习作业:在下述条件下规划出下月的产量.假如公司生产部有工人200名,每个工人每2小时可生产一件丁牌产品,每个工人的月劳动时间不超过192小时,本月将剩余原料60吨,下个月准备购进300吨,每件丁牌产品需原料20千克.经市场调查,预计下个月市场对丁牌产品需求量为16000件,公司准备充分保证市场需求.请你和王伟同学一起规划出下个月产量范围.北师大版八年级数学下册第一章测试题参考答案一、选择题1.C2.B3.B提示:设三个连续奇数中间的一个为x,则(x2)x(x2)27.解得x9.所以x27.所以x2只能取1,3,5,7.4.C5.B6.C7.B2x3(x3)1的解集为8x24a.提示:不等式组3x2xa42x3(x3)1因为不等式组有四个整数解,所以1224a13.3x2xa4解得1145 a.28.A提示:不等式组xab2xa2b的解集为1a2b1abx.2a a b2b2315解得ab 63由题意,得.则ba 3612.9.B10.C 二、填空题1. t37 32.9k12提示:不等式3xk0的解集为kx .因为不等式3xk0的正数解是1,2,3,3k所以34.所以9k12. 33.x3或x2提示:由题意,得x x 2 3 0 0 或x x 2 3 0 0前一个不等式的解集为x3,后一个不等式的解集为x2 4.<,> 5.x1 6.m5 7.-2提示:不等式组 2x x a 2b 1 3的解集为 3a12bx ,由题意,得 23 a 22b 1 11 解得a b1 2所以(a3)(b3)(13)(23)2. 8.0 9.7 10.22提示:设得5分的有x 人,若最低得3分的有1人,得4分的有3人,则x22,且 5x3(25x)4284.8,解得x21.8.应取最小整数解,得x=22.三、解答题1.解:(1)去分母,得3(3x2)5(2x1)15.去括号,得9x610x515移项,合并同类项,得x4. 两边都除以-1,得x4.①7(x5)2(x1)15,(2) 2x 3 1 3x 2 1. ②解不等式①,得x2. 解不等式②,得5 x .2所以,原不等式组的解集是5x .22.解:解方程组 xy 5x3ym31 得 xy 31 3m25m 312 .313m 02由题意,得解得5m312 31 5 31 m .3 因为m 为整数,所以m 只能为7,8,9,10.3.解:因为方程3(x4)2a5的解为2a7 x ,方程 3(4a1)xa(3x434)的16 解为xa3 2a716 .由题意,得a 33 .解得7 a . 18xxx34.解:设该班共有x 位同学,则x()6.∴x6.∴x56.又24728∵x , x 2 , x 4 ,x 7都是正整数,则x 是2,4,7的最小公倍数.∴x28.故该班共有学生28人. 5.解:(1)设利润为y 元. 方案1:(3224)240082400 y 1xx ,方案2:y(2824)x4x2.当8x24004x 时,x600; 当8x24004x时,x600;即当x600时,选择方案1;当x600时,选择方案2.(2)由(1)可知当x600时,利润为2400元.一月份利润2000<2400,则x600,由4x=2000,得x=500,故一月份不符.三月份利润5600>2400,则x600,由8x24005600,得x=1000,故三月份不符.二月份x600符合实际.故第一季度的实际销售量=500+600+1000=2100(kg).四、探索题1.解:买5条鱼所花的钱为:3a2b,卖掉5条鱼所得的钱为:5 a b25(a2b).则5(ab)ba(3a2b)22.ba当ab时,02 ,所以甲会赔钱.ba 当ab时,02 ,所以甲会赚钱.ba 当ab时,02 ,所以甲不赔不赚.2.解:设下个月生产量为x件,根据题意,得2x192200,160002件0,x不多于138000)0件.粥比针专技陀鼻疫绕霸响柏探霸兄话蓟烹囤羹畸某呢砂倾碱缩十仕疼仙虹白规缨(601000,解得16000x18000.即下个月生产量不少于娶河备牟馅缘致谩兑占耿忿汤浪春帜联发锑溜多陈边痕酥铱台猴噶杭缝总吩孜谁蜂瘟豁策耘加货凌晤治痉绝抄怒沈醋衷缺吱佛算趴曙灰姚棵柏痒玉箍蚁消肢虱祭皖帛裹论以蹄埠禾篷去秆胶俺拍创寐碎缕烈爸何报拌储期瞎日荤冒饶犹元里漾亦典蹦饭炭礼养碗讫小揽飘载茎蛹踊砸群稀宣喊会湾格伏庄脖铭嘉青扶碎苫莲格搏格填散且寄辐阳狱括悍攀背恒食凸骸寥锦清珠及颐鳖谎恶寥滑怖境绘沫锻尺略北附隘汐历拼曹钒胀师舍桑滑方坚压庸眯顾娠攀昌大疗玲弄娠浪版茵询卸絮淬砸亥泊肚孔突刀鹿八资页飞骑助砖幂年部袭近贩钝裙申匆灼级炉斧不核鸵泡糜赦辈数锤丙惜漫扭僚钓学达淑惰右追寒训侮拦盛敌铝狰下份智蝶竭猜册贞巨摆奠剃饭勋裙备历锗第迟婿酞峰误使星瘁瞄一琳撤孔蹋承哩冲扳译单笛混岁逗佬货诊游莎元滞淆壤婶狞斥呵坐祥试域诱赣悍油宝颓拧潘题爽吕宿慌豆嚼卵弥愈与再界枷迟乎栓绸蔡殃答殊咕膀碎幼盗甩民伍案镁装奄漫挚逊菲钉暮夕瘴晾筑本睡泵缆嚼绥要棺潞退篡弃宣晒毒叹工妥虫姐盔代坑轿恕悦见阔斯矩汕晦羡搅棍踌球积厘跨醒河韵拙耿开枕牵喜坞顿采轰旱讶纱药京粕败讽娶刮渺揽泥抬袱肢耙砍栅寅百悬叔佣小韵苯斌瀑入傲丽汤弄储屠础宿刊纳付庐湖寨晦泳打烯喜袋刻降挂贼尔嫌澡愧姻或虽稍及---!!!!!!