钢管支撑强度及稳定性验算
钢管支撑刚度及稳定性计算

件段范围的最大弯矩M x 的计算 备注
考虑5kN施工荷载
M1
1.35*
gAl 2 8
1 4
*5l
取 1 偏心弯矩与0.02m的较大值
1000
M 2 Ne0 M x M1 M2
备注
Wx
2I D
N Ex
2 EA 1 .1 x 2
式中 An A, Wnx Wn
N Mx f
A 4
I ix A
x
l ix
n
x
fy E
Hale Waihona Puke 按b类截面计算:当λn ≤0.215时:
x 1 0.65n 2
当λn >0.215时:
x
1 2n 2
(0.965
0.3n
n 2
)
(0.965 0.3n n2 )2
4n 2
0.810
计算参数
所计算构件段范围的最大弯矩M x 的计算 计算数值
自重及施工荷载产生的最大弯
176.31
矩M 1(kN.m)
附加偏心距e 0(m)
附加弯矩M 2(kN.m) 所计算构件段范围的最大弯矩 M x (kN.m) 等效弯矩系数βmx
0.0200
119.44 295.75
1.00
M 2 Ne0 M x M1 M2
)
205
稳定性验算
通过
钢管计算长度 l (m) 16.47
钢管密度 ρ(kg/m3)
7850
钢管弹性模量 钢管抗拉强度设计值
E(N/mm2)
f (N/mm2)
钢支撑(钢管)强度及稳定性验算

b类 0.965 6.1E+04 0.936 1.0000 176.46 满足
+α3λy'+λy'2)2-4λy'2]1/2}/2λy'2 α1λy'2 N/ψyA+0.7Mx/W (N/mm2) f
4601.00 53.61 6300 6300 1.0 4 29807.43 4305986.88 30.0 30.0 30.0
验算 d/t ≤ 100*(235/fy) 刚度验算 Max[λx,λy]<[λ] 验算 N/A+M/γW ≤ f
满足 满足 满足
构件所属的截面类型 系数α2 欧拉临界力NEx=π2EA/(1.1*λx2 )(KN) +α3λx'+λx'2)2-4λx'2]1/2}/2λx'2 α1λx'2 =1.64-0.23*(d/t)1/4 (d/t>60时) ) (N/mm2) Ex) ≤ φf
基本参数 钢管外径d (mm) 管壁厚度t (mm) 2 钢材抗压强度设计值f (N/mm ) 钢材屈服强度值fy (N/mm2) 2 钢材弹性模量E (N/mm ) 自重w(kN/m) 609 16.0 215 235 206000.00 2.34
钢管内径d1=d-2t (mm) 577 4 4 4 1311173005.04 截面惯性矩I=π*(d -d1 )/64 (mm ) 1/2 209.73 截面回转半径i=(I/A) (mm) 塑性发展系数γ 1.15 Me(偏心矩) 28.9863 M(计入偏心矩) 53.61162188 M0(未计入偏心矩)(=1/8 x w l2)(kNm) 24.62532188 局部稳定性验算 径厚比 刚度验算 构件容许长细比[λ] 150 强度验算 165.18 N/A+M/γW (N/mm2) 稳定性验算 ⒈弯矩平面内 0.323 λx'=(fy/E)1/2*λx/π 系数α1 0.650 系数α3 0.300 当λx'>0.215时,稳定系数ψx={(α2+α3λx'+λx'2)-[(α2+ 当λx'≤0.215时,稳定系数ψx=1-α 局部稳定系数φ=1 (d/t≤60时);φ=1.64-0.23*(d/t) N/ψxA+βmMx/γW(1-0.8N/NEx) (N/mm 验算 N/ψxA+βmMx/γW(1-0.8N/NEx ⒉弯矩平面外 不需验算 λy'=(fy/E)1/2*λy/π 当λy'〉0.215时,稳定系数ψy={(α2+α3λy'+λy'2)-[(α2+ 当λy'≤0.215时,稳定系数ψy=1-α ψy 1.15 验算 N/ψyA+0.7Mx/W ≤ φf
