模板强度及稳定性计算

合集下载

墩柱模板和脚手架验算

墩柱模板和脚手架验算

一、墩柱模板验算1、墩柱模板验算墩柱模板采用Φ2.2m×2两块半圆形钢模板拼装而成,面板采用5mm厚钢板,竖肋采用[8mm槽钢,间距为430mm,横肋采用[8mm槽钢,间距400mm。

模板要求尺寸准确、平直、转角光滑、接缝平顺。

模板采用Φ20mm螺栓连接成整体,以保证其模板刚度、强度及稳定性,使其满足施工要求。

荷载确定:采用大模板混凝土浇筑模型浇筑高度为6m,最大侧压力P≥50KN/m2时,模板荷载简化为顶部高度2.1m范围荷载按照三角形分布,2.1m以下按矩形分布。

计入混凝土振捣荷载2KPa。

模板采用Φ2.2m×2两块半圆形钢模板拼装而成,面板采用5mm厚钢板,竖肋采用[8mm 槽钢,间距为430mm,横肋采用[8mm槽钢,间距400mm。

验算2.1m深度以下模板面板的强度、挠度:荷载为:q=1.2×(50+2)KPa=62.4 KPa计入线荷载1:q1=q×0.42=26.208KN/m,(x方向,两横向背肋间距)计入线荷载2:q2=q×0.40=24.96KN/m,(y方向,两横向背肋间距)l y/l x=0.95按均布荷载下四边简支板计算,得弯矩、挠度系数如下(查表):M x=0.0324,M y=0.028,f=0.00324,M x=0.0324×q1l12=0.0324×26.208×0.42=0.1359 KN·m=135.9 N·mM y=0.028×q2l22=0.028×26.208×0.42=0.1118KN·m=111.8N·mσx=6 M x/bh2=6×135.9÷0.42÷0.0052÷106=88.151MPaσY=6 M x/bh2=6×111.8÷0.4÷0.0052÷106=67.08MPa所以σmax=σx=88.151MPa<[σ]=181 MPa;满足要求。

模板计算书

模板计算书

模板工程施工方案本工程墙体、框架柱、框架梁均采用组合钢模板,支撑采用ф50*3.5钢管。

现依据《建筑施工扣件式钢管脚手架安全技术规程》JGJ130-2001进行编制设计计算书和模板工程施工方案。

一、模板计算书(一)、墙体模板计算本工程墙体模板采用组合钢模板组拼,墙高3m,厚20cm,宽3.3m。

钢模板采用P3015(1500mm*300mm)分二行竖排拼成。

内钢楞采用2根ф50*3.5钢管,间距为750mm,外钢楞采用统一规格钢管,间距为900mm。

对拉螺栓采用M18,间距为750mm。

混凝土自重(r c)为24KN/m3,强度等级为C20,塌落度为7cm,采用0.6m3混凝土吊斗卸料,浇筑速度为1.8m/h,混凝土温度为200c,用插入式振捣器振捣。

钢材抗拉强度设计值:Q235钢为215N/㎜2,普通螺栓为170 N/㎜2。

钢模的允许挠度:面板为1.5㎜,钢楞为3㎜。

验算:钢模板、钢楞、对拉螺栓是否满足设计要求?1、荷载设计值(1)混凝土侧压力1)混凝土侧压力标准值:按公式F1=0.22r c t0β1β2V1/2和F2=r c H进行计算。

其中t0=200/(20+15)=5.71 F1=0.22r c t0β1β2V1/2=0.22*24000*5.71*1*1*1.81/2=40.4KN/㎡F2=r c H=24*3=72KN/㎡取两者中小值,即F1=40.4KN/㎡。

2)混凝土侧压力设计值:F=F1*分项系数*折减系数=40.4*1.2*0.85=41.21KN/㎡(2)倾倒混凝土时产生的水平荷载为4 KN/㎡荷载设计值为4*1.4*0.85=4.76 KN/㎡。

(3)进行荷载组合F’=41.21+4.76=45.97 KN/㎡2、验算(1)钢模板验算P3015钢模板(δ=2.5mm)截面特征,I xj=26.97*104mm4,W xj=5.94*103mm3 1)计算简图:化为线均布荷载:q1=F‘*0.3/1000=45.97*0.3/1000=13.79N/㎜(用于计算承载力);q2=F*0.3/1000=41.21*0.3/1000=12.36N/㎜(用于验算挠度)。

模板荷载设计值计算方法

模板荷载设计值计算方法

《建筑施工模板安全技术规范》JGJ162-2008可变荷载效应控制组合 模板荷载设计值计算方法一、柱、墙、梁帮、池壁等垂直模板荷载设计值注:1、如所计算的构件为热轧型钢,其所受的荷载设计值可乘以0.95进行折减。

