状态机实现矩阵键盘

状态机实现矩阵键盘
状态机实现矩阵键盘

功能:状态机实现矩阵键盘(从0~F的显示)

说明:P2^0-P2^3接行,P2^4-P2^7接列,10ms中断扫描

单片机:A T89S52

******************************************************/ #include

#define KEY P2

#define NO_KEY0xff //无按键按下

#define KEY_STA TE0 0 //判断按键按下

#define KEY_STA TE1 1 //确定按键按下

#define KEY_STA TE2 2 //按键释放状态

#define V_TH0 0Xd8

#define V_TL0 0Xf0

#define V_TMOD 0X01

#define uint unsigned int

#define uchar unsigned char

sbit DA T=P0^3;

sbit CLK=P0^2;

uint flag=0; //按键扫描标志

uchar code tab[]={

0xed,0x09,0xbc,0x9d,0x59,0xd5,

0xf5,0x0d,0xfd,0xdd,0x7d,0xf1,

0xe4,0xb9,0xf4,0x74,0x00} ; //0-F, 全灭

void sendbyte(uchar byte) //这个是数码管的驱动

{

uchar num,c;

num=tab[byte];

for(c=0;c<8;c++)

{

CLK=0;

DA T=num&0x01;

CLK=1;

num>>=1; //右移位赋值

}

}

unsigned char KeyScan()

{

static unsigned char key_state=KEY_STA TE0;

uchar key_value,key_temp;

uchar key1,key2;

KEY=0xf0;

key1=KEY&0xf0; //确定哪一行的按键按下

KEY=0x0f;

key2=KEY&0x0f; //确定哪一列的按键按下

key_temp=key1|key2; //确定按键位置

switch(key_state) //检测当前状态

{

case KEY_STA TE0:

if(key_temp!=NO_KEY)

{

key_state=KEY_STA TE1; //转换状态

}

break;

case KEY_STA TE1:

if(key_temp==NO_KEY)

{

key_state=KEY_STA TE0;

}

else

{

switch(key_temp) //当确定按键按下后,列举所有的按键情况

{

case 0x7e: key_value=0;break;

case 0xbe: key_value=1;break;

case 0xde: key_value=2;;break;

case 0xee: key_value=3;break;

case 0x7d: key_value=4;break;

case 0xbd: key_value=5;break;

case 0xdd: key_value=6;break;

case 0xed: key_value=7;break;

case 0x7b: key_value=8;break;

case 0xbb: key_value=9;break;

case 0xdb: key_value=10;break;

case 0xeb: key_value=11;break;

case 0x77: key_value=12;break;

case 0xb7: key_value=13;break;

case 0xd7: key_value=14;break;

case 0xe7: key_value=15;break;

}

key_state=KEY_STA TE2;

}

break;

case KEY_STA TE2:

if(key_temp==NO_KEY)

{

key_state=KEY_STA TE0;

}

break;

}

return key_value;

}

main(void)

{

uchar readkey=NO_KEY;

P2=0xff;

TMOD=V_TMOD;

TH0=V_TH0; //12MHz 10Ms

TL0=V_TL0;

ET0=1;

EA=1;

TR0=1;

while(1)

{

if(flag)

{

flag=0;

readkey=KeyScan();

switch(readkey) //switch语句里面的case判断后,接着的语句为相应的需要做的事情,

{ //这里只是在数码管显示相应的数值。

case 0: sendbyte(0);break;

case 1: sendbyte(1);break;

case 2: sendbyte(2);break;

case 3: sendbyte(3);break;

case 4: sendbyte(4);break;

case 5: sendbyte(5);break;

case 6: sendbyte(6);break;

case 7: sendbyte(7);break;

case 8: sendbyte(8);break;

case 9: sendbyte(9);break;

case 10: sendbyte(10);break;

case 11: sendbyte(11);break;

case 12: sendbyte(12);break;

case 13: sendbyte(13);break;

case 14: sendbyte(14);break;

case 15: sendbyte(15);break;

}

}

}

}

void timer0() interrupt 1

{

TH0=V_TH0; //10Ms

TL0=V_TL0;

flag=1;

