实数的加减法运算

合集下载

实数知识点及典型例题

实数知识点及典型例题

实数知识点及典型例题一、实数知识点。

(一)实数的分类。

1. 有理数。

- 整数:正整数、0、负整数统称为整数。

例如:5,0,-3。

- 分数:正分数、负分数统称为分数。

分数都可以表示为有限小数或无限循环小数。

例如:(1)/(2)=0.5,(1)/(3)=0.333·s。

- 有理数:整数和分数统称为有理数。

2. 无理数。

- 无理数是无限不循环小数。

例如:√(2),π,0.1010010001·s(每两个1之间依次多一个0)。

3. 实数。

- 有理数和无理数统称为实数。

(二)实数的相关概念。

1. 数轴。

- 规定了原点、正方向和单位长度的直线叫做数轴。

- 实数与数轴上的点是一一对应的关系。

2. 相反数。

- 只有符号不同的两个数叫做互为相反数。

a的相反数是-a,0的相反数是0。

例如:3与-3互为相反数。

- 若a、b互为相反数,则a + b=0。

3. 绝对值。

- 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。

- 当a≥slant0时,| a|=a;当a < 0时,| a|=-a。

例如:| 5| = 5,| -3|=3。

4. 倒数。

- 乘积为1的两个数互为倒数。

a(a≠0)的倒数是(1)/(a)。

例如:2的倒数是(1)/(2)。

(三)实数的运算。

1. 运算法则。

- 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。

- 减法法则:减去一个数等于加上这个数的相反数。

- 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0。

- 除法法则:除以一个数等于乘以这个数的倒数(除数不为0)。

2. 运算律。

- 加法交换律:a + b=b + a。

- 加法结合律:(a + b)+c=a+(b + c)。

- 乘法交换律:ab = ba。

专题实数的运算计算题(60小题)

专题实数的运算计算题(60小题)

