弹性力学及有限元考试复习简答题
2013-2014学年弹性力学与有限元分析复习题讲诉

弹性力学与有限元分析复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。
2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。
3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。
4、物体受外力以后,其内部将发生内力,它的集度称为应力。
与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。
应力及其分量的量纲是L -1MT -2。
5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。
6、平面问题分为平面应力问题和平面应变问题。
7、我们把剪应力为零的面称为主平面,把该面的法线方向称为主方向,把该面上的正应力称为主应力。
8、弹性力学平面问题的基本方程包括:2个平衡微分方程,3个物理方程和3个几何方程。
9、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。
10、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。
11、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。
12、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。
13、表示应力分量与体力分量之间关系的方程为平衡微分方程。
14、边界条件表示边界上位移与约束,或应力与面力之间的关系式。
分为位移边界条件、应力边界条件和混合边界条件。
15、按应力求解平面问题时常采用逆解法和半逆解法。
弹性力学及有限单元法_河海大学中国大学mooc课后章节答案期末考试题库2023年

弹性力学及有限单元法_河海大学中国大学mooc课后章节答案期末考试题库2023年1.建立平衡微分方程时,用到了下列哪些假定()、()。
参考答案:连续性_小变形2.有限单元法中的单元仍然满足()、()、()、()的理想弹性体。
参考答案:完全弹性_均匀性_各向同性_连续性3.应力边界条件是指在边界上()之间的关系式。
参考答案:应力与面力4.面力是指分布在物体的力。
参考答案:表面上##%_YZPRLFH_%##表面5.位移是指一点的移动。
参考答案:位置6.线应变(或正应变)以为正。
参考答案:伸长7.极坐标系下的几何方程有()。
参考答案:3个8.极坐标系下的平衡微分方程有()。
参考答案:2个9.应力是指上的内力。
参考答案:单位面积##%_YZPRLFH_%##单位截面10.地面的沉陷与地基的弹性模量无关。
()参考答案:错误11.弹性力学问题中,仅对位移分量要求单值。
()参考答案:错误12.在小边界上按圣维南原理列写的三个边界条件是方程。
参考答案:代数##%_YZPRLFH_%##积分13.在大边界上按精确的应力边界条件,列出的两个边界条件是方程。
参考答案:函数14.精确的应力边界条件可理解为,边界上的应力分量应等于对应的。
参考答案:面力分量15.当体力为常量时,按应力求解可简化为按求解。
参考答案:应力函数16.常体力,是指。
参考答案:体力是常量##%_YZPRLFH_%##体力等于常量##%_YZPRLFH_%##体力为常量17.体力是指分布在物体的力。
参考答案:体积内##%_YZPRLFH_%##体积18.在弹性力学中,可以应用叠加原理。
参考答案:正确19.逆解法先假设应力分量的函数形式进行求解。
参考答案:错误20.应力的量纲与面力的量纲是一样的。
参考答案:正确21.弹性力学中应力的符号与面力的符号规定,在正、负坐标面上是一致的。
参考答案:错误22.弹性力学和材料力学中关于切应力的符号规定是一样的。
参考答案:错误23.小变形假定可简化()、()为线性方程。
弹性力学复习题 有答案

一、选择题1. 下列材料中,( D )属于各向同性材料。
A. 竹材;B. 纤维增强复合材料;C. 玻璃钢;D. 沥青。
2 关于弹性力学的正确认识是(A )。
A. 计算力学在工程结构设计的中作用日益重要;B. 弹性力学从微分单元体入手分析弹性体,与材料力学不同,不需要对问题作假设;C. 任何弹性变形材料都是弹性力学的研究对象;D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。
3. 弹性力学与材料力学的主要不同之处在于( B )。
A. 任务;B. 研究对象;C. 研究方法;D. 基本假设。
4. 所谓“完全弹性体”是指( A )。
A. 材料应力应变关系满足胡克定律;B. 材料的应力应变关系与加载时间历史无关;C. 本构关系为非线性弹性关系;D. 应力应变关系满足线性弹性关系。
5. 所谓“应力状态”是指( B )。
A. 斜截面应力矢量与横截面应力矢量不同;B. 一点不同截面的应力随着截面方位变化而改变;C. 3个主应力作用平面相互垂直;D. 不同截面的应力不同,因此应力矢量是不可确定的。
6. 变形协调方程说明( B )。
A. 几何方程是根据运动学关系确定的,因此对于弹性体的变形描述是不正确的;B. 微分单元体的变形必须受到变形协调条件的约束;C. 变形协调方程是保证所有弹性体变形协调条件的必要和充分条件;D. 变形是由应变分量和转动分量共同组成的。
7. 下列关于弹性力学基本方程描述正确的是( A )。