}

单片机矩阵式键盘连接方法及工作原理

矩阵式键盘的连接方法和工作原理 什么是矩阵式键盘?当键盘中按键数量较多时,为了减少I/O 口线的占用,通常将按键排列成矩 阵形式。在矩阵式键盘中,每条水平线和垂直线在交叉处不直接连通,而是通过一个按键加以连接。这样做有什么好处呢?大家看下面的电路图,一个并行口可以构成4*4=16 个按键,比之直 接将端口线用于键盘多出了一倍,而且线数越多,区别就越明显。比如再多加一条线就可以构成20 键 的键盘,而直接用端口线则只能多出一个键(9 键)。由此可见,在需要的按键数量比较多时,采用矩 阵法来连接键盘是非常合理的。 矩阵式结构的键盘显然比独立式键盘复杂一些,识别也要复杂一些,在上图中,列线通过电阻接 电源,并将行线所接的单片机4 个I/O 口作为输出端,而列线所接的I/O 口则作为输入端。这样,当按 键没有被按下时,所有的输出端都是高电平,代表无键按下,行线输出是低电平;一旦有键按下,则输 入线就会被拉低,这样,通过读入输入线的状态就可得知是否有键按下了,具体的识别及编程方法如下 所述: 二.矩阵式键盘的按键识别方法 确定矩阵式键盘上任何一个键被按下通常采用“行扫描法”或者“行反转法”。行扫描法又称为 逐行(或列)扫描查询法,它是一种最常用的多按键识别方法。因此我们就以“行扫描法”为例介绍矩 阵式键盘的工作原理: 1.判断键盘中有无键按下 将全部行线X0-X3 置低电平,然后检测列线的状态,只要有一列的电平为低,则表示键盘中有键 被按下,而且闭合的键位于低电平线与4 根行线相交叉的4 个按键之中;若所有列线均为高电平,则表 示键盘中无键按下。 2.判断闭合键所在的位置 在确认有键按下后,即可进入确定具体闭合键的过程。其方法是:依次将行线置为低电平(即在 置某根行线为低电平时,其它线为高电平),当确定某根行线为低电平后,再逐行检测各列线的电平状 态,若某列为低,则该列线与置为低电平的行线交叉处的按键就是闭合的按键。 下面给出一个具体的例子: 单片机的P1 口用作键盘I/O 口,键盘的列线接到P1 口的低4 位,键盘的行线接到P1 口的高4

汇编矩阵键盘程序

方法一、 ORG 0000H LJMP MAIN ORG 0100H MAIN: MOV P1,#0F0H //P1口设初值F0,矩阵按键高四位置1,低四位置0, JNB P1.4,Y0 //用JNB检测按键端口,P1.4口低电平跳转 Y0 JNB P1.5,Y1 JNB P1.6,Y2 JNB P1.7,Y3 SJMP MAIN Y0: MOV 30H,#00H MOV P1,#0EFH JNB P1.4,X0 MOV P1,#0DFH JNB P1.4,X1 MOV P1,#0BFH JNB P1.4,X2 MOV P1,#07FH JNB P1.4,X3 Y1: MOV 30H,#01H MOV P1,#0EFH JNB P1.0,X0 MOV P1,#0DFH JNB P1.1,X1 MOV P1,#0BFH JNB P1.2,X2 MOV P1,#7FH JNB P1.3,X3 Y2: MOV 30H,#02H MOV P1,#0EFH JNB P1.0,X0 MOV P1,#0DFH JNB P1.1,X1 MOV P1,#0BFH JNB P1.2,X2 MOV P1,#7FH JNB P1.3,X3 Y3: MOV 30H,#03H MOV P1,#0EFH

MOV P1,#0DFH JNB P1.1,X1 MOV P1,#0BFH JNB P1.2,X2 MOV P1,#7FH JNB P1.3,X3 X0: MOV 31H,#00H ACALL DELAY MOV P1,#0F0H LJMP JISUAN X1: MOV 31H,#01H ACALL DELAY MOV P1,#0F0H LJMP JISUAN X2: MOV 31H,#02H ACALL DELAY MOV P1,#0F0H LJMP JISUAN X3: MOV 31H,#03H ACALL DELAY MOV P1,#0F0H LJMP JISUAN JISUAN: MOV A,31H MOV B,#04H MUL AB ADD A,30H MOV DPTR,#TAB MOVC A,@A+DPTR MOV P0,A CC: MOV A,P1 ANL A,#0F0H XRL A,#0F0H JNZ CC LCALL MAIN DELAY: MOV R4,#0C5H D1: MOV R5,#43H D0: MOV R6,#10H

第六讲 独立按键和矩阵键盘 第七讲 数码管要点

第六讲独立按键和矩阵键盘 按键是什么东西,我想这个就不必由我向各位阐述了。嗯,如你所见,按键种类繁多,功能有简有繁,极大的充斥着我们的生活。但是无论如何,所有的按键其实都有一个原型,来源于同一种原理,所有的按键无论多复杂,多华丽,都是从这样一个原型发展而成的。好比你就算长的再帅,你也是只猩猩变来的,呵呵。我们平日所见到的绝大部分的按键,其实都可以归类为一种,叫“接触式按键”。下图为一个典型的接触式按键(又称轻触开关)。 需要特别说明的是,这里说的“接触”,是指机械层面上的接触,而不是感光或者某些特殊涂层(比如触摸屏)一类的接触。所以,按键的工作特性其实是一种机械特性,下文会详细说明。 , 如上图,请对照图一想象,1、2、3、4 分别对应按键的四个引脚,其中蓝色的线表示按键未被按下之时的状态,我成为初始状态,它是不导通的;而绿色