2、新浇筑砼对模板侧面压力标准值按下列二式计算,并取二式中较小值:2121022.0V t F C ββγ=H F C γ=C γ——新浇砼的重力密度(kN /m 3)t 0——新浇砼的初凝时间(h )当缺乏试验资料时,可采用t 0=200/ (T+15)计算,(T 为砼的温度) V ——砼的浇筑速度(m/h )H ——砼侧压力计算位置处至新浇筑砼顶面的总高度(m )1β——掺具有缓凝作用的外加剂时取1.2,不掺取12β——塌落度影响修正系数,坍落度小于30㎜取0.85;50~90㎜取1;110~150㎜取1.153、对垂直模板振捣砼产生的荷载取4 kN/㎡二、平板楼板模板及支架荷载设计值三、梁底、拱底模板及支架荷载设计值接下页《建筑施工模板安全技术规范》JGJ162-2008永久荷载效应控制组合 模板荷载设计值计算方法一、柱、墙、梁帮、池壁等垂直模板荷载设计值注:1、如所计算的构件为热轧型钢,其所受的荷载设计值可乘以0.95进行折减。

2、新浇筑砼对模板侧面压力标准值按下列二式计算,并取二式中较小值:2121022.0V t F C ββγ=H F C γ=C γ——新浇砼的重力密度(kN /m 3)t 0——新浇砼的初凝时间(h )当缺乏试验资料时,可采用t 0=200/ (T+15)计算,(T 为砼的温度) V ——砼的浇筑速度(m/h )H ——砼侧压力计算位置处至新浇筑砼顶面的总高度(m )1β——掺具有缓凝作用的外加剂时取1.2,不掺取12β——塌落度影响修正系数,坍落度小于30㎜取0.85;50~90㎜取1;110~150㎜取1.153、对垂直模板振捣砼产生的荷载取4 kN/㎡二、平板楼板模板及支架荷载设计值三、梁底、拱底模板及支架荷载设计值。

建筑施工模板安全技术规范JGJ162-2008讲解

建筑施工模板安全技术规范JGJ162-2008讲解
2) 柱模为木面板时的柱箍间距应按下式计算:
l1 0.7833
EI Fb
(5.2.4-2)
建筑施工模板安全技术规范JGJ162-2008
5、设计
回主页
5.2 现浇混凝土模板计算
5.2.4 柱箍应采用扁钢、角钢、槽钢和木楞制成,其受力状态应为拉 弯杆件,柱箍计算(图5.2.4)应符合下列规定: 1 柱箍间距(l1)应按下列各式的计算结果取其小值:

fv
(5.2.2—6)
建筑施工模板安全技术规范JGJ162-2008
5、设计
回主页
5.2 现浇混凝土模板计算
2. 次、主楞梁抗剪强度计算 2) 在主平面内受弯的木实截面构件,其抗剪强度应按下式计算:

VS0 Ib

fv
(5.2.2—7)
建筑施工模板安全技术规范JGJ162-2008
5、设计
1
F 0.22 t V 2 (4.1.1—1) c0 1 2
F cH
(4.1.1—2)
建筑施工模板安全技术规范JGJ162-2008
4、荷载及变型值的规定
4.1 荷载标准值
其中
,为有
效压头高度( )
回主页
图4.1.1 混凝土侧压力计算分布图形
建筑施工模板安全技术规范JGJ162-2008
建筑施工模板工程的设计、制作、安装和拆除除应符合本规范的要求 外,尚应符合国家现行相关标准的规定。
建筑施工模板安全技术规范JGJ162-2008
2、术语、符号
回主页
2.1 术语
面板 surface slab、支架 support、连接件 pitman、模板体系 (简称模板) shuttering、 小梁 minor beam、 主梁 main beam、支架立柱 support column、配模 matching shuttering、 早拆模板体系 early unweaving shuttering、滑动模板 glide shuttering、爬模 crawl shuttering、飞模 flying shuttering、 隧道模 tunnel shuttering

模板刚度计算

模板刚度计算

采用10mm厚竹胶板50×100mm木方配制成梁侧和梁底模板,梁底模板底楞下层、上层为50×100mm木方,间距200mm。

加固梁侧采用双钢管对拉螺栓(φ14),对拉螺栓设置数量按照以下原则执行:对拉螺栓纵向间距不大于450mm。

对拉螺栓采用φ14PVC套管,以便周转。

搭设平台架子,立杆间距不大于900mm,立杆4m,2m对接,梁底加固用3m、2m钢管平台、梁底加固钢管对接处加设保险扣件。

立梁用一排对拉螺栓间距600mm,次梁侧面钢管与平台水平管子支撑,板、梁木方子中到中间距200mm。

⑵梁模板设计本工程转换层梁最大截面1125mm×1400mm,取此梁进行验算,跨度7.20m。

梁底模板采用δ=14厚多层板,模板下铺单层木龙骨50×100木方,间距200mm。

梁底用钢管做水平管,梁底加固采用钢管、扣件病及保险扣件。

梁侧模板为δ=14厚多层板,设立楞为50×100木方,间距200mm,中间加两道φ12对拉螺杆,固定Φ48×3.5双根钢管横向背楞两道,拉杆间距500mm,计算梁底模木方、支撑。