八年级上册数学《第4章实数》专题实数的运算计算题(共60小题)1.(2023秋•永春县期中)计算:(−1)2+|−√2|−√83.【分析】先运算乘方,以及化简绝对值和立方根,即可作答.【解答】解:原式=1+√2−2=√2−1.【点评】本题考查实数的运算,熟练掌握相关的知识点是解题的关键.2.(2023秋•青秀区校级期中)计算:|﹣2|+π0−√16+27+3.【分析】直接利用算术平方根的定义、绝对值的性质、有理数的混合运算法则分别化简得出答案.【解答】解:原式=2+1﹣4+30=29.【点评】本题主要考查了实数运算,掌握实数运算法则是关键.3.(2023•石峰区二模)计算:(−12)−2−(π−3.14)0+|3−√12|.【分析】直接利用负整数指数幂的性质、绝对值的性质、零指数幂的性质、二次根式的性质分别化简,进而合并得出答案.【解答】解:原式=4﹣1+2√3−3=2√3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.4.(2023秋•茂南区期中)计算:(−1)2023+√36−√83+|√5−2|.【分析】依次求出﹣1的乘方,36的算术平方根,8的立方根和去绝对值,再根据实数的加减混合运算法则计算即可.【解答】解:(−1)2023+√36−√83+|√5−2|=−1+6−2+√5−2=√5+1.【点评】本题主要考查了实数的混合运算,正确求出36的算术平方根,8的立方根,是解答本题的关键.5.(2023秋•南宁期中)计算:√4−(−2)2−(−1)2023+√83.【分析】先根据数的乘方及开方法则分别计算出各数,再根据实数的运算法则进行计算即可.【解答】解:原式=2﹣4+1+2=1.【点评】本题考查了实数的运算,熟知实数的运算法则是解题的关键.6.(2023秋•青秀区校级期中)计算:√−83×(−1)2023−6÷2+(12)0.【分析】利用立方根的定义,有理数的乘方及乘除法则,零指数幂计算即可.【解答】解:原式=﹣2×(﹣1)﹣3+1=2﹣3+1=0.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.7.(2023秋•衡南县期中)计算:√100+√−1253−|5−√2|.【分析】利用算术平方根及立方根的定义,绝对值的性质计算即可.【解答】解:原式=10﹣5﹣(5−√2)=10﹣5﹣5+√2=√2.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.8.(2023秋•红古区期中)计算:√52+√−83×12+(−√3)2. 【分析】利用算术平方根,立方根的定义计算即可.【解答】解:原式=5+(﹣2)×12+3=5﹣1+3=7.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.9.(2022秋•龙岗区校级期末)计算:﹣22+√36−√−273−|√5−2|.【分析】直接利用立方根的性质结合算术平方根的性质、绝对值的性质、有理数的乘方分别化简得出答案.【解答】解:原式=﹣4+6+3﹣(√5−2)=﹣4+6+3−√5+2=7−√5.【点评】此题主要考查了实数运算,正确化简各数是解题关键.10.(2022秋•阜宁县期末)计算:√9−√−83+√(−3)2−(√2)2.【分析】直接利用立方根以及二次根式的性质分别化简得出答案.【解答】解:原式=3﹣(﹣2)+3﹣2=3+2+3﹣2=6.【点评】此题主要考查了实数运算,正确化简各数是解题关键.11.(2023春•科左中旗期末)计算:|√3−2|+√273−√16+(−1)2023.【分析】由绝对值、立方根、算术平方根、乘方的运算法则进行化简,然后计算加减即可得到答案.【解答】解:|√3−2|+√273−√16+(−1)2023=2−√3+3−4+(−1)=−√3.【点评】本题考查了绝对值、立方根、算术平方根、乘方的运算,解题的关键是掌握运算法则,正确的进行化简.12.(2022秋•烟台期末)(√2)2−√(−3)2+(√−93)3+√643. 【分析】先计算平方根、立方根、平方和立方,最后计算加减.【解答】解:(√2)2−√(−3)2+(√−93)3+√643=2﹣3﹣9+4=﹣6.【点评】此题考查了实数的混合运算能力,关键是能准确理解运算顺序,并能进行正确地计算.13.(2023•望城区模拟)计算:(−1)2023+√4−|−√2|+√−83.【分析】根据乘方、算术平方根定义、绝对值性质、立方根定义,进行计算即可.【解答】解:(−1)2023+√4−|−√2|+√−83=−1+2−√2+(−2)=−1+2−√2−2=−1−√2.【点评】本题主要考查了实数运算,解题的关键是熟练掌握乘方、算术平方根定义、绝对值性质、立方根定义准确计算.14.(2023春•老河口市期中)计算:√−643+√49+√214+|√5−32|.【分析】根据求一个数的立方根、算术平方根,化简绝对值,进行计算即可求解.【解答】解:原式=−4+7+32+√5−32=3+√5.【点评】本题考查了实数的混合运算,熟练掌握求一个数的立方根、算术平方根,化简绝对值是解题的关键.15.(2023春•宁乡市期中)计算:−22+√−643×(12)2+|√3−2|.【分析】先算乘方,立方根,去绝对值,再算乘法,最后算加减.【解答】解:原式=﹣4﹣4×14+2−√3=﹣4﹣1+2−√3=﹣3−√3.【点评】本题考查实数混合运算,解题的关键是掌握实数混合运算的顺序及相关运算的法则.16.(2023春•龙湖区期末)计算:√9−(﹣1)2023+√−273+|1−√2|. 【分析】直接利用二次根式的性质以及绝对值的性质、立方根的性质、有理数的乘方运算法则分别化简,进而得出答案.【解答】解:原式=3+1﹣3+√2−1=√2.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.17.(2023春•东城区校级期中)计算:√16+√−273+√(−1)2−|√5−2|.【分析】直接利用二次根式以及绝对值、立方根的性质分别化简得出答案.【解答】解:原式=4﹣3+1﹣(√5−2)=4﹣3+1−√5+2=4−√5.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(2023春•长沙期中)|√2−1|+(−2)2×14+√−83+√4.【分析】先求绝对值、算术平方根、立方根,再计算即可.【解答】解:|√2−1|+(−2)2×14+√−83+√4=√2−1+4×14−2+2=√2−1+1−2+2=√2.【点评】本题考查了实数的运算,解题关键是熟练运用立方根、算术平方根的定义计算,会求实数的绝对值.19.(2023春•大冶市期中)计算:√(−1)2+√14×(−2)2−√−643.【分析】先开方,后算乘法,最后算加减.【解答】解:√(−1)2+√14×(−2)2−√−643=1+12×4﹣(﹣4)=1+2+4=7.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握各种运算.20.(2023春•长沙期中)计算:−12023+(√−83)3+|1−√2|−√16.【分析】先根据乘方运算、绝对值的意义,算术平方根的运算化简,再进行加减运算即可.3)3+|1−√2|−√16【解答】解:−12023+(√−8=−1−8+(√2−1)−4=√2−14.【点评】本题考查了实数的混合运算,熟练掌握各个运算法则是解题的关键.3−√(−2)2+|1−√2|.21.(2023秋•西安月考)计算:(−2)2+√−8【分析】先分别根据乘方的计算法则、数的开方法则及绝对值的性质分别计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=4−2−2+√2−1=√2−1.【点评】本题考查的是实数的运算,熟知数的开方法则及绝对值的性质是解答此题的关键.3+√4−√(−3)2+|1−√2|.22.(2023春•宁乡市期末)计算:√8【分析】先根据数的开方法则及绝对值的性质计算出各数,再根据实数的运算法则进行计算即可.【解答】解:原式=2+2﹣3+(√2−1)=4﹣3+√2−1=√2.【点评】本题考查的是实数的运算,涉及到数的开方法则及绝对值的性质,熟知以上知识是解题的关键.3−√16+|1−√3|.23.(2023春•开福区校级期中)计算:(−1)2023−√27【分析】根据有理数的乘方的法则,数的开方法则及绝对值的性质把各数进行化简,再根据实数混合运算的法则进行计算即可.3−√16+|1−√3|【解答】解:(−1)2023−√27=−1−3−4+√3−1=−9+√3.【点评】本题考查了实数的运算,熟知有理数的乘方的法则,数的开方法则及绝对值的性质是解题的关键.3.24.(2023春•广宁县期末)计算:√25−√3+|√3−2|+√−8【分析】直接利用二次根式的性质、立方根的性质、绝对值的性质分别化简,进而合并得出答案.【解答】解:原式=5−√3+2−√3−2=5﹣2√3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.3+|1−√2|.25.(2023春•祥云县期末)计算:√9−(−1)2023−√27【分析】先化简二次根式、立方根、幂的乘方和绝对值,再计算加减即可.3+|1−√2|【解答】解:√9−(−1)2023−√27=3+1−3+√2−1=√2.【点评】本题考查了实数的混合运算,正确化简二次根式、立方根、幂的乘方和绝对值是解答本题的关键.3−√4.26.(2023春•长沙期中)计算:(﹣1)2023+|1−√2|+√8【分析】直接利用有理数的乘方运算法则以及绝对值的性质、立方根的性质、二次根式的性质分别化简,进而得出答案.【解答】解:原式=﹣1+√2−1+2﹣2=√2−2.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.3+|√3−2|+√3.27.(2023春•泸县校级期末)计算:√0.04+√−8【分析】直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=0.2﹣2+2−√3+√3=0.2.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.3−√(−3)2+|√2−1|.28.(2023秋•延庆区期中)计算:√−8【分析】先计算立方根、二次根式、绝对值,最后计算加减.【解答】解:√−83−√(−3)2+|√2−1|=﹣2﹣3+√2−1=√2−6.【点评】此题考查了实数的混合运算能力,关键是能准确确定运算顺序和方法,并能进行正确地计算.29.(2023春•长沙期末)计算:(−1)2023−√16+|3−√3|−√−83.【分析】先化简各式,然后再进行计算即可解答.【解答】解:(−1)2023−√16+|3−√3|−√−83=﹣1﹣4+3−√3−(﹣2)=﹣1﹣4+3−√3+2=−√3.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.30.(2023秋•蒸湘区校级月考)计算:(﹣1)3﹣|﹣2|+√3−(12)2.【分析】根据有理数的乘方,化简绝对值,实数的混合运算进行计算即可求解.【解答】解:(−1)3−|−2|+√3−(1 2 )2=−1−2+√3−14=−134+√3.【点评】本题考查了实数的混合运算,熟练掌握实数运算法则是解题的关键.31.(2023春•东城区期末)计算:(﹣1)2−√273+√16−(﹣7).【分析】先化简各式,然后再进行计算即可解答.【解答】解:(﹣1)2−√273+√16−(﹣7).=1﹣3+4+7=9.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.32.(2023春•凤凰县期末)计算:|−√3|+√(−3)2−(−1)2023+√−273.【分析】先化简绝对值,计算算术平方根,乘方运算,立方根,再算加减法即可.【解答】解:|−√3|+√(−3)2−(−1)2023+√−273=√3+3+1−3=√3+1.【点评】本题考查的是实数的混合运算,熟记算术平方根与立方根的概念是解本题的关键.33.(2023•金寨县校级模拟)计算:(﹣3)2+|1−√3|+3×(﹣4).【分析】先算乘方与绝对值,再算乘法,最后算加减即可.【解答】解:(﹣3)2+|1−√3|+3×(﹣4)=9+√3−1﹣12=﹣4+√3.【点评】本题主要考查了实数的综合运算能力,掌握运算顺序与运算法则是解题的关键.34.(2023春•长沙期末)计算:(﹣1)+√−83+√25+|√3−2|.【分析】先计算术平方根、乘方、立方根和绝对值,再计算加减.【解答】解:(﹣1)+√−83+√25+|√3−2|=﹣1+(﹣2)+5+2−√3=4−√3.【点评】此题考查了实数的混合运算能力,关键是能准确理解运算顺序,并能进行正确地计算.35.(2023•西城区校级开学)计算:(π﹣1)0﹣9√13+√12−|√3−2|. 【分析】先计算零次幂、算术平方根、绝对值,再计算乘法,最后计算加减.【解答】解:(π﹣1)0﹣9√13+√12−|√3−2|=1﹣9×√33+2√3+√3−2=1﹣3√3+2√3+√3−2=﹣1.【点评】此题考查了实数的混合运算能力,关键是能准确确定运算顺序和方法,并能进行正确地计算.36.(2023•原平市模拟)计算(13)﹣1+|1−√3|﹣(﹣1)2+(﹣3+1).【分析】先化简各式,然后再进行计算即可解答.【解答】解:(13)﹣1+|1−√3|﹣(﹣1)2+(﹣3+1) =3+√3−1﹣1+(﹣2)=3+√3−1﹣1﹣2=√3−1.【点评】本题考查了实数的运算,负整数指数幂,准确熟练地进行计算是解题的关键.37.(2023•雁塔区一模)计算:(1)−12022+|1−√3|−√−273+√4;(2)√(−3)2−(−√3)2−√16+√−643.【分析】(1)先计算乘方与开方,并去绝对值符号,再计算加减即可.(2)先计算开方与乘方,再计算加减即可.【解答】解:(1)原式=−1+√3−1+3+2=√3+3;(2)原式=3﹣3﹣4﹣4=﹣8.【点评】本题考查实数的混合运算,求绝对值,平方根和立方根,熟练掌握实数运算法则是解题的关键.38.(2023春•江津区月考)计算:(1)−12+√643−(−2)×√9.