02密克点在解题中的应用

合集下载

(最新实用)2020年高考理科数学之高频考点解密04 函数的应用(解析版)

(最新实用)2020年高考理科数学之高频考点解密04 函数的应用(解析版)

解密04 函数的应用考点1 函数的零点题组一 函数零点(方程的根)所在区间的判断调研1 设x 0是方程101−x =lg x 的解,且x 0∈(k,k +1)(k ∈Z),则k =__________. 【答案】99【解析】令f (x )=101−x −lg x ,则函数f (x )在定义域(0,+∞)上单调递减,则f(100)=101−100−lg100=−1<0,f(99)=101−99−lg99=2−lg99>0,因为f(99)∙f(100)<0,所以函数f (x )的零点在(99,100)内,即k =99.☆技巧点拨☆确定函数的零点(方程的根)所在的区间时,可以利用零点的存在性定理转化为判断区间两端点对应的函数值是否异号来确定,也可以利用数形结合法,通过画函数图象与x 轴的交点来确定.题组二 函数零点个数的判断调研2 函数()1112x f x x-⎛⎫=- ⎪⎝⎭的零点个数为 A .0个 B .1个 C .2个D .3个【答案】C【解析】函数()1112x f x x -⎛⎫=- ⎪⎝⎭的零点个数也就是方程1112x x-⎛⎫=⎪⎝⎭的解的个数. 当0x <时,1102x -⎛⎫> ⎪⎝⎭,而10x <不可能有交点.而x 不能为0,当0x >时,对1112x x-⎛⎫=⎪⎝⎭取倒数,12x x -=也就是求函数12x y y x -==与图象的交点个数.当1x =和2x =时,两个函数相等,结合两个函数图象(如下图),可知只能有2个交点.故原函数有2个零点,故选C.☆技巧点拨☆函数零点个数的判断方法(1)解方程法:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:利用定理不仅要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点值所具有的性质.(3)数形结合法:转化为两个函数的图象的交点个数问题,先画出两个函数的图象,看其交点个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.题组三 函数零点的应用问题 调研3 函数()exx f x =,关于x 的方程()()()2110fx m f x m -++-=有4个不相等实根,则实数m 的取值范围是A .22e e(,1)e e-+B .22e e +1(,)e e-+∞+ C .22e e 1(,1)e e-++D .22e e(,)e e-+∞+ 【答案】C【解析】根据题意画出函数()f x 的图象,如图.令()t f x =,原问题等价于关于t 的方程()2110t m t m -++-=有两个根12,t t ,每个t 值对应两个x 值,故有两种情况:1201(0,)e t t =⎧⎪⎨∈⎪⎩①;121e 1(0,)e t t ⎧>⎪⎪⎨⎪∈⎪⎩②. 当属于情况①时,将0t =代入()2110t m t m -++-=得到1m =,此时方程()2110t m t m -++-=的根是确定的,一个为0,一个为2,不符合题意;当属于情况②时,2221110e e 1, 1.e ee e 10m m m m +⎧-+-<-+⎪⇒<<⎨+⎪->⎩ 【名师点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.☆技巧点拨☆高考对函数零点的考查多以选择题或填空题的形式出现,有时也会出现在解答题中.常与函数的图象及性质相结合,且主要有以下几种常见类型及解题策略. 1.已知函数零点所在区间求参数或参数的取值范围根据函数零点或方程的根求解参数的关键是结合条件给出参数的限制条件,此时应分三步: ①判断函数的单调性;②利用零点存在性定理,得到参数所满足的不等式;③解不等式,即得参数的取值范围.在求解时,注意函数图象的应用. 2.已知函数零点的个数求参数或参数的取值范围一般情况下,常利用数形结合法,把此问题转化为求两函数图象的交点问题. 3.借助函数零点比较大小或直接比较函数零点的大小关系要比较f (a )与f (b )的大小,通常先比较f (a )、f (b )与0的大小.若直接比较函数零点的大小,则可有以下三种常用方法:①求出零点,直接比较大小; ②确定零点所在区间;③同一坐标系内画出函数图象,由零点位置关系确定大小.考点2 函数模型及其应用题组一 二次函数模型的应用调研1 如图所示,用总长为定值l 的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开.(1)设场地面积为y ,垂直于墙的边长为x ,试用解析式将y 表示成x 的函数,并确定这个函数的定义域; (2)怎样围才能使得场地的面积最大?最大面积是多少?【答案】(1)()3y x l x =-,0,3l x ⎛⎫∈ ⎪⎝⎭;(2)6l x =时,2max 12l y =.【解析】(1)设平行于墙的边长为a ,则篱笆总长3l x a =+,即3a l x =-, ∴场地面积()3y x l x =-,0,3l x ⎛⎫∈ ⎪⎝⎭.(2)()222333612l l y x l x x lx x ⎛⎫=-=-+=--+ ⎪⎝⎭,0,3l x ⎛⎫∈ ⎪⎝⎭,∴当且仅当6lx =时,2max 12l y =.综上,当场地垂直于墙的边长x 为6l时,最大面积为212l .题组二 指数函数、对数函数模型的应用调研 2 在热学中,物体在常温下的温度变化可以用牛顿冷却定律来描述,如果物体的初始温度是T 0,经过一定时间t 后,温度T 将满足T −T a =(12)t ℎ(T 0−T a ),其中T a 是环境温度,ℎ称为半衰期.现有一杯用195F 热水冲的速溶咖啡,放在75F 的房间内,如果咖啡降到105F 需要20分钟,问降温到95F 需要多少分钟?(F 为华氏温度单位,答案精确到0.1,参考数据:lg2=0.3010,lg3=0.4771)【解析】依题意,可令T 0=195,T =105,T a =75,t =20,代入式子得:105−75=(195−75)(12)20ℎ,解得ℎ=10,又把T =95代入式子得95−75=(195−75)(12)t 10,则(12)t 10=16,∴t =10log 1216=10log 26=10(log 23+1) =10(lg3lg2+1)=0.477110125.90.3010⎛⎫+≈⎪⎝⎭.故降温到95F 约需要25.9分钟.调研3 声强级L (单位:dB )由公式L =10lgI 10−12给出,其中I 为声强(单位:W m 2⁄).(1)一般正常人听觉能忍受的最高声强为1W /m 2,能听到的最低声强为10−12W /m 2,求人听觉的声强级范围; (2)在一演唱会中,某女高音的声强级高出某男低音的声强级20dB ,请问该女高音的声强是该男低音声强的多少倍?【解析】(1)由题知:10−12≤I ≤1,∴1≤I10−12≤1012,∴0≤lg I10−12≤12,0≤L ≤120, ∴人听觉的声强级范围是[0,120]. (2)设该女高音的声强级为L 1,声强为I 1, 该男低音的声强级为L 2,声强为I 2, 由题知:L 1−L 2=20,则10lg I 110−12−10lg I 210−12=20,∴lg I1I2=2, ∴I 1=100I 2.故该女高音的声强是该男低音声强的100倍. 题组三 分段函数模型的应用调研4 某种商品的销售价格会因诸多因素而上下浮动,经过调研得知:2019年9月份第x (130x ≤≤,x *∈N )天的单件销售价格(单位:元20,115()50,1530x x f x x x +≤<⎧=⎨-≤≤⎩,第x 天的销售量(单位:件)()(g x m x m =-为常数),且第20天该商品的销售收入为600元(销售收入=销售价格⨯销售量). (1)求m 的值;(2)该月第几天的销售收入最高?最高为多少?【答案】(1)40m =;(2)当第10天时,该商品销售收入最高为900元.【解析】(1)销售价格20,115,()50,1530,x x f x x x +<⎧=⎨-⎩„剟第x 天的销售量(单位:件)()(g x m x m =-为常数),当20x =时,由(20)(20)(5020)(20)600f g m =--=, 解得40m =.(2)当115x <„时,(20)(40)y x x =+-2220800(10)900x x x =-++=--+,故当10x =时,max 900y =,当1530x 剟时,22(50)(40)902000(45)25y x x x x x =--=-+=--,故当15x =时,max 875y =,因为875900<,故当第10天时,该商品销售收入最高为900元.☆技巧点拨☆解函数应用题的一般步骤,可分以下四步进行:(1)认真审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型; (2)建立模型:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型; (3)求解模型:求解数学模型,得出数学结论;(4)还原解答:将利用数学知识和方法得出的结论,还原到实际问题中.1.(内蒙古自治区赤峰市赤峰二中、呼市二中2019-2020学年高三上学期10月月考数学试题)已知函数()()222,01,0x x a x a x f x a x ⎧+-+>=⎨-≤⎩(0a >,且1a ≠)在R 上单调递增,且关于x 的方程()22f x x =+恰有两个不等的实数解,则a 的取值范围是 A .()1,2 B .(]1,2 C .(]{}1,23U D .(){}1,23U【答案】A【解析】由1xy a =-在(],0-∞上单调递增,得1a >,又由()f x 在R 上单调递增,则()2022002202a a a ⎧+-⨯+≥⎪⎨-<⎪⎩,解得1a >,如图所示,在同一坐标系中作出函数()f x 和22y x =+的图象,当2a <时,由图象可知,(],0-∞上,()22f x x =+有且仅有一个解,在()0,+∞上()22f x x =+同样有且仅有一个解.