模板支设见前设计图木方材质为红松,设计强度和弹性模量如下:fc=10N/mm2;fv=1.4N/mm2;fm=13N/mm2;E=9KN/mm2;松木的重力密度为:5KN/mm3;底模木方验算:荷载组合:模板体系自重:{(0.015×(1.5+0.5)×0.3+(0.1×0.05×5+0.1×0.1×2)×5)}×1.2=0.486KN/m;混凝土自重:24×0.9×0.5×1.2=12.96KN/m钢筋自重: 1.5×0.9×0.5×1.2=0.81KN/m;混凝土振捣荷载:2.0×0.5×1.4=1.4KN/m;合计:15.656KN/m乘以折减系数0.9,q=0.9×14.09=12.68KN/m;木方支座反力:R=(4-b/L)qb3/8L3=(4-0.25/0.6)×12.68×0.253/(8×0.63)= 0.41KN;跨中最大弯距:Mmax= KqL2=0.07×12.68×0.62=0.32KNm;内力计算:σ=M/W=0.32×106/(100×1002/6)=1.92N/mm2<fm =13 N/mm2;强度满足要求。

模板工程中施工荷载计算(3篇)

模板工程中施工荷载计算(3篇)

第1篇一、引言模板工程是混凝土结构工程施工中的重要组成部分,其质量直接影响到混凝土结构的整体质量和施工安全。

在模板工程施工过程中,施工荷载的计算是保证模板结构稳定性和安全性的关键环节。

本文将详细介绍模板工程中施工荷载的计算方法、注意事项以及相关规范要求。

二、模板工程中施工荷载的分类1. 永久荷载永久荷载是指在整个结构使用寿命内,其值基本不变的荷载。

主要包括:(1)模板自重:模板材料自重,如木模板、钢模板等。

(2)钢筋自重:混凝土结构中钢筋自重。

(3)混凝土自重:混凝土结构自重。

2. 可变荷载可变荷载是指在一定时间内,其值可能发生变化的荷载。

主要包括:(1)施工人员荷载:施工人员、工具、材料等在模板上产生的荷载。

(2)施工设备荷载:如泵送混凝土、振捣器等施工设备在模板上产生的荷载。

(3)施工材料荷载:如水泥、砂、石等施工材料在模板上产生的荷载。

(4)施工荷载:如混凝土浇筑时的冲击荷载、振动荷载等。

3. 集中荷载集中荷载是指作用在模板结构某一点的荷载。

如模板支架、钢筋绑扎时的集中荷载。

三、模板工程中施工荷载的计算方法1. 永久荷载计算永久荷载的计算相对简单,只需根据模板材料、钢筋和混凝土的密度,以及模板尺寸进行计算。

(1)模板自重计算:模板自重 = 模板面积× 模板材料密度(2)钢筋自重计算:钢筋自重 = 钢筋截面积× 钢筋密度(3)混凝土自重计算:混凝土自重 = 混凝土体积× 混凝土密度2. 可变荷载计算可变荷载的计算较为复杂,需要根据实际情况进行估算。

(1)施工人员荷载:施工人员荷载 = 施工人员数量× 人体均重(2)施工设备荷载:施工设备荷载 = 施工设备质量× 设备荷载系数(3)施工材料荷载:施工材料荷载 = 施工材料质量×材料荷载系数(4)施工荷载:施工荷载 = 施工荷载系数× 混凝土浇筑量3. 集中荷载计算集中荷载的计算较为简单,只需根据荷载产生的原因和位置进行计算。

.梁、楼板处铝合金模板抗弯强度以及挠度校核

.梁、楼板处铝合金模板抗弯强度以及挠度校核

铝合金模板安全专项施工方案- 1 -.梁、楼板处铝合金模板抗弯强度以及挠度校核(1)结合本项目结构施工图,以及广亚铝模板特点,选出梁尺寸200mm*1000 m m ,跨度为1200mm 最不利情况进行梁底处铝合金模板抗弯强度以及挠度校核 梁截面(b*h )为200*1000mm ,跨度为1200mm 。

模板及支架的强度验算时按简支受力计算,计算简图如下:S=1.2(NG1k + NG2k )+0.9*1.4∑NQK P=1.2*(24*0. 2 +1.1*1)+0.9*1.4*(1+2) =10.86KN/m2梁底板处铝合金模板最大支撑间距为跨度1200,跨中弯矩M 为: M=1*ql2/8=2.17*0.82/8=0.173K.m其中,q 为恒荷载均布线荷载标准值;对于200mm 标准板均布线荷载q=10.86*0.2=2.17KN/m. 最大弯曲应力:f= M/W=0.173*106/12571=13.81 N/mm2 <[f]=200N/mm2, 模板及支架的强度满足设计要求。