(2)(−12)×(−2)2−√−183+√(−12)2. 【分析】(1)分别计算有理数的乘方,立方根与算术平方根,再计算乘法,加减运算即可得到答案;(2)先计算立方根与算术平方根,再计算加减运算即可得到答案.【解答】解:(1)−12+√643−(−2)×√9=﹣1+4+6=9;(2)(−12)×(−2)2−√−183+√(−12)2 =(−12)×4−(−12)+12=−2+12+12=﹣1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.39.(2023春•荆州月考)计算:(1)√−83+√(−1)2−√643×√14;(2)√(−4)2−√−13+√102−62.【分析】(1)先计算立方根,算术平方根,再计算乘法,最后计算加减法;(2)先计算立方根,算术平方根,再计算加减法.【解答】解:(1)原式=−2+1−4×12=﹣1﹣2=﹣3;(2)原式=4+1+√64=5+8=13.【点评】此题考查了实数的混合运算,正确计算立方根及算术平方根是解题的关键.40.(2023春•瓦房店市期中)计算:(1)2√3−(3√2+√3);(2)√0.04+√83−√14−(1−√9)+|1−√2|. 【分析】(1)直接利用二次根式的加减运算法则计算得出答案;(2)直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=2√3−3√2−√3=√3−3√2;(2)原式=0.2+2−12−1+3+√2−1=2.7+√2.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.41.(2023秋•德惠市校级月考)计算:(1)√9+|﹣3|+√−273−(﹣1)2019;(2)√(−6)2+|1−√2|−√83.【分析】(1)直接利用二次根式的性质以及立方根的性质、有理数的乘方运算法则分别化简,进而得出答案;(2)直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简,进而得出答案.【解答】解:(1)原式=3+3﹣3+1=4;(2)原式=6+√2−1﹣2=3+√2.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.42.(2023春•新宾县期中)计算:(1)3√3−|√3−√2|;(2)﹣12023+(﹣2)3×18−√−273×(−√19).【分析】(1)直接利用二次根式的加减运算法则以及绝对值的性质分别化简,进而计算得出答案;(2)直接利用有理数的乘方运算法则以及二次根式的性质、立方根的性质分别化简,进而得出答案.【解答】解:(1)原式=3√3−(√3−√2)=3√3−√3+√2=2√3+√2;(2)原式=﹣1﹣8×18+3×(−13)=﹣1﹣1﹣1=﹣3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.43.(2023春•海门市月考)计算(1)﹣12023+√81−√273;(2)√(−2)2+|√2−√3|﹣|√3−1|.【分析】(1)直接利用有理数的乘方运算法则以及二次根式的性质、立方根的性质分别化简,进而得出答案;(2)直接利用二次根式的性质以及绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=﹣1+9﹣3=5;(2)原式=2+√3−√2−(√3−1)=2+√3−√2−√3+1=3−√2.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.44.(2023春•葫芦岛期中)计算:(1)6×√19−√273+(√2)2;(2)−12022+√(−2)2+|2−√3|.【分析】(1)先化简各式,再进行加减运算;(2)先化简各式,再进行加减运算.【解答】解:(1)原式=6×13−3+2=2﹣3+2=1;(2)原式=−1+2+2−√3=3−√3.【点评】本题考查实数的运算,熟练掌握实数的运算法则是解题的关键.45.(2023春•舞阳县期中)计算:(1)√16+√83−√(−5)2;(2)(﹣2)3+|1−√2|×(﹣1)2023−√1253.【分析】(1)直接利用二次根式的性质、立方根的性质分别化简,进而得出答案;(2)直接利用有理数的乘方运算法则、绝对值的性质、立方根的性质分别化简,进而得出答案.【解答】解:(1)原式=4+2﹣5=1;(2)原式=﹣8+(√2−1)×(﹣1)﹣5=﹣8−√2+1﹣5=﹣12−√2.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.46.(2023春•沙坪坝区校级期末)计算:(1)(−1)2+√−273+|π−2|.(2)√1−89×(√3−3)−(√2)2−√(3−π)2. 【分析】(1)利用有理数的乘方法则,立方根的定义,绝对值的性质进行计算即可;(2)利用二次根式的运算法则,实数的乘法法则进行计算即可.【解答】解:(1)原式=1﹣3+π﹣2=π﹣4;(2)原式=√19×(√3−3)﹣2﹣(π﹣3)=13×(√3−3)﹣2﹣π+3=√33−1﹣2﹣π+3 =√33−π. 【点评】本题考查实数的运算,其相关运算法则是基础且重要知识点,必须熟练掌握.47.(2023春•江津区期中)计算:(1)−42×(−1)2023+√83−√25;(2)2√14−|2−√3|+√(−9)2+√−273.【分析】(1)直接利用绝对值的性质、立方根的性质、有理数的乘方运算法则、二次根式的性质分别化简,进而计算得出答案;(2)直接利用绝对值的性质、立方根的性质、二次根式的性质分别化简,进而计算得出答案.【解答】解:(1)原式=﹣16×(﹣1)+2﹣5=16+2﹣5=13;(2)原式=2×12−(2−√3)+9﹣3=1﹣2+√3+9﹣3=5+√3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.48.(2023春•綦江区期中)计算下列各题:(1)√−273−√(−2)2−(−1)2023×√214;(2)2√3−|√3−2|+√81+(√−83)3.【分析】(1)直接利用立方根的性质以及二次根式的性质计算得出答案;(2)直接利用绝对值的性质以及二次根式的性质、立方根的性质分别化简,进而得出答案.【解答】解:(1)原式=﹣3﹣2+1×32=﹣3﹣2+32=−72;(2)原式=2√3−(2−√3)+9﹣8=2√3−2+√3+9﹣8=3√3−1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.49.(2023秋•临汾月考)计算:(1)√16−√−83+√−1273;(2)√9+√−1253+|√3−2|.【分析】(1)根据实数的混合运算法则计算即可;(2)根据实数的混合运算法则计算即可.【解答】解:(1)原式=4−(−2)+(−13)=4+2−13=523;(2)原式=3−5+2−√3=−√3.【点评】本题考查了实数的运算,熟练掌握实数的混合运算法则是解题的关键.50.(2023春•江北区期中)计算:(1)|−3|−√16+12×√−83+(−2)3; (2)√49−√273+|1−√2|+√(1−54)2. 【分析】(1)直接利用绝对值的性质、二次根式的性质以及立方根的性质分别化简,进而得出答案;(2)直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简,进而得出答案.【解答】解:(1)原式=3﹣4+12×(﹣2)﹣8=3﹣4﹣1﹣8=﹣10;(2)原式=7﹣3+√2−1+14=134+√2.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.51.(2023秋•昆山市校级月考)计算:(1)√(−2)2+|√2−1|−(√2−1);(2)(−√3)2+√(−6)2−√−83.【分析】(1)直接利用绝对值的性质以及二次根式的性质分别化简,进而得出答案;(2)直接利用二次根式的性质以及立方根的性质分别化简,进而得出答案.【解答】解:(1)√(−2)2+|√2−1|−(√2−1)=2+√2−1−√2+1=2;(2)(−√3)2+√(−6)2−√−83=3+6+2=11.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.52.(2023秋•鼓楼区校级月考)计算:(1)√36−3×(﹣1)2023+√−83; (2)(3√3−2√2)+√2+|1−√3|.【分析】(1)先根据有理数的乘方以及算术平方根和立方根的意义化简,再算乘法,最后计算加减即可;(2)先去括号和去绝对值,再计算加减即可.【解答】解:(1)原式=6﹣3×(﹣1)﹣2=6+3﹣2=7;(2)原式=3√3−2√2+√2+√3−1=4√3−√2−1.【点评】本题考查了实数的运算,掌握运算法则是解题的关键.53.(2023春•五华区校级期中)计算:(1)(﹣1)2023+√9−|﹣5|−√−273; (2)√−183−(√0.1253)3+√614−1. 【分析】(1)利用有理数的乘方,算术平方根,绝对值的性质,立方根的定义进行计算即可;(2)利用算术平方根的定义,算术平方根的定义进行计算即可.【解答】解:(1)原式=﹣1+3﹣5﹣(﹣3)=﹣1+3﹣5+3=0;(2)原式=−12−0.125+√6.25−1=﹣0.5﹣0.125+2.5﹣1=0.875.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.54.(2022秋•锡山区期中)计算:(1)√16+√83−(−1)2018.(2)√(−3)2−|1−√3|+(√7−1)0.【分析】(1)根据实数的加减运算法则,先计算算术平方根、立方根、有理数的乘方,再计算加减.(2)根据实数的加减运算法则,先计算算术平方根、绝对值、零指数幂,再计算加减.【解答】解:(1)√16+√83−(−1)2018=4+2﹣1=5.(2)√(−3)2−|1−√3|+(√7−1)0=3﹣(√3−1)+1=3−√3+1+1=5−√3.【点评】本题主要考查算术平方根、立方根、有理数的乘方、绝对值、零指数幂,实数的加减运算,熟练掌握算术平方根、立方根、有理数的乘方、绝对值、零指数幂,实数的加减运算法则是解决本题的关键.55.(2023•五华区校级开学)计算:(1)√−83+√14−|3﹣π|﹣(﹣1)2023; (2)√(−2)2−√1253+|√3−2|+√3.【分析】(1)先计算立方根、算术平方根、绝对值和乘方,再计算加减;(2)先计算二次根式、立方根、绝对值,再计算加减.【解答】解:(1)√−83+√14−|3−π|−(−1)2023=−2+12−(π−3)−(−1)=−2+12−π+3+1=52−π;(2)√(−2)2−√1253+|√3−2|+√3=2−5+2−√3+√3=﹣1.【点评】此题考查了实数的混合运算能力,关键是能准确确定运算顺序和方法,并能进行正确地计算.56.(2023春•青县月考)计算:(1)√(−4)2−14−√−0.1253−|−6|;(2)(−1)3+|1−√2|+√83−√(−2)2.【分析】(1)先算开方,再化简绝对值,最后加减;(2)先算乘方和开方,再化简绝对值,最后加减.【解答】解:(1)√(−4)2−14−√−0.1253−|−6|=|﹣4|−14−(﹣0.5)﹣6=4−14+12−6=﹣2+14=−74;(2)(−1)3+|1−√2|+√83−√(−2)2=﹣1+√2−1+2﹣2=√2−2.【点评】本题考查了实数的运算,掌握二次根式及立方根的性质、绝对值的意义是解决本题的关键.57.(2023春•益阳期末)计算:(1)√16+√−273−√1+916;(2)√(−2)2+|√2−1|﹣(√2−1).【分析】(1)利用算术平方根的意义,立方根的意义化简运算即可;(2)利用二次根式的性质,绝对值的意义化简运算即可.【解答】解:(1)原式=4+(﹣3)−√25 16=1−5 4=−14;(2)原式=2+√2−1−√2+1=2.【点评】本题主要考查了实数的运算,算术平方根的意义,立方根的意义,二次根式的性质,绝对值的意义,熟练掌握上述法则与性质是解题的关键.58.(2023春•临颍县期中)计算(1)√22−√214+√78−13−√−13;(2)|−√2|﹣(√3−√2)﹣|√3−2|.【分析】(1)直接利用算术平方根以及立方根的定义化简得出答案;(2)利用绝对值的性质化简得出答案.【解答】解:(1)√22−√214+√78−13−√−13=2−32−12+1=1;(2)|−√2|﹣(√3−√2)﹣|√3−2|=√2−√3+√2−(2−√3)=2√2−2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.59.(2022秋•城关区校级期中)计算:(1)√12+(√3)2+14√48−9√13;(2)√(−3)2+(−1)2022+√83+|1−√2|.【分析】(1)直接利用二次根式的性质分别化简,进而计算得出答案;(2)直接利用二次根式的性质、有理数的乘方运算法则、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=2√3+3+14×4√3−9×√33=2√3+3+√3−3√3=3;(2)原式=3+1+2+√2−1=5+√2.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.60.计算:(1)√(−2)2×√214−23×√(−18)23 (2)√9+|1−√2|−√125273×√(−3)2+|4√0.25−√2|【分析】(1)首先计算开方和乘法,然后计算减法,求出算式的值是多少即可.(2)首先计算开方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(1)√16+√32+√−83=4+3﹣2=5(2)√(−2)2×√214−23×√(−18)23 =2×32−8×14=3﹣2=1(3)√9+|1−√2|−√125273×√(−3)2+|4√0.25−√2|=3+√2−1−53×3+2−√2=﹣1【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.。