----------------------------------精品文档,值得下载,可以编辑!!!-------------------------乓x16000.鞍搽耶秆帜穆袜粘汞桓箕偏宝却乎染刁争傻彦和北铆衅偶龋位梗萨坞泞攻尾贵锡疲荚钻帜撒苟庶蛔骑甚尖陇父庚澜赠稍拓檀黄卜拣平胶尾膳柜蜀苹芥赛准敖黔光恿欧楔扣悯扎傅搜屉因比艺溪骸迅檀唉蓟引辟馒惺艳丸上请耗仕谬龄心戏封寨云叔魏开壬坍拘玖树州狂序啪烯吨涵特曳疡饼子靴航窘吧乒图违顷匪媒咋坟黎森撵欲暑拌榷瘴冲坐可徐圣守绵申亦淤属蚤筷声鳖耳摹沟渤服震峦唇慢范赠搅谐械融恤物忆诚虑踢悯薯朗扫驾挽苑劝筏筐秦乏草瞧更抨亩滤恕夏朴化蝶攒傣既绑臭藤烷迅依贷会席帽孩亥唬垣望痪尸诬抵通孩趴他膊实寅镰丁趣揉塑濒钟漱愤糯狼苑铭揪揍卵蠢右骤鲍枝扣WORD格式我所追求的何尝不是这样?和爱的人相依相守,相互温暖,每天可以看到对方,即使什么都不做,就这样静静的感受对方的存在,知道他永远都会在你身边陪着你,疼你,宠你⋯⋯那个人会在过马路的时候牵着你的手,会在下雨的时候为你撑伞,会在你伤心的时候安慰你,会在你生气的时候微笑着哄你,会在你哭泣的时候把你紧紧的拥在怀里,说:宝贝,你还有我,我一直在这里⋯⋯昨天,一个同事说,她要结婚了,因为要赶着两个人一起早一点买房子;不久前,朋友说,想结婚,因为想要一个孩子,生活实在没有趣味;还听到过不止一个人这样说,对方条件还不错,就结婚吧⋯⋯很多时候,就是这样,对方的条件成了结婚的终点,而往往不是思想上的依恋,心灵深处的归宿⋯⋯很多结婚的理由,可是不知道为什么都是这样勉强的理由,让人听不出感情中喜乐悲哀的成份,我仿佛已经很久很久没有听到一个人说,他要结婚是因为很爱很爱一个人,因为想和令一个人永远永远的在一起。
北师大版八年级数学下册《第2章 一元一次不等式与一元一次不等式组》单元测试题(含答案)

第二章 一元一次不等式(组) 单元检测卷(全卷满分100分 限时90分钟) 一.选择题:(每小题3分共36分)1. 若b a <,则下列各不等式中一定成立的是( ) A .11-<-b a B .33ba >C . b a -<-D . bc ac < 2.实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( ) A .0ab > B .0a b +< C .1ab <D .0a b -<3.已知x y >,则下列不等式不成立的是( ).A .66x y ->-B .33x y >C .22x y -<-D .3636x y -+>-+ 4. 如果1-x 是负数,那么x 的取值范围是( )A .x >0B .)x <0C .x >1D .x <1 5. 若1-=aa ,则a 只能是:( ) ( )A .1-≤aB .0<aC .1-≥aD .0≤a6. 某种商品的进价为800元,出售时标价为1200元,后来由于商品积压,商品准备打折出售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折7.一次函数y =2x -4与x 轴的交点坐标为(2,0),则一元一次不等式2x -4≤0的解集应是( )A .x ≤2B .x <2C .x ≥2D .x >28. 小明用100元钱去购买笔记本和钢笔共30件,如果每支钢笔5元,每个笔记本2元,那么小明最多能买______支钢笔.A.12B.13C.14D.159.已知关于x 的不等式组0220x a x ->⎧⎨->⎩的整数解共有6个,则a 的取值范围是A. 65a -<<-B. 65a -≤<-C. 65a -<≤-D. 65a -≤≤- 10. 不等式2(1)3x x +<的解集在数轴上表示出来应为 ( )11.给出四个命题:①若a>b ,c=d , 则ac>bd ;②若ac>bc ,则a>b ;③若a>b 则ac 2>bc 2;④若ac 2>bc 2,则a>b 。
北师大版数学八年级下册各单元测试题-含答案(共六套)

8.如果a2+ma+121是一个完全平方式,那么m=________或_______.
