离心泵在化工生产中的应用

离心泵在化工生产中的应用
离心泵在化工生产中的应用

I

摘要

离心泵的应用是很广泛的,在国民经济的许多部门要用到它。它的使用涉及到各个领域,有工业,农业和能源方面,甚至在军事方面都用到它的很多原理。在化工生产的实际工况中,由于工作的环境恶劣,动力较强,它的震动幅度相对也较大,因此可能会出现各种各样的问题和故障,所以我重点写了离心泵的故障和它产生的原因以及一些处理它的方法。不过之前我先分析了它的基本的知识,首先是它的构造,它的工作原理和在各领域的应用等。

关键词:原理,拆卸,安装,应用,故障,排除

目录

1 离心泵的概论 (1)

1. 1 离心泵的基本构造 (1)

1. 2 离心泵的过流部件 (2)

1. 3 离心泵的工作原理 (3)

1. 4 离心泵的性能曲线 (4)

2 化工离心泵的应用 (7)

2. 1 离心泵在给水排水及农业工程中的应用 (8)

2. 2 离心泵在工业工程的应用 (9)

2. 3 离心泵在航空航天和航海工程中的应用 (8)

离心泵在化工生产中的应用II

2. 4 离心泵在能源工程中的应用 (10)

3 离心泵的拆装 (11)

3. 1 离心泵的结构图 (11)

3. 2 离心泵一般拆卸步骤 (11)

3. 3 离心泵的拆卸顺序 (12)

3. 4 离心泵泵拆卸注意的事项 (12)

3. 5 离心泵的装配 (12)

4 常见故障原因分析及处理 (13)

4. 1 离心泵启动负荷 (13)

4.2 泵不排液 (13)

4.3 泵排液后中断 (13)

4. 4 流量不足 (13)

4. 5 扬程不够 (14)

4. 6 运行中功耗大 (14)

4. 7 泵振动或异常声响 (14)

4. 8 轴承发热 (15)

4. 9 轴封发热 (15)

4. 10 转子窜动大 (15)

4. 11 发生水击 (15)

4. 12 机械密封的损坏 (18)

4. 13 故障预防措施 (18)

小结 (19)

参考文献 (20)

致谢 (21)

1

1离心泵概论

1.1离心泵的基本构造

离心泵的基本构造是由六部分组成的分别是叶轮,泵体,泵轴,轴承,密封环,填料函。

图1.1 离心泵

(1)叶轮是离心泵的核心部分,它转速高出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。叶轮上的内外表面要求光滑,以减少水流的摩擦损失。

(2)泵体也称泵壳,它是水泵的主体。起到支撑固定作用,并与安装轴承的托架相连接。

(3)泵轴的作用是借联轴器和电动机相连接,将电动机的转距传给叶轮,所以它是传递机械能的主要部件。

(4)轴承是套在泵轴上支撑泵轴的构件,有滚动轴承和滑动轴承两种。滚动轴承使用牛油作为润滑剂加油要适当一般为2/3~3/4的体积太多会发热,太少又有响声并发热!滑动轴承使用的是透明油作润滑剂的,加油到油位线。太多油要沿泵轴渗出并且漂贱,太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承的温度最高在85度一般运行在60度左右,如果高了就要查找原因(是否有杂质,油质是否发黑,是否进水)并及时处理!

(5)密封环又称减漏环。叶轮进口与泵壳间的间隙过大会造成泵内高压区的水经此间隙流向低压区,影响泵的出水量,效率降低!间隙过小会造成叶轮与泵壳摩擦产生磨损。为了增加回流阻力减少内漏,延缓叶轮和泵壳的所使用寿命,在泵壳内缘和叶轮外援结合处装有密封环,密封的间隙保持在0.25~1.10mm之间为宜。

(6)填料函主要由填料,水封环,填料筒,填料压盖,水封管组成。填料函的作用主要是为了封闭泵壳与泵轴之间的空隙,不让泵内的水流不流到外面来也不让外面的

空气进入到泵内。始终保持水泵内的真空!当泵轴与填料摩擦产生热量就要靠水封管住水到水封圈内使填料冷却!保持水泵的正常运行。所以在水泵的运行巡回检查过程中对填料函的检查是特别要注意!在运行600个小时左右就要对填料进行更换。

1.2离心泵的过流部件

离心泵的过流部件有:吸入室,叶轮,压出室三个部分。叶轮室是泵的核心,也是流部件的核心。泵通过叶轮对液体的作功,使其能量增加。叶轮按液体流出的方向分为三类:

(1)径流式叶轮(离心式叶轮)液体是沿着与轴线垂直的方向流出叶轮。

(2)斜流式叶轮(混流式叶轮)液体是沿着轴线倾斜的方向流出叶轮。

(3)轴流式叶轮液体流动的方向与轴线平行的。

叶轮按吸入的方式分为二类:

(1)单吸叶轮(即叶轮从一侧吸入液体)。

(2)双吸叶轮(即叶轮从两侧吸入液体)。

叶轮按盖板形式分为三类:

(1)封闭式叶轮。

(2)敞开式叶轮。

(3)半开式叶轮。

其中封闭式叶轮应用很广泛,前述的单吸叶轮双吸叶轮均属于这种形式。

1.3离心泵的工作原理

离心泵的工作原理是:离心泵所以能把水送出去是由于离心力的作用。水泵在工作前,泵体和进水管必须罐满水行成真空状态,当叶轮快速转动时,叶片促使水很快旋转,旋转着的水在离心力的作用下从叶轮中飞去,泵内的水被抛出后,叶轮的中心部分形成真空区域。水原的水在大气压力(或水压)的作用下通过管网压到了进水管内。这样循环不已,就可以实现连续抽水。水很快旋转,旋转着的水在离心力的作用下从叶轮中飞去,泵内的水被抛出后,叶轮的中心部分形成真空区域。

(1)叶轮被泵轴带动旋转,对位于叶片间的流体做功,流体受离心力的作用,由叶轮中心被抛向外围当流体到达叶轮外周时,流速非常高

(2)泵壳汇集从各叶片间被抛出的液体,这些液体在壳内顺着蜗壳形通道逐渐扩大的方向流动,使流体的动能转化为静压能,减小能量损失所以泵壳的作用不仅在于汇集液体,它更是一个能量转换装置

(3)液体吸上原理:依靠叶轮高速旋转,迫使叶轮中心的液体以很高的速度被抛开,从而在叶轮中心形成低压,低位槽中的液体因此被源源不断地吸上

气缚现象:如果在启动前壳内充满的是气体,则启动后叶轮中心气体被抛时不能在该处形成足够大的真空度,这样槽内液体便不能被吸上这一现象称为气缚(通过第一章的一个例题加以类比说明)

为防止气缚现象的发生,启动前要用外来的液体将泵壳内空间灌满这一步操作称为灌泵为防止灌渗透泵壳内的液体因重力流渗透低位槽内,在泵吸入管路的入口处装有止逆阀(底阀);如果泵的位置低于槽内液面,则启动时无需灌泵

(4)叶轮外周安装导轮,使泵内液体能量转换效率高导轮是位于叶轮外周的固定的带叶片的环这此叶片的弯曲方向与叶轮叶片的弯曲方向相反,其弯曲角度正好与液体从叶轮流出的方向相适应,引导液体在泵壳通道内平稳地改变方向,使能量损耗最小,动压能转换为静压能的效率高

(5)后盖板上的平衡孔消除轴向推力离开叶轮周边的液体压力已经较高,有一部分会渗到叶轮后盖板后侧,而叶轮前侧液体入口处为低压,因而产生了将叶轮推向泵渗透口一侧的轴向推力这容易引起叶轮与泵壳接触处的磨损,严重时还会产生振动平衡孔使一部分高压液体泄露到低压区,减轻叶轮前后的压力差但由此也会此起泵效率的降低(6)轴封装置保证正常、高效运转在工作是泵轴旋转而壳不动,其间的环隙如果不加以密封或密封不好,则外界的空气会渗入叶轮中心的低压区,使泵的流量、效率下降严重时流量为零——气缚通常,可以采用机械密封或填料密封来实现轴与壳之间的密封

1.4离心泵的性能曲线

水泵的性能参数如流量Q扬程H轴功率N转速n效率η之间存在的一定的关系。他们之间的量值变化关系用曲线来表示,这种曲线就称为水泵的性能曲线。水泵的性能参数之间的相互变化关系及相互制约性:首先以该水泵的额顶转速为先决条件的。

图1.3水泵的性能曲线

水泵性能曲线主要有三条曲线:流量—扬程曲线,流量—功率曲线,流量—效率曲线。

A、流量—扬程特性曲线

它是离心泵的基本的性能曲线。比转速小于80的离心泵具有上升和下降的特点(既中间凸起,两边下弯),称驼峰性能曲线。比转速在80~150之间的离心泵具有平坦的性能曲线。比转数在150以上的离心泵具有陡降性能曲线。一般的说,当流量小时,扬程就高,随着流量的增加扬程就逐渐下降。

B、流量—功率曲线

轴功率是随着流量而增加的,当流量Q=0时,相应的轴功率并不等于零,而为一定值(约正常运行的60%左右)。这个功率主要消耗于机械损失上。此时水泵里是充满水的,如果长时间的运行,会导致泵内温度不断升高,泵壳,轴承会发热,严重时可能使泵体热力变形,我们称为“闷水头”,此时扬程为最大值,当出水阀逐渐打开时,流量就会逐渐增加,轴功率亦缓慢的增加。

C、流量—效率曲线

它的曲线象山头形状,当流量为零时,效率也等于零,随着流量的增大,效率也逐渐的增加,但增加到一定数值之后效率就下降了,效率有一个最高值,在最高效率点附近,效率都比较高,这个区域称为高效率区。