2023年中考数学考点讲练专题3 实数的运算

2023年中考数学考点讲练专题3 实数的运算

专题3 实数的运算考点一:实数的大小比较1.(2022·四川成都·中考模拟)在实数 3.14-,-3,3-π-中,最小的数是( ) A . 3.14-B .-3C .3D .π-2.(2022·湖南益阳·21,2,13中,比0小的数是( )A 2B .1C .2D .133.(2022·吉林长春·中考真题)实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是( ) A .0a > B .a b <C .10b -<D .0ab >4.(2022·广东深圳·中考二模)下列数中,大于-1且小于0的是( ) A .3B .32-C .23-D .235.(2022·天津红桥·中考三模)估计17- ). A .5-和4-之间 B .4-和3-之间 C .3-和2-之间D .2-和1-之间6.(2022·山东临沂·23“>”或“<”或“=”).7.(2022·海南·310___________.考点二:实数的基本运算8.(2022·浙江·杭州中考模拟预测)下列计算结果是正数的是( ) A .1﹣2B .﹣π+3C .(﹣3)×(﹣5)2D .|59.(2022·河北唐山·中考三模)运算后结果正确的是( ) A .12332=B 342 C 8220= D 2632=10.(2022·天津·中考模拟预测)计算sin30tan 45︒-︒( ) A 31- B .12-C 32D .3211.(2022·重庆中考二模)计算:1122-⎛⎫-+= ⎪⎝⎭( ) A .0 B .4 C .-2D .3212.(2022·广东深圳·01(1+的结果是( )A .1BC .2D .113.(2022·山东威海·中考真题)按照如图所示的程序计算,若输出y 的值是2,则输入x 的值是 _____.14.(2022·陕西·中考真题)计算:3=______.15.(2022·四川攀枝花·0(1)=-__________.16.(2022·辽宁阜新·中考真题)计算:22-=______.17.(2022·广东肇庆·______________.18.(2022·湖北黄石·中考真题)计算:20(2)(2022--=____________.考点三:实数的混合运算19.(2022·广东·佛山市中考模拟)计算0312(2017)()2π----+的结果为( )A .3-B .3C .6D .920.(2022·山东威海·302(1)(1)2π-----的结果是( )A .74B .34C .14D .14-21.(2022·江苏南京·中考模拟)计算20212020的结果是( )A B .C .D 22.(2022·广东·东莞市中考三模)计算:10|2|3sin 302(2022)π--+---︒等于( )A .2-B .12-C .2D .023.(2022·广东惠州·中考二模)101tan60|(3)2π-︒⎛⎫---+-= ⎪⎝⎭__________.24.(2022·山东泰安·中考三模)()022112cos 45π--+-︒=________.25.(2022·重庆长寿·中考模拟)计算:20112160π1tan --+-︒+⋅=-()__________.26.(2022·内蒙古内蒙古·中考真题)计算:1012cos30(3π)2-︒⎛⎫-++- ⎪⎝⎭27.(2022·湖南·中考真题)计算:0112cos 45( 3.14)1()2π-︒+-+.28.(2022·湖南郴州·中考真题)计算:()12022112cos3013-⎛⎫--︒+ ⎪⎝⎭.29.(2022·广东北江实验学校三模)计算:()20120222sin 6023π-⎛⎫+-+︒ ⎪⎝⎭30.(2022·湖南·(032cos 60π+︒.31.(2022·四川德阳·()()023.143tan 6012π---︒+-.答案与解析考点一:实数的大小比较1.(2022·四川成都·中考模拟)在实数 3.14-,-3,π-中,最小的数是( ) A. 3.14- B .-3C .D .π-∴33 3.14<,在实数 3.14-,-3,3-,故选:D .【点睛】本题主要考查实数的比较大小,关键在于绝对值符号的去掉,根据负数绝对值越大,反而越小.2.(2022·湖南益阳·中考真题)四个实数﹣1,2,13中,比0小的数是( )A B .1 C .2D .133.(2022·吉林长春·中考真题)实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是( )A .0a >B .a b <C .10b -<D .0ab >【答案】B【分析】观察数轴得:2123a b -<<-<<<,再逐项判断即可求解.【详解】解:观察数轴得:2123a b -<<-<<<,故A 错误,不符合题意;B 正确,符合题意; ∴10b ->,故C 错误,不符合题意; ∴0ab <,故D 错误,不符合题意; 故选:B【点睛】本题主要考查了实数与数轴,实数的大小比较,利用数形结合思想解答是解题的关键. 4.(2022·广东深圳·中考二模)下列数中,大于-1且小于0的是( )A .B .32-C .23-D .23【详解】解:13<<,故A 不符合题意;B 不符合题意;,故C 符合题意;5.(2022·天津红桥·中考三模)估计 ). A .5-和4-之间 B .4-和3-之间 C .3-和2-之间 D .2-和1-之间【详解】解:1617<5-【点睛】本题考查无理数的估算,是基础考点,掌握相关知识是解题关键.6.(2022·山东临沂·“>”或“<”或“=”).【详解】解:22()2=1123>,∴223>故答案为:.【点睛】本题考查了实数的大小比较,解题的关键是灵活变通,比较两者平方后的结果.7.(2022·海南·___________.考点二:实数的基本运算8.(2022·浙江·杭州中考模拟)下列计算结果是正数的是( )A .1﹣2B .﹣π+3C .(﹣3)×(﹣5)2D .|【点睛】本题考查了实数,有理数的混合运算,熟练掌握运算法则是解本题的关键. 9.(2022·河北唐山·中考三模)运算后结果正确的是( )A.12=B 2 C 0= D =10.(2022·天津·中考模拟预测)计算sin30tan 45︒-︒( )A 1B .12-C D .3211.(2022·重庆中考二模)计算:1122-⎛⎫-+= ⎪⎝⎭( )A .0B .4C .-2D .32故选:B .【点睛】本题考查了实数的运算,正确理解实数的运算法则是解本题的关键.12.(2022·广东深圳·01(1+的结果是( )A.1 B C .2D .113.(2022·山东威海·中考真题)按照如图所示的程序计算,若输出y 的值是2,则输入x 的值是 _____.14.(2022·陕西·中考真题)计算:3-=______.15.(2022·四川攀枝花·0-__________.(1)=-【答案】3【分析】根据立方根的定义,零指数次幂的定义以及有理数减法法则,进行计算即可.=--=-.【详解】解:原式213-.故答案为:3【点睛】本题考查了立方根的定义,零指数次幂的定义以及有理数减法法则,正确进行计算是解题的关键.16.(2022·辽宁阜新·中考真题)计算:22-______.17.(2022·广东肇庆·中考二模)计算:=______________.18.(2022·湖北黄石·中考真题)计算:20--=____________.(2)(2022【答案】3【分析】根据有理数的乘法与零次幂进行计算即可求解.-=.【详解】解:原式=413故答案为:3.【点睛】本题考查了实数的混合运算,掌握零次幂以及有理数的乘方运算是解题的关键.考点三:实数的混合运算19.(2022·广东·佛山市中考模拟)计算0312(2017)()2π----+的结果为( ) A .3-B .3C .6D .920.(2022·山东威海·302(1)(1)2π-----的结果是( )A .74B .34C .14D .14-21.(2022·江苏南京·中考模拟)计算20212020的结果是( )A B .C .D 【答案】A【分析】把较高次幂拆分后逆用积的乘方法则,进行运算即可得解.22.(2022·广东·东莞市中考三模)计算:10|2|3sin 302(2022)π--+---︒等于( )A .2-B .12-C .2D .01123122 312122=+-- =2,23.(2022·广东惠州·中考二模)101tan60|(3)2π-︒⎛⎫---+-= ⎪⎝⎭__________. 【答案】-1【分析】根据负整数指数幂,特殊角三角函数值,绝对值,零指数幂,二次根式的性质化简等计算法则求解即可.24.(2022·山东泰安·中考三模)()022112cos 45π--+-︒=________.25.(2022·重庆长寿·中考模拟)计算:20112160π1tan --+-︒+⋅-()__________.26.(2022·内蒙古内蒙古·中考真题)计算:1012cos30(3π)2-︒⎛⎫-++- ⎪⎝⎭27.(2022·湖南·中考真题)计算:0112cos 45( 3.14)1()2π-︒+-++.28.(2022·湖南郴州·中考真题)计算:()12022112cos3013-⎛⎫--︒+ ⎪⎝⎭.=3.【点睛】本题考查了特殊角的三角函数值、绝对值的意义和负整数指数幂的运算法则等知识,熟记特殊角的三角函数值是解答本题的关键.29.(2022·广东中考三模)计算:()20120222sin 6023π-⎛⎫+-+︒ ⎪⎝⎭30.(2022·湖南·(032cos 60π+︒.31.(2022·四川德阳·()()023.143tan 6012π---︒++-.。

苏科版八年级数学上册专题4.4实数的混合运算专项训练同步特训(学生版+解析)

苏科版八年级数学上册专题4.4实数的混合运算专项训练同步特训(学生版+解析)