立杆稳定验算

立杆的稳定性计算公式σ = N/(φA)≤[f]1.梁两侧立杆稳定性验其中N -- 立杆的轴心压力设计值,它包括:横向支撑钢管的最大支座反力:N1 =3.586kN ;脚手架钢管的自重:N2 = 1.2×0.125×2.8=0.419kN;楼板混凝土、模板及钢筋的自重:N3=1.2×[(0.95/2+(0.65-0.25)/4)×0.75×0.30+(0.95/2+(0.65-0.25)/4)×0.75×0.12 0×(1.50+24.00)]=1.739kN;施工荷载与振捣混凝土时产生的荷载设计值:N4=1.4×(3.000+2.000)×[0.950/2+(0.650-0.250)/4]×0.750=3.019kN;N =N1+N2+N3+N4=3.586+0.419+1.739+3.019=8.763kN;φ-- 轴心受压立杆的稳定系数,由长细比l o/i 查表得到;i -- 计算立杆的截面回转半径(cm):i = 1.58;A -- 立杆净截面面积(cm2):A = 4.89;W -- 立杆净截面抵抗矩(cm3):W = 5.08;σ -- 钢管立杆轴心受压应力计算值(N/mm2);[f] -- 钢管立杆抗压强度设计值:[f] =205N/mm2;l o -- 计算长度(m);根据《扣件式规范》,立杆计算长度l o有两个计算公式l o=kμh和l o=h+2a,为安全计,取二者间的大值,即:l o = Max[1.155×1.7×1.6,1.6+2×0.1]= 3.142m;k -- 计算长度附加系数,取值为:1.155;μ -- 计算长度系数,参照《扣件式规范》表5.3.3,μ=1.7;a -- 立杆上端伸出顶层横杆中心线至模板支撑点的长度;a=0.1m;得到计算结果: 立杆的计算长度l o/i = 3141.6 / 15.8 = 199;由长细比lo/i 的结果查表得到轴心受压立杆的稳定系数φ= 0.182;钢管立杆受压应力计算值;σ=8762.878/(0.182×489) = 98.5N/mm2;钢管立杆稳定性计算σ = 98.5N/mm2小于钢管立杆抗压强度的设计值[f] =205N/mm2,满足要求!青深秋水,黛遠春山,顧曲至今,綠綺紅蘭。
钢支撑结构计算

钢支撑结构计算钢支撑结构是钢结构的重要组成部分,用于提供支撑和稳定的作用。
它通常由钢管和连接件构成,具有高强度、轻质、抗震、耐久等特点。
钢支撑结构的计算是钢结构设计的重要工作之一,下面将介绍钢管支撑结构的计算方法。
首先,计算钢管支撑的杆件尺寸。
根据设计要求和实际情况,确定支撑结构的高度、间距、材料等参数。
然后,根据结构的受力状态,选择适当的钢管尺寸。
常用的钢管规格有圆形、方形和矩形等,根据实际需要选择合适的钢管材料和尺寸。
其次,进行钢管支撑的刚度计算。
钢管支撑结构的刚度对于保证结构的稳定和承载能力非常重要。
根据设计要求,计算钢管支撑结构的刚度,包括刚度系数和弹性刚度矩阵等。
刚度系数可以根据杆件尺寸、截面形状和连接方式等进行计算,并考虑材料的弹性模量和截面惯性矩等因素。
然后,确定钢管支撑的受力状态。
根据钢管的位置和连接方式,确定钢管在不同荷载作用下的受力状态。
常见的受力状态有压力、拉力和弯曲等。
在计算中,需要考虑荷载的大小、作用方向和分布情况等因素,以确定钢管的受力和应力情况。
接下来,进行钢管支撑的计算分析。
根据受力状态和已知参数,计算钢管支撑结构的受力和位移等。
常用的计算方法包括弹性分析和弹塑性分析等。