铝合金模板挠度应满足: v=5qgL4/384EIx<= [v]其中,为恒荷载均布线荷载标准值;[v]为允许挠度。

由规范可知[v]=L/250=1200/250=4.8mm计算得v=5qgL4/384EIx=5*2.17*8004/(384*70000*609925) =0.27m m<4.8mm ,满足要求。

抗剪强度计算T=3Q/2bh<[T]由于是简支梁均布加载,故面板抗剪强度必定满足设计要求! (2)楼板处铝合金模板抗弯强度以及挠度校核针对广亚铝模板的特点,以及本项目的需要,这里主要校核:规格为P400,长度为1100 mm这种最不利的情况,楼板厚度取120m m。

楼板模板规格为P400,长度为1100mm。

模板及支架的强度验算时按简支受力计算,计算简图如下:S=1.2(NG1k + NG2k)+0.9*1.4∑NQKP=1.2*(24*0. 12 +1.1*0.12)+0.9*1.4*(1+2)=7.39KN/m2楼板处铝合金模板最大支撑间距为跨度1100,跨中弯矩M为:M=1*ql2/8=2.96*1.1^2/8=0.447 KN.m其中,q为恒荷载均布线荷载标准值;对于400mm标准板均布线荷载q=7.39*0.4=2.96 KN/m最大弯曲应力:f= M/W= 0.447*10^6/24786 =18.03 N/mm2 <[f]=200N/mm2,模板及支架的强度满足设计要求。