2化工离心泵的应用

化工泵的特点,离心泵的特点,化工离心泵的特点

水泵是进行液体输送的机械,化工离心泵是其中的一种,它通过叶轮使流经叶轮的液体受到离心力的作用,提高液体的机械能,从而进行液体输送,它是一个增加液体能量的机器。由于化工生产对水泵的特殊要求,化工离心泵与其他离心泵相比有以下几个特点:

(1)能适应化工工艺需要泵在化工生产中,不但要输送液体物料并提供工艺要求的必要压力,还必须保证输送的物料量,在一定的化工单元操作中,要求离心泵的流量和扬程要稳定,保持泵高效率可靠运行。

(2)能输送临界状态的液体临界状态的液体,当温度升高或压力降低时,往往会汽化。化工泵有时输送临界状态的液体,一旦液体在泵内汽化,则易于产生气蚀破坏,这就要求泵具有较高的抗气蚀性能。同时,液体的汽化,可能引起泵内动静部分的摩擦胶合,这就要求有关间隙取大一些。为了避免由于液体的汽化使机械密封、填料密封、迷宫密封等因干摩擦而破坏,这类化工泵必须有将泵内发生的气体充分排除的结构。

(3)耐腐蚀化工泵输送的介质,包括原料、反应中间物等往往多为腐蚀性介质。这就要求泵的材料选择适当和合理,保证泵的安全、稳定、长寿命运转。

(4)耐高温、低温化工泵输送的高温介质,有流程液体物料,也有反应过程所需要和产生的载热液体。例如:冷凝液泵、锅炉给水泵、导热油泵。化工泵输送的低温介质种类也很多,例如:液氧、液氮、甲烷等,泵的低温工作温度大都在一20~一10℃。不管输送高温或低温的化工泵,选材和结构必须适当,必须有足够的强度,设计、制造的泵的零件能耐热冲击、热膨胀和低温冷变形、冷脆性等的影响。

(5)耐磨损、耐冲刷由于化工泵输送的物流中含有悬浮固体颗粒,同时泵的叶轮、腔体也有的在高压高流速下工作,泵的零部件表面保护层被破坏,其寿命较短,所以必须提高化工泵的耐磨性、耐冲刷性,这就要求泵的材料选用耐磨的锰钢、陶瓷、铸铁等,选用耐冲刷的钛材、锰钢等。

(6)运行可靠化工泵的运行可靠包括两个含义:一是长周期运行不出故障;二是运行中各种参数平稳。运行的可靠性对化工生产至关重要。若泵经常发生故障,不仅会造成经常停产,影响产量和经济效益,而且有时还可能造成化工系统的事故。耐腐蚀泵转速的波动,会引起流量及泵出口压力的波动,使化工生产不能正常进行或系统中的反应受到影响,物料不能平衡,不仅造成浪费,甚至造成产品质量下降或使产品报废。

(7)无泄漏或少泄漏化工泵输送的介质多数为易燃、易爆、有毒、有害的液体,一旦泄漏将严重污染环境,危及人身安全和职工的身心健康,更不符合无泄漏工厂和清洁文明工厂的要求,这就必须保证化工泵运行时不泄漏,在泵的密封上采用新技术、新材料,按规程操作,高质量检修。

输送临界状态液体的离心泵,其轴封材料可采用自润滑性能较好的材料,如聚四氟乙烯、石墨等。对于轴封结构,除填料密封外,还可采用双端面机械密封或迷宫密封等。采用双端面机械密封时,两端面之间的空腔内,充以外来的密封液体;采用迷宫密封时,可从外界引入具有一定压力的密封气体。密封液体或密封气体漏入泵内时,对泵送介质应该是无妨的,如果漏入大气也无害。如输送临界状态的液氦时,双端面机械密封的空腔内可用甲醇作密封液体;输送易汽化的液态烃时,迷宫密封中可引入氮气。

离心泵是各种水力机械中应用最广泛的一种,是和我们日常生活和生产活动联系最紧密的一种机械。

2.1离心泵在给水排水及农业工程中的应用

水是生命之源,是人类赖以生存及工农业生产的重要基础物质。以水为基础的给水排水工程、农业工程是国民经济建设的基础,每个国家都非常重视。

(1)水泵站与水泵

在给水排水工程中,泵从水源取水,抽送至水厂,净化后的清水由送水泵输送到城市管网中去;对于城市的生活污水和工业废水,经排水管渠系统汇集后,也必须由排水泵将污水抽送到污水处理厂,经处理后的污水再由另外排水泵(或用重力自流)排放入江河湖海中去,或者排入农田作为灌溉之用。在污水处理厂内,往往从沉淀池把新鲜污泥抽送到污泥消化池、从沉沙池中排除沉渣、从二次沉淀池中提送活性污泥等,都要用各种不同类型的泵来保证。在给水排水中用得最多的泵是大流量的离心泵。

(2)其它类型泵

在给水排水工程中,除了用到常规的离心泵外,在地势较低的场合排水,以及在干旱地区的地下水供给等工程中,还用到一些特殊的离心泵。

①深井离心泵

图2.1深井离心泵

深井泵多用于埋深大于20m的井水中提水。这种泵的驱动电动机或其它动机机械都装在地面上,因此需经很长的传动轴带动井下的叶轮旋转,将井水提上来。这类泵实际上是一种立式单吸分段式多式离心泵。深井泵的井径一般在100~500mm范围内,流量一般为8~900m/h扬程一般为10~150m。其特点是叶轮均为多级,少者两级,多采用半开式。选用时,井径比泵型号中之数大50mm为好;使用时,叶轮均浸没水中,无需引水。泵开车前,需加橡胶轴衬润滑水。对井水水位变化由较大的适应性。深井泵用料多,价格贵,拆卸困难,对井的质量要求较高。

②潜水电泵

图2.2潜水电泵

潜水电动离心泵是将电动机和离心泵组合在一起潜入水中工作的提水工具。其主要

特点是机泵合一,不用长的传动轴,体积小,质量轻,电动机和水泵均潜入水中,不须修建地面泵房,移动方便,不用灌引水,操作方便,适应性强。由于电动机一般是用水来润和冷却,维修费用小,造价低,投资少,以逐步替代深井泵。

2.2离心泵工程工程中的应用

(1)固体颗粒液体输送

在工业工程中,用液体来输送固体颗粒的流体机械称为固液两相流泵,也称杂质泵。用的泥浆泵、电站除灰的灰渣泵和河道疏浚的挖泥泵等,以广泛应用与治金、石化、食品等工业和污水处理、港口河道疏浚等作业中。近10年来,矿山、能源工业中,固体物管道输送技术迅速发展,杂质泵的需求日趋增加。同时,在现代科学技术的推动下,杂质泵趋于向高寿命、高效率、多品种的方向发展。

①旋流泵。旋流泵(或称涡流泵,即叶轮后缩式泵)适合在要求无堵塞率最高的场合使用,如泵送食品(完好的鱼、水果、蔬菜等),而且日益普遍的用于泵送污水和其它固液混合物。

②吊泵。吊泵是立式多级分段式离心泵。主要用于立井井筒掘进是吸排含有少量泥沙及小颗粒的浑水,也可作为被淹没矿井的排水之用,是煤炭、治金、矿山和国防地下工程常用的排水设备。

③立式无轴封离心式砂泵。立式无轴封离心式砂泵是一种高效、低耗、节能的新型杂质泵,它突破了国内目前杂质泵的结构形式,主要用于输送含有固体悬浮颗粒的两相流体,如精矿、尾矿、砂砾等固液混合料浆,对输送有泡沫状的料浆效果更佳。

(2)离心泵在石油及化学工业的应用

①石油工业中的离心泵

电动潜油离心泵是应用较广泛的一种无杆抽油设备,把电动机和离心泵一起下到井下与油管相连,电动机通过电缆与地面电源连接,它的井下机组由多级离心泵、保护器和潜油电动机组成。电动潜油离心泵特别适用于油田注水开发中、后期时油井的大排量抽油。

②石油化工和化工流程用离心泵

在石油化工和化学工业流程中,离心泵是最常用的流体机械

a)高速离心泵。高速离心泵由于具有单级扬程高、结构紧凑、维护方便、可靠性好及适应范围广等优点,已广泛应用于炼油、石油化工和化学工业等领域。高速离心泵的高转速一般是由电动机驱动和齿轮传动增速机构及相应的润滑和监控系统。由于采用了诱导轮技术使得高速离心泵具有比多级离心泵更高的抗空化性能,最高的抗空化性能,最高的空话比转速可以达到5000以上。因此高速离心泵取代多级离心泵已为离心泵发展的一个重要趋势。

b)大功率离心泵。随着炼油能力和化工生产规模的加大,大流量和高压力离心泵的需要量就会增加,即所需离心泵的功率将很大。

c)低空化余量离心泵。石化,化工等装置中,对有些离心泵要求抗空化性能好、空化余量低。所以在当今社会化工发展中,低空化余量离心泵也必不可少。

d)高入口压力离心泵。在石油化工装置中,需要入口压力较高的高速离心泵,才能满足生产工艺的要求。不过高入口压力离心泵必须要解决机械密封可靠性和轴向力平衡问题等。

除以上几种化工中经常用到的离心泵外,还由高温离心泵、低温离心泵、无泄露离心泵和耐强腐蚀离心泵。

2.3离心泵在航空航天和航海工程中的应用

空间科学技术包括大气层以内的航空科技和大气层以外的航天科技,是当代高技术的重要技术之一,是衡量一个国家科学技术发展水平的重要标志,它强有力地带动相关学科领域的科学技术发展。

随着国际间和地区间的科技合作和文化交流的不断深入,现代交通和运输系统越来越显示出它的重要性。海上交通运输是目前三大交通和运输形式之一。同时由于地球表面2/3由海洋覆盖,海洋不但是自然资源的宝库,而且调节陆地的气候与环境,因此航海工程也是进行海洋科学研究和技术开发的重要手段。