当2a ≥时,直线22y x =+与(),0y f x x =>相切时有一个交点,由()22222x a x a x +-+=+(其中0x >),得:()22420x a x a +-+-=,则()()222442420240a a a a ∆=---=-+=, 解得2a =或3a =,此时切点横坐标分别为0,1x x ==-与0x >矛盾, 故2a =或3a =不符合题意, 综上所述,()1,2a ∈.【名师点睛】本题主要考查了函数方程与函数的零点,分类讨论思想,数形结合的思想,属于难题.2.(上海市大同中学2019—2020学年高三上学期10月学情调研数学试题)设函数120()(1)0x x f x f x x -⎧≤=⎨->⎩,方程()f x x a =+有且只有两个不相等实数根,则实数a 的取值范围为 A .[3,4) B .[2,4)C .(1,4)D .(,4)-∞【答案】A【解析】因为方程()f x x a =+有且只有两个不相等实数根,所以函数()y f x =与函数y x a =+的图象有且只有两个交点, 函数()y f x =的图象如下:由图可知:34a ≤<. 故选A.【名师点睛】本题考查了由方程实根的个数求参数取值范围,解题关键是转化为两个函数图象的交点个数问题解决,属于中档题.3.(河南省洛阳市2019-2020学年高三上学期期中数学试题)已知函数()(]201lg (1,)x x x f x x x ⎧-+∈⎨∈+∞⎩,,,=,,若()f x a =有三个不等实数根123,,x x x ,则123x x x ++的取值范围是A .(2,+∞)B .[2,+∞)C .(2,1+ D .[2,1+【答案】C【解析】()(]201lg (1,)x x x f x x x ⎧-+∈⎨∈+∞⎩,,,=,,,()f x a =有三个不等实数根123,,x x x ,设123x x x <<, 画出函数图象得:根据对称性知:121x x =+,2()f x x x =-+的最大值为14.取1lg ,4x x ==,则31x <<综上所述:21312x x x ++<<, 故选C .4.(黑龙江省哈尔滨市第六中学2019-2020学年高三上学期一模数学试题)若1x 是方程e 4x x =的解,2x 是方程ln 4x x =的解,则12x x +等于 A .4 B .2C .eD .1【答案】A【解析】由题意,1x 是方程e 4x x =的解,2x 是方程ln 4x x =的解, 即12,x x 是函数e xy =和ln y x =与函数4y x=的图象的公共点,A B 的横坐标, 而121244(,),(,)A x B x x x 两点关于直线y x =对称, 又由4y x y x =⎧⎪⎨=⎪⎩,解得2x =,所以124x x +=,故选A .【名师点睛】本题主要考查了函数与方程的综合问题,其中解答中把方程的解转化为两函数与4y x=的图象公共点的横坐标,再利用对称性求解是解答的关键,着重考查了转化思想,以及推理与运算能力,属于中档试题.5.(内蒙古自治区赤峰市赤峰二中、呼市二中2019-2020学年高三上学期10月月考数学试题)已知函数()23,145,1x x f x x x x ⎧-+<=⎨-+≥⎩,()()()ln g x x a a =+∈R ,若函数()()y f x g x =-恰有4个零点,则实数a 的取值范围是______. 【答案】()34,e【解析】由()()23,121,1x x f x x x ⎧-+<⎪=⎨-+≥⎪⎩,则函数()f x 的简图如图所示:若函数()()y f x g x =-恰有4个零点,则函数()y g x =图象所在的临界位置恰好在虚线所在的函数①②的位置.(1)当函数()y g x =处于①的位置时,点()0,3在函数()y g x =的图象上,有()0ln 3g a ==,得3e a =; (2)当函数()y g x =处于②的位置时,此时函数()y g x =与直线3y x =+相切,设切点P 的坐标为()00,x y ,有()00000113ln x a y x y x a ⎧=⎪+⎪⎪=+⎨⎪=+⎪⎪⎩,解得:00304x y a =-⎧⎪=⎨⎪=⎩,由(1)(2)知实数a 的取值范围是()34,e . 故答案为()34,e.【名师点睛】本题主要考查函数与方程的应用,考查导数的应用,考查数形结合以及一元二次函数,对数函数的性质进行求解,注意临界位置的考查.6.(上海市七宝中学2019-2020学年高三上学期期中数学试题)定义在R 上的奇函数()y f x =,当0x >时,2()lg(33)f x x x =-+,则()f x 在R 上的零点个数为________个.【答案】5【解析】当0x >时,令2()lg(33)0f x x x =-+=,即2lg(33)lg1x x -+=,解得121,2x x == 根据奇函数的对称性可得()()()()11220f f f f =--==--=,故341,2x x =-=-也是函数的零点,又()y f x =的定义域为R ,所以()00f =,故50x =也是函数的零点,共5个零点.故答案为:5.7.(江苏省镇江市2019-2020学年高三上学期期中数学试题)已知函数3,0()1,0x x x f x x a x x ⎧+≤⎪=⎨-->⎪⎩有4个不同的零点,则实数a 的取值范围为_______. 【答案】()2,+∞【解析】令1(),()3,(),()xg x x h x m x x a n x x=-==-=, 当0x ≤时,(),()3xg x x h x =-=恒有1个交点,即()f x 恒有1个零点.如图所示,当0x >时,且()m x x a =-的左半支与1()n x x=相切时,此时只有2个交点,且(2)0m =,解得2a = ,故当2a >时,两个函数才恒有3个交点,即函数()f x 有3个不同的零点. 综上所述,当2a >时,函数()f x 有4个不同的零点. 故答案为()2,+∞.8.(2019年上海市南洋中学高三上学期10月学习能力诊断测数学试题)某企业参加A 项目生产的工人为1000人,平均每人每年创造利润10万元.根据现实的需要,从A 项目中调出x 人参与B 项目的售后服务工作,每人每年可以创造利润310500x a ⎛⎫- ⎪⎝⎭万元(0a >),A 项目余下的工人每人每年创造利润需要提高0.2%x(1)若要保证A 项目余下的工人创造的年总利润不低于原来1000名工人创造的年总利润,则最多调出多少人参加B 项目从事售后服务工作?(2)在(1)的条件下,当从A 项目调出的人数不能超过总人数的40%时,才能使得A 项目中留岗工人创造的年总利润始终不低于调出的工人所创造的年总利润,求实数a 的取值范围. 【答案】(1)500;(2)(0,5.1].【解析】设调出x 人参加B 项目从事售后服务工作.(1)由题意得:10(1000)(10.2%)101000x x -+≥⨯,即25000x x -≤,又0x >,所以0500x <≤.即最多调整500名员工参加B 项目从事售后服务工作. (2)由题知,0400x <≤,参与B 项目的售后服务工作员工创造的年总利润为310()500xa x -万元, 从事A 项目的员工的年总利润为110(1000)(1)500x x -+万元, 则310(500xa -)10(1000)(10.2%)x x x ≤-+, 所以23110002500500x ax x x -≤+--2x ,所以221000500x ax x ≤++,即210001500x a x≤++恒成立, 因为0400x <≤, 所以210002400100011 5.1500500400x x ⨯++≥++=, 所以 5.1a ≤,又0a >,所以0 5.1a <≤, 即a 的取值范围为(0,5.1].【名师点睛】考查了利用不等式解决实际问题,难点是建立不等式关系,利用函数单调性求出最值. 9.(上海市杨浦区2019-2020学年高三上学期期中质量调研数学试题)《上海市生活垃圾管理条例》于2019年7月1日正式实施,某小区全面实施垃圾分类处理,已知该小区每月垃圾分类处理量不超过300吨,每月垃圾分类处理成本y (元)与每月分类处理量x (吨)之间的函数关系式可近似表示为220040000y x x =-+,而分类处理一吨垃圾小区也可以获得300元的收益.(1)该小区每月分类处理多少吨垃圾,才能使得每吨垃圾分类处理的平均成本最低; (2)要保证该小区每月的垃圾分类处理不亏损,每月的垃圾分类处理量应控制在什么范围? 【答案】(1)200吨;(2)[100,300].【解析】(1)由题意可知,每吨垃圾分类处理的平均成本为月处理成本除以月处理量, 即(]40000200,0,300y x x x x=+-∈,又40000400x x +≥= ,当且仅当40000x x =,即200x =时取等号, 故200x =时,才能使得每吨垃圾分类处理的平均成本最低;(2)设该小区每月获利为S 元,则该小区每月获利为月分类处理垃圾的利润减去月处理成本,22300300(20040000)50040000S x y x x x x x =-=--+=-+-,令2500400000x x -+-≥,解得100400x ≤≤,又0300x <≤, 即100300x ≤≤,故要保证该小区每月的垃圾分类处理不亏损,每月的垃圾分类处理量应控制在[]100,300.【名师点睛】本题考查了重要不等式的应用及二次不等式的解法,重点考查了阅读理解能力,属中档题.1.