的线是却永久导通的。各位明白了么,其实是两个相同的结构连在一起了。我们只要将需要按键开关作用的线路分别接在1、3 和2、4 的任意取一组合,概括起来就是(1,2)、(1,4)、(3,2)、(3,4)四种组合,都可以起到我们预期的开关作用。 相信以上说明使大家对按键的工作原理有了个比较清晰的认识了,现在来说说一个小知识。先看下图(图4): 首先说明的是,上图的连法是不允许的,因为当按键按下之后,电源和地短接,会将导线直接烧毁。但是此处用作特例,假设导线不会烧毁。现在来提出一个问题,当按键按下以后,请问如果这时用万用表测量导线上任何一处的电压,得到的结果是VCC 还是GND 的电压? 答案是:GND,即表示测出的电压为0V。为什么呢,因为导线上,对于两端的电平是一种类似于程序语言逻辑运算里面的“与”,即对于导线两端:有零即为零,只有全为一是才为一。理解了这点,按键的工作前提就有了。 键盘分为编码键盘和非编码键盘。键盘上闭合键的识别由专用的硬件编码器实现,并产生键编码号或键值的称为编码键盘,如计算机键盘。而靠软件编程来识别的键盘称为非编码键盘,在单片机组成的各种系统中,用的较多的是非编码键盘。非编码键盘又分为独立键盘和行列式键盘(常说的矩阵键盘)。在这一讲中我们介绍一下单片机中键盘使用。 单片机的IO口既可作为输出也可作为输入使用,当检测按键时用的是它的输入功能,我们把按键的一端接地,另一端与单片机的某个I/O口相连,开始时先给该IO口赋一高电平,然后让单片机不断地检测该I/O口是杏变为低电平,当按键闭合时,即相当于该I/O口通过按键与地相连,变成低电平,程序一旦检测到I/O口变为低电平则说明按键被按下,然后执行相应的指令。 我们先来说一下,按键常常遇到的问题—抖动问题。

STM32_4x4矩阵键盘

/*--------------------------------------------------------------------------------------* 矩阵键盘驱动 * 文件: keyboard.c * 编写人:LiuHui * 描述:扫描4x4 矩阵键盘输入,并返回键值 * 适用范围:驱动采用ST3.5 库编写,适用于STM32F10x 系列单片机 * 所用引脚:PA0-PA7 * 编写时间:2013 年11 月22 日 * 版本:1.0 --------------------------------------------------------------------------------------*/ #include "stm32f10x.h" #include "keyboard.h" #include "dealy.h" /*--------------------------------矩阵键盘初始化----------------------------------------* 功能:初始化stm32 单片机GPIO //PA0-PA7 * 参数传递: * 输入:无 * 返回值:无 --------------------------------------------------------------------------------------*/ void KeyBoard_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_10MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_10MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_SetBits(GPIOA, GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3); GPIO_ResetBits(GPIOA, GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7); } /*------------------------------矩阵键盘扫描--------------------------------------------* 功能:扫描矩阵键盘,并返回键值 * 参数: * 输入:无 * 返回:有键按下返回该键值 * 无键按下时则返回0 --------------------------------------------------------------------------------------*/ u8 Read_KeyV alue(void) { u8 KeyV alue=0; if((GPIO_ReadInputData(GPIOA)&0xff)!=0x0f) {

矩阵键盘的工作原理和扫描确认方式

9.3.1 矩阵键盘的工作原理和扫描确认方式 来源:《AVR单片机嵌入式系统原理与应用实践》M16华东师范大学电子系马潮 当键盘中按键数量较多时,为了减少对I/O 口的占用,通常将按键排列成矩阵形式,也称为行列键盘,这是一种常见的连接方式。矩阵式键盘接口见图9-7 所示,它由行线和列线组成,按键位于行、列的交叉点上。当键被按下时,其交点的行线和列线接通,相应的行线或列线上的电平发生变化,MCU 通过检测行或列线上的电平变化可以确定哪个按键被按下。 图9-7 为一个 4 x 3 的行列结构,可以构成12 个键的键盘。如果使用 4 x 4 的行列结构,就能组成一个16 键的键盘。很明显,在按键数量多的场合,矩阵键盘与独立式按键键盘相比可以节省很多的I/O 口线。 矩阵键盘不仅在连接上比单独式按键复杂,它的按键识别方法也比单独式按键复杂。在矩阵键盘的软件接口程序中,常使用的按键识别方法有行扫描法和线反转法。这两种方法的基本思路是采用循环查循的方法,反复查询按键的状态,因此会大量占用MCU 的时间,所以较好的方式也是采用状态机的方法来设计,尽量减少键盘查询过程对MCU 的占用时间。 下面以图9-7 为例,介绍采用行扫描法对矩阵键盘进行判别的思路。图9-7 中,PD0、PD1、PD2 为3 根列线,作为键盘的输入口(工作于输入方式)。PD3、PD4、PD5、PD6 为4根行线,工作于输出方式,由MCU(扫描)控制其输出的电平值。行扫描法也称为逐行扫描查询法,其按键识别的过程如下。 √将全部行线PD3-PD6 置低电平输出,然后读PD0-PD2 三根输入列线中有无低电平出现。只要有低电平出现,则说明有键按下(实际编程时,还要考虑按键的消抖)。如读到的都是高电平,则表示无键按下。 √在确认有键按下后,需要进入确定具体哪一个键闭合的过程。其思路是:依