(1)航空工程用离心泵

离心泵在飞机的装备和地面后勤系统中得到广泛的应用。例如,为保证飞机发动机正常运行的润滑系统中的润滑泵及冷却水泵,飞机在地面注油用的加油泵和注水用的注水泵,以及飞机饮用水系统中用到的循环水泵等。

(2)航天工程用离心泵

①液体火箭发动机涡轮泵

航天飞机、宇宙飞船和空间站是进行空间科学研究的重要工具,它们要靠远程大推力运载火箭在发射装置上进行发射并将之送入预定轨道。液体火箭发动机是运载火箭的动力,决定着运载火箭的推力,即决定装载载荷的质量,而涡轮泵推进剂输送系统(以下简称涡轮泵)则是液体火箭发动机的动力部分,是液体火箭发动机的心脏。涡轮泵主要由推进剂离心泵(氧化剂泵和燃料泵)、涡轮、涡轮的动力源、传动部分(需要时)及辅助系统所组成。

②其它离心泵

在航天工程中应用的其它离心泵主要是在地面试验装置、发射装置及测试控制系统中应用。如液体火箭发动机在试验时要用离心泵对涡轮泵系统进行加压试验液体运载火箭发射前的推进剂加注时要采用离心泵将各种所需要的推进剂从贮罐加压输送到每一级火箭发动机的贮箱等。

(3)航海工程用离心泵

①船舶动力中的离心泵

以柴油作为主要燃料的柴油机动力装置是目前使用较为广泛的且具有较高经济性

的动力离心泵推进装置。柴油机装置就用到许多离心泵。例如,在燃油燃烧系统中有输油泵,在滑油系统中有滑油泵、汽轮机油循环泵、冷却系统中有淡水泵和海水泵。

同样,以锅炉产生的蒸汽作为动力源的蒸汽动力装置,以燃料燃烧产生的燃气作为动力的燃气轮机动力装置也用到许多离心泵,如蒸汽动力装置中的锅炉给水泵泵、凝水泵、循环水泵、锅炉燃油泵。

②船舶系统和船舶设备中的离心泵

这类机械用来保证船舶运营和为船上人员的生活需要服务。例如船舱系统中的压载水泵和船底水泵,生活用水系统中的水泵和热水循环泵,消防系统中的救火泵,船舶油水分离装置中的油污水泵,污水处理装置中的用于输送污渣和冲洗水的污渣泵和循环水泵,真空蒸发造水装置中的淡水冷却泵、海水泵、凝水泵、排污泵。

2.4 离心泵在能源工程中的应用

(1)水电站

①供排水系统

水电站供水主要用于;1)水轮发电机组、水冷变压器和水冷空压机等的冷却;2)水轮机导轴承等的润滑;3)射流泵等的操作。用于水电站供排水系统的水泵由卧式离心泵、立式深井泵和潜水泵。离心泵适用于各种类型电站,但由于吸出高度限制,安装位置低,需要考虑防潮和防淹等问题。深井泵不仅在渗漏排水中表现出色,也广泛用于检修排水。潜水泵虽效率高、安装灵活,但造价高,密封要求严格。

②抽水蓄能电站水泵水轮机

随着现代电力的发展,电力系统的发电量不断增大,但电网的峰谷差越来越大,这些巨型热电机组的调节能力又很差,抽水蓄能电站便应运而生了。

可逆式水泵水轮机将水泵和水轮机合二为一,结构上主要仿照离心泵叶轮设计出转轮,配以改善水流的活动导叶综合而成。电机可以两种方式运行;或作为电动机,驱动水泵;或以相反方向旋转,由水轮机驱动做为发电机运行。因之机组尺寸小、设备投资低。

(2)火电站

火电站是将煤、石油、天然气或其它化石燃料产生的热能量最终转化为电能的工厂,火力发电是比较重要的发电形式,它的发电量占我国发电总量的70%左右。火力发电厂应用的离心泵有凝结水泵、增压泵、给水泵、疏水泵、补给水泵、生水泵、灰渣泵和冲灰水泵等,这些泵的制造技术均比较复杂。

①锅炉给水泵

锅炉给水泵是从除氧器水箱中吸水并一很高的压力向锅炉输送给高温给水的设备,是电厂重要的铺助泵。给水泵若发生事故,将会导致锅炉烧干等恶性事故,故其可靠性要求较高。泵的出口压力很高,故多采用多级离心泵。泵的整体结构一般为分段式,其扬程可达1100m,流量可达274m/h,,液体温度可达160c,泵体承压12Mpa,转速为3600r/min.近代大型超高压机组常采用圆筒型双层壳体。

②凝结水泵

凝结水泵的作用是将凝结器热井中25~35c的凝结水抽出,经低压加热器送至除氧器。工作条件较恶劣,须保持水泵完全密封。泵的入口处在真空状态,极易导致水气化,故其抗空化性能要求较高,所以泵的转速不易过高,且需在入口前加诱导轮或采用双吸式首级叶轮。

a)炉水循环离心泵

立式炉水循环离心泵,一般扬程可达80m,流量可达2000m/H,液体温度可达345c,泵体承压16Mpa,转速为3600R/min.可用于大型锅炉炉水的强迫循环。

b)前置增压泵

为了防止锅炉给水泵的空化,在给水泵前面装置一台增压泵,其一般扬程可达

400m,流量可达6120m/h,液体温度可达220c,泵体承压5Mpa,转速为1800r/min.

c)循环水泵

汽轮机的凝汽器、冷油器、发电机冷器都依靠循环水泵供给冷却水。循环水泵的工作特点是低扬程、大流量、故中小机组多采用单级双吸横轴离心泵,扬程可达180m,流量可达10000m/h,液体温度可达160C.

(3)核电站

核电站是利用一座或若干座反应堆中核燃料裂变产生的热量发电的动力设施,是核能的一种和平利用方式,也是一种较为理想的发电形式。与一般火电站相比,投资高出两倍多,但运行费用约1/5或更少。根据国际原子能机构的估计,到2000年核电站的发电量将占世界发电总量的20%。我国以建成了秦山核电站和大亚湾核电站,均为压水堆型,其中泰山核电站是我国自行开发和设计的第一核电站。

核电站的安全注射系统是为了在一回路冷却剂主管道发生不大可能的双端管道断

裂事故时,能保证堆芯的冷却,并防止燃料包壳熔化。停堆冷却系统的主要作用是在停堆后带走堆芯内产生的哀变热。当发生中小等级的失水事故是,安全注射系统工作;失水较严重时,停堆冷却系统也开始起动。具体说来,在反应堆事故停堆后,发出安全注射信号,安全注射系统的高压安注泵迅速起动,从高位换料水箱吸水(含硼酸),注入堆芯吸热。如果必要的话,安注系统的备用系统,即安全壳喷淋系统中的安全喷淋泵也开始执行安全壳的喷淋冷却任务,若高压安注系统仍不能保持压力时,停堆冷却系统的余热导出泵也接受负荷,换料水箱的水位降低到低液位时,改为从安全壳集水坑内吸水,

形成再循环状态。化学和容积控制系统中的离心式上充泵也可作为高压注水泵用。

3离心泵的拆卸

3.1离心泵的结构图

我们大家都知道离心泵的基本构造是由六部分组成的分别是叶轮,泵体,泵轴,轴承,密封环,填料函。我们只有对离心泵的结构很熟悉我们才会对它的拆装很精通。下面我就分析下离心泵的基本结构,下图是离心泵的基本结构图:

图3.1离心泵的结构图

①密封环②叶轮③填料函④泵体⑤泵轴⑥中间支架

3.2离心泵拆卸的一般步骤

(1)拧下悬架体上的放油螺塞,放尽润滑油,移开电机。

(2)松开泵体和轴承体的连接螺栓,将叶轮、轴封体、轴承体与泵体分离。

(3)松开叶轮螺母,取出叶轮和平件键。

(4)取出轴封体和密封部分,将机械密封的静环取出,填料密封的卸下填料盖取出填料即可。

(5)从轴上取下机械密封的传动部分和轴套,填料密封的取下轴套即可。

(6)拆下轴承压盖、甩水橡胶圈,泵轴及轴承。

3.3泵的拆卸顺序

(1) 拧下吐出侧轴承端盖上的螺栓和出水段、尾盖、轴承体三个部件之间的联接螺栓,卸下轴承端盖、轴承体等轴承部件;

(2) 拧下轴上圆螺母并依次卸下轴承内圈、轴承压盖和挡圈后,卸下填料体(包括填料压盖、填料环、填料等在内);

(3) 依次卸下轴上的O形密封圈、轴套、平衡盘和键后,卸下出水段、末导叶、平衡环套等;

(4) 卸下末级叶轮和键后,卸下中段、导叶;按此依次卸下各级叶轮、中段和导叶,直到卸下前级叶轮为止;

(5) 卸下泵联轴器后,拧下进水段和轴承体的联接螺母和轴承压盖上的螺栓后,卸下进水段侧轴承部件;

(6) 将轴从进水段中抽出,拧下轴上固定螺母,依次将轴承内圈、O形密封圈、轴套等卸下;

(7) 采用滑动轴承的泵,其拆卸顺序基本相同,仅在拆卸轴承部件进略有不同。3.4泵拆卸进应注意的事项

(1) 按停车顺序停车;

(2) 泵壳内液体(包括冷却水)应放掉;轴承部件是稀油滑润时,应放掉润滑油;

(3) 拆去妨碍拆卸的附属管路,如平衡管、水封管等管路和引线;

(4) 拆卸应严格保护零件的制造精度不受损伤,拆卸穿杆的同时应将各中段用垫块

垫起,以免各中段止口松动下沉将轴压弯。

3.5泵的装配

泵的装配顺序一般按拆卸顺序相反方向进行。装配质量好坏直接影响能否正常运

行,并影响泵的使用寿命和性能参数。装配时应注意以下几点:

(1)应保护好零件的加工精度和表面粗糙度,不允许有碰伤、划伤等现象,作密封用的二硫二钼要干净,紧固螺钉和螺栓应受力均匀;

(2)叶轮出口流道与导叶进口流道的对中性是依各零件的轴向尺寸来保证,流道对中性的好坏直接影响泵的性能,故泵的尺寸不能随意调整;

(3) 泵装配完毕后,在未装填料前,用手转动泵转子,检查转子在泵中是否灵活,轴向窜动量是否达规定要求;

(4) 检查合格后压入填料,并注意填料环在填料腔的相对位置。

4常见故障原因分析及处理

4.1泵不能启动或启动负荷大

原因及处理方法如下:

(1)原动机或电源不正常。处理方法是检查电源和原动机情况。

(2)泵卡住。处理方法是用手盘动联轴器检查,必要时解体检查,消除动静部分故障。

(3)填料压得太紧。处理方法是放松填料。

(4)排出阀未关。处理方法是关闭排出阀,重新启动。

(5)平衡管不通畅。处理方法是疏通平衡管。

4.2泵不排液

原因及处理方法如下:

(1)灌泵不足(或泵内气体未排完)。处理方法是重新灌泵。

(2)泵转向不对。处理方法是检查旋转方向。

(3)泵转速太低。处理方法是检查转速,提高转速。

(4)滤网堵塞,底阀不灵。处理方法是检查滤网,消除杂物。

(5)吸上高度太高,或吸液槽出现真空。处理方法是减低吸上高度;检查吸液槽压力。

4.3泵排液后中断

原因及处理方法如下:

(1)吸入管路漏气。处理方法是检查吸入侧管道连接处及填料函密封情况。

(2)灌泵时吸入侧气体未排完。处理方法是要求重新灌泵。

(3)吸入侧突然被异物堵住。处理方法是停泵处理异物。

(4)吸入大量气体。处理方法是检查吸入口有否旋涡,淹没深度是否太浅。

4.4流量不足

原因及处理方法如下:

(1)同2.2,2.3。处理方法是采取相应措施。

(2)系统静扬程增加。处理方法是检查液体高度和系统压力。

(3)阻力损失增加。处理方法是检查管路及止逆阀等障碍。

(4)壳体和叶轮耐磨环磨损过大。处理方法是更换或修理耐磨环及叶轮。

(5)其他部位漏液。处理方法是检查轴封等部位。

(6)泵叶轮堵塞、磨损、腐蚀。处理方法是清洗、检查、调换。

4.5扬程不够

原因及处理方法如下:

(1)同2.2的(1),(2),(3),(4),2.3的(1),2.4的(6)。处理方法是采取相应措施。

(2)叶轮装反(双吸轮)。处理方法是检查叶轮。

(3)液体密度、粘度与设计条件不符。处理方法是检查液体的物理性质。

(4)操作时流量太大。处理方法是减少流量。

4.6运行中功耗大

原因及处理方法如下:

(1)叶轮与耐磨环、叶轮与壳有磨檫。处理方法是检查并修理。

(2)同2.5的(4)项。处理方法是减少流量。

(3)液体密度增加。处理方法是检查液体密度。

(4)填料压得太紧或干磨擦。处理方法是放松填料,检查水封管。

(5)轴承损坏。处理方法是检查修理或更换轴承。

(6)转速过高。处理方法是检查驱动机和电源。

(7)泵轴弯曲。处理方法是矫正泵轴。

(8)轴向力平衡装置失败。处理方法是检查平衡孔,回水管是否堵塞。

(9)联轴器对中不良或轴向间隙太小。处理方法是检查对中情况和调整轴向间隙。

4.7泵振动或异常声响

(1)同2.3的(4),2.6的(5),(7),(9)项。处理方法是采取相应措施。

(2)振动频率为0~40%工作转速。过大的轴承间隙,轴瓦松动,油内有杂质,油质(粘度、温度)不良,因空气或工艺液体使油起泡,润滑不良,轴承损坏。处理方法是检查后,采取相应措施,如调整轴承间隙,清除油中杂质,更换新油。

(3)振动频率为60%~100%工作转速。有关轴承问题同(2),或者是密封间隙过大,护圈松动,密封磨损。处理方法是检查、调整或更换密封。

(4)振动频率为2倍工作转速。不对中,联轴器松动,密封装置摩擦,壳体变形,轴承损坏,支承共振,推力轴承损坏,轴弯曲,不良的配合。处理方法是检查,采取相应措施,修理、调整或更换。

(5)振动频率为n倍工作转速。压力脉动,不对中心,壳体变形,密封摩擦,支座或基础共振,管路、机器共振,处理方法是同(4),加固基础或管路。

(6)振动频率非常高。轴磨擦,密封、轴承、不精密、轴承抖动,不良的收缩配合等。处理方法同(4)。

4.8轴承发热

原因及处理方法如下:

(1)轴承瓦块刮研不合要求。处理方法是重新修理轴承瓦块或更换。

(2)轴承间隙过小。处理方法是重新调整轴承间隙或刮研。

(3)润滑油量不足,油质不良。处理方法是增加油量或更换润滑油。

(4)轴承装配不良。处理方法是按要求检查轴承装配情况,消除不合要求因素。

(5)冷却水断路。处理方法是检查、修理。

(6)轴承磨损或松动。处理方法是修理轴承或报废。若松协,复紧有关螺栓。

(7)泵轴弯曲。处理方法是矫正泵轴。

(8)甩油环变形,甩油环不能转动,带不上油。处理方法是更新甩油环。

(9)联轴器对中不良或轴向间隙太小。处理方法是检查对中情况和调整轴向间隙。4.9轴封发热

原因及处理方法如下:

(1)填料压得太紧或磨擦。处理方法是放松填料,检查水封管。

(2)水封圈与水封管错位。处理方法是重新检查对准。

(3)冲洗、冷却不良。处理方法是检查冲洗冷却循环管。

(4)机械密封有故障。处理方法是检查机械密封。

4.10转子窜动大

(1)操作不当,运行工况远离泵的设计工况。处理方法:严格操作,使泵始终在设计工况附近运行。

(2)平衡不通畅。处理方法是疏通平衡管。

(3)平衡盘及平衡盘座材质不合要求。处理方法是更换材质符合要求的平衡盘及平衡盘座。

4.11发生水击

原因及处理方法如下:

(1)由于突然停电,造成系统压力波动,出现排出系统负压,溶于液体中的气泡逸出使泵或管道内存在气体。处理方法是将气体排净。

(2)高压液柱由于突然停电迅猛倒灌,冲击在泵出口单向阀阀板上。处理方法是对泵的不合理排出系统的管道、管道附件的布置进行改造。

(3)出口管道的阀门关闭过快。处理方法是慢慢关闭阀门。

4.12机械密封的损坏

(1) 机械密封的结构

机械密封是一种旋转轴用的接触式动密封,它是在流体介质和弹性元件的作用下,两个垂直于轴心线的密封端面紧贴着相对旋转,从而达到密封的要求。通用离心泵机械密封种类繁多,型号各异,但它们的泄漏点基本上都表现在6处: ①动、静环端面处; ②静环与静环盒的辅助密封处; ③动环与轴套的辅助密封处; ④静环盒与密封泵体之间的密封处;

⑤轴套与泵轴之间的密封处; ⑥动环镶嵌结构配合处。其主要结构如图4.12所示。

图4.1机械密封结构示意图

1、轴套

2、密封垫

3、弹簧座

4、弹簧

5、推环

6、动环O形环

7、挡环

8、动环

9、静环O形环10、静环11、密封填料12、防转销13、静环座14、

静环座密封垫15、锁紧螺钉16、泵轴

(2)机械密封的故障表现

①密封端面的故障:磨损、热裂、变形、破损(尤其是非金属密封端面) 。

②弹簧的故障:松弛、断裂和腐蚀。

③辅助密封圈的故障:装配性的故障有掉块、裂口、碰伤、卷边和扭曲;非装配性的故障有变形、硬化、破裂和变质。

机械密封的故障在运行中集中表现为振动、发热、磨损,最终以介质向外泄漏的形式出现。(3)机械密封泄漏的原因分析及处理

一般泵用机械密封在安装后都要经过静态和动态的试验,以确认机械密封安装正确,当发现有泄漏时,便于及时进行维修。另外,在正常运转时也可能突然出现泄漏,此时可以根据情况进行综合分析,确认导致机械密封泄漏的真正原因,便于解决。下面就静压试验时泄漏、周期性或阵发性泄漏和经常性泄漏3种情况分别进行说明。