梁模板计算书

梁模板计算书

梁模板(套扣式,梁板立柱不共用)计算书计算依据:1、《混凝土结构设计规范》GB 50010-20102、《建筑结构荷载规范》GB 50009-20123、《钢结构设计标准》GB 50017-20174、《建筑施工承插型套扣式钢管脚手架安全技术规程》DBJ15-98-2014一、工程属性二、荷载设计三、模板体系设计设计简图如下:平面图立面图四、面板验算取单位宽度b=1000mm,按四等跨连续梁计算:截面抵抗矩:W=bt2/6=1000×15×15/6=37500mm3,截面惯性矩:I=bt3/12=1000×15×15×15/12=281250mm4根据《建筑施工承插型套扣式钢管脚手架安全技术规程》DBJ15-98-2014第4.3节规定可知:q1=γ0×max[1.2(G1k+(G2k+G3k)×h)+1.4Q1k,1.35(G1k+(G2k+G3k)×h)+1.4ψc Q1k]×b=1×m ax[1.2×(0.1+(24+1.5)×1.8)+1.4×2.5,1.35×(0.1+(24+1.5)×1.8)+1.4×0.9×2.5]×1=65.25 kN/mq1静=γ0×1.35×[G1k+(G2k+G3k)×h]×b=1×1.35×[0.1+(24+1.5)×1.8]×1=62.1kN/m q1活=γ0×1.4×0.9×Q1k×b=1×1.4×0.9×2.5×1=3.15kN/mq2=[1×(G1k+(G2k+G3k)×h)+1×Q1k]×b=[1×(0.1+(24+1.5)×1.8)+1×2.5]×1=48.5kN/m 计算简图如下:1、强度验算M max=0.107q1静L2+0.121q1活L2=0.107×62.1×0.22+0.121×3.15×0.22=0.281kN·m σ=M max/W=0.281×106/37500=7.494N/mm2≤[f]=15N/mm2满足要求!2、挠度验算νmax=0.632q2L4/(100EI)=0.632×48.5×2004/(100×10000×281250)=0.174mm≤[ν]=min[ L/150,10]=min[200/150,10]=1.333mm满足要求!3、支座反力计算设计值(承载能力极限状态)R1=R5=0.393q1静L+0.446q1活L=0.393×62.1×0.2+0.446×3.15×0.2=5.162kNR2=R4=1.143q1静L+1.223q1活L=1.143×62.1×0.2+1.223×3.15×0.2=14.967kNR3=0.928q1静L+1.142q1活L=0.928×62.1×0.2+1.142×3.15×0.2=12.245kN标准值(正常使用极限状态)R1'=R5'=0.393q2L=0.393×48.5×0.2=3.812kNR2'=R4'=1.143q2L=1.143×48.5×0.2=11.087kNR3'=0.928q2L=0.928×48.5×0.2=9.002kN五、小梁验算梁侧存在混凝土板,故梁底支撑区域内楼板荷载需附加传递:承载能力极限状态:梁底面板传递给左边小梁线荷载:q1左=R1/b=5.162/1=5.162kN/m梁底面板传递给中间小梁最大线荷载:q1中=Max[R2,R3,R4]/b =Max[14.967,12.245,14.967]/1= 14.967kN/m梁底面板传递给右边小梁线荷载:q1右=R5/b=5.162/1=5.162kN/m小梁自重:q2=1×1.35×(0.3-0.1)×0.8/4 =0.054kN/m梁左侧模板传递给左边小梁荷载q3左=1×1.35×0.5×(1.8-0.1)=1.147kN/m梁右侧模板传递给右边小梁荷载q3右=1×1.35×0.5×(1.8-0.1)=1.147kN/m梁左侧楼板传递给左边小梁荷载q4左=1×Max[1.2×(0.5+(24+1.1)×0.1)+1.4×2.5,1.35×(0.5+(24+1.1)×0.1)+1.4×0.9×2.5]×(0.65-0.8/2)/2×1=0.902kN/m梁右侧楼板传递给右边小梁荷载q4右=1×Max[1.2×(0.5+(24+1.1)×0.1)+1.4×2.5,1.35×(0.5+(24+1.1)×0.1)+1.4×0.9×2.5]×(0.65-0.8/2)/2×1=0.902kN/m左侧小梁荷载q左=q1左+q2+q3左+q4左 =5.162+0.054+1.147+0.902=7.265kN/m中间小梁荷载q中= q1中+ q2=14.967+0.054=15.021kN/m右侧小梁荷载q右=q1右+q2+q3右+q4右 =5.162+0.054+1.147+0.902=7.265kN/m小梁最大荷载q=Max[q左,q中,q右]=Max[7.265,15.021,7.265]=15.021kN/m正常使用极限状态:梁底面板传递给左边小梁线荷载:q1左'=R1'/b=3.812/1=3.812kN/m梁底面板传递给中间小梁最大线荷载:q1中'=Max[R2',R3',R4']/b =Max[11.087,9.002,11.087]/1= 11.087kN/m梁底面板传递给右边小梁线荷载:q1右'=R5'/b=3.812/1=3.812kN/m小梁自重:q2'=1×(0.3-0.1)×0.8/4 =0.04kN/m梁左侧模板传递给左边小梁荷载q3左'=1×0.5×(1.8-0.1)=0.85kN/m梁右侧模板传递给右边小梁荷载q3右'=1×0.5×(1.8-0.1)=0.85kN/m梁左侧楼板传递给左边小梁荷载q4左'=[1×(0.5+(24+1.1)×0.1)+1×2.5]×(0.65-0.8/2)/2×1=0.689kN/m梁右侧楼板传递给右边小梁荷载q4右'=[1×(0.5+(24+1.1)×0.1)+1×2.5]×(0.65-0.8/2)/2×1=0.689kN/m左侧小梁荷载q左'=q1左'+q2'+q3左'+q4左'=3.812+0.04+0.85+0.689=5.391kN/m中间小梁荷载q中'= q1中'+ q2'=11.087+0.04=11.127kN/m右侧小梁荷载q右'=q1右'+q2'+q3右'+q4右' =3.812+0.04+0.85+0.689=5.391kN/m小梁最大荷载q'=Max[q左',q中',q右']=Max[5.391,11.127,5.391]=11.127kN/m为简化计算,按简支梁和悬臂梁分别计算,如下图:1、抗弯验算M max=max[0.125ql12,0.5ql22]=max[0.125×15.021×0.62,0.5×15.021×0.152]=0.676k