课程设计-制作单片机的4X4矩阵键盘

课程设计-制作单片机的4X4矩阵键盘

目录 摘要.............................................. 错误!未定义书签。第一章硬件部分 (5) 第一节AT89C51 (5) 第二节4*4矩阵式键盘 (8) 第三节LED数码管 (11) 第四节硬件电路连接 (13) 第二章软件部分 (15) 第一节所用软件简介 (15) 第二节程序流程图 (18) 第三节程序 (20) 第三章仿真结果 (23) 心得体会 (26) 参考文献 (27)

第一章硬件部分 第一节AT89C51 AT89C51是一种带4K字节FLASH存储器(FPEROM—Flash Programmable and Erasable Read Only Memory)的低电压、高性能CMOS 8位微处理器,俗称单片机。AT89C51单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。引脚如图所示 AT89C5 图1 AT89C51管脚 图 AT89C51其具有以下特性: 与MCS-51 兼容 4K字节可编程FLASH存储器 寿命:1000写/擦循环 数据保留时间:10年

全静态工作:0Hz-24MHz 三级程序存储器锁定 128×8位内部RAM 32可编程I/O线 两个16位定时器/计数器 5个中断源 可编程串行通道 低功耗的闲置和掉电模式 片内振荡器和时钟电路 特性概述: AT89C51 提供以下标准功能:4k 字节Flash 闪速存储器,128字节内部RAM,32 个I/O 接口,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。同时,AT89C51可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。空闲方式停止CPU的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作。掉电方式保存RAM中的内容,但振荡器停止工作并禁止其它所有部件工作直到下一个硬件复位。 管脚说明: VCC:供电电压。 GND:接地。 P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P0口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的低八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须接上拉电阻。 P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为低八位地址接收。

矩阵式键盘的结构与工作原理

矩阵式键盘的结构与工作原理 在键盘中按键数量较多时为了减少I/O 口的占用通常将按键排列成矩阵形式如图1 所 示在矩阵式键盘中每条水平线和垂直线在交叉处不直接连通而是通过一个按键加以连 接这样一个端口如P1 口就可以构成4*4=16 个按键比之直接将端口线用于键盘 多出了一倍而且线数越多区别越明显比如再多加一条线就可以构成20 键的键盘而 直接用端口线则只能多出一键9 键由此可见在 需要的键数比较多时采用矩阵法来做键盘是合理的 矩阵式结构的键盘显然比直接法要复杂一些识别也要复杂一些上图中列线通过电 阻接正电源并将行线所接的单片机的I/O 口作为输出端而列线所接的I/O 口则作为输入这样当按键没有按下时所有的输出端都是高电平代表无键按下行线输出是低电平 一旦有键按下则输入线就会被拉低这样通过读入输入线的状态就可得知是否有键按下 了具体的识别及编程方法如下所述 矩阵式键盘的按键识别方法 确定矩阵式键盘上何键被按下介绍一种行扫描法 行扫描法 行扫描法又称为逐行或列扫描查询法是一种最常用的按键识别方法如上图所示 键盘介绍过程如下 判断键盘中有无键按下将全部行线Y0-Y3 置低电平然后检测列线的状态只要有一 列的电平为低则表示键盘中有键被按下而且闭合的键位于低电平线与4 根行线相交叉的4 个按键之中若所有列线均为高电平则键盘中无键按下 判断闭合键所在的位置在确认有键按下后即可进入确定具体闭合键的过程其方法 是依次将行线置为低电平即在置某根行线为低电平时其它线为高电平在确定某根行 线位置为低电平后再逐行检测各列线的电平状态若某列为低则该列线与置为低电平的 行线交叉处的按键就是闭合的按键 下面给出一个具体的例子 图仍如上所示8031 单片机的P1 口用作键盘I/O 口键盘的列线接到P1 口的低4 位 键盘的行线接到P1 口的高4 位列线P1.0-P1.3 分别接有4 个上拉电阻到正电源+5V 并把列线P1.0-P1.3 设置为输入线行线P1.4-P.17 设置为输出线4 根行线和4 根列线形成16 个相交点 检测当前是否有键被按下检测的方法是P1.4-P1.7 输出全0 读取P1.0-P1.3 的状态 若P1.0-P1.3 为全1 则无键闭合否则有键闭合 去除键抖动当检测到有键按下后延时一段时间再做下一步的检测判断 若有键被按下应识别出是哪一个键闭合方法是对键盘的行线进行扫描P1.4-P1.7 按下 述4 种组合依次输出 P1.7 1 1 1 0 P1.6 1 1 0 1 P1.5 1 0 1 1 P1.4 0 1 1 1 在每组行输出时读取P1.0-P1.3 若全为1 则表示为0 这一行没有键闭合否则 有键闭合由此得到闭合键的行值和列值然后可采用计算法或查表法将闭合键的行值和列值转换成所定义的键值 为了保证键每闭合一次CPU 仅作一次处理必须却除键释放时的抖动__