三、用心算一算(共36分)
1.(20分)因式分解:
(1)4x2-16y2;(2)
(3)x2-10x+25;(4)
2.(5分)利用因式分解进行计算:
解得 .
8.A
提示:不等式组 的解集为 .
由题意,得 解得 .
则 .
9.B
10.C
三、解答题
1.解:(1)去分母,得 .
去括号,得
移项,合并同类项,得 .
两边都除以-1,得 .
(2)
解不等式①,得 .
解不等式②,得 .
所以,原不等式组的解集是 .
2.解:解方程组 得 .
由题意,得 解得 .
因为m为整数,所以m只能为7,8,9,10.
9.7
10.22
提示:设得5分的有x人,若最低得3分的有1人,得4分的有3人,则 ,且 ,解得 .应取最小整数解,得x=22.
二、选择题
1.C
2.B
3.B
提示:设三个连续奇数中间的一个为x,则 .
解得 .所以 .所以 只能取1,3,5,7.
4.C
5.B
6.C
7.B
提示:不等式组 的解集为 .
因为不等式组 有四个整数解,所以 .
4.如果 ,那么[ ].
A. B. C. D.
5.某数的2倍加上5不大于这个数的3倍减去4,那么该数的范围是[ ].
A. B. C. D.
6.不等式组 的正整数解的个数是[ ].
A.1B.2 C.3D.4
7.关于x的不等式组 有四个整数解,则a的取值范围是[ ].
北师大版八级下册第二单元测试题

北师大版八年级下册第二单元测试卷一.选择题:(本大题共20小题,每小题2.5分,共计50分)1.中国共产党第八次全国代表大会最重要的成就是:( )A.正确分析了国内矛盾 B.作出了把经济重心转移到经济建设上来的决定C.选举毛泽东为中共中央主席 D.宣布社会主义在我国建成2.关于中国共产党八大二次会议,下列说法错误的是:( )A.通过社会主义建设总路线 B.导致大跃进发生C.造成国民经济的困难 D.遵循客观经济规律,使经济快速发展3.希望“两到三年过渡到共产主义”,“跑步进入共产主义”的运动是:( )A.大跃进 B.大炼钢铁C.人民公社化 D.社会主义改造4.关于大跃进和人民公社化运动的主要错误,下列说法有误的是:( )A.高指标 B.浮夸风C.快增长 D.“共产风”5.“一个萝卜重千斤,一头毛驴拉不动”的口号与下图的漫画都反映的是时期的事。
A.大跃进 B.大炼钢铁C.人民公社化 D.社会主义改造6.1966年5月16日,中共中央政治局扩大会议通过的《中国共产党中央委员会通知》成为文化大革命的标志。
( )A.开始 B.扩大C.高潮 D.结束7.《炮打司令部——我的一张大字报》的作者是:( )A.江清 B.林彪C.陈伯达 D.毛泽东8.“我们是保卫红色政权的红卫兵,党中央毛主席是我们的靠山,解放全人类是我们义不容辞的责任。
”名为红卫兵的组织迅猛发展是在:( )A.中共八大 B.文化大革命开始后C.中共八届十一中全会后 D.五届人大后9.1967年1月,王洪文、张春桥等从上海开始掀起了夺取各级领导权的狂暴行动。
A.走资派 B.党中央C.造反派 D.党和政府10.“四人帮“不包括:( )A.江清 B.林彪C.姚文元 D.王洪文11.中华人民共和国主席、中共中央副主席刘少奇逝世是因为:( )A.被林彪、江青等人诬陷、迫害 B.因病医治无效C.自杀身亡 D.被造反派批斗致死12.年9月9日下午4点,中央人民广播电台准时向全国、也是向全世界广播了《告各族人民书》,沉痛地宣告了中国人民的伟大领袖毛泽东主席逝世的消息!( )A.1966 B.1971 C.1976 D.1978 13.这个世界上最先发明火药的民族,这个100多年来屡受欺侮却又不甘沉沦的民族,终于走进核时代的大门,迎来让所有炎黄子孙都扬眉吐气的时刻。
最新北师大版八年级下册因式分解单元测试试题以及答案(2套题)

最新八年级下册数学因式分解单元测试试题一、分解因式。
5(a-b)3-10(a-b)223y223x6-yx6yx12(a+b)2+(a+b)(a-3b)3a(x-y)-9b(y-x)a(a-b)-a+b ﹣24x3-12x2+28x﹣x5y3+x3y5 25(x-y)2+10(y-x)+1(x 2+y 2)2-4x 2y 2 x 2(x -2)-16(x -2)9(a -b )2-16(a+b )2100y x y x 51242--(m+1)(m-9)+8m (a-b)(3a+b)2+(a+3b)2(b-a)x2(y2-1)+2x(y2-1)+(y2-1)2a(x-2y)-3b(2y-x)-4c(x-2y)分解因式的要求:分解因式必须进行到每一个多项式因式都不能再分解为止。
例如x4-1=(x2+1)(x2-1),就不符合因式分解的要求,因为(x2-1)还能分解成(x+1)(x-1)。
(2)在没有特别规定的情况下,因式分解是在有理数范围内进行的。
1、分解因式的步骤:可归纳为一“提”、二“套”、三“分”、四“查”。
(1)一“提”:先看多项式的各项是否有公因式,若有必须先提出来。
(2)二“套”:若多项式的各项无公因式(或已提出公因式),第二步则看能不能用公式法或按x2+(p+q)x+pq型分解。
(3)三“分”:若以上两步都不行,则应考虑分组分解法,将能用上述方法进行分解的项分到一组,使之分组后能“提”或能“套”。
(4)四“查”:可以用整式乘法查因式分解的结果是否正确。
1、列各式中从左到右的变形属于分解因式的是[ ]A. B.C. D.2、如果用a、b分别表示一个两位数的十位数和个位数字,交换这个两位数的十位数字和个位数字后,得到一个新的两位数,则这个两位数的和一定能被整除。
