波动光学与几何光学

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

波动光学与几何光学

波动光学,以波动理论研究光的传播及光与物质相互作用的光学分支。17世纪,R.胡克和C.惠更斯创立了光的波动说。惠更斯曾利用波前概念正确解释了光的反射定律、折射定律和晶体中的双折射现象。

波动光学是光学中非常重要的组成部分,内容包括光的干涉、光的衍射、光的偏振等,无论理论还是应用都在物理学中占有重要地位。F.M.格里马尔迪首先发现光遇障碍物时将偏离直线传播,他把此现象起名为“衍射”。胡克和R.玻意耳分别观察到现称之为牛顿环的干涉现象。这些发现成为波动光学发展史的起点。17世纪以后的一百多年间,光的微粒说(见光的二象性)一直占统治地位,波动说则不为多数人所接受,直到进入19世纪后,光的波动理论才得到迅速发展。资料个人收集整理,勿做商业用途

1800年,T.杨提出了反对微粒说的几条论据,首次提出干涉这一术语,并分析了水波和声波叠加后产生的干涉现象。杨于1801年最先用双缝演示了光的干涉现象(见杨氏实验),第一次提出波长概念,并成功地测量了光波波长。他还用干涉原理解释了白光照射下薄膜呈现的颜色。1809年E.L.马吕斯发现了反射时的偏振现象,随后A.-J.菲涅耳和D.F.J.阿拉戈利用杨氏实验装置完成了线偏振光的叠加实验,杨和菲涅耳借助于光为横波的假设成功地解释了这个实验。1815年,菲涅耳建立了惠更斯-菲涅耳原理,他用此原理计算了各种类型的孔和直边的衍射图样,令人信服地解释了衍射现象。1818年关于阿拉戈斑(见菲涅耳衍射)的争论更加强了菲涅耳衍射理论的地位。至此,用光的波动理论解释光的干涉、衍射和偏振等现象时均获得了巨大成功,从而牢固地确立了波动理论的地位。资料个人收集整理,勿做商业用途

19世纪60年代,J.C.麦克斯韦建立了统一电磁场理论,预言了电磁波的存在并给出了电磁波的波速公式。随后H.R.赫兹用实验方法产生了电磁波。光与电磁现象的一致性使人们确信光是电磁波的一种,光的古典波动理论与电磁理论融成了一体,产生了光的电磁理论。把电磁理论应用于晶体,对光在晶体中的传播规律给出了严格而圆满的解释。19世纪末,H.A.洛伦兹创立了电子论,他把物质的宏观性质归结为构成物质的电子的集体行为,电磁波的作用使带电粒子产生受迫振动并产生次级电磁波,根据这一模型解释了光的吸收、色散和散射等分子光学现象。这种经典的电磁理论并非十全十美,因在关于光与物质相互作用的问题上涉及微观粒子的行为,必须用量子理论才能得到彻底的解决。资料个人收集整理,勿做商业用途

资料个人收集整理,勿做商业用途

波动光学的研究成果使人们对光的本性的认识得到了深化。在应用领域,以干涉原理为基础的干涉计量术为人们提供了精密测量和检验的手段(见干涉仪),其精度提高到前所未有的程度;衍射理论指出了提高光学

仪器分辨本领的途径(见夫琅和费衍射);衍射光栅已成为分离光谱线以进行光谱分析的重要色散元件;各种偏振器件和仪器用来对岩矿晶体进行检验和测量,等等。所有这些构成了应用光学的主要内容。资料个人收集整理,

勿做商业用途

20世纪50年代开始,特别在激光器问世后,波动光学又派生出傅里叶光学、纤维光学和非线性光学等新分支,大大地扩展了波动光学的研究和应用范围。资料个人收集整理,勿做商业用途

光的衍射是光的波动性的重要标志之一,光在传播过程中所呈现的衍射现象,进一步揭示了光的波动本性。同时衍射也是讨论现代光学问题的基础。波在传播中表现出衍射现象,既不沿直线传播而向各方向绕射的现象。窗户内外的人,虽然彼此不相见,都能听到对方的说话声,这说明声波(机械波)能饶过窗户边缘传播。水波也能绕过水面上的障碍物传播。无线电波能绕过山的障碍,使山区也能接受到电台的广播。这些现象表明,当波遇到障碍物时,它将偏离直线传播,这种现象叫做波的衍射资料个人收集整理,勿做商业用途

几何光学是光学学科中以光线为基础,研究光的传播和成像规律的一个重要的实用性分支学科。在几何光学中,把组成物体的物点看作是几何点,把它所发出的光束看作是无数几何光线的集合,光线的方向代表光能的传播方向。在此假设下,根据光线的传播规律,在研究物体被透镜或其他光学元件成像的过程,以及设计光学仪器的光学系统等方面都显得十分方便和实用。资料个人收集整理,勿做商业用途

几何光学以光的直线传播为基础,用光线、波面的概念和几何方法来近似描述光的传播行为;利用费马原理和新笛卡尔符号法则,研究光在平面、球面介面上的成像规律。资料个人收集整理,勿做商业用途

本世纪后半叶发展起来的几何光学当代理论,经历了经典光线力学与量子光线力学两大阶段。经典光线力学是从初期的旧几何光学与牛顿力学相似性研究中脱颖出来的。资料个人收集整理,勿做商业用途

19世纪末到20世纪初,牛顿力学与麦克斯韦的电磁理论都发展到日臻完善,以麦克斯韦电磁理论为基础的波动力学逐渐趋于成熟,经典物理学已形成一套完整的理论体系,当时的绝大部分物理学家深信,物理学中的各种基本问题在原则上已都得到圆满的解决,此时,确实如薛定谔在诺贝尔奖演讲中所说,发展得最早的费马原理、莫培丢最小作用原理以及其后的哈密顿原理与费马原理之间的相似性,在相当长的时间里被人们所遗忘。70年代以来,随着纤维光学的发展,处理介质中光的传输与发射问题时,光的波粒二象性,尤其是光的量子特性突出地表现出来,只计入光的波动性已使问题陷入了局限性。此外,在用波动方程解决具体问题时,由于情况的复杂,已经不可能找到适当的解析解,这使人们陷入困境。因此,迫使人们在几何光学理论的发展中,另辟蹊径,从几何光学与经典力学的相似性出发,建立光的量子理论,并逐步建成经典光线力学的理论体系。资料个人收集整理,勿做商业用途

但实际上,上述光线的概念与光的波动性质相违背,因为无论从能量的观点,还是从光的衍射现象来看,这种几何光线都是不可能存在的。所以,几何光学只是波动光学的近似,是当光波的波长很小时的极限情况。作此近似后,几何光学就可以不涉及光的物理本性,而能以其简便的方法解决光学仪器中的光学技术问题。除了直线传播定律之外,作为几何光学基础的另外两条定律-反射定律和折射定律,也都只在入很小的条件下才近似成立,所以几何光学原理的适用范围是有限度的,在必要的时候需要用更严格的波动理论来代替它。不过由于几何光学处理问题的方法要简单的多,并且它对各种光学仪器中遇到的许多实际问题已足够精确,所以几何光学并不失为各种光学仪器的重要理论基础。资料个人收集整理,勿做商业用途

相关文档
最新文档