(2019年高考浙江)已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则 A .a <–1,b <0 B .a <–1,b >0 C .a >–1,b <0 D .a >–1,b >0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x =b1−a , 则y =f (x )﹣ax ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2+ax ﹣ax ﹣b =13x 3−12(a +1)x 2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:∴b1−a <0且{−b >013(a +1)3−12(a +1)(a +1)2−b <0, 解得b <0,1﹣a >0,b >−16(a +1)3, 则a >–1,b <0. 故选C .【名师点睛】本题考查函数与方程,导数的应用.当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2﹣b ,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.2.(2018年高考新课标I 卷理科)已知函数()e 0ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0) B .[0,+∞) C .[–1,+∞)D .[1,+∞)【答案】C【解析】画出函数()f x 的图象,e xy =在y 轴右侧的图象去掉,再画出直线y x =-,之后上下移动,可以发现当直线过点(0,1)时,直线与函数图象有两个交点,并且向下可以无限移动,都可以保证直线与函数的图象有两个交点,即方程()f x x a =--有两个解,也就是函数()g x 有两个零点,此时满足1a -≤,即1a ≥-,故选C .【名师点睛】该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图象以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.即:首先根据g (x )存在2个零点,得到方程()0f x x a ++=有两个解,将其转化为()f x x a =--有两个解,即直线y x a =--与曲线()y f x =有两个交点,根据题中所给的函数解析式,画出函数()f x 的图象,再画出直线y x =-,并将其上下移动,从图中可以发现,当1a -≤时,满足y x a =--与曲线()y f x =有两个交点,从而求得结果.3.(2017年高考新课标Ⅲ理科)设函数()π(3cos )f x x =+,则下列结论错误的是A .()f x 的一个周期为2π-B .()y f x =的图象关于直线8π3x =对称 C .(π)f x +的一个零点为π6x =D .()f x 在(π2,π)单调递减【答案】D【解析】函数()f x 的最小正周期为2π2π1T ==,则函数()f x 的周期为()2πT k k =∈Z ,取1k =-,可得函数()f x 的一个周期为2π-,选项A 正确; 函数()f x 图象的对称轴为()ππ3x k k +=∈Z ,即()ππ3x k k =-∈Z ,取3k =,可得y =f (x )的图象关于直线8π3x =对称,选项B 正确; ()πππcos πcos 33f x x x ⎡⎤⎛⎫⎛⎫+=++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,函数()f x 的零点满足()πππ32x k k +=+∈Z ,即()ππ6x k k =+∈Z ,取0k =,可得(π)f x +的一个零点为π6x =,选项C 正确; 当π,π2x ⎛⎫∈⎪⎝⎭时,π5π4π,363x ⎛⎫+∈ ⎪⎝⎭,函数()f x 在该区间内不单调,选项D 错误.故选D .【名师点睛】(1)求最小正周期时可先把所给三角函数式化为(n )si y A x ωϕ=+或(s )co y A x ωϕ=+的形式,则最小正周期为2πT ω=;奇偶性的判断关键是看解析式是否为sin y A x ω=或cos y A x b ω=+的形式.(2)求()()sin 0()f x A x ωϕω+≠=的对称轴,只需令()ππ2x k k ωϕ+=+∈Z ,求x 即可;求f (x )的对称中心的横坐标,只需令π()x k k ωϕ+=∈Z 即可. 4.(2017年高考新课标Ⅲ理科)已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =A .12- B .13C .12D .1【答案】C【解析】函数()f x 的零点满足()2112e e x x x x a --+-=-+, 设()11eex x g x --+=+,则()()21111111e 1eeee e x x x x x x g x ---+----'=-=-=,当()0g x '=时,1x =;当1x <时,()0g x '<,函数()g x 单调递减; 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数()g x 取得最小值,为()12g =.设()22h x x x =-,当1x =时,函数()h x 取得最小值,为1-,若0a ->,函数()h x 与函数()ag x -没有交点;若0a -<,当()()11ag h -=时,函数()h x 和()ag x -有一个交点, 即21a -⨯=-,解得12a =.故选C .【名师点睛】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.5.(2019年高考江苏)设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,()f x =,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 ▲ .【答案】13⎡⎢⎣⎭【解析】作出函数()f x ,()g x 的图象,如图:由图可知,函数()f x =的图象与1()(12,34,56,78)2g x x x x x =-<≤<≤<≤<≤的图象仅有2个交点,即在区间(0,9]上,关于x 的方程()()f x g x =有2个不同的实数根,要使关于x 的方程()()f x g x =有8个不同的实数根,则()(0,2]f x x =∈与()(2),(0,1]g x k x x =+∈的图象有2个不同的交点,由(1,0)到直线20kx y k -+=的距离为11=,解得0)k k =>, ∵两点(2,0),(1,1)-连线的斜率13k =,∴134k ≤<,综上可知,满足()()f x g x =在(0,9]上有8个不同的实数根的k 的取值范围为134⎡⎢⎣⎭,.【名师点睛】本题考查分段函数,函数的图象,函数的性质,函数与方程,点到直线的距离,直线的斜率等,考查知识点较多,难度较大.正确作出函数()f x ,()g x 的图象,数形结合求解是解题的关键因素.6.(2018年高考新课标Ⅲ卷理科)函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. 【答案】3【解析】0πx ≤≤Q ,ππ19π3666x ∴≤+≤,由题可知πππ3π336262x x +=+=,或π5π362x +=,解得π4π,99x =或7π9,故有3个零点.【名师点睛】本题主要考查三角函数的性质和函数的零点,属于基础题.解题时,首先求出π36x +的范围,再由函数值为零,得到π36x +的取值可得零点个数. 7.(2018年高考浙江卷)已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________. 【答案】(1,4) (]()1,34,+∞U 【解析】由题意得240x x ≥⎧⎨-<⎩或22430x x x <⎧⎨-+<⎩,所以24x ≤<或12x <<,即14x <<,故不等式f (x )<0的解集是()1,4,当4λ>时,()40f x x =->,此时()2430,1,3f x x x x =-+==,即在(),λ-∞上有两个零点;当4λ≤时,()40,4f x x x =-==,由()243f x x x =-+在(),λ-∞上只能有一个零点得13λ<≤.综上,λ的取值范围为(]()1,34,+∞U .【名师点睛】根据分段函数,转化为两个不等式组,分别求解,最后求并集.先讨论一次函数零点的取法,再对应确定二次函数零点的取法,即得参数λ的取值范围.已知函数有零点求参数取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.8.(2018年高考天津卷理科)已知0a >,函数()222,0,22,0.x ax a x f x x ax a x ⎧++≤⎪=⎨-+->⎪⎩若关于x 的方程()f x ax=恰有2个互异的实数解,则a 的取值范围是______________. 【答案】()48, 【解析】分类讨论:当0x ≤时,方程()f x ax =即22x ax a ax ++=,整理可得:()21x a x =-+,很明显1x =-不是方程的实数解,则21x a x =-+;当0x >时,方程()f x ax =即222x ax a ax -+-=,整理可得:()22x a x =-,很明显2x =不是方程的实数解,则22x a x =-.令()22,01,02x x x g x x x x ⎧-≤⎪⎪+=⎨⎪>⎪-⎩,其中211211x x x x ⎛⎫-=-++- ⎪++⎝⎭,242422x x x x =-++--,则原问题等价于函数()g x 与函数y a =有两个不同的交点,求a 的取值范围.结合对勾函数和函数图象平移的规律绘制函数()g x 的图象,同时绘制函数y a =的图象如图所示,考查临界条件,结合0a >观察可得,实数a 的取值范围是()4,8.【名师点睛】本题的核心是考查函数的零点问题,由题意分类讨论0x ≤和0x >两种情况,然后绘制函数图象,数形结合即可求得最终结果.函数零点的求解与判断方法包括:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.。