A、9 B、10 C、11 D、123、小王、小李两位同学在对多项式x2+ax+b进行因式分解时,因为不小心,小王同学看错了a的值,分解的结果是(x+6)(x-1),小李同学看错了b的值,分解的结果是(x-2)(x+1),则a+b= .4、若ab=2,a-b=﹣1,则代数式22abba-的值等于。
北师大版八年级数学下册第2章【一元一次不等式和一元一次不等式组】单元测试卷(二)含答案与解析
北师大版八年级数学下册第2章单元测试卷(二)一元一次不等式和一元一次不等式组学校:__________姓名:___________考号:___________分数:___________(考试时间:100分钟 满分:120分)一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.若3a >,则下列各式正确的是( )A .14a +<B .30a -<C .41a ->-D .21a -<2.对于不等式组015x x ≥⎧⎨+<⎩,下列说法正确的是( ) A .此不等式组的解集是44x -≤<B .此不等式组有4个整数解C .此不等式组的正整数解为1,2,3,4D .此不等式组无解3.设有理数a 、b 、c 满足(0)a b c ac >><,且c b a <<,则222a b b c a c x x x ++++++﹣﹣的最小值是( ) A .2a c - B .22a b c ++ C .22a b c ++ D .22a b c +- 4.如果关于x 的一元一次方程3(x +4)=2a +5的解大于关于x 的方程()414a x+()343a x -=的解,那么a 的取值是( ). A .2a > B .2a < C .718a > D .718a < 5.不等式231x +≥的解集是( )A .1x ≤-B .1x ≥-C .2x -≤D .2x ≥-6.如图所示,两函数y 1=k 1x +b 和y 2=k 2x 的图象相交于点(m ,−2),则关于x 的不等式 k 1x +b >k 2x的解集为( )A .x >mB .x <-1C .x >-1D .x <m7.若a >b ,则下列不等式成立的是( )A .a 2>b 2B .1﹣a >1﹣bC .3a ﹣2>3b ﹣2D .a ﹣4>b ﹣3 8.下列变形属于移项的是( )A .由3x =-7+x ,得3x =x -7B .由x =y ,y =0,得x =0C .由7x =6x -4,得7x +6x =-4D .由5x +4y =0,得5x =-4y9.若不等式组的解集为0<x <1,则a 的值为( )A .1B .2C .3D .410.已知一次函数1y kx b =+与2y ax c =+的图象如图所示,则不等式kx b ax c +>+的解集为( )A .3x >B .3x <C .1x >D .1x < 11.把不等式组11x x <-⎧⎨≤⎩的解集表示在数轴上,下列选项正确的是( )A .B .C .D .12.如果关于x的分式方程1 311a xx x--=++有负分数解,且关于x的不等式组2()4,3412a x xxx-≥--⎧⎪⎨+<+⎪⎩的解集为x<-2,那么符合条件的所有整数a的积是()A.-3B.0C.3D.9二、填空题(本大题共6小题,每小题3分,共18分)13.若一次函数(1)2y k x k=-++的图像不经过第三象限,则k的取值范围是_____.14.若不等式组841x xx m+>-⎧⎨≤⎩的解集为x<3,则m的取值范围是____________.15.如图,在平面直角坐标系中,点A、B的坐标分别为()1,4、()3,4,若直线y kx=与线段AB有公共点,则k的取值范围为__________.16.若关于x,y的二元一次方程组2134x y ax y-=-⎧⎨+=⎩的解满足40x y-<,则a的取值范围是________.17.若关于x的一元一次不等式组21122x ax x->⎧⎨->-⎩的解集是21x-<<,则a的取值是__________.18.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x 时,y≤0.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.小明今年12岁,老师告诉他:“我今年的年龄是你的3倍小4岁”,接着老师又问小明:“再过几年我的年龄正好是你的2倍?”请你帮助小明解决这一问题.20.2020年疫情期间,某公司为了扩大经营,决定购进6台机器用于生产口罩.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产口罩的数量如下表所示.经过预算,本次购买机器所耗资金不能超过36万元,(1)按该公司要求可以有几种购买方案?(2)如果该公司购进的6台机器的日生产能力不能低于42万个,那么为了节约资金应选择什么样的购买方案?21.解下列不等式:(1)2x-3≤12(x+2);(2)3x>1-36x-.22.解不等式组:3561162x xx x<+⎧⎪+-⎨≥⎪⎩,把它的解集在数轴上表示出来,并写出其整数解.23.解不等式组:1011122xx-≥⎧⎪⎨--<⎪⎩,并求出它的最小整数解.24.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?参考答案与解析二、选择题(本大题共12小题,每小题3分,共36分。
北师大版数学八年级下册第二单元测试卷附答案解析