经典的矩阵键盘扫描程序

键盘是单片机常用输入设备,在按键数量较多时,为了节省I/O口等单片机资源,一般采取扫描的方式来识别到底是哪一个键被按下。即通过确定被按下的键处在哪一行哪一列来确定该键的位置,获取键值以启动相应的功能程序。 4*4矩阵键盘的结构如图1(实物参考见万用板矩阵键盘制作技巧)。在本例中,矩阵键盘的四列依次接到单片机的P1.0~P1.3,四行依次接到单片机的P1.4~P1.7;同时,将列线上拉,通过10K电阻接电源。 查找哪个按键被按下的方法为:一个一个地查找。 先第一行输出0,检查列线是否非全高; 否则第二行输出0,检查列线是否非全高; 否则第三行输出0,检查列线是否非全高; 如果某行输出0时,查到列线非全高,则该行有按键按下; 根据第几行线输出0与第几列线读入为0,即可判断在具体什么位置的按键按下。 下面是具体程序:

void Check_Key(void) { unsigned char row,col,tmp1,tmp2; tmp1 = 0x10; //tmp1用来设置P1口的输出,取反后使 P1.4~P1.7中有一个为0 for(row=0;row<4;row++) // 行检测 { P1 = 0x0f; // 先将p1.4~P1.7置高 P1 =~tmp1; // 使P1.4~p1.7中有一个为0 tmp1*=2; // tmp1左移一位 if ((P1 & 0x0f) < 0x0f) // 检测P1.0~P1.3中是否有一位为0,只要有,则说明此行有键按下,进入列检测 { tmp2 = 0x01; // tmp2用于检测出哪一列为0 for(col =0;col<4;col++) // 列检测 { if((P1 & tmp2)==0x00) // 该列如果为低电平则可以判定为该列 { key_val =key_Map[ row*4 +col ]; // 获取键值,识别按键;key_Map为按键的定义表 return; // 退出循环 } tmp2*=2; // tmp2左移一位 } } } } //结束 这是一种比较经典的矩阵键盘识别方法,实现起来较为简单,程序短小精炼。

单片机课程设计4X4矩阵键盘显示要点

长沙学院 《单片机原理及应用》 课程设计说明书 题目液晶显示4*4矩阵键盘按键号 程序设计 系(部) 电子与通信工程系 专业(班级) 电气1班 姓名龙程 学号2011024109 指导教师刘辉、谢明华、王新辉、马凌 云 起止日期2014.5.19—2014.5.30

长沙学院课程设计鉴定表

《单片机技术及应用》课程设计任务书系(部):电子与电气工程系专业:11级电子一班指导教师:谢明华、刘辉

目录 前言 (5) 一、课程设计目的 (6) 二、设计内容及原理 (6) 2.1 单片机控制系统原理 (6) 2.2阵键盘识别显示系统概述 (6) 2.3键盘电路 (7) 2.4 12864显示器 (8) 2.5整体电路图 (9) 2.6仿真结果 (9) 三、实验心得与体会 (10) 四、实验程序 (10) 参考文献 (18)

前言 单片机,全称单片微型计算机(英语:Single-Chip Microcomputer),又称微控制器 应(不用外接硬件)和节约成本。它的最大优点是体积小,可放在仪表内部,但存储量小,输入输出接口简单,功能较低。由于其发展非常迅速,旧的单片机的定义已不能满足,所以在很多应用场合被称为范围更广的微控制器;从上世纪80年代,由当时的4位、8位单片机,发展到现在的32位300M的高速单片机。现代人类生活中所用的几乎每件有电子器件的产品中都会集成有单片机。手机、电话、计算器、家用电器、电子玩具、掌上电脑以及鼠标等电子产品中都含有单片机。汽车上一般配备40多片单片机,复杂的工业控制系统上甚至可能有数百片单片机在同时工作!单片机的数量不仅远超过PC机和其他计算机的总和,甚至比人类的数量还要多。 是以电流刺激液晶分子产生点、线、面配合背部灯管构成画面。由一定数量的彩色或黑白像素组成,放置于光源或者反射面前方。液晶显示器功耗低,因此倍受工程师青睐,适用于使用电池的电子设备。英国科学家在上世纪制造了第一块液晶显示器即LCD。而第一台可操作的LCD基于动态散射模式(Dynamic Scattering Mode,DSM),是RCA公司乔治·海尔曼带领的小组开发的。 LED点阵屏通过LED(发光二极管)组成,以灯珠亮灭来显示文字、图片、动画、视频等,是各部分组件都模块化的显示器件,通常由显示模块、控制系统及电源系统组成。LED点阵显示屏制作简单,安装方便,被广泛应用于各种公共场合,如汽车报站器、广告屏以及公告牌等。 交叉处不直接连通,而是通过一个按键加以连接。这样,一个端口(如P1口)就可以构成4*4=16个按键, 键盘是合理的。

4X4矩阵键盘

题目名称:4×4矩阵式键盘 队员:伍星刘晓峰陈仁凤 摘要: 本系统采用AT89S52为控制核心。采用4X4键盘,通过8位数码管显示动态扫描0—F 16个数字。 关键词: AT89S52键盘数码管显示 Abstract: This system USES AT89S52 devices as control https://www.360docs.net/doc/f818859834.html,ing 4X4 keyboard, through eight digital tube display dynamic scan 0-16 F. Keyword: AT89S52 Keyboard LED Display