①静压试验时泄漏

a、密封端面安装时碰伤、变形、损坏;

b、密封端面间安装时夹入颗粒状杂质;

c、密封端面由于定位螺钉松动或没有拧紧,压盖(静止型的静环组件为压板)没有压紧;

d、机器设备精度不够,使密封端面没有贴合;

e、动静环密封面未被压紧或压缩量不够或损坏;

f、动静环“V”形密封圈方向装反;

g、轴套漏,则是轴套密封圈装配时未被压紧或压缩量不够或损坏。

处理:加强装配时的检查、清洗;严格按技术要求进行装配。

②周期性或阵发性泄漏

a、转子组件轴向窜动量太大。

处理:调整推力轴承,使轴的轴向窜动量不大于0.125mm。

b、转子组件周期性振动。

处理:找出原因并予以消除。

c、密封腔内压力经常大幅度变化。

处理:稳定工艺操作条件。

③经常性泄漏

A.由于密封端面缺陷引起的经常性泄漏

a、弹簧压缩量(机械密封压缩量)太小。

b、弹簧压缩量太大,石墨动环龟裂。

c、密封端面宽度太小。

处理:增大密封端面宽度,并相应增大弹簧作用力。

a、补偿密封环的浮动性太差(密封圈太硬或硬化或压缩量太大,补偿密封环的间隙太

化工原理实验

流量计的种类很多,本实验是研究差压式(速度式)流量计的校正,这类差压式流量计是用测定流体的压差来确定流体流量(或流速)常用的有孔板流量计、文丘里流量计和毕托管等。实验装置用孔板流量计如同2。a)所示,是在管道法兰向装有一中心开孔的不诱钢板。 孔板流量计的缺点是阻力损失大,流体流过孔板流量计,由于流体与孔板有摩擦,流道突然收缩和扩大,形成涡流产生阻力,使部分压力损失,因此流体流过流量计后压力不能完全恢复,这种损失称为永久压力损失(局部阻力损失)。流量计的永久压力损失可以用实验方法测出。如下图所示,实验中测定3、4两个截面的压力差,即为永久压力损失。对孔板流量计,测定孔板前为d1的地方和孔板后6d1的地方两个截面压差 工厂生产的流量计大都是按标准规范生产的。出厂时一般都在标准技术状况下(101325Pa,20℃)以水或空气为介质进行标定,给出流量曲线或按规定的流量计算公式给出指定的流量系数,然而在使用时,往往由于所处温度、压强、介质的性质同标定时不同,因此为了测定准确和使用方便,应在现场进行流量计的校正。即使已校正过的流量计,由于在长时间使用中被磨损较大时,也需要再一次校正。 量体法和称重法都是以通过一定时间间隔内排出的流体体积或质量的测量来实现的 《化工原理实验指导》李发永 流量计原理 工厂生产的流量计,大都是按标准规范制造的。流量计出厂前要经过校核,并作出流量曲线,或按规定的流量计算公式给出指定的流量系数,或将流量系数直接刻在显示仪表刻度盘上供用户使用。 如果用户丢失原厂的流量曲线图;或者流量计经长期使用,由于磨损造成较大的计量误差;或者用户自行制造非标准形式的流量计;或者被测量流体与标定的流体成分或状态不同,则必须对流量计进行校核(或称为标定)。也就是用实验的方法测定流量计的指示值与实际流量的关系,作出流量曲线或确定流量的计算公式。因此,流量计的校核在生产、科研中都具有很重要的实际意义。 Φ16×2.5 Ф:是表示外径 DN:公称直径(近似内径) “Φ”标识普通圆钢管的直径,或管材的外径乘以壁厚,如:Φ25×3标识外径25mm,壁厚为3mm的管材; 以孔板流量计为例进行说明,文丘里流量计的原理与此完全一样,只是流量系数不同。

化工原理实验报告

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 ∑+++=+++f h p u gz We p u gz ρ ρ2222121122 式中: 1Z 、2Z ——各截面间距基准面的距离 (m ) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截面 积求得) (m/s) 1P 、2p ——各截面中心点处的静压力(可由U 型压差计的液位 差可知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 2 22121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图

化工原理实验指导

化工2004/02 化工原理实验 福州大学化工原理实验室 二〇〇四年二月

前言 实施科教兴国战略和可持续发展战略,迎接知识经济时代的到来,建设面向知识经济时代的国家创新体系,要求造就一支庞大的高素质的创造性人才队伍。因此,作为高级人才的培养基地,高等院校应当把创造力的教育和培养贯穿于各门课程教学及实践性教学环节中。实践性教学环节相对于课堂理论教学环节,更能贯穿对学生创造力的开发,其教学内容、方法、手段如何能适应创造性人才的培养要求尤为重要。传统的大学实验教学,其内容是以验证前人知识为主的验证型实验,其方法是教师手把手地教,这些都不利于培养学生的主动性和创造性。当今,大学实验教学改革中,普遍开设综合型、设计型、研究型实验,是对学生进行创造教育的重要思路和做法。在“211工程”重点建设的大学必须通过的本科教学评优工作指标中就明确要求综合型、设计型、研究型实验应占70%以上。 《化工原理实验》是一门技术基础实验课,在培养化工类及相关专业的高级人才中起举足轻重的作用,被学校确定为我校参加本科教学评优工作重点建设的基础课程之一。福州大学投入247万元用于建设以“三型”实验为主的现代化的具有国内先进水平的化工原理实验室。目前,第一期投入100万元的化工原理实验室建设工作已经完成,第二期投入147万元的建设工作正在进行中。已建成具有国内先进水平的实验装置18套,其中有6套是我校与北京化工大学、天津大学共同联合研制的,有2套是我们自行研制的。这些装置将化工知识与计算机技术紧密地结合起来,同时还融合了化学、电工电子、数学、物理及机械等多学科的知识,具有计算机数据采集、处理和控制等功能,能够针对不同专业的要求开出不同类型的“三型”实验。有了这些高新技术装备的实验装置,我们还必须花大力气进行化工原理实验内容、方法的改革,必须以当代教育思想、教育方法论及教育心理学为指导,研究以学生自主学习为主的启发式、交互式、研讨式、动手式的实验教学方法,从实验方案拟定、实验步骤设计、实验流程装配、实验现象观察、实验数据处理和实验结果讨论等方面有效地培养学生的创造性思维和实践动手能力。《化工原理实验讲义》就是为了适应化工原理实验教学内容、方法、手段的改革要求而编写的。 《化工原理实验讲义》由施小芳高级实验师执笔主编,李微高级实验师、林述英实验师参与编写工作,阮奇教授主审。叶长燊等老师参加了编写讲义的讨论,并提出许多宝贵意见。在此,对本讲义在编写过程中给予热心帮助和支持的老师,表示衷心的感谢。 本讲义在编写过程中,参阅了有关书籍、杂志、兄弟院校的讲义等大量资料,由于篇幅所限,未能一一列举,谨此说明。本讲义难免存在不妥之处,衷心地希望读者给予指教,使本讲义日臻完善。 福州大学化工原理实验室 2004.2.5

化工原理实验报告二离心泵

实验二、离心泵特性曲线的测定 一、 实验目的 1.学习离心泵的操作。 2.测定单级离心泵在固定转速下的特定曲线。 二、 实验原理 离心泵的性能一般用三条特性曲线来表示,分别为H-Q 、N-Q 和-Q 曲线,本实验利用如图1所示的实验装置进行测定工作。 泵的压头用下式计算 g u u h H H H 22 1220-+++=真空表压力表 其中压力表H 及真空表H 分别表示离心泵出口压力表和进口真空表的读数换算成米液柱的数值,0h 表示进、出口管路两测压点间的垂直距离,可忽略不计,21u u =,故真空表压力表H H H += g QH N e ρ=/(3600 1000) 效率%100?= N N e η, 式中:e N ——泵的有效功率,kW ; N ——电机的输入功率,由功率表测出,kW ; Q ——泵的流量,-13h m ?。

图1. 实验装置流程图 1-底阀2-入口真空表3-离心泵4-出口压力表5-充水阀6-差压变送器7-涡轮流量计8-差压变送器9-水箱 离心泵入口和出口管的规格为 1#~2#装置,入口内径为35.75mm,出口内径为27.1mm 3#~8#装置,入口内径为41mm42.25 3.25,出口内径为35.75mm 48 3.5 三、实验步骤 1.打开充水阀向离心泵泵壳内充水。 2.关闭充水阀、出口流量调节阀,启动总电源开关,启动电机电源开关。 3.打开出口调节阀至最大,记录下管路流量最大值,即控制柜上的涡轮流量计的读数。 4.调节出口阀,流量从最大到最小测取8次,再由最小到最大测取8次,记录各次实验数据,包括压力表读数、真空表读数、涡轮流量计的读数、功率表的读数。

化工原理实验报告

化工原理实验报告 Prepared on 22 November 2020

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 式中: 1Z 、2Z ——各截面间距基准面的距离 (m ) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截面积求得) (m/s)

1P 、2p ——各截面中心点处的静压力(可由U 型压差计的液位差可 知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 222121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图 泵额定流量为10L/min,扬程为8m,输入功率为80W. 实验管:内径15mm 。 四、实验操作步骤与注意事项 1、熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。 2、打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平(开关几次)。 3、打开阀5,观察测压管水头和总水头的变化趋势及位置水头、压强水头之间的相互关系,观察当流量增加或减少时测压管水头的变化情况。 4、将流量控制阀开到一定大小,观察并记录各测压点平行与垂直流体流动方向的液位差△h 1…△h 4。要注意其变化情况。继续开大流量调节阀,测压孔正对水流方向,观察并记录各测压管中液位差△h 1…△h 4。 5、实验完毕停泵,将原始数据整理。 实验二 离心泵性能曲线测定 一、实验目的 1. 了解离心泵的构造和操作方法 2. 学习和掌握离心泵特性曲线的测定方法

化工原理实验指导(1)

实验1 雷诺实验 一、实验目的 1、观察液体在不同流动状态时的流体质点的运动规律。 2、观察液体由层流变紊流及由紊流变层流的过渡过程。 3、测定液体在园管中流动时的上临界雷诺数Rec1和下临界雷诺数Rec2。 二、实验要求 1、实验前认真阅读实验教材,掌握与实验相关的基本理论知识。 2、熟练掌握实验内容、方法和步骤,按规定进行实验操作。 3、仔细观察实验现象,记录实验数据。 4、分析计算实验数据,提交实验报告。 三、实验仪器 1、雷诺实验装置(套), 2、蓝、红墨水各一瓶, 3、秒表、温度计各一只, 4、 卷尺。 四、实验原理 流体在管道中流动,有两种不同的流动状态,其阻力性质也不同。在实验过程中,保持水箱中的水位恒定,即水头H不变。如果管路中出口阀门开启较小,在管路中就有稳定的平均流速u,这时候如果微启带色水阀门,带色水就会和无色水在管路中沿轴线同步向前流动,带色水成一条带色直线,其流动质点没有垂直于主流方向的横向运动,带色水线没有与周围的液体混杂,层次分明的在管道中流动。此时,在速度较小而粘性较大和惯性力较小的情况下运动,为层流运动。如果将出口阀门逐渐开大,管路中的带色直线出现脉动,流体质点还没有出现相互交换的现象,流体的运动成临界状态。如果将出口阀门继续开大,出现流体质点的横向脉动,使色线完全扩散与无色水混合,此时流体的流动状态为紊流运动。