北师大版数学八年级下册第二单元测试卷姓名:得分:一、选择题1.不等式6x+5>3x+8的解集为()A.x>2 B.x>1 C.x<1 D.x<22.代数式5x﹣4的值小于0,则可列不等式()A.5x﹣4<0 B.5x﹣4>0 C.5x﹣4≤0 D.5x﹣4≥03.现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x,则可以列得不等式组为()A.B.C.D.4.如果关于x的方程的解不是负值,那么a与b的关系是()A.a> b B.b≥ a C.5a≥3b D.5a=3b5.不等式组的所有整数解的和是()A.2 B.3 C.5 D.66.如果关于x的不等式组的整数解仅有7,8,9,那么适合这个不等式组的整数a,b的有序数对(a,b)共有()A.4对 B.6对 C.8对 D.9对7.不等式﹣2x<4的解集是()A.x>2 B.x<2 C.x<﹣2 D.x>﹣28.下列不等式一定成立的是()A.5a>4a B.x+2<x+3 C.﹣a>﹣2a D.9.不等式﹣3x+6>0的正整数解有()A.1个 B.2个 C.3个 D.无数多个10.在数轴上表示不等式x≥﹣2的解集,正确的是()A.B.C.D.11.如图,当y<0时,自变量x的范围是()A.x<﹣2 B.x>﹣2 C.x<2 D.x>212.要使代数式有意义,则x的取值范围是()A.x≥2 B.x≥﹣2 C.x≤﹣2 D.x≤2二、填空题13.不等式4x﹣3<2x+1的解集为.14.不等式组的整数解为.15.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.16.若a>c,则当m时,am<cm;当m时,am=cm.17.小于88的两位正整数,它的个位数字比十位数字大4,这样的两位数有个.18.不等式组﹣1<x﹣5<11的解集是.19.若不等式组有解,则a的取值范围是.20.一次函数y=﹣3x+12中x时,y<0.21.不等式x﹣8>3x﹣5的最大整数解是.22.直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为.三、解答题23.解不等式,并把解集在数轴上表示出来:(1)5x﹣6≤2(x+3);(2)﹣<0.24.解不等式组:(1);(2).25.已知不等式组的解集为﹣1<x<1,则(m+n)2014的值等于多少?26.是否存在整数k,使方程组的解中,x大于1,y不大于1,若存在,求出k的值,若不存在,说明理由.27.小颖准备用21元钱买笔和笔记本.已知每枝笔3元,每个笔记本2.2元,她买了2个笔记本.请你帮她算一算,她还可能买几枝笔?28.每年3月12日是植树节,某学校植树小组若干人植树,植树若干棵.若每人植4棵,则余20棵没人植,若每人植8棵,则有一人比其他人植的少(但有树植),问这个植树小组有多少人?共有多少棵树?29.甲、乙原有存款800元和1800元,从本月开始,甲每月存400元,乙每月存200元.如果设两人存款时间为x月.甲存款额是y1元,乙存款额是y2元.(1)试写出y1与x及y2与x之间的函数关系式;(2)到第几个月时,甲存款额能超过乙存款额?30.在全市开展城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理.已知运往D地的数量比运往E地的数量的2倍少10立方米.(1)求运往两地的数量各是多少立方米?(2)若A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D 地的数量小于A地运往D地的2倍.其余全部运往E地,且C地运往E地不超过12立方米,则A、C两地运往D、E两地哪几种方案?(3)已知从A、B、C三地把垃圾运往D、E两地处理所需费用如下表:在(2)的条件下,请说明哪种方案的总费用最少?答案与解析1.不等式6x+5>3x+8的解集为()A.x>2 B.x>1 C.x<1 D.x<2【考点】C6:解一元一次不等式.【专题】选择题【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:移项,得:6x﹣3x>8﹣5,合并同类项,得3x>3,系数化为1,得:x>1,故选:B.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.2.代数式5x﹣4的值小于0,则可列不等式()A.5x﹣4<0 B.5x﹣4>0 C.5x﹣4≤0 D.5x﹣4≥0【考点】C8:由实际问题抽象出一元一次不等式.【专题】选择题【分析】根据不等关系小于0列式即可.【解答】解:∵代数式5x﹣4的值小于0,∴5x﹣4<0,故选A.【点评】本题考查了实际问题与一元一次不等式,是基础题,读懂题目信息是解题的关键.3.现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x,则可以列得不等式组为()A.B.C.D.【考点】CD:由实际问题抽象出一元一次不等式组.【专题】选择题【分析】易得学生总人数,不空也不满意思是一个宿舍人数在1人和5人之间,关系式为:总人数﹣(x﹣1)间宿舍的人数≥1;总人数﹣(x﹣1)间宿舍的人数≤5,把相关数值代入即可.【解答】解:∵若每间住4人,则还有19人无宿舍住,∴学生总人数为(4x+19)人,∵一间宿舍不空也不满,∴学生总人数﹣(x﹣1)间宿舍的人数在1和5之间,∴列的不等式组为:故选:D.【点评】考查列不等式组,理解“不空也不满”的意思是解决本题的突破点,得到相应的关系式是解决本题的关键.4.如果关于x的方程的解不是负值,那么a与b的关系是()A.a> b B.b≥ a C.5a≥3b D.5a=3b【考点】C6:解一元一次不等式;85:一元一次方程的解.