目录 1 方案论证与比较 (3) 1.1采样方法方案论证 (3) 1.2处理器的选择方案论证................................................. 错误!未定义书签。 1.3周期性判别与测量方法方案论证................................. 错误!未定义书签。 2 系统设计 (3) 2.1总体设计 (3) 2.2单元电路设计 (5) 2.2.1 前级阻抗匹配和放大电路设计 (5) 2.2.2 AD转换及控制模块电路设计 (6) 2.2.3 功率谱测量单元电路设计 (6) 3 软件设计 (7) 4系统测试 (8) 5 结论 (9) 参考文献: (9) 附录: (9) 附1:元器件明细表: (9) 附2:仪器设备清单 (9) 附3:电路图图纸 (10) 附4:程序清单 (11)

1.方案论证与比较 1.1采样方法比较与选择 方案一:采用FPGA作为系统主控器。FPGA可实现各种复杂逻辑功能,规模大,集成度高,体积小,稳定性好,IO资源丰富、易于进行功能扩展,处理速度快,但适用于大规模实时性要求较高的系统,价格高,编程实现难度大。用液晶显示器进行键盘扫描,价格偏高,程序复杂,故不选择此方案 方案二: 采用Atmel公司的AT89S52单片机作为主控制器。AT89S52是一个低功耗、高性能8位单片机,片内含8 KB Flash片内程序存储器,256 Bytes RAM,32个外部双向输入/输出(I/O)口,5个中断优先级,2层中断嵌套中断等。价格便宜,使用方便,编程实现难度低,适合用来实现本系统的控制功能。 P0.0-P0.7端口作为数码管段选,P2.0-P2.7端口作为数码管位选,P3.0-P3.7作为键盘输入端口。8位LED数码管进行动态显示。 综上分析,本设计选择方案二。 2 系统设计 2.1 总体设计 16个键盘通过AT89S52进行动态扫描,在8位数码管可以动态显示0-F 16个数字。手动复位键可以达到清零的效果。

修订矩阵键盘的工作原理

修订矩阵键盘的工作原 理 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

4×4矩阵键盘的工作原理与编程51/AVR单片机学习开发系统上使用数码管显示4×4矩阵键盘的键值。 一、硬件工作原理的简单介绍 该实验使用的8位数码管显示电路和4×4矩阵键盘电路。现将这二部分的电路工作原理进行简单的介绍: 1、4×4矩阵键盘的工作原理 矩阵键盘又称为行列式键盘,它是用4条I/O线作为行线,4条I/O线作为列线组成的键盘。在行线和列线的每一个交叉点上,设置一个按键。这样键盘中按键的个数是4×4个。这种行列式键盘结构能够有效地提高单片机系统中I/O口的利用率。 图1为矩阵键盘电路图,行线接P1.4-P1.7,列线接P1.0-P1.3。 图1 矩阵键盘电路 图2 按键排列 2、数码管动态扫描显示电路 在ME300B开发系统中,采用了8位数码管动态扫描显示。它将所有数码管的8个段线相应地并接在一起,并接到 AT89S51的P0口,由P0口控制字段输出。而

各位数码管的共阳极由AT89S51的P2口控制Q20-Q27来实现8位数码管的位输出控制。 这样,对于一组数码管动态扫描显示需要由两组信号来控制:一组是字段输出口输出的字形代码,用来控制显示的字形,称为段码;另一组是位输出口输出的控制信号,用来选择第几位数码管工作,称为位码。 由于各位数码管的段线并联,段码的输出对各位数码管来说都是相同的。因此,同一时刻如果各位数码管的位选线都处于选通状态的话,8位数码管将显示相同的字符。若要各位数码管能够显示出与本位相应的字符,就必须采用扫描显示方式。即在某一时刻,只让某一位的位选线处于导通状态,而其它各位的位选线处于关闭状态。同时,段线上输出相应位要显示字符的字型码。这样同一时刻,只有选通的那一位显示出字符,而其它各位则是熄灭的,如此循环下去,就可以使各位数码管显示出将要显示的字符。 虽然这些字符是在不同时刻出现的,而且同一时刻,只有一位显示,其它各位熄灭,但由于数码管具有余辉特性和人眼有视觉暂留现象,只要每位数码管显示间隔足够短,给人眼的视觉印象就会是连续稳定地显示。 图3 数码管电路 数码管不同位显示的时间间隔可以通过调整延时程序的延时长短来完成。数码管显示的时间间隔也能够确定数码管显示时的亮度,若显示的时间间隔长,显示时数码管的亮度将亮些,若显示的时间间隔短,显示时数码管的亮度将暗些。若显示

矩阵键盘程序c程序,51单片机.