二次函数的中点性质及应用

二次函数的中点性质及应用

二次函数的中点性质及应用二次函数是一个具有形式为y = ax²+ bx + c的函数,其中a、b、c是常数,且a ≠0。

二次函数的中点性质是指二次函数的图像上任意两个点和抛物线的对称轴上的中点三个点的横坐标之和等于常数项的值的相反数。

二次函数的中点性质可以通过数学推导进行证明。

设抛物线的对称轴为x = k,任意两个点的横坐标分别为x₁和x₂,纵坐标分别为y₁和y₂,对称轴上的中点的横坐标为k,纵坐标为y。

根据对称性质,有y₁= y₂= y。

首先考虑对称轴上的中点,根据抛物线的定义可知,对称轴上的中点的横坐标是对称轴的横坐标,即x = k。

将x = k代入二次函数的表达式中,得到y = ak²+ bk + c。

再考虑任意两个点,代入二次函数的表达式中,分别有y₁= ax₁²+ bx₁+ c,y₂= ax₂²+ bx₂+ c。

根据中点性质,横坐标之和等于常数项的相反数,有x₁+ x₂+ k = 0。

将x₂替换为k - x₁,代入y₁和y₂的表达式中,得到y₁+ y₂+ y = -c。

将得到的等式整理,得到ak²+ bk + c + ak₁²+ ak - b - c + a - bk + c = 0,消去相同项和合并常数项,最终得到2a(k²+ k - x₁²) = 0。

由于二次函数的系数a ≠0,所以可以消去a,得到k²+ k - x₁²= 0。

通过解这个二次方程,可以求解出对称轴的坐标,即k = -0.5 ±√(0.25 + x₁²)。

综上所述,二次函数的中点性质成立。

二次函数的中点性质有许多应用。

其中一个重要的应用是求二次函数的顶点坐标。

顶点是抛物线的最高点或最低点,对称轴上的点是顶点。

根据中点性质,对称轴上的中点和端点的横坐标之和为常数项的相反数,即x + k = -b / (2a)。

两点分布的解题技巧

两点分布的解题技巧

两点分布的解题技巧两点分布,又称0-1分布或伯努利分布,在概率论和统计学中,是一种离散概率分布,它只有两种可能的结果。

通常,这两种结果被称为“成功”和“失败”,而两点分布的概率质量函数(PMF)可以表示为:P(X = x) = p^x (1 - p)^(1 - x) 对于x = 0 或1其中,p 是成功的概率,1 - p 是失败的概率。