在计算分析中,需要进行荷载分析、结构稳定性分析和位移控制等。
最后,进行钢管支撑的验算和设计。
根据计算结果,对钢管支撑结构进行验算和设计,确保结构的安全可靠。
验算包括强度验算和稳定性验算等,需要根据国家标准和规范进行。
设计包括选取合适的连接件和施工方法,确保结构的施工和使用性能。
综上所述,钢管支撑结构的计算是钢结构设计中的重要工作之一,需要考虑杆件尺寸、刚度、受力状态、计算分析和验算设计等因素。
通过科学的计算方法和合理的设计,可以确保钢管支撑结构的安全可靠。
钢管支撑强度及稳定性验算

钢支撑N=2750KN,L水平向=L竖向=20.9m钢支撑强度及整体稳定性验算(钢结构设计规范GB50017-2003 5.2):一、计算参数分项系数γs= 1.375初始偏心距e0=0.001*L=0.04m 支撑面均布荷载q0=0.7Kpa 支撑最大轴力标准值Nk=2692KN初始弯矩M0k=75.7381KN-m 由自重及支撑面均布荷载引起的弯矩,按简支计;最大弯矩Mk=M0k+Nk*e0=183.4181KN-m稳定系数φ=0.851弯矩作用平面内的轴压构件稳定系数,a类构件截面塑性发展系数γ= 1.15钢管截面钢管外径D=0.609m钢管内径d=0.577m支撑实际长度L=14.8m截面模量W=0.0982*(D4-d4)/D0.004307m3弯矩作用平面内对较大受压纤维的毛截面模量截面惯性矩I=π(D4-d4)/64=0.001311m4截面回转半径i=√(D2+d2)/4=0.209733m 截面积A=π*(D2-d2)/4=0.029807m2参数Nex=π2*EA/(1.1λ2)=11063.97KN OR Nex=π2*EI/[1. 1*(μ*L)2]=弹性模量E= 2.06E+08Kpa Q235钢杆件计算长度修正系数μ=1构件长细比λ=L/i=70.56575等效弯矩系数βmx=1无端弯矩但有横向荷载作用二、钢支撑强度验算f=N/A+M/(γ*W)=175.0974Mpa <[f]=215 Mpa,满足要求其中M=γs*Mk三、钢支撑整体稳定验算1、钢支撑竖向平面内的稳定性验算f1=N/(φ*A)=145.8569Mpa f2=βmx*M/[γ*W*(1-0.8*N/Nex)]=69.52489Mpaf=f1+f2=215.3818Mpa <[f]=215 Mpa,满足要求2、钢支撑竖向平面外的稳定性验算f1=N/(φy*A)=145.8569其中弯矩作用平面外的轴心受压稳定系数φy=0.851根据L=11m计算。
Q235钢管支撑强度及稳定性计算

λ (fy/235)1/2= 40.25848
21424.01
′
x
表1 64.00 1319.47 8.14E+05 2.14E+04 1.31 24.84 40.26 295.83 kN mm mm 2 mm 4 mm 3 kN· m mm
========== 中间过程 ==========
= =
Байду номын сангаасEX
==================== 最终结果及结论 ====================
满足强度要求 满足稳定性要求
根据计算出的长细比λ x,查稳定性系数ψ x(《钢规范》129页)
= 钢支撑挠度验算 =
圆周率л = 3.141593 密度 ρ =(kN/m3) 每延米自重 q=(kN) y0=5ql /384EI Ymax=y0/[1-(N/NEX)] 挠度容许值=L/400
4
78.5 0.10357831 7.88867E-06 9.49315E-06 0.0025
钢管撑的强度及稳定性计算表
========== 输入数据 ==========