A. 几何方程适用小变形条件;B. 物理方程与材料性质无关;C. 平衡微分方程是确定弹性体平衡的唯一条件;D. 变形协调方程是确定弹性体位移单值连续的唯一条件;8、弹性力学建立的基本方程多是偏微分方程,最后需结合( B )求解这些微分方程,以求得具体问题的应力、应变、位移。
A .几何方程B .边界条件C .数值方法D .附加假定9、弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程具有下列关系 ( B )。
弹性力学 期末考试复习

弹性力学2005 期末考试复习资料一、简答题1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题?答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。
应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。
平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。
应注意当物体的位移分量完全确定时,形变量即完全确定。
反之,当形变分量完全确定时,位移分量却不能完全确定。
平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。
应注意平面应力问题和平面应变问题物理方程的转换关系。
2.按照边界条件的不同,弹性力学问题分为那几类边界问题?试作简要说明。
答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和混合边界问题。
位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。
应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。
混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。
3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。
如何确定它们的正负号?答:弹性体任意一点的应力状态由6个应力分量决定,它们是:σx、σy、σz、τxy、τyz、、τzx。
正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。
负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。
4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。
答:答:在推导弹性力学基本方程时,采用了以下基本假定:(1)假定物体是连续的。
(2)假定物体是完全弹性的。
(3)假定物体是均匀的。
(4)假定物体是各向同性的。
弹性力学复习重点 试题及答案【整理版】讲解-共10页

弹性力学2019 期末考试复习资料一、简答题1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题?答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。
应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。
平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。
应注意当物体的位移分量完全确定时,形变量即完全确定。
反之,当形变分量完全确定时,位移分量却不能完全确定。
平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。
应注意平面应力问题和平面应变问题物理方程的转换关系。
2.按照边界条件的不同,弹性力学问题分为那几类边界问题?试作简要说明。
答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和混合边界问题。
位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。
应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。
混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。
3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。
如何确定它们的正负号?答:弹性体任意一点的应力状态由6个应力分量决定,它们是:σx、σy、σz、τxy、τyz、、τzx。
正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。
负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。
4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。
答:答:在推导弹性力学基本方程时,采用了以下基本假定:(1)假定物体是连续的。
(2)假定物体是完全弹性的。
(3)假定物体是均匀的。
(4)假定物体是各向同性的。
最新弹性力学复习重点+试题及答案【整理版】