当处理两点分布问题时,可以使用以下技巧:1. 识别成功概率:明确问题中的成功概率p。

这是事件成功的概率,通常在问题描述中给出。

2. 计算期望值和方差:两点分布的期望值(均值)是p,方差是p(1 - p)。

这可以帮助你理解分布的中心趋势和离散程度。

3. 利用概率质量函数:对于给定的成功概率p,使用概率质量函数来计算特定结果的概率。

例如,如果要计算恰好一次成功的概率,可以将x 设为1。

4. 理解二项分布关系:两点分布是二项分布的一个特例,其中试验次数n = 1。

因此,如果问题涉及多次独立试验,可以考虑将其推广到二项分布。

5. 利用累积分布函数(CDF):如果需要计算一个区间内的概率,可以使用累积分布函数,它提供了随机变量小于或等于某个值的概率。

6. 注意条件概率和独立性:在涉及多个事件的问题中,理解事件之间是否独立以及如何计算条件概率是很重要的。

7. 简化问题:在复杂问题中,尝试将问题分解成较小、更易于管理的部分,这样可以逐步求解。

8. 检查结果的合理性:在得出答案后,检查概率值是否在0 和1 之间,这是概率的基本原则。

综合这些技巧,你可以更有效地解决涉及两点分布的问题。

记住,实践是提高解题技巧的关键,因此通过解决多种类型的问题来应用这些技巧是非常有用的。

2024年高考第二次模拟考试数学(新高考专用01)含答案

2024年高考第二次模拟考试数学(新高考专用01)含答案

2024年高考第二次模拟考试高三数学(答案在最后)全解全析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.A .B . C.1x x ≤-,或3x >D .【答案】B【分析】先化简集合,再利用集合的交并补运算求解即可,【详解】由题意得{}3A x x =>,{}1B x x =≤-,又{}1B x x =>-R ð则(){}1A B x x ⋃=>-R ð,故选:B.【分析】利用复数的概念及四则运算法则运算即可求解.【详解】因为i z a b =+,所以()2222(i)2i z a b a b ab =+=-+,又因为2z 为纯虚数,所以22020a b ab ⎧-=⎨≠⎩,即0a b =≠(舍)或0a b =-≠,所以i z a a =-,所以i z a a =+,所以2i 1i (1i)i i 1i (1i)(1i)z a a a a z ---====-+++-.故选:D3.已知向量()2,4a =- ,()1,b t = ,若a 与b 共线,则向量a b +在向量()0,1j = 上的投影向量为()A.jB.j -C.2jD.2j- 【答案】C 【解析】【分析】根据a 与b 共线,可得240t --=,求得2t =-,再利用向量a b +在向量()0,1j = 上的投影向量为()a b jjjj+⋅⋅ ,计算即可得解.【详解】由向量()2,4a =-,()1,b t = ,若a与b共线,则240t --=,所以2t =-,(1,2)a b +=-,所以向量a b +在向量()0,1j = 上的投影向量为:()(1,2)(0,1)21a b jj j j jj+⋅-⋅⋅=⋅=,故选:C4.“1ab >”是“10b a>>”()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据充分条件和必要条件的定义判断.【详解】当0a >时,由1ab >,可得10b a>>,当a<0时,由1ab >,得10b a<<;所以“1ab >”不是“10b a>>”的充分条件.因为01010a b ab a a>⎧⎪>>⇔-⎨>⎪⎩,所以1ab >,所以“1ab >”是“10b a>>”的必要不充分条件.故选:B.【点睛】本题考查不等式性质与充分、必要条件的判定,还考查了理解辨析问题的能力,属于基础题.5.有甲、乙等五人到三家企业去应聘,若每人至多被一家企业录用,每家企业至少录用其中一人且甲、乙两人不能被同一家企业录用,则不同的录用情况种数是()A.60B.114C.278D.336【答案】D【解析】命题意图本题考查排列与组合的应用.录用3人,有353360C A =种情况;录用4人,有4232354333162C C A C A -=种情况;录用5人,有12323331345333333225)4(C C A C A (C A C A )11A -+-=种情况.所以共有336种.6.已知D :222210x y ax a +---=,点()3,0P -,若D 上总存在M ,N 两点使得PMN 为等边三角形,则a 的取值范围是()A.()5,11,3⎡⎫--⋃-+∞⎪⎢⎣⎭ B.[)5,1,3⎛⎤-∞-⋃+∞ ⎥⎝⎦C.(][) ,21,-∞-⋃+∞D.[)()2,11,---+∞ 【答案】B 【解析】【分析】D 的圆心坐标为(),0D a ,半径为1r a =+,要使D 上总存在M ,N 两点使得PMN 为等边三角形,则D 上存在一点M ,使得30MPD ∠=︒,当PM 与D 相切时,MPD ∠最大,故sin sin 30rMPD PD∠=≥︒,由此可求解.【详解】D 的标准方程为()()2221x a y a -+=+,圆心坐标为(),0D a ,半径为1r a =+.因为,PM PN MD ND ==,所以PMD PND ≅△△.所以30MPD NPD ∠=∠=︒.要使D 上总存在M ,N 两点使得PMN 为等边三角形,则D 上存在一点M ,使得30MPD ∠=︒,当PM 与D 相切时,MPD ∠最大,此时30MPD ∠≥︒,故1sin sin 302r MPD PD ∠=≥︒=,即()1132a a +≥+,整理得23250a a +-≥,解得[)5,1,3a ⎛⎤∈-∞-⋃+∞ ⎥⎝⎦.故选:B.7.已知ABC 中,60BAC ∠=︒,2AB =,Q 是边BC 上的动点.若PA ⊥平面ABC ,PA =,且PQ与面ABC 所成角的正弦值的最大值为3,则三棱锥-P ABC 的外接球的表面积为()A.4πB.6πC.8πD.9π【答案】B 【解析】【分析】根据题意得PQ AQ 的最小值是1,即A 到BC 的距离为1,则∠ACB =90°,结合图形找出△ABC 的外接圆圆心与三棱锥-P ABC 外接球的球心,求出外接球的半径,再计算它的表面积.【详解】三棱锥-P ABC 中,PA ⊥平面ABC ,设直线PQ 与平面ABC 所成角为θ,∵sin θ的最大值是63,∴sin 3PA PQ PQ θ==≤,解得PQ ≥即PQ AQ 的最小值是1,即A 到BC 的距离为1,直角三角形△ABQ 中,AB =2,所以∠BAQ =60°,又∠BAC =60°,所以,A Q 重合,则∠ACB =90°,则△ABC 的外接圆圆心M 为AB 的中点,又PA ⊥平面ABC ,从而外接球的球心O 为PB 的中点,外接球的半径2R OB =====,∴三棱锥-P ABC 的外接球的表面积2264π4π6π2S R ⎛==⨯= ⎝⎭.故选:B .B.椭圆M的蒙日圆方程为D.长方形G的面积的最大值为【分析】由椭圆标准方程求得,a b后再求得c,从而可得离心率,利用特殊的长方形(即边长与椭圆的轴平行)求得蒙日圆方程,从而可得长方形边长的关系,结合基本不等式得面积最大值,并得出长方形为正方形时的边长.【详解】由椭圆方程知a2b=,则c==e==A正确;当长方形G的边与椭圆的轴平行时,长方形的边长分别为4,=因此蒙2210x y+=,B正确;设矩形的边长分别为,m n,因此22402m n mn+=≥,即20mn≤,当且仅当m n=时取等号,所以长方形G的面积的最大值是20,此时该长方形G为正方形,边长为C正确,D错误.故选:D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【分析】A,根据12||=MN x x p++结合基本不等式即可判断;B,由抛物线定义知当,,P M A三点共线时MF MP+;C,D,设直线方程,联立抛物线,应用韦达定理即可求解.