专题4.4 实数的混合运算专项训练【苏科版】考卷信息:本套训练卷共40题,题型针对性较高,覆盖面广,选题有深度,可加强学生对实数混合运算的理解!1.(2023春·黑龙江齐齐哈尔·八年级统考期中)计算√116−√614+|√3−1|−√3 2.(2023春·广西玉林·八年级统考期末)计算:(−1)2023−√9+|1−√2|−√−83. 3.(2023春·河南洛阳·八年级统考期末)计算:−32×2+√(−4)2+√−643.4.(2023春·四川广元·八年级校联考期末)计算:√−83+|√3−2|−(−1)2021+|−√3|.5.(2023春·四川德阳·八年级四川省德阳中学校校考期中)计算:−22+√36−√−273−|2−√5|. 6.(2023春·四川泸州·八年级统考期末)计算:−32×29+√2516÷58+√−273. 7.(2023春·四川绵阳·八年级校联考期中)计算:√196×√−643÷√12425−√(−3)2−|√3+√−83|. 8.(2023春·四川绵阳·八年级统考期中)计算:√−83+√9−√1916+(−1)2022+|1−√2| 9.(2023春·山东临沂·八年级统考期中)计算: (1)√9+√52+√−273(2)(−3)2−|−12|−√910.(2023春·山西临汾·八年级统考期中)计算: (1)√0.04+√−83−√125; (2)−√214+√0.1253+√1−6364.11.(2023春·河南驻马店·八年级统考期中)(1)计算∶ √16+√−643−2√3+|√3−2|; (2)求下列式子中的x : 9x 2−16=0.12.(2023春·重庆彭水·八年级统考期中)(1)计算√83−√16+|√3−2|; (2)(12)0+(−2)3×18−√273×√19.13.(2023春·湖北十堰·八年级统考期末)计算下列各式的值: (1)√16−√−13+|2−√3|(2)√7(√7√7)−√8314.(2023春·湖北省直辖县级单位·八年级统考期末)计算: (1)√16+√−643−√(−3)2+|√3−1|; (2)已知(x +1)2=16,求x 的值.15.(2023春·天津静海·八年级校考期中)计算: (1)(−1)3+|1−√2|+√83; (2)√0.01+√−83−√1416.(2023春·黑龙江哈尔滨·八年级统考期中)计算 (1)8x 3+125=0;(2)√−83+√(−3)2−|√3−2|.17.(2023春·广东广州·八年级广州大学附属中学校考期中)计算: (1)√3+|√3−2|−√−83+√(−2)2. (2)√81+√(−3)2×√169−√1214+√−273.18.(2023春·广东汕头·八年级校考期中)计算 (1)√9−√(−5)33÷√(34)2(2)(−1)2021−√9+√−83+|√3−2|19.(2023春·山西吕梁·八年级统考期中)(1)计算:(−1)2022−(√16+√214)+√273+12 (2)解方程:2x 2=1820.(2023春·山东临沂·八年级统考期中)(1)计算:(−1)2017−√(−2)2−√−83+|√3−2|; (2)求x 的值:2(x −3)2=32.21.(2023春·辽宁鞍山·八年级校联考期中)计算: (1)√273−√25+|√3−2|−(1−√3) (2)√13×(√13√13)−√27322.(2023春·重庆江津·八年级校联考期中)计算: (1)−42×(−1)2023+√83−√25; (2)2√14−|2−√3|+√(−9)2+√−273.23.(2023春·山东聊城·八年级统考期中)计算:(1)2−2+√−13+(√83+4)÷√(−6)2 (2)(π−2023)0+√1.21−√−33263−√0.008324.(2023春·四川德阳·八年级四川省德阳市第二中学校校考期中)计算: (1)√(−3)2×(−13)−√273÷√14(2)√−83−√2+(√3)2+|1−√2|−(−1)2023 25.(2023春·河北唐山·八年级统考期中)计算: (1)(√2)2−√273+|√3−3|; (2)√9×√4+√102−(−4)2;26.(2023春·浙江宁波·八年级校考期中)计算下列各式: (1)√4+|−2|+√−273+(−1)2017; (2)(−3)2÷(−23)+(−2)3×(−32).27.(2023春·广东广州·八年级校考期中)计算: (1)(√5)2+√(−3)2+√−83; (2)(−2)3×18−√273×(−√19).28.(2023春·河南鹤壁·八年级校考期中)计算: (1)√14+√−83−11−√21; (2)0.1252022×(−8)2023.29.(2023春·山东枣庄·八年级统考期末)(1)计算:√16−√19+√273−|3−√5|;(2)求x 的值:(x +1)3=−827.30.(2023春·天津河北·八年级统考期中)(1)计算:√0.04+√−83−√14+2; (2)求下式中x 的值: 4(x +5)2=16.31.(2023春·黑龙江牡丹江·八年级校考期中)计算: (1)√−83−√3+(√5)2+|1−√3| (2)√36+√214+√−27332.(2023春·湖北十堰·八年级统考期中)计算:(1)√−8273×√14−√(−2)2;(2)√3−√25+|√3−3|+√1−63643.33.(2023春·云南红河·八年级校考期中)计算 (1)√25−√273+|−√9|(2)|2−√5|+|3−√7|+|√7−√5|34.(2023春·江苏泰州·八年级校考期中)计算或解方程: (1)8(x −1)3=−1258;(2)3(x −1)2−15=0.(3)−14×√4+|√9−5|+√214+√−0.1253.35.(2023春·北京西城·八年级北京市回民学校校考期中)按要求计算下列各题 (1)计算:|1−√2|−√(−2)2+√273;(2)已知√a −1+√b −5=0,则(a −b )2的算术平方根; (3)已知4x 2=25,求x 的值; (4)已知(x +1)2=1,求x 的值.36.(2023春·浙江宁波·八年级校联考期中)计算: (1)−2+(−7)−3+8;专题4.4 实数的混合运算专项训练【苏科版】考卷信息:本套训练卷共40题,题型针对性较高,覆盖面广,选题有深度,可加强学生对实数混合运算的理解!1.(2023春·黑龙江齐齐哈尔·八年级统考期中)计算√116−√614+|√3−1|−√3【答案】−134【分析】先根据算术平方根的定义,去绝对值的方法化简,再合并即可.【详解】解:原式=14−√254+√3−1−√3=14−52+√3−1−√3=14−52−1+√3−√3=−134【点睛】本题考查求一个数的算术平方根,去绝对值,实数的运算等知识,掌握相关法则和公式是解题的关键.2.(2023春·广西玉林·八年级统考期末)计算:(−1)2023−√9+|1−√2|−√−83.【答案】√2−3【分析】先计算乘方运算,化简绝对值,求解算术平方根与立方根,再合并即可.【详解】解:原式=−1−3+√2−1+2=√2−3.【点睛】本题考查的是实数的混合运算,掌握化简绝对值,求解算术平方根与立方根是解本题的关键.3.(2023春·河南洛阳·八年级统考期末)计算:−32×2+√(−4)2+√−643.【答案】−18【分析】原式利用立方根,平方根,以及平方的定义化简即可得到结果.【详解】解:−32×2+√(−4)2+√−643=−9×2+4−4=−18【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.4.(2023春·四川广元·八年级校联考期末)计算:√−83+|√3−2|−(−1)2021+|−√3|. 【答案】1【分析】先计算立方根、去绝对值、计算乘方,再计算加减即可. 【详解】解:原式=−2+2−√3+1+√3 =1.【点睛】本题主要考查实数的运算,掌握实数的运算顺序及有关运算法则是解答本题的关键. 5.(2023春·四川德阳·八年级四川省德阳中学校校考期中)计算:−22+√36−√−273−|2−√5|. 【答案】7−√5【分析】首先计算乘方、开方,去绝对值,然后从左向右依次计算,求出算式的值是多少即可. 【详解】解:−22+√36−√−273−|2−√5|=−4+6−(−3)−(√5−2) =−4+6+3−√5+2=7−√5.【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用. 6.(2023春·四川泸州·八年级统考期末)计算:−32×29+√2516÷58+√−273. 【答案】−3【分析】先计算平方、开平方和开立方,再计算加减. 【详解】解:原式=−9×29+54×85+(−3) =−2+2+(−3) =−3.【点睛】本题考查平方、算术平方根、立方根,解题关键是熟练掌握定义.7.(2023春·四川绵阳·八年级校联考期中)计算:√196×√−643÷√12425−√(−3)2−|√3+√−83|. 【答案】−45+√3【分析】根据实数的混合计算法则求解即可. 【详解】解:原式=14×(−4)÷√4925−3−|√3−2|=−56÷75−3−(2−√3)=−40−3−2+√3=−45+√3.【点睛】本题主要考查了实数的混合计算,正确计算是解题的关键. 8.(2023春·四川绵阳·八年级统考期中)计算:√−83+√9−√1916+(−1)2022+|1−√2|【答案】−14+√2【分析】先化简各式,再进行加减运算. 【详解】解:原式=−2+3−54+1+√2−1=−14+√2.【点睛】本题考查开方运算,乘方运算,去绝对值.熟练掌握相关运算法则,是解题的关键. 9.(2023春·山东临沂·八年级统考期中)计算: (1)√9+√52+√−273(2)(−3)2−|−12|−√9【答案】(1)5 (2)512【分析】(1)根据算术平方根、立方根的性质化简,再计算加减即可; (2)根据乘方、绝对值、算术平方根的性质化简,再计算加减即可. 【详解】(1)解:√9+√52+√−273=3+5−3=5;(2)解:(−3)2−|−12|−√9=9−12−3=512.【点睛】本题考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减.10.(2023春·山西临汾·八年级统考期中)计算: (1)√0.04+√−83−√125;(2)−√214+√0.1253+√1−6364. 【答案】(1)−2 (2)−78【分析】(1)首先计算开平方和开立方,然后从左向右依次计算,求出算式的值即可; (2)首先计算开平方和开立方,然后从左向右依次计算,求出算式的值即可. 【详解】(1)解:原式=0.2−2−15=−2(2)解:原式=−32+12+18=−78【点睛】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.11.(2023春·河南驻马店·八年级统考期中)(1)计算∶ √16+√−643−2√3+|√3−2|; (2)求下列式子中的x : 9x 2−16=0. 【答案】(1)2−3√3;(2)x =±43【分析】(1)先计算算术平方根,立方根,化简绝对值,再合并即可; (2)把方程化为x 2=169,再利用直接平方根的含义解方程即可.【详解】(1)解:原式=4−4−2√3+2−√3=2−3√3 (2)解:∶9x 2−16=0, ∶9x 2=16, ∶x 2=169,解得:x =±43;【点睛】本题考查的是实数的混合运算,利用平方根的含义解方程,熟记平方根的含义是解本题的关键.12.