弹性力学2005 期末考试复习资料一、简答题1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题?答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。
应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。
平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。
应注意当物体的位移分量完全确定时,形变量即完全确定。
反之,当形变分量完全确定时,位移分量却不能完全确定。
平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。
应注意平面应力问题和平面应变问题物理方程的转换关系。
2.按照边界条件的不同,弹性力学问题分为那几类边界问题?试作简要说明。
答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和混合边界问题。
位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。
应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。
混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。
3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。
如何确定它们的正负号?答:弹性体任意一点的应力状态由6个应力分量决定,它们是:σx、σy、σz、τxy、τyz、、τzx。
正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。
负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。
4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。
答:答:在推导弹性力学基本方程时,采用了以下基本假定:(1)假定物体是连续的。
(2)假定物体是完全弹性的。
(3)假定物体是均匀的。
(4)假定物体是各向同性的。
弹性力学与有限元分析试题及参考答案

将以上应变分量代入上面的形变协调方程,可知:
(1)相容。
(2) (1分);这组应力分量若存在,则须满足:B=0,2A=C。
(3)0=C;这组应力分量若存在,则须满足:C=0,则 , , (1分)。
5、证明应力函数 能满足相容方程,并考察在如图所示的矩形板和坐标系中能解决什么问题(体力不计, )。
, ,
设三角形悬臂梁的长为l,高为h,则 。根据力的平衡,固定端对梁的约束反力沿x方向的分量为0,沿y方向的分量为 。因此,所求 在这部分边界上合成的主矢应为零, 应当合成为反力 。
可见,所求应力分量满足梁固定端的边界条件。
10、设有楔形体如图所示,左面铅直,右面与铅直面成角 ,下端作为无限长,承受重力及液体压力,楔形体的密度为 ,液体的密度为 ,试求应力分量。
由第一个方程,得
对斜面的任意y值都应成立,这就要求
由第二个方程,得
对斜面的任意x值都应成立,这就要求
由此解得
,
从而应力分量为
, ,
位移边界条件
对称、固定边和简支边上支点的已知位移条件如下:
对称轴:法线转角=0
固定边:挠度=0 (或已知值)
边线转角=0 (或已知值)
法线转角=0 (或已知值)
简支边:挠度=0 (或已知值)
解:将所给应力分量代入平衡微分方程
得
即
由x,y的任意性,得
由此解得, , ,
3、已知应力分量 , , ,判断该应力分量是否满足平衡微分方程和相容方程。
解:将已知应力分量 , , ,代入平衡微分方程
可知,已知应力分量 , , 一般不满足平衡微分方程,只有体力忽略不计时才满足。
按应力求解平面应力问题的相容方程:Байду номын сангаас
弹性力学简答题答案

1、简述弹性力学的基本假设,并说说建立弹性力学基本方程时分别用到哪些假设?a、连续性2、完全弹性3、均匀性4、各向同性5、小变形假设即形变和位移均是微小的平衡微分方程和几何方程:物体的连续性、均匀性、小变形物理方程:全部用到2、简述弹性力学应力、应变、体力和面力的符号规定(可用文字说明)。
正的切应力对应正的切应变吗?应力:截面的外法线沿坐标轴正向,则此截面为正面,正面上的应力沿坐标轴正向为正、负向为负.相反,负面上的应力沿坐标轴负向为正、正向为负。
应变:线应变以伸长时为正、缩短时为负;切应变以直角变小时为正、变大时为负。
体力:沿坐标轴正方向为正、沿坐标轴负方向为负。
面力:沿坐标轴正方向为正、沿坐标轴负方向为负。
正的切应力对应正的切应变。
(图)τxy与τyx均为正的切应力,它们的作用是使DA与DB 间的夹角有减小的趋势,而根据切应变定义,此时应变为正。
3、简述平面问题的几何方程是如何得到的?a、先求出一点沿坐标轴x、y的线应变ξx、ξy。
b、求出两线段PA、PB之间直角的改变(γxy)ξx=&U\&X ξy=&V\&Y γxy=&U\&Y +&V\&X4、如果某一应力边界问题中有m个主要边界和n个次要边界,试问在主要、次要边界上各应满足什么类型的应力边界条件,各有几个条件?答:在m个主要的边界上,每个边界应有两个精确的应力边界条件,在n个次要边界上,每边的应力条件若不能满足,可以用三个等效的积分应力边界条件来确定。
5、如果某一应力边界问题中,除了一个次要边界外,所有的方程和边界条件都已满足,试证:在最后的这个小边界上,三个积分的应力边界条件必然是自然满足的,因而可以不必核实。