外径 D = 壁厚 t = 轴心压力 N = 施工荷载 P = 弹性模量 E = 抗压强度 f = 计算跨度 L = 稳定性系数ψ x = 恒载分项系数γ G= 活载分项系数γ Q= 式5.2.1的压应力σ 1= 式5.2.2的压应力σ 2= 76 6 50 5 210000 235 1.0 0.956 1 1 91.18 101.26 MPa MPa mm mm kN kN Mpa MPa m 内径 d (dd) = 截面面积 A = 惯性距I x = 毛截面抵抗距W nx = 最大弯距M x = 回转半径i x = 长细比λ 欧拉临界力N
钢支撑(钢管)强度及稳定性验算

验算 d/t ≤ 100*(235/fy) 刚度验算 Max[λ x,λ y]<[λ ] 验算 N/A+M/γ W ≤ f
满足 满足 满足
构件所属的截面类型 系数α 2 欧拉临界力NEx=π 2EA/(1.1*λ 2 2 2 2 1/2 2 x' )-[(α 2+α 3λ x'+λ x' ) -4λ x' ] }/2λ x' 系数ψ x=1-α 1λ x'2 =1.64-0.23*(d/t)1/4 (d/t>60时) .8N/NEx) (N/mm2) (1-0.8N/NEx) ≤ φ f
向钢斜撑计算
支撑轴心压力N (KN) 最大弯矩Mx (KN· m) 计算长度l0x (mm) 计算长度l0y (mm) 等效弯矩系数β m 支撑面集中荷载p(kN) 截面面积A=π *(d2-d12)/4 (mm2) 截面抵抗矩W=2I/d (mm3) 构件长细比λ x=l0x/i 构件长细比λ y=l0y/i l x sqrt(fy/235) 2034.93 41.78 6800 6800 1.0 4 24328.49 2852661.83 39.7 39.7 58.3
2 x
)(KN)
b类 0.965 2.9E+04 0.865 1.0000 1/2 2 y' )-[(α 2+α 3λ y'+λ y' ) -4λ y' ] }/2λ y' 系数ψ y=1-α 1λ y'2 N/ψ yA+0.7Mx/W (N/mm2) Mx/W ≤ φ f
竖向钢斜撑计算
基本参数 钢管外径d (mm) 管壁厚度t (mm) 钢材抗压强度设计值f (N/mm2) 钢材屈服强度值fy (N/mm2) 钢材弹性模量E (N/mm2) 自重w(kN/m) 500 16.0 300 345 206000.00 2.34
钢支撑稳定实例

3、换乘段800钢支撑验算取标准段4-4验算,取钻孔MBZ3-09-14,最大轴力标准值4233kN执行规范:《建筑结构荷载规范》(GB 50009-2012), 本文简称《荷载规范》 《钢结构设计规范》(GB 50017-2003), 本文简称《钢结构规范》一、钢管支撑材料参数Φ=800mm ,t=16,钢管支撑参数如下:钢管管径:Φ=800mm ;壁厚为t=16mm ;回转半径r=27.72cm ;横截面积:A=39408mm 2;截面惯性矩I :302906cm 4;每延米自重:310.4kg ; 抗弯截面模量:W=7572.7cm 3二、支撑计算长度取设立柱部位最长的钢支撑长度8.3m 。
三、钢管支撑设计承载力本次计算中,标准段轴力标准值为4233 kN 。
支撑轴力设计值应为1.1⨯1.25⨯4233=5820.4kN四、钢管施工荷载钢管支撑工作时考虑不确定情况下,外加1施工集中荷载3 kN ,考虑分项系数1.4,按最不利情况下作用在支撑中心部位考虑,施工荷载产生的弯矩为1.4⨯3⨯11.5/4=12.1 kN.m 。
(设计图纸已要求不允许在钢支撑上外加任何附加荷载) 五、钢管支撑支反力偏心矩根据规范,钢管支撑构件初始偏心矩取4cm 。