/*编译环境:Keil 7.50A c51 */ /*******************************************************/ /*********************************包含头文件********************************/ #include /*********************************数码管表格********************************/ unsigned char table[]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90,0x88,0x83,0xC6,0xA1,0x86,0x 8E}; /**************************************************************************** 函数功能:延时子程序 入口参数: 出口参数: ****************************************************************************/ void delay(void) { unsigned char i,j; for(i=0;i<20;i++) for(j=0;j<250;j++); } /**************************************************************************** 函数功能:LED显示子程序 入口参数:i 出口参数: ****************************************************************************/ void display(unsigned char i) { P2=0xfe; P0=table[i]; } /**************************************************************************** 函数功能:键盘扫描子程序 入口参数: 出口参数: ****************************************************************************/ void keyscan(void) { unsigned char n; //扫描第一行 P1=0xfe;

单片机独立按键和矩阵按键

单片机按键(独立按键和矩阵按键) 独立按键 常用的按键电路有两种形式,独立式按键和矩阵式按键,独立式按键比较简单,它们各自与独立的输入线相连接,如图8-6 所示。 图8-6 独立式按键原理图 4 条输入线接到单片机的IO 口上,当按键K1 按下时,+5V 通过电阻R1 然后再通过按键K1 最终进入GND 形成一条通路,那么这条线路的全部电压都加到了R1 这个电阻上,KeyIn1 这个引脚就是个低电平。当松开按键后,线路断开,就不会有电流通过,那么KeyIn1和+5V 就应该是等电位,是一个高电平。我们就可以通过KeyIn1 这个IO 口的高低电平来判断是否有按键按下。 这个电路中按键的原理我们清楚了,但是实际上单片机IO 口内部,也有一个上拉电阻的存在。我们的按键是接到了P2 口上,P2 口上电默认是准双向IO 口,我们来简单了解一下这个准双向IO 口的电路,如图8-7 所示。

图8-7 准双向IO 口结构图 首先说明一点,就是我们现在绝大多数单片机的IO 口都是使用MOS 管而非三极管,但用在这里的MOS 管其原理和三极管是一样的,因此在这里我用三极管替代它来进行原理讲解,把前面讲过的三极管的知识搬过来,一切都是适用的,有助于理解。 图8-7 方框内的电路都是指单片机内部部分,方框外的就是我们外接的上拉电阻和按键。这个地方大家要注意一下,就是当我们要读取外部按键信号的时候,单片机必须先给该引脚写“1”,也就是高电平,这样我们才能正确读取到外部按键信号,我们来分析一下缘由。 当内部输出是高电平,经过一个反向器变成低电平,NPN 三极管不会导通,那么单片机IO 口从内部来看,由于上拉电阻R 的存在,所以是一个高电平。当外部没有按键按下将电平拉低的话,VCC 也是+5V,它们之间虽然有2 个电阻,但是没有压差,就不会有电流,线上所有的位置都是高电平,这个时候我们就可以正常读取到按键的状态了。 当内部输出是个低电平,经过一个反相器变成高电平,NPN 三极管导通,那么

4乘4矩阵键盘总结

9

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 // | // | // P X.0 ----------|------|-----|-----| // //************************************************************ // 扫描方法二: 06.8.15 添加 4X4矩阵键盘线翻转识别法函数 // 硬件连接 : // | | | | // / | / | / | / | // P X.7 -------/--|---/--|--/--|--/--| 每个按键对应的识别码是:0x77,0x7b,0x7d,0x7e // | | | | // / | / | / | / | // P X.6 -------/--|---/--|--/--|--/--| 0xb7,0xbb,0xbd,0xbe // | | | | // / | / | / | / | // P X.5 -------/--|---/--|--/--|--/--| 0xd7,0xdb,0xdd,0xde // | | | | // / | / | / | / | // P X.4 -------/--|---/--|--/--|--/--| 0xe7,0xeb,0xed,0xee // | | | | // | | | | // P X.3 ----------| | | | // | | | // | | | // P X.2 ----------|------| | | // | | // | | // P X.1 ----------|------|-----| | // | // | // P X.0 ----------|------|-----|-----| // //***************************************************************** // 扫描方法三: 06.8.16 添加 4X4矩阵键盘行扫描识别法函数(只返回4个识别码) // 硬件连接 : // | | | |