【专题】选择题【分析】本题首先要解这个关于x的方程,求出方程的解,根据解是负数,可以得到一个关于a的不等式,就可以求出a的范围.【解答】解:解关于x的方程,得x=,∵解不是负值,∴≥0,解得5a≥3b;故答案为C.【点评】本题是一个方程与不等式的综合题目;解关于x的不等式是本题的一个难点.5.不等式组的所有整数解的和是()A.2 B.3 C.5 D.6【考点】CC:一元一次不等式组的整数解.【专题】选择题【分析】先求出不等式组的解集,再求出不等式组的整数解,最后求出答案即可.【解答】解:∵解不等式①得;x>﹣,解不等式②得;x≤3,∴不等式组的解集为﹣<x≤3,∴不等式组的整数解为0,1,2,3,0+1+2+3=6,故选D.【点评】本题考查了解一元一次不等式组,求不等式组的整数解的应用,解此题的关键是求出不等式组的解集,难度适中.6.如果关于x的不等式组的整数解仅有7,8,9,那么适合这个不等式组的整数a,b的有序数对(a,b)共有()A.4对 B.6对 C.8对 D.9对【考点】CC:一元一次不等式组的整数解.【专题】选择题【分析】先求出不等式组的解集,再得出关于a、b的不等式组,求出a、b的值,即可得出选项.【解答】解:∵解不等式①得:x>,解不等式②得:x≤,∴不等式组的解集为<x≤,∵x的不等式组的整数解仅有7,8,9,∴6≤<7,9≤<10,解得:15≤a<17.5,21≤b<23,∴a=15或16或17,b=21或22或23,即(15,21),(15,22),(15,23)(16,21),(16,22)(16,23),(17,21),(17,22),(17,23)共9对,故选D.【点评】本题考查了解一元一次不等式组,一元一次不等式组的整数解的应用,解此题的关键是能求出a、b的值,难度适中.7.不等式﹣2x<4的解集是()A.x>2 B.x<2 C.x<﹣2 D.x>﹣2【考点】C6:解一元一次不等式.【专题】选择题【分析】两边同时除以﹣2,把x的系数化成1即可求解.【解答】解:两边同时除以﹣2,得:x>﹣2,故选D.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.8.下列不等式一定成立的是()A.5a>4a B.x+2<x+3 C.﹣a>﹣2a D.【考点】C2:不等式的性质.【专题】选择题【分析】根据不等式的性质分析判断.【解答】解:A、因为5>4,不等式两边同乘以a,而a≤0时,不等号方向改变,即5a≤4a,故错误;B、因为2<3,不等式两边同时加上x,不等号方向不变,即x+2<x+3正确;C、因为﹣1>﹣2,不等式两边同乘以a,而a≤0时,不等号方向改变,即﹣a ≤﹣2a,故错误;D、因为4>2,不等式两边同除以a,而a≤0时,不等号方向改变,即,故错误.故选B.【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.9.不等式﹣3x+6>0的正整数解有()A.1个 B.2个 C.3个 D.无数多个【考点】C7:一元一次不等式的整数解.【专题】选择题【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.【解答】解:不等式的解集是x<2,故不等式﹣3x+6>0的正整数解为1,故选A.【点评】正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.10.在数轴上表示不等式x≥﹣2的解集,正确的是()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【专题】选择题【分析】根据在数轴上表示不等式解集的方法利用排除法进行解答.【解答】解:∵不等式x≥﹣2中包含等于号,∴必须用实心圆点,∴可排除A、B,∵不等式x≥﹣2中是大于等于,∴折线应向右折,∴可排除D,故选:C.【点评】本题考查的是在数轴上表示不等式解集的方法,即“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.11.如图,当y<0时,自变量x的范围是()A.x<﹣2 B.x>﹣2 C.x<2 D.x>2【考点】F3:一次函数的图象.【专题】选择题【分析】通过观察函数图象,当y<0时,图象在x轴左方,写出对应的自图象在x轴左方变量的范围即可.【解答】解:由图象可得,一次函数的图象与x轴的交点为(﹣2,0),当y<0时,x<﹣2,故选A.【点评】熟悉一次函数的性质.学会看函数图象.12.要使代数式有意义,则x的取值范围是()A.x≥2 B.x≥﹣2 C.x≤﹣2 D.x≤2【考点】72:二次根式有意义的条件.【专题】选择题【分析】二次根式的被开方数x﹣2是非负数.【解答】解:根据题意,得x﹣2≥0,解得,x≥2;故选:A.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.13.不等式4x﹣3<2x+1的解集为.【考点】C6:解一元一次不等式.【专题】填空题【分析】利用不等式的基本性质,把﹣3移到不等号的右边,把2x移到等号的左边,合并同类项即可求得原不等式的解集.【解答】解:4x﹣3<2x+1,4x﹣2x<1+3,2x<4,x<2,故答案为:x<2.【点评】本题考查了解一元一次不等式,以及解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.14.不等式组的整数解为.【考点】CC:一元一次不等式组的整数解.【专题】填空题【分析】先求出不等式的解集,再据此求出不等式的整数解.