雷诺数:γ d u ?= Re 连续性方程:A ?u=Q u=Q/A 流量Q 用体积法测出,即在时间t 内流入计量水箱中流体的体积ΔV 。 t V Q ?= 4 2 d A ?=π 式中:A-管路的横截面积 u-流速 d-管路直径 γ-水的粘度 五、实验步骤 1、连接水管,将下水箱注满水。 2、连接电源,启动潜水泵向上水箱注水至水位恒定。 3、将蓝墨水注入带色水箱,微启水阀,观察带色水的流动从直线状态至脉动临界状态。 4、通过计量水箱,记录30秒内流体的体积,测试记录水温。 5、调整水阀至带色水直线消失,再微调水阀至带色水直线重新出现,重复步骤4。 6、层流到紊流;紊流到层流各重复实验三次。 六、数据记录与计算 d= mm T (水温)= 0C 七、实验分析与总结(可添加页) 1、描述层流向紊流转化以及紊流向层流转化的实验现象。 2、计算下临界雷诺数以及上临界雷诺数的平均值。

北京化工大学化工原理离心泵性能实验报告

2011精品 北京化工大学 化工原理实验报告 实验名称:离心泵性能实验 班级: 姓名: 学号:实验日期: 同组人:

实验名称:离心泵性能实验 本实验以水为工作流体,使用了额定扬程He为20m,转速为2900 r/min IS 型号的离心泵实验装置。实验通过调节阀门改变流量,测得不同流量下离心泵的各项性能参数,流量通过计量槽和秒表测量。实验中直接测量量有P真空表、P压力表、电机功率N电、孔板压差ΔP、计量槽水位上升高度ΔL、时间t,根据上述测量量来计算泵的扬程He、泵的有效功率Ne、轴功率 N轴及效率η,从而绘制He-Q、Ne-Q和η-Q三条曲线即泵的特性曲线图,并根据此图求出泵的最佳操作范围;又由P、Q求出孔流系数C0、Re,从而绘制C0-Re曲线图,求出孔板孔流系数C0;最后绘制管路特性曲线H-Q曲线图。 本实验数据由excel处理,所有图形的绘制也由excel来完成。 一、实验目的及任务 ①了解离心泵的构造,掌握其操作和调节方法。 ②测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 ③熟悉孔板流量计的构造、性能及安装方法。 ④测定孔板流量计的孔流系数。 ⑤测定管路特性曲线。 二、基本原理 1.离心泵特性曲线测定 离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到。由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头笑,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q、N-Q 和η-Q三条曲线称为离心泵的特性曲线。另外,曲线也可以求出泵的最佳操作范围,作为选泵的依据。 (1)泵的扬程He He = H压力表+ H真空表+ H0 式中:H真空表——泵出口的压力,m H2O;,

化工原理实验资料

实验一干燥实验 一、实验目的 1.了解洞道式循环干燥器的基本流程、工作原理和操作技术。 2.掌握恒定条件下物料干燥速率曲线的测定方法。 3.测定湿物料的临界含水量X C,加深对其概念及影响因素的理解。 4.熟悉恒速阶段传质系数K H、物料与空气之间的对流传热系数的测定方法。 二、实验内容 1.在空气流量、温度不变的情况下,测定物料的干燥速率曲线和临界含水量,并了解其影响因 素。 2.测定恒速阶段物料与空气之间的对流传热系数「和传质系数K H。 三、基本原理 干燥操作是采用某种方式将热量传给湿物料,使湿物料中水分蒸发分离的操作。干燥操作同时伴有传热和传质,而且涉及到湿分以气态或液态的形式自物料内部向表面传质的 机理。由于物料含水性质和物料形状上的差异,水分传递速率的大小差别很大。概括起来说,影响传递速率的因素主要有:固体物料的种类、含水量、含水性质;固体物料层的厚度或颗粒的大小;热空气的温度、湿度和流速;热空气与固体物料间的相对运动方式。目前尚无法利用理论方法来计算干燥速率(除了绝对不吸水物质外),因此研究干燥速率大多采用实验的方法。 干燥实验的目的是用来测定干燥曲线和干燥速率曲线。为简化实验的影响因素,干燥实验是在恒定的干燥条件下进行的,即实验为间歇操作,采用大量空气干燥少量的物料,且空气进出干燥器时的状态如温度、湿度、气速以及空气与物料之间的流动方式均恒定不 变。 本实验以热空气为加热介质,甘蔗渣滤饼为被干燥物。测定单位时间内湿物料的质量变化,实验进行到物料质量基本恒定为止。物料的含水量常用相对与物料总量的水分含量, 即以湿物料为基准的水分含量,用?来表示。但因干燥时物料总量在变化,所以采用以干 基料为基准的含水量X表示更为方便。??与X的关系为: CO X (8—1)1 - ■ 式中:X —干基含水量kg水/kg绝干料; ■—湿基含水量kg水/kg湿物料。 物料的绝干质量G C是指在指定温度下物料放在恒温干燥箱中干燥到恒重时的质量。干燥曲线即物料的干基含水量X与干燥时间?的关系曲线,它说明物料在干燥过程中,干 基含水量随干燥时间变化的关系。物料的干燥曲线的具体形状因物料性质及干燥条件而变,但是曲线的一般形状,如图(8—1)所示,开始的一小段为持续时间很短、斜率较小的直线段AB段;随后为持续时间长、斜率较大的直线BC;段以后的一段为曲线

化工原理实验报告

化工原理实验报告

————————————————————————————————作者:————————————————————————————————日期: ?

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 ∑+++=+++f h p u gz We p u gz ρ ρ2222121122 式中: 1Z 、2Z ——各截面间距基准面的距离 (m) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截 面积求得) (m/s) 1P 、2p ——各截面中心点处的静压力(可由U型压差计的液位 差可知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 2 22121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图

化工原理实验实验报告

篇一:化工原理实验报告吸收实验 姓名 专业月实验内容吸收实验指导教师 一、实验名称: 吸收实验 二、实验目的: 1.学习填料塔的操作; 2. 测定填料塔体积吸收系数kya. 三、实验原理: 对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。 (一)、空塔气速与填料层压降关系 气体通过填料层压降△p与填料特性及气、液流量大小等有关,常通过实验测定。 若以空塔气速uo[m/s]为横坐标,单位填料层压降?p[mmh20/m]为纵坐标,在z ?p~uo关系z双对数坐标纸上标绘如图2-2-7-1所示。当液体喷淋量l0=0时,可知 为一直线,其斜率约1.0—2,当喷淋量为l1时,?p~uo为一折线,若喷淋量越大,z ?p值较小时为恒持z折线位置越向左移动,图中l2>l1。每条折线分为三个区段, 液区,?p?p?p~uo关系曲线斜率与干塔的相同。值为中间时叫截液区,~uo曲zzz ?p值较大时叫液泛区,z线斜率大于2,持液区与截液区之间的转折点叫截点a。 姓名 专业月实验内容指导教师?p~uo曲线斜率大于10,截液区与液泛区之间的转折点叫泛点b。在液泛区塔已z 无法操作。塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。 图2-2-7-1 填料塔层的?p~uo关系图 z 图2-2-7-2 吸收塔物料衡算 (二)、吸收系数与吸收效率 本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收姓名 专业月实验内容指导教师平均推动力可用对数平均浓度差法进行计算。其吸收速率方程可用下式表示: na?kya???h??ym(1)式中:na——被吸收的氨量[kmolnh3/h];?——塔的截面积[m2] h——填料层高度[m] ?ym——气相对数平均推动力 kya——气相体积吸收系数[kmolnh3/m3·h] 被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2): na?v(y1?y2)?l(x1?x2) (2)式中:v——空气的流量[kmol空气/h] l——吸收剂(水)的流量[kmolh20/h] y1——塔底气相浓度[kmolnh3/kmol空气] y2——塔顶气相浓度[kmolnh3/kmol空气] x1,x2——分别为塔底、塔顶液相浓度[kmolnh3/kmolh20] 由式(1)和式(2)联解得: kya?v(y1?y2)(3) ??h??ym 为求得kya必须先求出y1、y2和?ym之值。 1、y1值的计算:

化工原理实验教材

雷诺演示实验 一、实验目的 1 观察流体流动时的不同流动型态 2 观察层流状态下管路中流体的速度分布状态 3 熟悉雷诺准数(Re)的测定与计算 4 测定流动型态与雷诺数(Re)之间的关系及临界雷诺数 二、实验原理 流体在流动过程中由三种不同的流动型态,即层流、过渡流和湍流。主要取决于流体流动时雷诺数Re的大小,当Re大于4000时为湍流,小于 2000 时为层流,介于两者之间为过渡流。影响流体流动型态的因素,不仅与流体流速、密度、粘度有关,也与管道直径和管型有关,其定义式如下: 1.1-1式中:d 管子的直径m u 流体的速度m/s ρ 流体的密度kg/m 3 μ流体的粘度 Pa· s 三、实验装置 雷诺演示实验装置如图1.1所示,其中管道直径为20 mm。