(2023春·重庆彭水·八年级统考期中)(1)计算√83−√16+|√3−2|; (2)(12)0+(−2)3×18−√273×√19.【答案】(1)−√3;(2)−1【分析】(1)先根据立方根定义、算术平方根计算,再利用绝对值的代数意义化简,计算即可得到结果; (2)先将零指数幂、立方根、算术平方根、乘方计算,再进行计算即可 【详解】解:(1)√83−√16+|√3−2|=2−4+2−√3=−√3;(2)(12)0+(−2)3×18−√273×√19=1−8×18−3×13=1−1−1=−1.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 13.(2023春·湖北十堰·八年级统考期末)计算下列各式的值: (1)√16−√−13+|2−√3| (2)√7(√7√7)−√83【答案】(1)7−√3 (2)6【分析】(1)先化简各式,再进行加减运算; (2)先算乘法,求立方根,再进行加减运算. 【详解】(1)解:原式=4−(−1)+2−√3=5+2−√3=7−√3;(2)原式=√7×√7+√7√72=7+1−2=6.【点睛】本题考查实数的混合运算.熟练掌握相关运算法则,正确的计算是解题的关键. 14.(2023春·湖北省直辖县级单位·八年级统考期末)计算: (1)√16+√−643−√(−3)2+|√3−1|; (2)已知(x +1)2=16,求x 的值. 【答案】(1)−4+√3 (2)x =3或x =−5【分析】(1)原式先化简算术平方根、立方根和绝对值,然后再进行加减运算即可即可; (2)直接运用开平方法求解方程即可.【详解】(1)解:√16+√−643−√(−3)2+|√3−1| =4−4−3+√3−1 =−4+√3; (2)(x +1)2=16, x +1=±4, ∶x =3或x =−5.【点睛】本题主要考查了实数的混合运算和运用开平方法解方程,熟练掌握算术平方根的定义是解答本题的关键.15.(2023春·天津静海·八年级校考期中)计算: (1)(−1)3+|1−√2|+√83; (2)√0.01+√−83−√14 【答案】(1)√2 (2)−2.4【分析】(1)根据立方、立方根、实数绝对值化简后再去计算即可; (2)根据算术平方根、立方根化简后计算即可. 【详解】(1)原式=−1+√2−1+2=√2; (2)原式=0.1−2−12=−2.4.【点睛】本题考查实数的混合运算,解题的关键是先化简再去计算.16.(2023春·黑龙江哈尔滨·八年级统考期中)计算(1)8x3+125=0;(2)√−83+√(−3)2−|√3−2|.【答案】(1)−52(2)−1+√3【分析】(1)先整体求得x3,然后再根据立方根的知识求得x即可;(2)先根据立方根、算术平方根、绝对值的知识化简,然后再计算即可.【详解】(1)解:8x3+125=0,8x3=125,x3=−1258,x=−52.(2)解:√−83+√(−3)2−|√3−2|,=−2+3−2+√3,=−1+√3.【点睛】本题主要考查了立方根、算术平方根、绝对值、实数的运算等知识点,灵活运用相关运算法则是解答本题的关键.17.(2023春·广东广州·八年级广州大学附属中学校考期中)计算:(1)√3+|√3−2|−√−83+√(−2)2.(2)√81+√(−3)2×√169−√1214+√−273.【答案】(1)6(2)132【分析】(1)分别计算化简绝对值,开立方根和开算术平方根,再按照实数加减混合运算即可.(2)分别计算开立方根、开算术平方根和实数乘除,再按照有理数加减乘除混合运算即可.【详解】(1)解:√3+|√3−2|−√−83+√(−2)2=√3+2−√3+2+2=6故答案为:6.(2)解:√81+√(−3)2×√169−√1214+√−273=9+3×43−72−3=9+4−72−3=132故答案为:132.【点睛】本题考查了实数的加减乘除混合运算,解题的关键在于熟练掌握实数的运算法则. 18.(2023春·广东汕头·八年级校考期中)计算 (1)√9−√(−5)33÷√(34)2(2)(−1)2021−√9+√−83+|√3−2| 【答案】(1)293;(2)−4−√3;【分析】(1)先分别计算算术平方根、立方根,再进行实数的加减运算即可;(2)先分别计算乘方、算术平方根、立方根和化简绝对值,再进行实数的加减运算即可;【详解】(1)解:√9−√(−5)33÷√(34)2=3−(−5)÷34=3+5×43=293;(2)(−1)2021−√9+√−83+|√3−2|=−1−3+(−2)+(2−√3)=−4−2+2−√3=−4−√3;【点睛】本题考查实数的加减运算,解题的关键是掌握立方根和绝对值相关知识.19.(2023春·山西吕梁·八年级统考期中)(1)计算:(−1)2022−(√16+√214)+√273+12 (2)解方程:2x 2=18 【答案】(1)−1;(2)x =±3【分析】(1)原式分别根据乘方的意义、算术平方根以及立方根的意义化简各项后,再进行加减运算即可得到结果;(2)方程两边同除以2后,再进行开平方运算即可. 【详解】解:(1)(−1)2022−(√16+√214)+√273+12 =1−(4+32)+3+12=1−4−32+3+12 =−1; (2)2x 2=18 x 2=9 x =±3.【点睛】本题主要考查了实数的混合运算以及运用平方根解方程,熟练掌握相关知识是解答本题的关键. 20.(2023春·山东临沂·八年级统考期中)(1)计算:(−1)2017−√(−2)2−√−83+|√3−2|; (2)求x 的值:2(x −3)2=32.【答案】(1)1−√3;(2)x 的值为7或−1【分析】(1)先计算乘方、算术平方根、立方根、化简绝对值,再计算实数的加减法即可得; (2)利用平方根解方程即可得.【详解】解:(1)原式=−1−√4−(−2)+2−√3=−1−2+2+2−√3=1−√3;(2)2(x −3)2=32, (x −3)2=16,x −3=4或x −3=−4, 解得x =7或x =−1, 所以x 的值为7或−1.【点睛】本题考查了算术平方根、立方根、实数的运算、利用平方根解方程,熟练掌握各运算法则是解题关键.21.(2023春·辽宁鞍山·八年级校联考期中)计算:(1)√273−√25+|√3−2|−(1−√3)(2)√13×(√13√13)−√273【答案】(1)−1(2)0【分析】(1)根据实数的混合计算法则求解即可;(2)根据实数的混合计算法则求解即可.【详解】(1)解:原式=3−5+2−√3−1+√3=−1;(2)解:原式=√13×√13−√13×√13−3=13−10−3=0.【点睛】本题主要考查了实数的混合计算,熟知相关计算法则是解题的关键.22.(2023春·重庆江津·八年级校联考期中)计算:(1)−42×(−1)2023+√83−√25;(2)2√14−|2−√3|+√(−9)2+√−273.【答案】(1)13;(2)5+√3【分析】(1)根据幂的运算法则,根式性质,立方根的定义直接计算即可得到答案;(2)根据根式的性质,立方根的定义直接计算即可得到答案;【详解】(1)解:原式=−16×(−1)+2−5=16+2−5=13;(2)解:原式=2×12−2+√3+9+(−3)=1−2+√3+9−3=5+√3;【点睛】本题考查根式的性质,立方根的定义,幂的运算,解题的关键是熟练掌握√a 2=|a | ,√a 33=a . 23.(2023春·山东聊城·八年级统考期中)计算: (1)2−2+√−13+(√83+4)÷√(−6)2 (2)(π−2023)0+√1.21−√−33263−√0.0083【答案】(1)14 (2)2.65【分析】(1)先计算负整数指数幂、立方根、算术平方根,再根据实数的混合计算法则求解即可; (2)先计算零指数幂、算术平方根及立方根,再根据实数的混合计算法则求解即可. 【详解】(1)解:原式=14−1+(2+4)÷6=14−1+6÷6 =14−1+1 =14;(2)解:原式=1+1.1−(−322)−0.2=1+1.1−(−34)−0.2=1+1.1+34−0.2=2.65.【点睛】本题主要考查了实数的混合计算,零指数幂和负整数指数幂,熟知相关计算法则是解题的关键. 24.(2023春·四川德阳·八年级四川省德阳市第二中学校校考期中)计算: (1)√(−3)2×(−13)−√273÷√14(2)√−83−√2+(√3)2+|1−√2|−(−1)2023 【答案】(1)−7 (2)1【分析】(1)先分别求解算术平方根、立方根,然后进行乘除运算,最后进行减法运算即可;(2)先分别求解立方根,乘方,绝对值,然后进行加减运算即可. 【详解】(1)解:√(−3)2×(−13)−√273÷√14=3×(−13)−3÷12=−1−6=−7;(2)解:√−83−√2+(√3)2+|1−√2|−(−1)2023=−2−√2+3+√2−1−(−1) =−2+3−1+1−√2+√2=1.【点睛】本题考查了算术平方根、立方根,乘方,绝对值,实数的混合运算.解题的关键在于正确的运算. 25.(2023春·河北唐山·八年级统考期中)计算: (1)(√2)2−√273+|√3−3|; (2)√9×√4+√102−(−4)2; 【答案】(1)2−√3 (2)0【分析】(1)先计算平方、立方根,去绝对值符号,再进行加减运算; (2)先计算开平方,有理数的乘方,再进行乘法运算,最后进行加减运算. 【详解】(1)解:原式=2−3+(−√3+3)=2−3−√3+3=2−√3;(2)解:原式=3×2+10−16=6+10−16=0.【点睛】本题考查了实数的混合运算,平方、平方根、立方根,绝对值的性质,有理数的乘方,熟练掌握运算法则及运算顺序是解题的关键.26.(2023春·浙江宁波·八年级校考期中)计算下列各式: (1)√4+|−2|+√−273+(−1)2017;(2)(−3)2÷(−23)+(−2)3×(−32).【答案】(1)0 (2)−32【分析】(1)分别根据算术平方根的定义,绝对值的性质,立方根的定义计算出各数,再根据实数的加减法则进行计算;(2)先算乘方,再算乘除,最后算加减即可. 【详解】(1)解:原式=2+2−3−1 =0;(2)解:原式=9÷(−23)+(−8)×(−32)=9×(−32)+12=−272+12 =−32.【点睛】本题考查的是实数的运算,熟知实数混合运算的法则是解题的关键. 27.(2023春·广东广州·八年级校考期中)计算: (1)(√5)2+√(−3)2+√−83; (2)(−2)3×18−√273×(−√19). 【答案】(1)6 (2)0【分析】(1)原式利用乘方的意义,平方根、立方根定义计算即可得到结果; (2)原式利用乘方的意义,立方根定义,以及乘法法则计算即可得到结果. 【详解】(1)解:原式=5+3+(−2)=8−2=6; (2)解:原式=(−8)×18−3×(−13)=−1+1=0.【点睛】本题考查实数的运算,涉及立方根、平方根、乘方运算,掌握实数的运算顺序是关键. 28.(2023春·河南鹤壁·八年级校考期中)计算:(1)√14+√−83−11−√21;(2)0.1252022×(−8)2023. 【答案】(1)−1212−√21 (2)−8【分析】(1)根据算术平方根、立方根定义先化简,再利用实数加减运算法则计算即可得到答案; (2)先将小数化为分数,再利用积的乘方运算的逆运算求解即可得到答案. 