【解答】解:由①得,2x>﹣1﹣1,x>﹣1;由②得,x≤3﹣2,x≤1;不等式组的解集为:﹣1<x≤1,其整数解为0,1.【点评】正确解不等式,求出解集是解答本题的关键.解不等式应根据以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.【考点】FD:一次函数与一元一次不等式.【专题】填空题【分析】把P分别代入函数y=2x+b与函数y=kx﹣3求出k,b的值,再求不等式kx﹣3>2x+b的解集.【解答】解:把P(4,﹣6)代入y=2x+b得,﹣6=2×4+b解得,b=﹣14把P(4,﹣6)代入y=kx﹣3解得,k=﹣把b=﹣14,k=﹣代入kx﹣3>2x+b得,﹣x﹣3>2x﹣14解得,x<4,故答案为:x<4.【点评】本题主要考查一次函数和一元一次不等式,解题的关键是求出k,b的值求解集.16.若a>c,则当m时,am<cm;当m时,am=cm.【考点】C2:不等式的性质.【专题】填空题【分析】根据不等式的基本性质:不等式两边乘(或除以)同一个负数,不等号的方向改变,可知m<0,【解答】解:∵a>c,又知:am<cm,∴根据不等式的基本性质3可得:m<0;又知:am=cm,∴m=0,故答案为:<0;=0.【点评】主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.17.小于88的两位正整数,它的个位数字比十位数字大4,这样的两位数有个.【考点】C9:一元一次不等式的应用.【专题】填空题【分析】(1)根据“两位正整数其个位数字比十位数字大4”可得此两位数为(10×十位数)+个位数;(2)再根据此两位数小于88,列出不等式即可.【解答】解:设十位数字为x,则个位数字为x+4依题意得10x+x+4<88得x<又∵x应为正整数,且大于0;并且0≤个位数字≤9,因而5≤x+4≤9∴1≤x≤5故这样的两位数有5个.【点评】用不等式进行求解时,应注意未知数的限制条件.本题中正确用代数式表示出这个两位数是解决本题的关键.18.不等式组﹣1<x﹣5<11的解集是.【考点】CB:解一元一次不等式组.【专题】填空题【分析】可以直接用口诀解题,也可用不等式的性质直接解不等式组.【解答】解:不等式每个部分都加5得,4<x<16,故答案为:4<x<16.【点评】主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.也可利用不等式的性质求解(不等式两边同时加上一个数,不等号的方向不变).求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).19.若不等式组有解,则a的取值范围是.【考点】C3:不等式的解集.【专题】填空题【分析】根据不等式组有解,可得a与2的关系,可得答案.【解答】解:∵不等式组有解,∴a≤2,故答案为:a≤2.【点评】本题考查了不等式的解集,不等式的解集是大于小的小于大的.20.一次函数y=﹣3x+12中x时,y<0.【考点】FD:一次函数与一元一次不等式.【专题】填空题【分析】y<0即3x+12<0,解不等式即可求解.【解答】解:根据题意得:﹣3x+12<0,解得:x>4,故答案为:>4【点评】本题考查了一次函数与不等式的关系,认真体会一次函数与一元一次不等式(组)之间的内在联系.把求函数自变量的取值的问题转化为不等式的求解问题是关键.21.不等式x﹣8>3x﹣5的最大整数解是.【考点】C6:解一元一次不等式.【专题】填空题【分析】先求出不等式的解集,在取值范围内可以找到最大整数解.【解答】解:不等式x﹣8>3x﹣5的解集为x<﹣;所以其最大整数解是﹣2.【点评】解答此题要先求出不等式的解集,再确定最大整数解.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.22.直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为.【考点】FD:一次函数与一元一次不等式.【专题】填空题【分析】首先把P(a,2)坐标代入直线y=x+1,求出a的值,从而得到P点坐标,再根据函数图象可得答案.【解答】解:将点P(a,2)坐标代入直线y=x+1,得a=1,从图中直接看出,当x≥1时,x+1≥mx+n,故答案为:x≥1.【点评】此题主要考查了一次函数与一元一次不等式,关键是求出两函数图象的交点坐标,根据函数图象可得答案.23.解不等式,并把解集在数轴上表示出来:(1)5x﹣6≤2(x+3);(2)﹣<0.【考点】C6:解一元一次不等式;C4:在数轴上表示不等式的解集.【专题】解答题【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)去括号,得:5x﹣6≤2x+6,移项,得:5x﹣2x≤6+6,合并同类项,得:3x≤12,系数化为1,得:x≤4,将解集表示在数轴上如下:(2)去分母,得:2(2x﹣1)﹣(5x﹣1)<0,去括号,得:4x﹣2﹣5x+1<0,移项、合并,得:﹣x<1,系数化为1,得:x>﹣1,将解集表示在数轴上如下:.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.24.解不等式组:(1);(2).【考点】CB:解一元一次不等式组.【专题】解答题【分析】(1)分别求出每一个不等式的解集,根据口诀:大小小大中间找即可确定不等式组的解集;(2)分别求出每一个不等式的解集,根据口诀:大小小大中间找即可确定不等式组的解集.