图1.1 雷诺演示实验装置图 1—有机玻璃水槽;2 —玻璃观察管;3 —指试液;4,5 —阀门;6 —转子流量计 四、实验步骤 1 了解实验装置的各个部件名称及作用,并检查是否正常。 2 打开排空阀排气,待有机玻璃水槽溢流口有水溢出后开排水阀 调节红色指示液,消去原有的残余色。 3 打开流量计阀门接近最大,排气后再关闭。 4 打开红色指示液的针形阀,并调节流量(由小到大),观察指示液 流动形状,并记录指示液成稳定直线,开始波动,与水全部混合时流量计的读数。 5 重复上述实验3~5次,计算Re临界平均值。 6 关闭阀1、11,使观察玻璃管6内的水停止流动。再开阀1,让指 示液流出1~2 cm 后关闭1,再慢慢打开阀9,使管内流体作层流流动,观察此时速度分布曲线呈抛物线形状。 7 关闭阀1、进水阀,打开全开阀9排尽存水,并清理实验现场。

化工原理实验资料

实验一 干燥实验 一、实验目的 1. 了解洞道式循环干燥器的基本流程、工作原理和操作技术。 2. 掌握恒定条件下物料干燥速率曲线的测定方法。 3. 测定湿物料的临界含水量X C ,加深对其概念及影响因素的理解。 4. 熟悉恒速阶段传质系数K H 、物料与空气之间的对流传热系数α的测定方法。 二、实验内容 1. 在空气流量、温度不变的情况下,测定物料的干燥速率曲线和临界含水量,并了解其 影响因素。 2. 测定恒速阶段物料与空气之间的对流传热系数α和传质系数K H 。 三、基本原理 干燥操作是采用某种方式将热量传给湿物料,使湿物料中水分蒸发分离的操作。干燥操作同时伴有传热和传质,而且涉及到湿分以气态或液态的形式自物料内部向表面传质的机理。由于物料含水性质和物料形状上的差异,水分传递速率的大小差别很大。概括起来说,影响传递速率的因素主要有:固体物料的种类、含水量、含水性质;固体物料层的厚度或颗粒的大小;热空气的温度、湿度和流速;热空气与固体物料间的相对运动方式。目前尚无法利用理论方法来计算干燥速率(除了绝对不吸水物质外),因此研究干燥速率大多采用实验的方法。 干燥实验的目的是用来测定干燥曲线和干燥速率曲线。为简化实验的影响因素,干燥实验是在恒定的干燥条件下进行的,即实验为间歇操作,采用大量空气干燥少量的物料,且空气进出干燥器时的状态如温度、湿度、气速以及空气与物料之间的流动方式均恒定不变。 本实验以热空气为加热介质,甘蔗渣滤饼为被干燥物。测定单位时间内湿物料的质量变化,实验进行到物料质量基本恒定为止。物料的含水量常用相对与物料总量的水分含量,即以湿物料为基准的水分含量,用ω来表示。但因干燥时物料总量在变化,所以采用以干基料为基准的含水量X 表示更为方便。ω与X 的关系为: X = -ω ω 1 (8—1) 式中: X —干基含水量 kg 水/kg 绝干料; ω—湿基含水量 kg 水/kg 湿物料。 物料的绝干质量G C 是指在指定温度下物料放在恒温干燥箱中干燥到恒重时的质量。干燥曲线即物料的干基含水量X 与干燥时间τ的关系曲线,它说明物料在干燥过程中,干基含水量随干燥时间变化的关系。物料的干燥曲线的具体形状因物料性质及干燥条件而变,但是曲线的一般形状,如图(8—1)所示,开始的一小段为持续时间很短、斜率较小的直线段AB 段;随后为持续时间长、斜率较大的直线BC ;段以后的一段为曲线

化工原理实验指导书

化工原理实验指导书

目录 实验一流体流动阻力的测定 (1) 实验二离心泵特性曲线的测定 (5) 实验三传热系数测定实验 (7) 实验四筛板式精馏塔的操作及塔板效率测定 (9) 实验五填料塔吸收实验 (12) 演示实验柏努利方程实验 (14)

雷诺实验 (16)

实验一流体流动阻力的测定 、实验目的 1、 了解流体在管道内摩擦阻力的测定方法; 2、 确定摩擦系数入与雷诺数 Re 的关系。 二、基本原理 由于流体具有粘性, 在管内流动时必须克服内摩擦力。 当流体呈湍流流动时, 质点间不 断相互碰撞,弓I 起质点间动量交换,从而产生了湍动阻力,消耗了流体能量。流体的粘性和 流体 的涡流产生了流体流动的阻力。 在被侧直管段的两取压口之间列出柏努力方程式, 可得: △ P f = △ P ’ P f L u 2 h f d 2 L —两侧压点间直管长度(m ) 2d P f d —直管内径(m ) 入一摩擦阻力系数 u —流体流速(m/s ) △ P f —直管阻力引起的压降(N/m 2 ) 厂流体粘度(Pa.s ) p — 流体密度(kg/m 3 ) 本实验在管壁粗糙度、管长、管径、一定的条件下用水做实验,改变水流量,测得一系 列流量下的△ P f 值,将已知尺寸和所测数据代入各式,分别求出入和 Re ,在双对数坐标纸 上绘出入?Re 曲线。 三、实验装置简要说明 水泵将储水糟中的水抽出, 送入实验系统,首先经玻璃转子流量计测量流量, 然后送入 被测直管段测量流体流动的阻力,经回流管流回储水槽,水循环使用。 被测直管段流体流 动阻力△ P 可根据其数值大小分别采用变压器或空气一水倒置 U 型管来测量。 四、实验步骤: 1、 向储水槽内注蒸馏水,直到水满为止。 2、 大流量状态下的压差测量系统 ,应先接电预热10-15分钟,观擦数字仪表的初始值并 记 录后方可启动泵做实验。 3、 检查导压系统内有无气泡存在 .当流量为0时打开B1、B2两阀门,若空气一水倒置 U 型管内两液柱的高度差不为 0,则说明系统内有气泡存在,需要排净气泡方可测取数据。 排气方法:将流量调至较大,排除导压管内的气泡,直至排净为止。 4、 测取数据的顺序可从大流量至小流量,反之也可,一般测 15?20组数,建议当流量 读数 小于300L/h 时,用空气一水倒置 U 型管测压差△ P 。 5、待数据测量完毕,关闭流量调节阀,切断电源。 Re du

化工原理实验讲义全

化工原理实验 讲义 专业:环境工程 应用化学教研室 2015.3

实验一 流体机械能转化实验 一、实验目的 1、了解流体在管流动情况下,静压能、动能、位能之间相互转化关系,加深对伯努利方程的理解。 2、了解流体在管流动时,流体阻力的表现形式。 二、实验原理 流动的流体具有位能、动能、静压能、它们可以相互转换。对于实际流体, 因为存在摩擦,流动过程中总有一部分机械能因摩擦和碰撞,而被损失掉。所以对于实际流体任意两截面,根据能量守恒有: 2211221222f p v p v z z H g g g g ρρ++=+++ 上式称为伯努利方程。 三、实验装置(d A =14mm ,d B =28mm ,d C =d D =14mm ,Z A -Z D =110mm ) 实验装置与流程示意图如图1-1所示,实验测试导管的结构见图1-2所示: 图1-1 能量转换流程示意图

图1-2实验导管结构图 四、操作步骤 1.在低位槽中加入约3/4体积的蒸馏水,关闭离心泵出口上水阀及实验测试 导管出口流量调节阀和排气阀、排水阀,打开回水阀后启动离心泵。 2.将实验管路的流量调节阀全开,逐步开大离心泵出口上水阀至高位槽溢流 管有液体溢流。 3.流体稳定后读取并记录各点数据。 4.关小流量调节阀重复上述步骤5次。 5.关闭离心泵出口流量调节阀后,关闭离心泵,实验结束。 五、数据记录和处理 表一、转能实验数据表 流量(l/h) 压强mmH2O 压强 mmH2O 压强 mmH2O 压强 mmH2O 压强 mmH2O 压强 mmH2O 测试点标 号 1 2 3 4 5 6 7 8

化工原理实验讲

1流体阻力测定实验 实验目的 1)掌握流体流经直管和阀门时阻力损失的测定方法,通过实验了解流体流动中能量损失的变化规律。 2 )测定直管摩擦系数入与雷诺准数Re的关系,将所得的入~Re方程与经验公式比较。 3 )测定流体流经阀门时的局部阻力系数E。 4 )学会倒U形差压计、差压传感器、涡轮流量计的使用方法。 5 )观察组成管路的各种管件、阀门,并了解其作用。 基本原理 流体在管内流动时,由于粘性剪应力和涡流的存在,不可避免地要消耗一定的机械能,这种机械能的消耗包括流体流经直管的沿程阻力和因流体运动方向改变所引起的局部阻力。 1)沿程阻力 流体在水平等径圆管中稳定流动时,阻力损失表现为压力降低,即 h f 仏上厘(1 —1) 影响阻力损失的因素很多,尤其对湍流流体,目前尚不能完全用理论方法求解,必须通 过实验研究其规律。为了减少实验工作量,使实验结果具有普遍意义,必须采用因次分析方法将各变量组合成准数关联式。根据因次分析,影响阻力损失的因素有, (1)流体性质:密度P、粘度卩; (2)管路的几何尺寸:管径d、管长I、管壁粗糙度£; (3)流动条件:流速卩。 可表示为: p f (d,l,,,u,)(1—2)组合成如下的无因次式: p 2 (du I J d ,—)(1—3) u d p du I u2 (,—)? d d 2 du 令( , d )/ (1 — 4) 则式(1 —1)变为: 2 h f P 1u(1 - 5) d2 式中,入称为摩擦系数。层流(滞流)时,入=64/R e;湍流时入是雷诺准数R e和相对粗糙度的函数,须由实验确定。