N·mσ=M max/W=0.676×106/74667=9.053N/mm2≤[f]=16N/mm2满足要求!2、抗剪验算V max=max[0.5ql1,ql2]=max[0.5×15.021×0.6,15.021×0.15]=4.506kNτmax=3V max/(2bh0)=3×4.506×1000/(2×70×80)=1.207N/mm2≤[τ]=1.5N/mm2满足要求!3、挠度验算ν1=5q'l14/(384EI)=5×11.127×6004/(384×10000×298.667×104)=0.629mm≤[ν]=min[l1/150,10]=min[600/150,10]=4mmν2=q'l24/(8EI)=11.127×1504/(8×10000×298.667×104)=0.024mm≤[ν]=min[2l2/150,1 0]=min[300/150,10]=2mm满足要求!4、支座反力计算承载能力极限状态R max=max[qL1,0.5qL1+qL2]=max[15.021×0.6,0.5×15.021×0.6+15.021×0.15]=9.013kN 同理可得:梁底支撑小梁所受最大支座反力依次为R1=4.359kN,R2=9.013kN,R3=7.379kN,R4=9.0 13kN,R5=4.359kN正常使用极限状态R max'=max[q'L1,0.5q'L1+q'L2]=max[11.127×0.6,0.5×11.127×0.6+11.127×0.15]=6.676kN 同理可得:梁底支撑小梁所受最大支座反力依次为R1'=3.235kN,R2'=6.676kN,R3'=5.425kN,R4'=6. 676kN,R5'=3.235kN六、主梁验算主梁自重忽略不计,主梁2根合并,其主梁受力不均匀系数=0.6,则单根主梁所受集中力为Ks×Rn,Rn为各小梁所受最大支座反力1、抗弯验算主梁弯矩图(kN·m)σ=M max/W=0.262×106/4490=58.241N/mm2≤[f]=205N/mm2满足要求!2、抗剪验算主梁剪力图(kN)V max=4.114kNτmax=2V max/A=2×4.114×1000/424=19.406N/mm2≤[τ]=125N/mm2满足要求!3、挠度验算主梁变形图(mm)νmax=0.035mm≤[ν]=min[L/150,10]=min[300/150,10]=2mm满足要求!4、支座反力计算承载能力极限状态支座反力依次为R1=6.729kN,R2=7.016kN,R3=6.729kN立柱所受主梁支座反力依次为P1=6.729/0.6=11.215kN,P2=7.016/0.6=11.693kN,P3= 6.729/0.6=11.215kN七、可调托座验算可调托座最大受力N=max[P1,P2,P3]=11.693kN≤[N]=30kN满足要求!八、立柱验算1、长细比验算h max=max(ηh,h'+2a)=max(1.1×1500,1200+2×200)=1650mmλ=h max/i=1650/15.9=103.774≤[λ]=150长细比满足要求!查表得:φ=0.5662、风荷载计算M w=γ0×φc×1.4×ωk×l a×h2/10=1×0.9×1.4×0.281×0.6×1.52/10=0.048kN·m3、稳定性计算P1=11.215kN,P2=11.693kN,P3=11.215kN立柱最大受力N w=max[P1,P2,P3]+1×1.35×0.15×(7.5-1.8)+M w/l b=max[11.215,11. 693,11.215]+1.154+0.048/0.6=12.927kNf=N/(φA)+M w/W=12927.073/(0.566×424)+0.048×106/4490=64.557N/mm2≤[f]=205 N/mm2满足要求!九、高宽比验算根据《建筑施工承插型套扣式钢管脚手架安全技术规程》DBJ15-98-2014第6.1.5:模板支撑架的高宽比不宜大于3H/B=7.5/30=0.25≤3满足要求!十、架体抗倾覆验算混凝土浇筑前,倾覆力矩主要由风荷载产生,抗倾覆力矩主要由模板及支架自重产生M T=γ0×ψc×γQ(ωk LHh2)=1×0.9×1.4×(0.281×40×7.5×6)=637.308kN·mM R=γG[G1k+0.15×H/(l a'×l b')]LB2/2=0.9×[0.5+0.15×7.5/(0.9×0.9)]×40×302/2=30600kN·m M T=637.308kN·m≤M R=30600kN·m满足要求!混凝土浇筑时,倾覆力矩主要由泵送、倾倒混凝土等因素产生的水平荷载产生,抗倾覆力矩主要由钢筋、混凝土、模板及支架自重产生M T=γ0×ψc×γQ(Q2k LH2)=1×0.9×1.4×(0.06×40×7.52)=170.1kN·mM R=γG[G1k+(G2k+G3k)h0+0.15×H/(l a'×l b')]LB2/2=0.9×[0.5+(24+1.1)×0.1+0.15×7.5/(0.9×0.9)]×40×302/2=71262kN·mM T=170.1kN·m≤M R=71262kN·m满足要求!十一、立柱支承面承载力验算F1=N=12.927kN1、受冲切承载力计算根据《混凝土结构设计规范》GB50010-2010第6.5.1条规定,见下表可得:βh=1,f t=0.638N/mm2,η=1,h0=h-20=130mm,u m =2[(a+h0)+(b+h0)]=960mmF=(0.7βh f t+0.25σpc,m)ηu m h0=(0.7×1×0.638+0.25×0)×1×960×130/1000=55.736kN≥F1=1 2.927kN满足要求!2、局部受压承载力计算根据《混凝土结构设计规范》GB50010-2010第6.6.1条规定,见下表可得:f c=5.568N/mm2,βc=1,βl=(A b/A l)1/2=[(a+2b)×(b+2b)/(ab)]1/2=[(320)×(300)/(120×100)]1/2=2.828,A ln=ab=1200 0mm2F=1.35βcβl f c A ln=1.35×1×2.828×5.568×12000/1000=255.129kN≥F1=12.927kN满足要求!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模板计算一、模板构造模板采用厚度为6mm的定型钢模,横肋间距为350mm、纵肋间距为450mm,横肋采用尺寸为80mm*10mm、厚为6mm的钢板,上面加焊同样尺寸的盖板以加强模板刚度,形成T形结构。