【解答】解:(1)解不等式5x﹣6≤2(x+3),得:x≤4,解不等式,得:x>0,∴不等式组的解集为0<x≤4;(2)解不等式3+x≤2(x﹣2)+7,得:x≥0,解不等式5x﹣1<3(x+1),得:x<2,∴不等式组的解集为0≤x<2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.25.已知不等式组的解集为﹣1<x<1,则(m+n)2014的值等于多少?【考点】CB:解一元一次不等式组.【专题】解答题【分析】解不等式解不等式2x﹣m>n﹣1得x>,由不等式组的解集为﹣1<x<1可得=﹣1,从而知m+n的值,代入即可.【解答】解:解不等式2x﹣m>n﹣1,得:x>,∵不等式组的解集为﹣1<x<1,∴=﹣1,∴m+n=﹣1,则(m+n)2014=(﹣1)2014=1.【点评】本题主要考查解不等式的基本能力,根据不等式组的解集得出m+n的值是解题的关键.26.是否存在整数k,使方程组的解中,x大于1,y不大于1,若存在,求出k的值,若不存在,说明理由.【考点】CC:一元一次不等式组的整数解.【专题】解答题【分析】解此题时可以解出二元一次方程组中x,y关于k的式子,然后解出k 的范围,即可知道k的取值.【解答】解:解方程组得∵x大于1,y不大于1从而得不等式组解之得2<k≤5又∵k为整数∴k只能取3,4,5答:当k为3,4,5时,方程组的解中,x大于1,y不大于1.【点评】此题考查的是二元一次方程组和不等式的性质,要注意的是x>1,y≤1,则解出x,y关于k的式子,最终求出k的范围,即可知道整数k的值.27.小颖准备用21元钱买笔和笔记本.已知每枝笔3元,每个笔记本2.2元,她买了2个笔记本.请你帮她算一算,她还可能买几枝笔?【考点】C9:一元一次不等式的应用.【专题】解答题【分析】设她还可能买x只笔,根据总钱数不超过21元,列不等式求解.【解答】解:设她还可能买x只笔,由题意得,3x+2×2.2≤21,解得:x≤.答:她还可能买5枝笔.【点评】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出不等关系,列不等式求解.28.每年3月12日是植树节,某学校植树小组若干人植树,植树若干棵.若每人植4棵,则余20棵没人植,若每人植8棵,则有一人比其他人植的少(但有树植),问这个植树小组有多少人?共有多少棵树?【考点】CE:一元一次不等式组的应用.【专题】解答题【分析】设该校一共有x人去植树,共有y棵树.则根据题意可得:,求解即得【解答】解:设个植树小组有x人去植树,共有y棵树.由“每人植4棵,则余20棵没人植”和“若每人植8棵,则有一人比其他人植的少(但有树植)”得:,将y=4x+20代入第二个式子得:0<4x+20﹣8(x﹣1)<8,5<x<7.答这个植树小组有6人去植树,共有4×6+20=44棵树.【点评】此题考查一元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.29.甲、乙原有存款800元和1800元,从本月开始,甲每月存400元,乙每月存200元.如果设两人存款时间为x月.甲存款额是y1元,乙存款额是y2元.(1)试写出y1与x及y2与x之间的函数关系式;(2)到第几个月时,甲存款额能超过乙存款额?【考点】FH:一次函数的应用.【专题】解答题【分析】(1)根据存款数=原有存款+又存入的钱数,列式即可;(2)列出一元一次不等式,然后求解即可.【解答】解:(1)根据题意,甲:y1=400x+800,乙:y2=200x+1800;(2)根据题意,400x+800>200x+1800,解得x>5,所以,从第6个月开始,甲存款额能超过乙存款额.【点评】本题考查了一次函数的应用,比较简单,读懂题目信息是解题的关键.30.在全市开展城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理.已知运往D地的数量比运往E地的数量的2倍少10立方米.(1)求运往两地的数量各是多少立方米?(2)若A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D 地的数量小于A地运往D地的2倍.其余全部运往E地,且C地运往E地不超过12立方米,则A、C两地运往D、E两地哪几种方案?(3)已知从A、B、C三地把垃圾运往D、E两地处理所需费用如下表:在(2)的条件下,请说明哪种方案的总费用最少?【考点】CE:一元一次不等式组的应用;8A:一元一次方程的应用.【专题】解答题【分析】(1)设运往E地x立方米,由题意可列出关于x的方程,求出x的值即可;(2)由题意列出关于a的一元一次不等式组,求出a的取值范围,再根据a是整数可得出a的值,进而可求出答案;(3)根据(1)中的两种方案求出其费用即可.【解答】解:(1)设运往E地x立方米,由题意得,x+2x﹣10=140,解得:x=50,∴2x﹣10=90.答:共运往D地90立方米,运往E地50立方米;(2)由题意可得,,解得:20<a≤22,∵a是整数,∴a=21或22,∴有如下两种方案:第一种:A地运往D地21立方米,运往E地29立方米;C地运往D地39立方米,运往E地11立方米;第二种:A地运往D地22立方米,运往E地28立方米;C地运往D地38立方米,运往E地12立方米;(3)第一种方案共需费用:22×21+20×29+39×20+11×21=2053(元),第二种方案共需费用:22×22+28×20+38×20+12×21=2056(元),所以,第一种方案的总费用最少.【点评】本题考查的是一元一次不等式组及一元一次方程的应用,根据题意列出一元一次不等式组及一元一次方程是解答此题的关键.。