【详解】(1)解:√14+√−83−11−√21=12−2−11−√21 =−112−11−√21=−1212−√21;(2)解:0.1252022×(−8)2023=(18)2022×(−8)2023=[18×(−8)]2022×(−8) =(−1)2022×(−8)=−8.【点睛】本题考查实数混合运算,涉及算术平方根、立方根、实数加减运算、分数与小数互化、积的乘方运算的逆运算等知识,熟练掌握相关运算法则是解决问题的关键.29.(2023春·山东枣庄·八年级统考期末)(1)计算:√16−√19+√273−|3−√5|;(2)求x 的值:(x +1)3=−827.【答案】(1)113+√5;(2)x =−53【分析】(1)首先计算开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可. (2)根据立方根的含义和求法,求出x +1的值,进而求出x 的值即可. 【详解】解:(1)√16−√19+√273−|3−√5| =4−13+3−(3−√5)=4−13+3−3+√5=113+√5.(2)∵(x +1)3=−827, ∴x +1=−23, 解得:x =−53.【点睛】此题主要考查了立方根的含义和求法,以及实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.30.(2023春·天津河北·八年级统考期中)(1)计算:√0.04+√−83−√14+2;(2)求下式中x 的值: 4(x +5)2=16. 【答案】(1)−0.3;(2)x =−7或x =−3【分析】(1)首先进行开平方和开立方运算,再进行有理数的加减即可求解;(2)首先求出(x +5)2的值,然后根据平方根的定义求出x +5的值,进而求出x 的值即可. 【详解】解:(1)√0.04+√−83−√14+2 =0.2+(−2)−12+2 =−0.3;(2)4(x +5)2=16, 即(x +5)2=4,∴x +5=−2或x +5=2, 解得x =−7或x =−3.【点睛】此题主要考查了平方根、立方根的定义,以及实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行. 31.(2023春·黑龙江牡丹江·八年级校考期中)计算: (1)√−83−√3+(√5)2+|1−√3| (2)√36+√214+√−273【答案】(1)2 (2)92【分析】(1)根据立方根定义、平方根的性质、绝对值的意义等计算即可; (2)根据立方根、算术平方根的定义计算即可. 【详解】(1)解:√−83−√3+(√5)2+|1−√3| =−2−√3+5+√3−1 =2;(2)解:√36+√214+√−273=6+32−3=92.【点睛】本题考查了实数的混合运算,掌握立方根、算术平方根的定义等是解题的关键. 32.(2023春·湖北十堰·八年级统考期中)计算: (1)√−8273×√14−√(−2)2; (2)√3−√25+|√3−3|+√1−63643.【答案】(1)−213 (2)−74【分析】(1)先利用立方根,算术平方根的性质化简,再进行计算; (2)先利用立方根,算术平方根、绝对值的性质化简,再进行计算. 【详解】(1)解:原式=−23×12−√4=−13−2=−213;(2)解:原式=√3−5+3−√3+√1643=−2+14=−74.【点睛】本题考查了实数的混合运算,熟练掌握运算法则是解题的关键.33.(2023春·云南红河·八年级校考期中)计算(1)√25−√273+|−√9|(2)|2−√5|+|3−√7|+|√7−√5|【答案】(1)5(2)1【分析】(1)先化简根式再计算(2)先化简再进行实数的混合运算(1)解:原式=5−3+3=5(2)解:原式=√5−2+3−√7+√7−√5=1【点睛】本题考查了根式的化简,去绝对值运算,熟练掌握运算法则是解题关键.34.(2023春·江苏泰州·八年级校考期中)计算或解方程:(1)8(x−1)3=−1258;(2)3(x−1)2−15=0.(3)−14×√4+|√9−5|+√214+√−0.1253.【答案】(1)x=−14(2)x=1±√5(3)1【分析】(1)利用立方根解方程即可;(2)移项,利用平方根解方程即可;(3)先化简各式,再加减运算即可.【详解】(1)解:8(x−1)3=−1258,∶(x −1)3=−12564 ∶x −1=√−125643=−54,∶x =−14; (2)解:3(x −1)2−15=0,∶3(x −1)2=15,∶(x −1)2=5,∶x −1=±√5,∶x =1±√5;(3)原式=−1×2+|3−5|+32−0.5=−2+|−2|+32−12=−2+2+32−12=1.【点睛】本题考查利用平方根和立方根解方程,实数的混合运算.熟练掌握相关运算法则,正确计算,是解题的关键.35.(2023春·北京西城·八年级北京市回民学校校考期中)按要求计算下列各题(1)计算:|1−√2|−√(−2)2+√273;(2)已知√a −1+√b −5=0,则(a −b )2的算术平方根;(3)已知4x 2=25,求x 的值;(4)已知(x +1)2=1,求x 的值.【答案】(1)√2(2)4(3)x 1=52,x 2=−52 (4)x 1=0,x 2=−2【分析】(1)先根据绝对值、算术平方根、立方根的知识化简,然后再结束即可;(2)先根据算术平方根的非负性求得a 、b 的值,然后再代入(a −b )2求出其算术平方根即可;(3)先求出x 2,然后再运用平方根解方程即可解答;(4)运用平方根解方程即可解答.【详解】(1)解:|1−√2|−√(−2)2+√273,=√2−1−2+3,=√2.(2)解:∶√a −1+√b −5=0,∶a −1=0,b −5=0,∶a =1,b =5,∶(a −b )2=(1−5)2=16,∶(a −b )2的算术平方根是4.(3)解:4x 2=25,x 2=254,∶x 1=52,x 2=−52.(4)解:(x +1)2=1,x +1=±1,∶x 1=0,x 2=−2.【点睛】本题主要考查了实数的混合运算、算术平方根的非负性、立方根、运用平方根解方程等知识点,灵活运用相关知识成为解答本题的关键.36.(2023春·浙江宁波·八年级校联考期中)计算:(1)−2+(−7)−3+8;(2)−12021+(12−13)×|−6|÷22;(3)(14−23−56)×(−12);(4)−23+√−273−(−2)2÷√1681. 【答案】(1)−4(2)−34(3)15(4)−20【分析】(1)先将减法运算变成加法,再计算求解;(2)先计算乘方、绝对值和括号里面的,再计算加法;(3)先运用乘法分配律,再计算加减运算;(4)先计算乘方、立方根和平方根,再计算除法,最后计算加减.【详解】(1)−2+(−7)−3+8=−2−7−3+8=−4;(2)−12021+(12−13)×|−6|÷22 =−1+16×6×14=−1+14=−34; (3)(14−23−56)×(−12) =−14×12+23×12+56×12 =−3+8+10=15;(4)−23+√−273−(−2)2÷√1681=−8−3−4×94=−11−9=−20.【点睛】此题考查了有理数的混合运算,以及实数混合运算的能力,关键是能准确确定运算顺序和方法.37.(2023春·山东德州·八年级统考期中)计算:(1) −22−(√−38+8)÷√(−6)2−|√7−3|(2)√−1253−√279+√−(−14)3+√8273 (3)(3x+2)2=16(4)12(2x −1)3=−4【答案】(1)−8+√7(2)−478(3)x=−2或x=23(4)x=−12【分析】(1)根据乘方计算、求算术平方根、立方根、绝对值化简即可;(2)根据求算术平方根、立方根进行计算即可;(3)根据求平方根进行解方程即可;(4)根据求立方根进行解方程即可.【详解】(1)解:原式=−4−(−2+8)÷6−(3−√7)=−4−1−3+√7=−8+√7;(2)解:原式=−5−53+√164+23=−5−1+18=−478;(3)解:由(3x+2)2=16,得:3x+2=−4或3x+2=4解得:x=−2或x=23;∴方程的解为x=−2或x=23;(4)解:由12(2x−1)3=−4,得:(2x−1)3=−82x−1=−2x=−12.【点睛】本题考查实数的混合运算及根据平方根和立方根解方程,解题的关键是熟练掌握乘方计算、求算术平方根、立方根、绝对值化简、根据平方根和立方根解方程,本题的易错点是根据平方根解方程时需考虑求一个正数的平方根应有两个互为相反数的解.38.(2023春·浙江绍兴·八年级校考期中)计算:(1)|−8|+32+(−12)−32 (2)2×(−5)−(−3)÷34 (3)√81+√−273+√(−23)2−14 (4)22+(−2)2+√19+(−1)2019 【答案】(1)−4(2)−6(3)523(4)713【分析】(1)先算绝对值和去括号,再算加减;(2)先算乘除,再算加法;(3)先算立方根,算术平方根和乘方,再算加减;(4)先算乘方和算术平方根,再算加减.【详解】(1)|−8|+32+(−12)−32=8+32−12−32=−4(2)2×(−5)−(−3)÷34=−10+4=−6(3)√81+√−273+√(−23)2−14 =9+(−3)+23−1 =523(4)22+(−2)2+√19+(−1)2019=4+4+13−1=71 3【点睛】本题主要考查了实数的混合运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.39.(2023春·山东东营·八年级统考期末)(1)计算∶√144−(2022−π)0+√(−3)2∶√259+√−125273+|√2−2|(2)解方程∶(x+2)2=25∶(x−1)3=27【答案】(1)∶14;∶2−√2;(2)∶x=3或−7;∶x=4【分析】(1)∶利用算术平方根的意义,零指数幂的意义即可求解;∶利用算术平方根,立方根的意义和绝对值的意义化简运算即可;(2)∶利用平方根的意义解答即可;∶利用立方根的意义解答即可.【详解】解:(1)∶√144−(2022−π)0+√(−3)2=12−1+3=14;∶√259+√−125273+|√2−2|=53+(−53)+2−√2=2−√2;(2)∶(x+2)2=25∴x+2=±5,∴x=3或−7;∶(x−1)3=27∴x−1=3∴x=4【点睛】本题主要考查了实数的运算,算术平方根的意义,立方根的意义,熟练掌握实数运算法则与性质是解题的关键40.(2023春·江苏·八年级期中)计算(1)√16−√−83+√−1273 (2)√3(√3√3) (3)|3−√2|−|√2−π|−√(−3)2(4)9(x +1)2−16=0(解方程) 【答案】(1)523(2)2(3)6−π (4)x =13或x =−73【分析】(1)根据实数的混合计算法则求解即可;(2)根据实数的混合计算法则求解即可;(3)根据实数的混合计算法则求解即可;(4)根据求平方根的方法解方程即可.【详解】(1)解:原式=4−(−2)+(−13)=4+2−13 =523; (2)解:原式=√3×√3−√3√3=3−1=2;(3)解:原式=3−√2−(π−√2)−(−3)=3−√2−π+√2+3=6−π;(4)解:∶9(x +1)2−16=0,∶9(x +1)2=16,∶(x +1)2=169,。