横向侧模之间采用对拉螺栓固定。

纵向侧模外用钢管固定。

模板具体设计构造见模板设计图纸,附后。

二、荷载计算1、竖向荷载根据《路桥施工计算手册》相关内容,荷载取值如下:(1)新浇混凝土自重:按配筋量大于2%算取26kN/m3。

(2)模板重量:取0.75 kN/m2。

(3)倾倒混凝土时产生的冲击力:取2.0kPa。

(4)振捣混凝土产生的荷载:取2.0kPa。

(5)人员、机具材料堆放等荷载:计算模板时取2.5kPa。

2、水平荷载根据《公路桥涵施工技术规范》(JTJ041-2000)推荐的模板侧压力计算公式:Pm=4.6v1/4式中:v——混凝土的浇筑速度,m/h。

混凝土浇筑速度取3m/h。

盖梁混凝土浇筑侧压力为:6.05kPa。

三、底模验算图一图示圆弧段即为收荷载最大的位置,讲圆弧型荷载偏安全的转化为直线段计算。

此部分总荷载值如下:(1)新浇混凝土荷载:26kN/m3×3.4m×1.3m(按荷载较大的B形桥墩宽计算)×4.8m=551.616 kN(2)模板重量:0.75 kN/m2×4.8m×(3.4m+3.4m)=24.48 kN(3)倾倒混凝土时产生的冲击力:2.0kPa×1.3m×3.4m=8.84 kN(4)振捣混凝土产生的荷载:2.0kPa×1.3m×3.4m=8.84 kN(5)人员、机具材料堆放等荷载:1.0kPa×1.3m×3.4m=4.42 kN总荷载值为:N=(1)+(2)+(3)+(4)+(5)+(6)= 612.83 kN 化为均布荷载大小为:P=N/(1.7*∏*1.3)=88kPa。

1、面板计算(1)强度计算选用模板区格中四面固结的最不利受力情况进行计算。

Ly/Lx=350/450=0.78 查《路桥施工计算手册》P775页,均布荷载作用下四面固结的板的计算系数,得:Km x0= -0.0679 Km y0= -0.0561KM x0= 0.0281 Km y0= 0.0138 K f=0.00188取1mm宽的板条作为计算单元,荷载q为:q=0.088×1=0.088N/mm支点处的弯矩为:M x0= Km x0×q×L x2= -0.0679×0.088×4502=-1209N·mmM y0= Km x0×q×L y2= -0.0561×0.088×3502=-604.76N·mm面板的截面系数:W=1/6×bh2=1/6×1×62=6mm3应力为:σmax=M max/W=1209/6=201.5Mpa<[σ]=215Mpa可满足施工要求。

跨中弯矩:M x= KM x×q×L x2= 0.0281×0.088×4502=500.7N·mm M y= KM y×q×L y2= 0.0138×0.088×3502=148.76N·mm 钢板的泊松比ζ=0.3 故需换算为:M x(ζ)= M x+ζM y=500.7+0.3×148.76=545.3N·mmM y(ζ)= M y+ζM x=148.76+0.3×500.7=298.97N·mm应力为:σmax=M max/W=545.3/6=90.88Mpa<[σ]=215Mpa可满足施工要求。

(2)挠度计算B0=Eh3/12(1-ζ2)=2.1×105×63/12(1-0.32)=41.5×105N·mmW max=K f×qL4/B0=0.0018×0.088×3504/41.5×105=0.57mmW/L=0.57/350=1/611≤1/500满足施工要求。

2、横肋计算横肋间距350mm,采用两快10*80+10*80钢板拼焊成T形铁结构,横肋与面板焊成一体,在构成工型结构。

荷载:q=P×h=0.088×350=30.8N/m结构的形心距x=34mm惯性矩I=3140000mm4截面抗弯模量W=I/62=92353mm3最大弯矩为:Mmax=qL2/8=6506500N*m(1)强度验算σmax=M max/W=6506500/92353=70.45 Mpa<[σ]=215Mpa(2)挠度验算:F=5qL4/384EI=5×30.8×1300/(384×2.1×10×3140000)=4.61mm [f]=1300/400=3.25mm挠度值略大.由于模板1300mm宽的面板还有横向钢带(平行于圆周)联系,即实际可满足施工要求。

四、横向侧模验算横向侧模使用直径为20mm的光圆对拉钢筋,间距最大取80cm。

单根螺栓最大拉力为38.2kN。

盖梁混凝土浇筑最大侧压力为6.05kPa。

对拉螺栓间距按80cm、排距按2m算,每根螺栓承受的拉力为:P=6.05×0.8×2=10kN<38.2kN。

由于侧压力比竖向压力小很多,而底模和侧模的规格相同,即侧模的变形和受力满足施工要求。

五、纵向侧模验算由于纵向侧模为倾斜模板,图示部分混凝土应计为竖向荷载。

改部分的混凝土约20m3,约520kN。

一侧纵向模板面积为:8.7m(长)×1.3m(宽)=11.31m2模板上的平均压强为:P=520/11.31=46kN。

模板压强小于底模压强,而模板的规格相同。

即模板的强度和刚度满足要求。

聚乙烯(PE)简介1.1聚乙烯化学名称:聚乙烯英文名称:polyethylene,简称PE结构式:聚乙烯是乙烯经聚合制得的一种热塑性树脂,也包括乙烯与少量α-烯烃的共聚物。

聚乙烯是五大合成树脂之一,是我国合成树脂中产能最大、进口量最多的品种。

1.1.1聚乙烯的性能1.一般性能聚乙烯为白色蜡状半透明材料,柔而韧,比水轻,无嗅、无味、无毒,常温下不溶于一般溶剂,吸水性小,但由于其为线性分子可缓慢溶于某些有机溶剂,且不发生溶胀。