【详解】对A,设112212(,),(,),(,0)M x y N x y x x>,因为这些MN倾斜角不为0,则设直线MN的方程为32x ky=+,联立抛物线得2690y ky--=,则12126,9y y k y y+=⋅=-,所以()()221212121212399363,244k x x k y y k x x k y y y y ∴+=++=+=+++=,则212||=3666MN x x k ++=+≥(当且仅当0k =时等号成立),A 正确;对B ,如图MA ⊥抛物线准线,MF MP MA MP +=+要使其最小,即,,P M A 三点共线时取得最小值,即53||422MF MP MA MP PA +=+==+=,B 正确;对C ,由()121212311||||239||||||||324x x NF MF MF NF MF NF x x x x ++++===+++,C 错误;对D ,1212123339(()()2224MF NF x x x x x x ⋅=+⋅+=+++2293993(63)(63)1842422k k =+++=++=,解得1k =±,D 正确故选:ABD.10.已知双曲线()222:102x y E a a -=>的左、右焦点别为1F ,2F ,过点2F 的直线l 与双曲线E 的右支相交于,P Q 两点,则()A.若E的两条渐近线相互垂直,则a =B.若EE 的实轴长为1C.若1290F PF ∠=︒,则124PF PF ⋅=D.当a 变化时,1F PQ周长的最小值为【答案】ACD 【解析】【分析】根据双曲线的渐近线、离心率、定义、三角形的周长等知识对选项进行分析,从而确定正确答案.【详解】依题意,b =,A选项,若双曲线的两条渐近线相互垂直,所以1,ba b a===A 正确;B 选项,若E的离心率为c e a =====,解得1a =,所以实轴长22a =,故B 错误;C 选项,若1290F PF ∠=︒,则122221224PF PF aPF PF c⎧-=⎪⎨+=⎪⎩,整理得222121224448,4PF PF c a b PF PF ⋅=-==⋅=,故C 正确;D 选项,根据双曲线的定义可知,121222PF PF aQF QF a ⎧-=⎪⎨-=⎪⎩,两式相加得11114,4PF QF PQ a PF QF a PQ +-=+=+,所以1F PQ 周长为42a PQ +,当12PQ F F ⊥时,PQ 取得最小值224b a a=,所以8424a PQ a a +≥+≥=,当且仅当84a a=,即a =所以1F PQ周长的最小值为D 正确.故选:ACD【分析】A 选项,建立空间直角坐标系,根据112B D EF = 得到11B D 与EF 平行;B 选项,先求出242,,333P ⎛⎫⎪⎝⎭,得到平面1APB 的法向量()1,0,1m =- ,根据数量积为0得到BC m ⊥,得到BC //平面1APB ;C 选项,先求出1A F 与平面1B EB 所成角的正弦值,进而求出余弦值;D 选项,求出平面1A EF 的法向量,根据点到平面距离公式求出答案.【详解】A 选项,以A 作坐标原点,1,,AB AD AA 所在直线分别为,,x y z 轴,建立空间直角坐标系,()()()()()()()1112,0,2,0,2,2,2,1,0,1,2,0,0,0,2,2,0,0,2,2,0B D E F A B C ,则()()112,2,0,1,1,0B D EF =-=- ,由于112B D EF =,故11B D 与EF 平行,A 错误;B 选项,设(),,P x y z ,因为12A P PF =,所以()()2,,21,2,x y z x y z ----=,即224222x xy y z z=-⎧⎪=-⎨⎪-=-⎩,解得242,,333x y z ===,故242,,333P ⎛⎫ ⎪⎝⎭,设平面1APB 的法向量为(),,m a b c =,则()()()1242242,,,,0333333,,2,0,2220m AP a b c a b c mAB a b c a c ⎧⎛⎫⋅=⋅=++= ⎪⎪⎝⎭⎨⎪⋅=⋅=+=⎩ ,令1a =,则0,1b c ==-,则()1,0,1m =-,因为()()0,2,01,0,10BC m ⋅=-= ,故BC m ⊥,BC //平面1APB ,故存在点P ,使得12A P PF =,且BC //平面1APB ,B 正确;C 选项,平面1B EB 的法向量为()1,0,0n =r,故1A F 与平面1B EB 所成角的正弦值为1113A F n A F n ⋅==⋅,则1A F 与平面1B EBC 正确;D 选项,设平面1A EF 的法向量为()1111,,n x y z =,则()()()()11111111111111,,2,1,2220,,1,1,00n A E x y z x y z n EF x y z x y ⎧⋅=⋅-=+-=⎪⎨⋅=⋅-=-+=⎪⎩ ,令11x =,则1131,2y z ==,故131,1,2n ⎛⎫= ⎪⎝⎭ ,则点1B 到平面1A EF的距离为111141717A B n n ⋅=,D 错误.故选:BC三、填空题:本题共3小题,每小题5分,共15分.12.若二项式2nx x ⎛+ ⎝的展开式中二项式系数之和为64,则二项展开式中系数最大的项为【答案】240【解析】【详解】因为二项式2nx x ⎛+ ⎝的展开式中二项式系数之和为64,所以264n =,得6n =,所以二项式为6x x ⎛+ ⎝,则二项式展开式的通项3662166C (C 2r r rr r rr T xx x--+==,令第1r +项的系数最大,则11661166C 2C 2C 2C 2r r r r r r r r --++⎧≥⎨≥⎩,解得111433r ≤≤,因为N r ∈,所以4r =,则二项展开式中系数最大的项为36444256C 2240T x-⨯==,所以填24013.若函数()sin f x ax x =+的图像上存在两条互相垂直的切线,则实数a 是__________.【答案】0【解析】【详解】注意到,()cos f x a x =+'.若函数()f x 上存在两条切线垂直,则存在1x 、2x R ∈,使得()()()()12121cos cos 1f x f x a x a x ''=-⇔++=-()21212cos cos cos cos 10a a x x x x ⇔+++⋅+=221212cos cos cos cos 1022x x x x a +-⎛⎫⎛⎫⇔++-= ⎪ ⎪⎝⎭⎝⎭12cos cos 1,0x x a ⇔=-=±=.故答案为014.若过点()0,1的直线l 自左往右交抛物线214y x =及圆()22114x y +-=于,,,A B C D 四点,则3AB CD +的最小值为________.【答案】2+【解析】【分析】根据抛物线的定义求得求出11,22A D AB y CD y =+=+,当l y ⊥轴时,则1D A y y ==,可求3AB CD +的值;当直线方程为()1x n y =-时,代入抛物线方程,根据韦达定理结合基本不等式求得此时3AB CD +的最小值,即可得结论.【详解】解:如图,其中抛物线214y x =的焦点坐标为()0,1F ,抛物线的准线方程为:1y =-,圆()22114x y +-=的半径12r =又抛物线的定义可得:1,1A D AF y DF y =+=+,又11,22A D AB AF BF y CD DF CF y =-=+=-=+,当l y ⊥轴时,则1A D y y ==,所以113131622AB CD ⎛⎫+=+++= ⎪⎝⎭;当l 不垂直于y 轴时,设l 的方程为:()1x n y =-,代入抛物线方程得:()2222240n y n y n -++=,所以2224,1A D A D n y y y y n++=⋅=。