答:区域内的每一个微小单元体均已满足平衡条件,其余边界上的应力边界条件也已满足,那么在最后的次要边界上,三个积分的应力边界条件是自然满足的,因而可以不必校核。
6、试分析简支梁受均布载荷时,平面界面假设是否成立?答:弹性力学解答和材料力学解答的差别,是由于各自解法不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹性力学及有限元考试复习简答题1、简述有限单元法常分析的问题。
答:有限单元法是一种用于连续场分析的数值模拟技术,他不仅可以对机械、建筑结构的位移场和应力场进行分析,还可以对电磁学中的电磁场、传热学中的温度场、流体力学中的流体场进行分析。
2、在有限单元法中,位移模式应满足哪些基本条件。
答:1位移函数在单元节点的值应等于节点位移(即单元内部是连续的)2所选位移函数必须保证有限元的解收敛于真实解3、简述有限单元法结构刚度矩阵的特点。
答:对称矩阵奇异矩阵稀疏矩阵具有相对独立性4、简述有限单元法中单元刚度矩阵的性质。
答:1.单元刚度矩阵是对阵矩阵2.单元刚度矩阵的主对角线元素恒为正值3.单元刚度矩阵是奇异矩阵4.单元刚度矩阵仅与本身有关5、简述有限元法中选取单元位移函数(多项式)的一般原则。
答:必须假定一个函数,所假定的位移函数必须满足两个条件:其一,它在单元节点上的值应等于节点位移;其二,由该函数出发得到的有限元解收敛于真实解。
6、要保证有限单元法计算结果的收敛性,位移函数必须满足那些条件?答:1、完备性条件:要求单元的位移函数必须能够满足刚性位移和常量应变状态2、协调性条件:要求单元的位移函数在单元内部必须是连续函数,且必须保证相邻单元间位移协调9、用有限元法分析实际工程问题有哪些基本步骤?需要注意什么问题?1)建立实际工程问题的计算模型2)选择适当的分析工具侧重考虑以下几个方面1)前处理(Preproceing)2)求解(Solution)3)后处理(Potproceing10、在弹性力学中根据什么分别推导出平衡微分方程、几何方程、物理方程,这三个方程分别表示什么关系?答:根据静力学、几何学和物理学三方面条件,分别推导出平衡方程、几何方程和物理方程;三组方程分别表示:应力与载荷关系、应变与位移关系、应力与应变关系。
11、什么是平面应力问题?什么是平面应变问题?分别写出平面应力问题和平面应变问题的物理方程。
答:平面应力问题是指很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力,同时,体力也平行于板面并且不沿厚度变化。
对应的应力分量只有σ某,σy,τ某y。
而平面应变问题是指很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也平行于横截面并且不沿长度变化,对应的位移分量只有u和vP4512、由单元刚度矩阵组集成的整体刚度矩阵是否为满秩阵?缺秩多少?物理意义是什么?13、什么是等参变换单元?为什么要采用等参变化?答:坐标变换中采用节点参数的个数等于位移模式中节点参数个数,这种单元称为等参单元等参单元的主要优点是:1应用范围广2讲不规则的单元变化为规则的单元后,易于构造位移模式3在原结构中可以采用不规则单元,易于适用边界的形状和改变单元的大小4可以灵活的增减节点,容易构造各种过度单元5推导过程具有通用性14、求解动力学方程有限元法的基本思路是什么?答:动力学问题转化成静力学问题15、有限元法存在的问题,其未来的发展?答:缺点:有限元计算,尤其是复杂问题的分析计算,所耗费的计算时间、内存和磁盘空间等计算资源是相当惊人的。
对无线求解域问题没有较好的处理办法。
尽管现有的有限元软件多数使用了网络自适应技术,但在具体应用时,采用什么类型的单元、多大的网络密度等都要完全依赖使用者的经验(优点:有限元法可以模拟各种几何形状复杂的结构,得出其近似解;通过计算机程序,可以广泛地应用于各种场合;可以从其他CAD软件中导入建好的模型;数学处理比较方便,对复杂形状的结构也能使用;有限元法和优化设计方法相结合,一边发挥各自的优点)未来发展自己发挥16、ANSYS程序的主要功能是什么?对于结构分析ANSYS可以进行哪些分析?答:能够进行包括结构、热学、流体、声场、电磁场等多学科的研究结构静力学分析结构动力学分析结构屈曲分析热力学分析电磁场分析流体动力学分析压电分析声场分析17、简要说明ANSYS用户图形界面(GUI)上的主要菜单及功能。
P130只需写第一句话18、简要说明典型的AHSYS分析过程及各步骤的主要工作内容。
P128只需写大标题以及每段的第一个短句19、ANSYS中网格划分的三个主要步骤是什么?答:建立关键点,由这些点建立关键线,进而是面、体20、什么是实体模型?什么是有限元模型?答:划分网格之前的是实体模型划划分网格之后的是有限元模型21、ANSYS载荷的种类有哪些?答:DOF(自由度)载荷、集中力和力矩、表面分布载荷、体积载荷、惯性载荷和耦合场载荷22、在POST1中考察什么结果?在POST26中考察什么结果?P129倒数第九行和倒数第八行23、ANSYS中动态分析与静态分析的主要不同点是什么?P125的“结构静力学分析”的前两句和“结构动力学分析”的那一段24、简述材料力学和弹性力学在研究对象、研究方法方面的异同点。
答:在研究对象方面,材料力学基本上只研究杆状构件,也就是长度远大于高度和宽度的构件;而弹性力学除了对杆状构件作进一步的、较精确的分析外,还对非杆状结构,例如板和壳,以及挡土墙、堤坝、地基等实体结构加以研究。
在研究方法方面,材料力学研究杆状构件,除了从静力学、几何学、物理学三方面进行分析以外,大都引用了一些关于构件的形变状态或应力分布的假定,这就大简化了数学推演,但是,得出的解答往往是近似的。