2) 局部阻力 局部阻力通常有两种表示方法,即当量长度法和阻力系数法。 (1)当量长度法 流体流过某管件或阀门时,因局部阻力造成的损失,相当于流体流过与其具有相当管径 长度的直管阻力损失,这个直管长度称为当量长度,用符号le表示。这样,就可以用直管 阻力的公式来计算局部阻力损失,而且在管路计算时.可将管路中的直管长度与管件、阀门的当量长度合并在一起计算,如管路中直管长度为I,各种局部阻力的当量长度之和为le,则流体在管路中流动时的总阻力损失h f为 I leu2 h f(1 —6) d 2 (2)阻力系数法\ 流体通过某一管件或阀门时的阻力损失用流体在管路中的动能系数来表示,这种计算局 部阻力的方法,称为阻力系数法。 即 2 . u h f (1 —7) 2 式中,E――局部阻力系数,无因次;u 在小截面管中流体的平均流速,m/ s。 由于管件两侧距测压孔间的直管长度很短?引起的摩擦阻力与局部阻力相比,可以忽略不计。因此h f'直可应用柏努利方程由压差计读数求取。 实验装置与流程 1)实验装置 实验装置如图1 —1所示。主要由水箱、管道泵,不同管径、材质的管子,各种阀门和管件,转子流量计等组成。第一根为粗糙管,第二根为光滑管。第三根不锈钢管,装有待测闸阀,用于局部阻力的测定。 1、水箱 2、管道泵 3、5、6、球阀 4、均压环7、系统排水阀8闸阀9、流量调节阀 10、排污水阀11倒U形差压计12、不锈钢管13、粗糙管14、光滑管15、转子流量计16、导压管17、温度计18、进水阀

化工原理实验教程-环境工程

化工原理实验教程 合肥工业大学 2011年9月

前言 化工原理是一门工程应用科学,它利用自然科学的原理来考察、研究化工单元操作中的实际问题,研究强化过程的方法,寻找开发新技术的途经。化工原理课程要求理论联系实际,其发展离不开实验研究与数学模型分析,所以化工原理实验是化工原理课程的一个重要教学环节,也是化工、制药、环境、食品、生物工程等院系或专业教学计划中的一门必修课程,属于工程实验范畴,与一般化学实验相比,其不同之处在于它具有工程特点,每个实验项目都相当于化工生产中的一个单元操作,通过实验能建立起一定的工程概念,同时,随着实验课的进行,会遇到大量的工程实际问题,对理工科学生来说,可以在实验过程中更实际、更有效地学到更多工程实验方面的原理及测试手段,发现复杂的真实设备与工艺过程同描述这一过程的数学模型之间的关系,也可以认识到对于一个看起来似乎很复杂的过程,一经了解,可以只用最基本的原理来解释和描述。因此,在实验课的全过程中,学生在思维方法和创新能力方面都得到培养和提高,为今后的工作打下坚实的基础。通过教学实验,达到以下目的: 1.验证化工单元操作的基本理论与经验公式,将书本知识转变为感性知识,并使学生在运用理论对实验进行分析的过程中巩固和加深对课程教学内容的理解。 2.通过实验环节熟悉化工单元操作设备的结构、性能,掌握测试方法,培养学生的实际操作技能。 3.在实验环节中学习如何根据实验任务制订实验方案,学会如何控制和测量操作参数,如何获得准确、完整的数据,以及如何整理、分析实验数据与结果,从而使学生掌握科学实验的全过程,提高学生独立分析与解决问题的能力,为今后从事科学研究活动打下良好的基础。 根据教学计划的变更和化学工程与工艺专业认证对化工原理课程和实验教学新的要求,我室在原有实验装置的基础上新添置了“液-液萃取塔的操作及其传质单元高度的测定”和“流化床干燥器的操作及其干燥速率曲线的测定”两个实验,各套实验数据均采用计算机处理,可直接得到实验结果与图表,以直观地验证实验过程的准确性。由于各专业教学要求有所不同,实验内容也可有不同,但至少要选做五至七个实验,即使同一个实验,其具体的实验任务也可有所侧重,每个实验全过程包括四个环节:预习、实验操作、实验数据处理与实验报告编写等四个环节,每个学生均必须严格按照要求保质保量完成实验。 本实验教程由魏凤玉、刘雪霆、何兵、路绪旺、姚路路等编写,由于时间仓促,作者水平有限,文中不妥之处,恳请指正。 2011年9月于斛兵塘

化工原理离心泵

例题1 确定泵是否满足输送要求。将浓度为95%的硝酸自常压罐输送至常压设备中去,要求输送量为36m 3 /h, 液体的扬升高度为7m 。输送管路由内径为80mm 的钢化玻璃管构成,总长为160(包括所有局部阻力的当量长度)。现采用某种型号的耐酸泵,其性能列于本题附表中。问: (1) 该泵是否合用? (2) 实际的输送量、压头、效率及功率消耗各为多少? Q(L/s) 0 3 6 9 12 15 H(m) 19.5 19 17.9 16.5 14.4 12 η(%) 17 30 42 46 44 已知:酸液在输送温度下粘度为1.15?10-3 Pa ?s ;密度为1545kg/m 3 。摩擦系数可取为0.015。 解:(1)对于本题,管路所需要压头通过在储槽液面(1-1’)和常压设备液面(2-2’)之间列柏努利方程求得: 式中0)(0,7,0212121≈=====u ,u p p m z z 表压 管内流速:s m d Q u /99.1080.0*785.0*360036 42 2 == = π 管路压头损失:m g u d l l H e f 06.681 .9*299.108.0160015.022 2==∑+=∑λ 管路所需要的压头:()m H z z H f e 06.1306.6711=+=∑+-= 以(L/s )计的管路所需流量:s L Q /103600 1000 *36== 由附表可以看出,该泵在流量为12 L/s 时所提供的压头即达到了14.4m ,当流量为管路所需要的10 L/s ,它所提供的压头将会更高于管路所需要的13.06m 。因此我们说该泵对于该输送任务是可用的。 另一个值得关注的问题是该泵是否在高效区工作。由附表可以看出,该泵的最高效率为46%;流量为10 L/s 时该泵的效率大约为43%。因此我们说该泵是在高效区工作的。 (2)实际的输送量、功率消耗和效率取决于泵的工作点,而工作点由管路物特性和泵的特性共同决定。 由柏努利方程可得管路的特性方程为:2006058.07Q H e += (其中流量单位为L/s ) 据此可以计算出各流量下管路所需要的压头,如下表所示: Q(L/s) 0 3 6 9 12 15 H(m) 7 7.545 9.181 11.91 15.72 20.63 据此,可以作出管路的特性曲线和泵的特性曲线,如图所示。两曲线的交点为工作点,其对应的压头为14.8m ;流量为11.4L/s ;效率0.45;轴功率可计算如下:

化工原理实验思考题答案

化工原理实验思考题 实验一:柏努利方程实验 1. 关闭出口阀,旋转测压管小孔使其处于不同方向(垂直或正对流向),观测并记录各测 压管中的液柱高度H 并回答以下问题: (1) 各测压管旋转时,液柱高度H 有无变化这一现象说明了什么这一高度的物理意义是 什么 答:在关闭出口阀情况下,各测压管无论如何旋转液柱高度H 无任何变化。这一现象可通过柏努利方程得到解释:当管内流速u =0时动压头02 2 ==u H 动 ,流体没有运动就不存在阻力,即Σh f =0,由于流体保持静止状态也就无外功加入,既W e =0,此时该式反映流体静止状态 见(P31)。这一液位高度的物理意义是总能量(总压头)。 (2) A 、B 、C 、D 、E 测压管内的液位是否同一高度为什么 答:A 、B 、C 、D 、E 测压管内的液位在同一高度(排除测量基准和人为误差)。这一现象说明各测压管总能量相等。 2. 当流量计阀门半开时,将测压管小孔转到垂直或正对流向,观察其的液位高度H /并回 答以下问题: (1) 各H /值的物理意义是什么 答:当测压管小孔转到正对流向时H /值指该测压点的冲压头H /冲;当测压管小孔转到垂直流向时H /值指该测压点的静压头H /静;两者之间的差值为动压头H /动=H /冲-H /静。

(2) 对同一测压点比较H 与H /各值之差,并分析其原因。 答:对同一测压点H >H /值,而上游的测压点H /值均大于下游相邻测压点H /值,原因显然是各点总能量相等的前提下减去上、下游相邻测压点之间的流体阻力损失Σh f 所致。 (3) 为什么离水槽越远H 与H /差值越大 (4) 答:离水槽越远流体阻力损失Σh f 就越大,就直管阻力公式可以看出2 2 u d l H f ??=λ与 管长l 呈正比。 3. 当流量计阀门全开时,将测压管小孔转到垂直或正对流向,观察其的液位高度 H 2222d c u u =22 ab u ρcd p ρab p 2 2 u d l H f ??=λ计算流量计阀门半开和全开A 点以及C 点所处截面流速大小。 答:注:A 点处的管径d=(m) ;C 点处的管径d=(m) A 点半开时的流速: 135.00145.036004 08.0360042 2=???=???= ππd Vs u A 半 (m/s ) A 点全开时的流速: 269.00145 .036004 16.0360042 2=???=???=ππd Vs u A 全 (m/s ) C 点半开时的流速: 1965.0012 .036004 08.0360042 2=???=???= ππd Vs u c 半 (m/s )

化工原理实验报告.pdf

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管 内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 f h p u gz We p u gz 2 22 2 1 21 12 2 式中: 1Z 、2Z ——各截面间距基准面的距离 (m ) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截面 积求得) (m/s) 1P 、2p ——各截面中心点处的静压力(可由 U 型压差计的液位 差可知)(Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 2 22 2 1 2 1 1 2 2 p u gz p u gz 测出通过管路的流量,即可计 算出截面平均流速ν及动压g 22 ,从而可得到各截面测管水头和总水头。 三、实验流程图

相关文档
最新文档