2024年山东省青岛市市南区统考九年级数学第一学期开学经典模拟试题【含答案】

2024年山东省青岛市市南区统考九年级数学第一学期开学经典模拟试题【含答案】

2024年山东省青岛市市南区统考九年级数学第一学期开学经典模拟试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若a 为有理数,且满足|a |+a=0,则()A .a >0B .a ≥0C .a <0D .a ≤02、(4分)某体育馆准备重新铺设地面,已有一部分正三角形的地砖,现要购买另一种不同形状的正多边形地砖与正三角形在同一顶点处作平面镶嵌(正多边形的边长相等),则该体育馆不应该购买的地砖形状是()A .正方形B .正六边形C .正八边形D .正十二边形3、(4分)分式方程132x x =-的解为()A .1x =B .2x =C .3x =D .4x =4、(4分)若代数式x 有意义,则实数x 的取值范围是()A .x≥1B .x≥2C .x >1D .x >25、(4分)如图所示的四边形,与选项中的四边形一定相似的是()A .B .C .D .6、(4分)如图,已知ABCD 的顶点A 、C 分别在直线1x =和4x =上,O 是坐标原点,则对角线OB 长的最小值为()A .4B .5C .6D .77、(4分)已知点1(A x ,1)y ,2(B x ,2)y 在直线2y x =上,且12x x >,下列选项正确的是()A .12y y =B .12y y >C .12y y <D .无法确定8、(4分)如图,在正方形ABCD 中,G 为CD 的中点,连结AG 并延长,交BC 边的延长线于点E ,对角线BD 交AG 于点F ,已知2FG =,则线段AE 的长是()A .10B .8C .16D .12二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)我们知道,正整数的和1+3+5+…+(2n ﹣1)=n 2,若把所有正偶数从小到大排列,并按如下规律分组:(2),(4,6,8),(10,12,14,16,18),(20,22,24,26,28,30,32),…,现有等式A m =(i ,j )表示正偶数m 是第i 组第j 个数(从左到右数),如A 8=(2,3),则A 2018=_____10、(4分)对于任意非零实数a ,b ,定义“☆”运算为:a ☆b =2a bab -,若(x+1)☆x+(x+2)☆(x+1)+(x+3)☆(x+2)+…+(x+2018)☆(x+2017)=1x,则x=_____.11、(4分)关于x的分式方程2111x k xx x++=++的解为非正数,则k的取值范围是____.12、(4分)如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P,连接BP.若1AE AP==,PB=APD AEB∆≅∆;②EB ED⊥;③点B到直线AE;④12APD APBS S∆∆++=,其中正确的结论有_____________(填序号)13、(4分)在正数范围内定义一种运算“※”,其规则为11bbaa=+※,如13424421=+=※.根据这个规则可得方程3(2)2x x-=※的解为__________.三、解答题(本大题共5个小题,共48分)14、(12分)(1)解不等式组:23112(2)2xx x+>⎧⎪⎨-≤+⎪⎩(2)解方程:11222xx x-=---. 15、(8分)如图,点O为平面直角坐标系的原点,点A在x轴的正半轴上,正方形OABC 的边长是3,点D在AB上,且1AD=.将OAD∆绕着点O逆时针旋转得到OCE∆.(1)求证:OE OD⊥;(2)在x轴上找一点P,使得PD PE+的值最小,求出点P的坐标.16、(8分)已知两个共一个顶点的等腰Rt △ABC ,Rt △CEF ,∠ABC=∠CEF=90°,连接AF ,M 是AF 的中点,连接MB 、ME .(1)如图1,当CB 与CE 在同一直线上时,求证:MB ∥CF ;(2)如图1,若CB=a ,CE=2a ,求BM ,ME 的长;(3)如图2,当∠BCE=45°时,求证:BM=ME .17、(10分)如图,△ABC 中,AD 是边BC 上的中线,过点A 作AE ∥BC ,过点D 作DE ∥AB ,DE 与AC 、AE 分别交于点O 、点E ,连接EC .(1)求证:AD=EC ;(2)当∠BAC=Rt ∠时,求证:四边形ADCE 是菱形.18、(10分)如图,在边长为1个单位长度的小正方形组成的网格中,ABC △的顶点均在格点上,点A 的坐标为(2,3),点B 的坐标为(3,0),点C 的坐标为(0,2).(1)以点C 为旋转中心,将ABC △旋转180 后得到11A B C ,请画出11A B C ;(2)平移ABC △,使点A 的对应点2A 的坐标为(0,-1),请画出222A B C △;(3)若将11A B C 绕点P 旋转可得到222A B C △,则点P 的坐标为___________.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)将矩形ABCD 折叠,使得对角线的两个端点A.C 重合,折痕所在直线交直线AB 于点E,如果AB=4,BE=1,则BC 的长为______.20、(4分)反比例函数y=4a x +的图象如图所示,A,P 为该图象上的点,且关于原点成中心对称.在△PAB 中,PB∥y 轴,AB∥x 轴,PB 与AB 相交于点B.若△PAB 的面积大于12,则关于x 的方程(a-1)x 2-x+14=0的根的情况是________________.21、(4分)请你写出一个有一根为0的一元二次方程:______.22、(4分)的值是________.23、(4分)x 的取值范围是_____.二、解答题(本大题共3个小题,共30分)24、(8分)如图,等腰直角ABC ∆中,90ABC ∠=︒,点P 在AC 上,将ABP ∆绕顶点B 沿顺时针方向旋转90°后得到CBQ ∆.(1)求PCQ ∠的度数;(2)当4AB =,AP =时,求PQ 的大小;(3)当点P 在线段AC 上运动时(P 不与A ,C 重合),求证:2222PB PA PC =+.25、(10分)如图,已知AD=BC ,AC=BD .(1)求证:△ADB ≌△BCA ;(2)OA 与OB 相等吗?若相等,请说明理由.26、(12分)如图,矩形纸片ABCD 中,已知8AD =,折叠纸片使AB 边落在对角线AC 上,点B 落在点F 处,折痕为AE ,且3EF =,求线段FC 的长.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D 【解析】试题解析:0a a +=,a a ,∴=-0a ∴≤,即a 为负数或1.故选D .2、C 【解析】根据密铺的条件得,两多边形内角和必须凑出360︒,进而判断即可.【详解】解:A 、正方形的每个内角是90︒,902603360︒⨯+︒⨯=︒,∴能密铺;B 、正六边形每个内角是120︒,120604360︒+︒⨯=︒,∴能密铺;C 、正八边形每个内角是1803608135︒-︒÷=︒,135︒与60︒无论怎样也不能组成360︒的角,∴不能密铺;D 、正十二边形每个内角是150︒,150260360︒⨯+︒=︒,∴能密铺.