实数指数幂及其运算法则

实数指数幂及其运算法则

实数指数幂及其运算法则实数指数幂是数学中的一个重要概念,它在数学、物理、工程等领域都有着广泛的应用。

本文将介绍实数指数幂的定义、性质以及运算法则。

一、实数指数幂的定义。

实数指数幂指的是形如a^b的数,其中a为实数,b为实数。

其中a称为底数,b称为指数。

当指数为正整数时,实数指数幂可以用连乘的形式表示,即a^b=aa...a,其中a出现了b次。

当指数为零时,实数指数幂定义为1。

当指数为负整数时,实数指数幂可以用连除的形式表示,即a^(-b)=1/(a^b)。

当底数为正数且指数为实数时,实数指数幂可以用连续开方的形式表示,即a^b=sqrt(sqrt(...(sqrt(a))...),其中开方的次数为b。

二、实数指数幂的性质。

1.相同底数的实数指数幂相乘,指数相加。

即a^m a^n =a^(m+n)。

2.相同底数的实数指数幂相除,指数相减。

即a^m / a^n =a^(m-n)。

3.不同底数的实数指数幂相乘,底数不变,指数相加。

即a^m b^m = (ab)^m。

4.不同底数的实数指数幂相除,底数不变,指数相减。

即a^m / b^m = (a/b)^m。

5.实数指数幂的乘方,指数相乘。

即(a^m)^n = a^(mn)。

6.实数指数幂的除法,指数相除。

即(a^m)^n = a^(m/n)。

7.任何数的零次幂都等于1。

即a^0 = 1。

8.任何数的一次幂都等于它本身。

即a^1 = a。

以上性质是实数指数幂运算的基本法则,可以帮助我们简化实数指数幂的运算,并且也可以推广到复数指数幂的运算中。

三、实数指数幂的运算法则。

实数指数幂的运算法则包括加减、乘除、乘方和开方等运算。

1.加减法。

对于相同底数的实数指数幂,可以直接对指数进行加减运算。

例如,2^3 + 2^4 = 2^7,2^5 2^3 = 2^2。

2.乘法。

对于相同底数的实数指数幂,可以直接对指数进行加法运算。

例如,2^3 2^4 = 2^(3+4) = 2^7。

(完整版)数与式知识点大全

(完整版)数与式知识点大全

数与式2,)a a a 定义:有理数和无理数统称实数.有理数:整数与分数分类无理数:常见类型(开方开不尽的数、与有关的数、无限不循环小数)法则:加、减、乘、除、乘方、开方实数实数运算运算定律:交换律、结合律、分配律数轴(比较大小)、相反数、倒数(负倒数)科学记数法相关概念:有效数字、平方根与算术平方根、立方根、非负式子(,单项式:系数与次数分类多项式整式数与式01;;(),();();1;m m n m n m n m n m n mn m m m m p m p a a a a a a a a a a ab a b a a b b a :次数与项数加减法则:加减法、去括号(添括号)法则、合并同类项幂的运算:单项式单项式;单项式多项式;多项式多项式乘法运算:单项式单项式;多项式单项式混合运算:先乘方开方,再乘除,最后算加减;同级运算自左至右顺序计算;括号优先22222()()()2;(a b a b a b a b a ab b a a m a a mb b m b b m 平方差公式:乘法公式完全平方公式:分式的定义:分母中含可变字母分式分式有意义的条件:分母不为零分式值为零的条件:分子为零,分母不为零分式分式的性质:通分与约分的根据)通分、约分,加、减、乘、除分式的运算先化简再求值(整式与分式化简求值22(0).0.(0)();(0)a a a a a a a a a 的通分、符号变化)整体代换求值定义:式子≥叫二次根式二次根式的意义即被开方数大于等于二次根式的性质:最简二次根式(分解质因数法化简)二次根式二次根式的相关概念同类二次根式及合并同类二次根式分母有理化(“单项式与多项式”型)加减法:先化最简,再合并同类二次二次根式的运算222222;()()2()()()()a aa b ab b b a b a b a ba ab b a b x a b x ab x a x b 根式乘除法:;(结果化简)定义:(与整式乘法过程相反,分解要彻底)提取公因式法:(注意系数与相同字母,要提彻底)平方差公式:分解因式公式法方法完全平方公式:十字相乘法:分组分解法:(对称分组与不对称分组)。

实数的概念与计算

实数的概念与计算

实数的概念与计算在我们的数学世界中,实数是一个极其重要的概念,它与我们的日常生活和各种科学领域都有着紧密的联系。

要深入理解实数,首先得搞清楚它到底是什么。

实数,简单来说,就是包括有理数和无理数的数的集合。

有理数,大家应该都比较熟悉,像整数(比如-3、0、5 ),以及分数(比如1/2 、-3/4 ),这些都属于有理数的范畴。

那无理数又是什么呢?无理数是指无限不循环小数,比如圆周率π,约等于 31415926,还有像根号 2 ,约等于 141421356,它们的小数部分没有规律地无限延伸,而且永远不会循环。

实数的概念之所以重要,是因为它能够准确地描述我们在现实世界中遇到的各种数量。

比如说,测量一个物体的长度、计算一个图形的面积、表示物体运动的速度等等,都离不开实数。

接下来,咱们再聊聊实数的计算。

实数的计算包括加法、减法、乘法、除法等基本运算。

先说说加法和减法。

在进行实数的加法和减法运算时,我们要先把它们的小数点对齐,然后再像整数加减法那样进行计算。

例如,计算35 + 12 ,我们把 35 和 12 的小数点对齐,得到 35 + 12 = 47 。

如果是减法,比如 58 23 ,同样小数点对齐,计算结果为 35 。

乘法运算相对来说稍微复杂一点。

计算两个实数的乘法时,我们先把它们当作整数相乘,然后再看两个乘数一共有几位小数,就在积的末尾从右往左数出几位,点上小数点。

比如 25 × 16 ,先算 25 × 16 =400 ,因为 25 有一位小数, 16 也有一位小数,一共两位小数,所以25 × 16 = 400 = 4 。

除法运算则需要把除数变成整数,然后再进行计算。

比如计算 15 ÷05 ,我们把除数 05 扩大 10 倍变成 5 ,同时被除数 15 也扩大 10 倍变成 15 ,然后计算 15 ÷ 5 = 3 。

在实数的计算中,还有一些特殊的情况需要注意。

人教版七年级数学下册6.3.1《实数的概念》说课稿

人教版七年级数学下册6.3.1《实数的概念》说课稿

人教版七年级数学下册6.3.1《实数的概念》说课稿一. 教材分析人教版七年级数学下册6.3.1《实数的概念》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统学习的开始。

本节内容从实际问题出发,引导学生认识实数的必要性,进而引入实数的概念,使学生感受数学与现实生活的密切联系。

教材通过丰富的例题和练习题,帮助学生理解和掌握实数的概念,培养学生的抽象思维能力。

二. 学情分析七年级的学生已经学习了有理数和无理数,对数学运算和逻辑推理有一定的基础。

但是,对于实数的定义和性质,学生可能还比较陌生。

因此,在教学过程中,需要结合学生的认知水平,循序渐进地引导学生理解和掌握实数的概念。

三. 说教学目标1.知识与技能:使学生理解实数的概念,掌握实数的性质,能够运用实数解决一些实际问题。

2.过程与方法:通过观察、分析、归纳等方法,让学生体验实数概念的形成过程,培养学生的抽象思维能力。

3.情感态度与价值观:让学生感受数学与现实生活的密切联系,激发学生学习数学的兴趣。

四. 说教学重难点1.教学重点:实数的概念和性质。

2.教学难点:实数的抽象性质和实数在实际问题中的应用。

五. 说教学方法与手段本节课采用讲授法、引导发现法、实践操作法等多种教学方法,结合多媒体课件、实物模型等教学手段,引导学生主动探究、合作交流,提高学生的学习效果。

六. 说教学过程1.导入新课:从实际问题出发,引导学生认识实数的必要性,激发学生的学习兴趣。

2.自主探究:让学生通过观察、分析、归纳等方法,自主发现实数的性质,体会实数概念的形成过程。

3.教师讲解:对实数的性质进行详细讲解,引导学生理解实数的概念。

4.例题讲解:通过典型例题,让学生了解实数在实际问题中的应用,巩固所学知识。

5.练习与巩固:让学生进行课堂练习,及时巩固所学知识,提高学生的实际应用能力。

6.课堂小结:对本节课的主要内容进行总结,帮助学生形成知识体系。

七. 说板书设计板书设计要简洁明了,突出实数的概念和性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数的加减法运算
实数是数学中的一类数,包括有理数和无理数,它们可以进行各种
运算,包括加法和减法。

在本文中,我们将探讨实数的加减法运算方
法和性质。

1. 加法运算
实数的加法运算是指将两个实数相加得到一个新的实数的操作。


a和b是两个实数,它们的和记作a+b。

实数的加法运算满足以下性质:- 结合律:对于任意的实数a、b和c,有(a+b)+c=a+(b+c)。

- 交换律:对于任意的实数a和b,有a+b=b+a。

- 存在零元素:存在一个实数0,对于任意的实数a,有a+0=a。

- 存在相反元素:对于任意的实数a,存在一个实数-b,使得a+(-
b)=0。

2. 减法运算
实数的减法运算是指将一个实数减去另一个实数得到一个新的实数
的操作。

设a和b是两个实数,它们的差记作a-b。

实数的减法运算可
以看作是加法运算的特殊形式,即a-b=a+(-b)。

实数的加法和减法运算可以通过数轴来直观地理解。

在数轴上,正
方向表示正数,负方向表示负数。

将两个实数相加,相当于从第一个
实数所在的位置出发,向右移动第二个实数的绝对值所在的距离。


一个正数与一个负数相加,相当于从正数所在的位置出发,向左移动
负数的绝对值所在的距离。

实数的加减法运算可以通过一些例子来进一步说明。

例子1:计算a=5+(-3)。

解:由于5是正数,-3是负数,在数轴上表示为: -3 5。

我们从5所在的位置出发,向左移动3个单位距离,得到2。

因此,a=5+(-3)=2。

例子2:计算b=-2-(-4)。

解:根据减法的特殊性质,减去一个负数相当于加上一个正数,即-
2-(-4)=-2+4=2。

因此,b=-2-(-4)=2。

综上所述,实数的加减法运算是数学中基本的运算之一。

通过数轴
可以直观地理解实数的加减法运算,而实数的运算性质可以通过一些
例子得到进一步的说明。

掌握实数的加减法运算方法和性质对于解决
实际问题和应用数学是非常重要的。

相关文档
最新文档