弹性力学研究杆状构件,一般都不必引用那些假定,因而得出的结果就比较精确,并且可以用来校核材料力学里得出的近似解答。
25、简述弹性力学的研究方法。
答:在弹性体区域内部,考虑静力学、几何学和物理学三方面条件,分别建立三套方程。
即根据微分体的平衡条件,建立平衡微分方程;根据微分线段上形变与位移之间的几何关系,建立几何方程;根据应力与形变之间的物理关系,建立物理方程。
此外,在弹性体的边界上还要建立边界条件。
在给定面力的边界上,根据边界上微分体的平衡条件,建立应力边界条件;在给定约束的边界上,根据边界上的约束条件建立位移边界条件。
求解弹性力学问题,即在边界条件下根据平衡微分方程、几何方程、物理方程求解应力分量、形变分量和位移分量。
26、弹性力学中应力如何表示?正负如何规定?答:弹性力学中正应力用表示,并加上一个下标字母,表明这个正应力的作用面与作用方向;切应力用表示,并加上两个下标字母,前一个字母表明作用面垂直于哪一个坐标轴,后一个字母表明作用方向沿着哪一个坐标轴。
并规定作用在正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。
相反,作用在负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。
27、简述圣维南原理。
答:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受的影响可以不计。
28、简述按应力求解平面问题时的逆解法。
答:所谓逆解法,就是先设定各种形式的、满足相容方程的应力函数;并由应力分量与应力函数之间的关系求得应力分量;然后再根据应力边界条件和弹性体的边界形状,看这些应力分量对应于边界上什么样的面力,从而可以得知所选取的应力函数可以解决的问题。
29、以三节点三角形单元为例,简述有限单元法求解离散化结构的具体步骤。
答:(1)取三角形单元的结点位移为基本未知量。
(2)应用插值公式,由单元的结点位移求出单元的位移函数。
(3)应用几何方程,由单元的位移函数求出单元的应变。
(4)应用物理方程,由单元的应变求出单元的应力。
(5)应用虚功方程,由单元的应力出单元的结点力。
(6)应用虚功方程,将单元中的各种外力荷载向结点移置,求出单元的结点荷载。
(7)列出各结点的平衡方程,组成整个结构的平衡方程组。
30、为了保证有限单元法解答的收敛性,位移模式应满足哪些条件?答:(1)位移模式必须包含单元刚体位移;(2)位移模式必须包含单元的常应变;(3)位移模式在单元内要连续,且唯一在相邻单元之间要协调。
31、在有限单元法中,为什么要求位移模式必须能反映单元的刚体位移?答:每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是本单元的形变无关的,即刚体位移,它是由于其他单元发生了形变而连带引起的。
甚至在弹性体的某些部位,例如在靠近悬臂梁的自由端处,单元的形变很小,单元的位移主要是由于其他单元发生形变而引起的刚体位移。
因此,为了正确反映单元的位移形态,位移模式必须能反映该单元的刚体位移。
32、在有限单元法中,为什么要求位移模式必须能反映单元的常量应变?答:每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。
而且,当单元的尺寸较小时,单元中各点的应变趋于相等,也就是单元的应变趋于均匀,因而常量应变就成为应变的主要部分。
因此,为了正确反映单元的形变状态,位移模式必须能反映该单元的常量应变。
33、在平面三结点三角形单元中,能否选取如下的位移模式并说明理由:答:(1)不能采用。
因为位移模式没有反映全部的刚体位移和常量应变项;对坐标某,y不对等;在单元边界上的连续性条件也未能完全满足。
(2)不能采用。
因为,位移模式没有反映刚体位移和常量应变项;在单元边界上的连续性条件也不满足。
34、从物理概念上讲,有限元法的基本思想是什么(2-1)35、有限单元法解题的基本步骤是什么?(2-2)36、有限元中离散化的基本原则是什么(2-3)37、什么是单元位移函数?单元位移函数收敛的条件是什么(2-4)38、简述有限元中单元刚度矩阵导出过程?(2-5)39、有限元法中的整体分析部分或综合分析部分主要完成哪几项工作?(2-6)40、简述弹性力学方程组的解析法求解方法并讨论其中存在的问题。
(3-1)41、简述泛函、变分、虚位移与最小能量原理。
(3-2)42、为什么要采用有限元法?(3-3)43、简述弹性力学理论分析的主要任务和主要内容(研究对象、研究问题、基本假设、研究方法、平衡微分方程、几何方程、物理方程等)。
(4-1)44、推写平衡微分方程、几何方程、物理方程(5-2)45、简述弹性力学问题的解法?(解的形式、解题思路、必需的已知条件、解题方法和步骤)。
(7-3)46、有限单元法解题思路、解题方法基本思想:首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。
其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量解题方法:47、用位移法求解问题的步骤是什么答:位移法为物理方程与几何方程联立消除应变分量,得到应力与位移的函数方程式,再与平衡方程联立消除应力,得到位移与载荷的方程式。
48、弹性力学和材料力学相比,其研究方法和对象有什么不同答:研究对象:材料力学主要研究杆件,如柱体、梁和轴,在拉压、剪切、弯曲和扭转等作用下的应力、形变和位移。