工业上为使用和贮存的方便通常在聚合后加入适量的塑料助剂进行造粒,制成半透明的颗粒状物料。

PE易燃,燃烧时有蜡味,并伴有熔融滴落现象。

聚乙烯的性质因品种而异,主要取决于分子结构和密度,也与聚合工艺及后期造粒过程中加入的塑料助剂有关。

2.力学性能PE是典型的软而韧的聚合物。

除冲击强度较高外,其他力学性能绝对值在塑料材料中都是较低的。

PE密度增大,除韧性以外的力学性能都有所提高。

LDPE 由于支化度大,结晶度低,密度小,各项力学性能较低,但韧性良好,耐冲击。

HDPE支化度小,结晶度高,密度大,拉伸强度、刚度和硬度较高,韧性较差些。

相对分子质量增大,分子链间作用力相应增大,所有力学性能,包括韧性也都提高。

几种PE的力学性能见表1-1。

表1-1 几种PE力学性能数据3.热性能PE受热后,随温度的升高,结晶部分逐渐熔化,无定形部分逐渐增多。

其熔点与结晶度和结晶形态有关。

HDPE的熔点约为125~137℃,MDPE的熔点约为126~134℃,LDPE的熔点约为105~115℃。

相对分子质量对PE的熔融温度基本上无影响。

PE的玻璃化温度(T g)随相对分子质量、结晶度和支化程度的不同而异,而且因测试方法不同有较大差别,一般在-50℃以下。

PE在一般环境下韧性良好,耐低温性(耐寒性)优良,PE的脆化温度(T b)约为-80~-50℃,随相对分子质量增大脆化温度降低,如超高相对分子质量聚乙烯的脆化温度低于-140℃。

PE的热变形温度(T HD)较低,不同PE的热变形温度也有差别,LDPE约为38~50℃(0.45MPa,下同),MDPE约为50~75℃,HDPE约为60~80℃。

PE的最高连续使用温度不算太低,LDPE约为82~100℃,MDPE约为105~121℃,HDPE为121℃,均高于PS和PVC。

PE的热稳定性较好,在惰性气氛中,其热分解温度超过300℃。

PE的比热容和热导率较大,不宜作为绝热材料选用。

PE的线胀系数约在(15~30)×10-5K-1之间,其制品尺寸随温度改变变化较大。

几种PE的热性能见表1-2。

表1-2几种PE热性能4.电性能PE分子结构中没有极性基团,因此具有优异的电性能,几种PE的电性能见表1-3。

PE的体积电阻率较高,介电常数和介电损耗因数较小,几乎不受频率的影响,因而适宜于制备高频绝缘材料。

它的吸湿性很小,小于0.01%(质量分数),电性能不受环境湿度的影响。

尽管PE具有优良的介电性能和绝缘性,但由于耐热性不够高,作为绝缘材料使用,只能达到Y级(工作温度≤90℃)。

表1-3聚乙烯的电性能5.化学稳定性PE是非极性结晶聚合物,具有优良的化学稳定性。

室温下它能耐酸、碱和盐类的水溶液,如盐酸、氢氟酸、磷酸、甲酸、醋酸、氨、氢氧化钠、氢氧化钾以及各类盐溶液(包括具有氧化性的高锰酸钾溶液和重铬酸盐溶液等),即使在较高的浓度下对PE也无显著作用。

但浓硫酸和浓硝酸及其他氧化剂对聚乙烯有缓慢侵蚀作用。

PE在室温下不溶于任何溶剂,但溶度参数相近的溶剂可使其溶胀。

随着温度的升高,PE结晶逐渐被破坏,大分子与溶剂的作用增强,当达到一定温度后PE可溶于脂肪烃、芳香烃、卤代烃等。

如LDPE能溶于60℃的苯中,HDPE能溶于80~90℃的苯中,超过100℃后二者均可溶于甲苯、三氯乙烯、四氢萘、十氢萘、石油醚、矿物油和石蜡中。

但即使在较高温度下PE仍不溶于水、脂肪族醇、丙酮、乙醚、甘油和植物油中。

PE在大气、阳光和氧的作用下易发生老化,具体表现为伸长率和耐寒性降低,力学性能和电性能下降,并逐渐变脆、产生裂纹,最终丧失使用性能。

为了防止PE的氧化降解,便于贮存、加工和应用,一般使用的PE原料在合成过程中已加入了稳定剂,可满足一般的加工和使用要求。

如需进一步提高耐老化性能,可在PE中添加抗氧剂和光稳定剂等。

6.卫生性PE分子链主要由碳、氢构成,本身毒性极低,但为了改善PE性能,在聚合、成型加工和使用中往往需添加抗氧剂和光稳定剂等塑料助剂,可能影响到它的卫生性。

树脂生产厂家在聚合时总是选用无毒助剂,且用量极少,一般树脂不会受到污染。

相关文档
最新文档