4×4矩阵键盘的工作原理

4×4矩阵键盘的工作原理与编程 51/AVR单片机学习开发系统上使用数码管显示4×4矩阵键盘的键值。 一、硬件工作原理的简单介绍 该实验使用的8位数码管显示电路和4×4矩阵键盘电路。现将这二部分的电路工作原理进行简单的介绍: 1、4×4矩阵键盘的工作原理 矩阵键盘又称为行列式键盘,它是用4条I/O线作为行线,4条I/O线作为列线组成的键盘。在行线和列线的每一个交叉点上,设置一个按键。这样键盘中按键的个数是4×4个。这种行列式键盘结构能够有效地提高单片机系统中I/O口的利用率。 图1为矩阵键盘电路图,行线接P1.4-P1.7,列线接P1.0-P1.3。 图1矩阵键盘电路 图2按键排列 2、数码管动态扫描显示电路 在ME300B开发系统中,采用了8位数码管动态扫描显示。它将所有数码管的8个段线相应地并接在一起,并接到AT89S51的P0口,由P0口控制字段输出。而各位数码管的共阳极由AT89S51的P2口控制Q20-Q27来实现8位数码管的位输出控制。 这样,对于一组数码管动态扫描显示需要由两组信号来控制:一组是字段输出口输出的字形代码,用来控制显示的字形,称为段码;另一组是位输出口输出的控制信号,用来选择第几位数码管工作,称为位码。 由于各位数码管的段线并联,段码的输出对各位数码管来说都是相同的。因此,同一时刻如果各位数码管的位选线都处于选通状态的话,8位数码管将显示相同的字符。若要各位数码管能够显示出与本位相应的字符,就必须采用扫描显示方式。即在某一时刻,只让某一位的位选线处于导通状态,而其它各位的位选线处于关闭状态。同时,段线上输出相应位要显示字符的字型码。这样同一时刻,只有选通的那一位显示出字符,而其它各位则是熄灭的,如此循环下去,就可以使各位数码管显示出将要显示的字符。 虽然这些字符是在不同时刻出现的,而且同一时刻,只有一位显示,其它各位熄灭,但由于数码管具有余辉特性和人眼有视觉暂留现象,只要每位数码管显示间隔足够短,给人眼的视觉印象就会是连续稳定地显示。 图3数码管电路 数码管不同位显示的时间间隔可以通过调整延时程序的延时长短来完成。数码管显示的时间间隔也能够确定数码管显示时的亮度,若显示的时间间隔长,显示时数码管的亮度将亮些,若显示的时间间隔短,显示时数码管的亮度将暗些。若显示的时间间隔过长的话,数码管显示时将产生闪烁现象。所以,在调整显示的时间间隔时,即要考虑到显示时数码管的亮度,又要数码管显示时不产生闪烁现象。

4X4矩阵式键盘输入程序

4*4键盘程序 readkeyboard: begin: acall key_on jnz delay ajmp readkeyboard delay:acall delay10ms acall key_on jnz key_num ajmp begin key_num:acall key_p anl a,#0FFh jz begin acall key_ccode push a key_off:acall key_on jnz key_off pop a ret key_on: mov a,#00h orl a,#0fh mov p1,a mov a,p1 orl a,#0f0h cpl a ret key_p: mov r7,#0efh l_loop:mov a,r7 mov p1,a mov a,p1 orl a,#0f0h mov r6,a cpl a jz next ajmp key_c next: mov a,r7 jnb acc.7,error rl a mov r7,a ajmp l_loop error:mov a,#00h ret key_c:mov r2,#00h mov r3,#00h mov a,r6 mov r5,#04h again1:jnb acc.0,out1 rr a inc r2 djnz r5, again1 out1: inc r2 mov a,r7 mov r5,#04h again2:jnb acc.4,out2 rr a inc r3 djnz r5,again2 out2: inc r3 mov a, r2 swap a add a,r3 ret key_ccode:push a swap a anl a,#0fh dec a rl a ;行号乘 4 rl a mov r7,a pop a anl a,#0fh dec a add a,r7 ret delay10ms: anl tmod,#0f0h orl tmod,#01h mov th0,#0d8h mov tl0,#0f0h setb tr0 wait:jbc tf0,over ajmp wait clr tr0 over:ret 单片机键盘设计 (二)从电路或软件的角度应解决的问题 软件消抖:如果按键较多,硬件消抖将无法胜任,常采用软件消抖。通常采用软件延时的方法:在第一次检测到有键按下时,执行一段延时10ms的子程序后,再确认电平是否仍保持闭合状态电平,如果保持闭合状态电平,则确认真正有键按下,进行相应处理工作,消除了抖动的影响。(这种消除抖动影响的软件措施是切实可行的。) 2.采取串键保护措施。串键:是指同时有一个以上的键按下,串键会引起CPU错误响应。 通常采取的策略:单键按下有效,多键同时按下无效。 3.处理连击。连击:是一次按键产生多次击键的效果。要有对按键释放的处理,为了消除连击,使得一次按键只产生一次键功能的执行(不管一次按键持续的时间多长,仅采样一个数据)。否则的话,键功能程序的执行次数将是不可预知,由按键时间决定。连击是可以利用的。连击对于用计数法设计的多功能键特别有效。 三、键盘工作方式 单片及应用系统中,键盘扫描只是CPU的工作内容之一。CPU忙于各项任务时,如何兼顾键盘的输入,取决于键盘的工作方式。考虑仪表系统中CPU任务的份量,来确定键盘的工作方式。 键盘的工作方式选取的原则是:既要保证能及时响应按键的操作,又不过多的占用CPU的工作时间。 键盘的工作方式有:查询方式(编程扫描,定时扫描方式)、中断扫描方式。

51单片机矩阵键盘程序

/*风清云扬*/ # include #define uchar unsigned char #define uint unsigned int void delay(uint i) { uchar x,j; for(j=0;j

} else if(temp0==0x0b) { switch (temp1) { case 0xe0: num=12;break; case 0xd0: num=11;break; case 0xb0: num=10;break; case 0x70: num=9;break; default:num=0;break; } } else if(temp0==0x07) { switch (temp1) { case 0xe0: num=16;break; case 0xd0: num=15;break; case 0xb0: num=14;break; case 0x70: num=13;break; default:num=0;break; } } } } return num; } void main() { char num; while(1) { num=key_scan(); P2=num/10; P3=num%10; } }

相关文档
最新文档