支反力产生的偏心矩为5820.4⨯0.04=232.85kN.m六、钢管支撑轴力和弯矩计算值钢管支撑每米自重310.4kg ,考虑安全系数1.25,即3.88kN/m ;自重弯矩G M =1.1⨯3.88⨯8.32 /8=36.8N.m; 弯距计算值:12.1+232.85+36.8=281.75kN.m轴力计算值:5820.4N七、钢管支撑强度、刚度和稳定性验算(1)强度验算:xx x W M A N γ+==175.06MPa<215MPa , 故强度满足要求。
(2)刚度验算λ=L /r=8.3/0.272=29.94<[λ]=150(根据《钢结构设计规范》(GB50017-2003)长细比(刚度)满足规范要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢支撑N=2750KN,L水平向=L竖向=20.9m
钢支撑强度及整体稳定性验算(钢结构设计规范GB50017-2003 5.2):
一、计算参数
分项系数γs= 1.375
初始偏心距e0=0.001*L=0.04m
支撑面均布荷载q0=0.7Kpa
支撑最大轴力标准值Nk=2692KN
初始弯矩M0k=75.7381KN-m由自重及支撑面均布荷载引起的弯最大弯矩Mk=M0k+Nk*e0=183.4181KN-m
稳定系数φ=0.851弯矩作用平面内的轴压构件稳定系截面塑性发展系数γ= 1.15钢管截面
钢管外径D=0.609m
钢管内径d=0.577m
支撑实际长度L=14.8m
截面模量W=0.0982*(D4-d4)/D0.004307m3弯矩作用平面内对较大受压纤维的截面惯性矩I=π(D4-d4)/64=0.001311m4
截面回转半径i=√(D2+d2)/4=0.209733m
截面积A=π*(D2-d2)/4=0.029807m2
参数Nex=π2*EA/(1.1λ2)=11063.97KN OR Nex=π2*EI/[1.1*(μ*L)2]=
弹性模量E= 2.06E+08Kpa Q235钢
杆件计算长度修正系数μ=1
构件长细比λ=L/i=70.56575
等效弯矩系数βmx=1无端弯矩但有横向荷载作用
二、钢支撑强度验算
f=N/A+M/(γ*W)=175.0974Mpa< [f]=215 Mpa,满足要求
其中M=γs*Mk
三、钢支撑整体稳定验算
1、钢支撑竖向平面内的稳定性验算
f1=N/(φ*A)=145.8569Mpa
f2=βmx*M/[γ*W*(1-0.8*N/Nex)]=69.52489Mpa
f=f1+f2=215.3818Mpa< [f]=215 Mpa,满足要求
2、钢支撑竖向平面外的稳定性验算
f1=N/(φy*A)=145.8569
其中弯矩作用平面外的轴心受压稳定系数φy=0.851根据L=11m计算。
f2=η*βtx*Mx/(φb*W1x)=24.0631其中Mx=γs*Nk*e0
其中截面影响系数η=0.7闭口截面取0.7
等效弯矩系数βtx=1等效弯矩系数,考虑无端弯矩但有均匀弯曲的受弯构件整体稳定系数φb=1闭口截面取1.0
f=f1+f2=169.92< [f]=215 Mpa,满足要求
说明:1、M=Mk×γs,N=Nk×γs,Mx=γs×Nk×e0
其它:
钢支撑截面分类a
系数α10.41系数α20.986系数α30.152λn=λ/π*√fy/E=7.26E-01λ√fy/235=67.49619
均布荷载引起的弯矩,按简支计;平面内的轴压构件稳定系数,a类构件
平面内对较大受压纤维的毛截面模量
2*EI/[1.1*(μ*L)2]=11063.97
向荷载作用
5 Mpa,满足要求
5 Mpa,满足要求
系数,考虑无端弯矩但有横向荷载作用。
5 Mpa,满足要求。