故选:C .本题考查两种正多边形的镶嵌应符合多个内角度数和等于360︒.3、C 【解析】先解分式方程,最后检验即可得到答案.【详解】解:132x x=-3(x-2)=x2x=6x=3由3-2≠0,故x=3是方程的解,即答案为C.本题考查了解分式方程,其中解方程是关键,检验是易错点.4、B 【解析】根据二次根式的被开方数为非负数以及分式的分母不为0可得关于x 的不等式组,解不等式组即可得.【详解】由题意得200x x -≥⎧⎨≠⎩,解得:x ≥2,故选B.本题考查了二次根式有意义的条件,分式有意义的条件,熟练掌握相关知识是解题的关键.5、D 【解析】根据勾股定理求出四边形ABCD 的四条边之比,根据相似多边形的判定方法判断即可.【详解】作AE ⊥BC 于E ,则四边形AECD 为矩形,∴EC =AD =1,AE =CD =3,∴BE =4,由勾股定理得,AB =5,∴四边形ABCD 的四条边之比为1:3:5:5,D 选项中,四条边之比为1:3:5:5,且对应角相等,故选:D .此题考查相似多边形的判定定理,两个多边形的对应角相等,对应边成比例,则这两个多边形相似,此题求出多边形的剩余边长是解题的关键,利用矩形的性质定理,勾股定理求出边长.6、B 【解析】当B 在x 轴上时,对角线OB 长度最小,由题意得出∠ADO =∠CED =90°,OD =1,OE =4,由平行四边形的性质得出OA ∥BC ,OA =BC ,得出∠AOD =∠CBE ,由AAS 证明△AOD ≌△CBE ,得出OD =BE =1,即可得出结果.【详解】当B 在x 轴上时,对角线OB 长度最小,如图所示:直线x =1与x 轴交于点D ,直线x =4与x 轴交于点E ,根据题意得:∠ADO =∠CEB =90°,OD =1,OE =4,四边形ABCD 是平行四边形,∴OA ∥BC ,OA =BC ,∴∠AOD =∠CBE ,在△AOD 和△CBE 中,AOD CBE ADO CEB OA BC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AOD ≌△CBE(AAS),∴OD =BE =1,∴OB =OE +BE =5,故答案为:5.本题考查了平行四边形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.7、B 【解析】先根据一次函数的解析式判断出函数的增减性,再根据x 1>x 2即可作出判断.【详解】解:直线2y x =中20k =>,y ∴随x 的增大而增大,12x x >,12y y ∴>.故选:B .本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.8、D 【解析】根据正方形的性质可得出AB ∥CD ,进而可得出△ABF ∽△GDF ,根据相似三角形的性质可得出2AF ABGF GD ==,结合FG=2可求出AF 、AG 的长度,由CG ∥AB 、AB=2CG 可得出CG 为△EAB 的中位线,再利用三角形中位线的性质可求出AE 的长度,此题得解.【详解】解:∵四边形ABCD 为正方形,∴AB=CD ,AB ∥CD ,∴∠ABF=∠GDF ,∠BAF=∠DGF ,∴△ABF ∽△GDF ,∴2AF ABGF GD==,∴AF=2GF=4,∴AG=6,∵CG ∥AB ,AB=2CG ,∴CG 为△EAB 的中位线,∴AE=2AG=12,故选D .本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF 的长度是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、(32,48)【解析】先计算出2018是第1009个数,然后判断第1009个数在第几组,进一步判断是这一组的第几个数即可.【详解】解:2018是第1009个数,设2018在第n 组,则1+3+5+7+(2n ﹣1)=12×2n ×n =n 2,当n =31时,n 2=961,当n =32时,n 2=1024,故第1009个数在第32组,第32组第一个数是961×2+2=1924,则2018是第201819242-+1=48个数,故A 2018=(32,48).故答案为:(32,48).此题考查规律型:数字的变化类,找出数字之间排列的规律,得出数字的运算规律,利用规律解决问题是关键.【解析】已知等式左边利用题中的新定义化简,再利用拆项法变形,整理后即可求出解.【详解】解:已知等式利用题中的新定义化简得:112(1)2(2)(1)x x x x ++++12(3)(2)x x ++++…+12(2018)(2017)x x ++=1x ,整理得:12(11111111...1122320172018x x x x x x x x -+-+-++-+++++++)=1x,合并得:12(112018x x -+)=1x ,即112018x x ++=0,去分母得:x+2018+x =0,解得:x =﹣1,经检验x =﹣1是分式方程的解,则x =﹣1.故答案为:﹣1.本题考查了分式的混合运算,属于新定义题型,将所求的式子变形之后利用11222a b ab b a-=-进行拆项是解题的关键.11、k ≥1且k ≠3.【解析】分式方程去分母转化为整式方程,由分式方程的解为非正数,确定出k 的范围即可.【详解】去分母得:x +k +2x =x +1,解得:x =12k-,由分式方程的解为非正数,得到12k -⩽0,且12k-≠−1,解得:k ≥1且k ≠3,故答案为k ≥1且k ≠3.本题考查的是分式方程,熟练掌握分式方程是解题的关键.12、①②④①利用同角的余角相等,易得∠EAB=∠PAD ,再结合已知条件利用SAS 可证两三角形全等;②利用①中的全等,可得∠APD=∠AEB ,结合三角形的外角的性质,易得∠BEP=90°,即可证;③过B 作BF ⊥AE ,交AE 的延长线于F ,利用③中的∠BEP=90°,利用勾股定理可求BE ,结合△AEP 是等腰直角三角形,可证△BEF 是等腰直角三角形,再利用勾股定理可求EF 、BF ;④连接BD ,求出△ABD 的面积,然后减去△BDP 的面积即可。

保定市第一中学七年级数学上册第四单元《几何图形初步》-解答题专项知识点复习(培优提高)

保定市第一中学七年级数学上册第四单元《几何图形初步》-解答题专项知识点复习(培优提高)

一、解答题1.线段AD=6cm ,线段AC=BD=4cm ,E 、F 分别是线段AB 、CD 中点,求EF .解析:【分析】根据题意和图形可以求得线段EB 、BC 、CF 的长,从而可以得到线段EF 的长.【详解】∵E ,F 分别是线段AB ,CD 的中点,∴AB=2EB=2AE ,CD=2CF=2FD ,∵AD=AB+BC+CD=2EB+BC+2CF=6,AC=2EB+BC=4,∴AC+2CF=6,解得,CF=1,同理可得:EB=1,∴BC=2,∴EF=EB+BC+CF=1+2+1=4.【点睛】此题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.2.如图所示,∠AOB =35°,∠BOC =50°,∠COD =22°,OE 平分∠AOD ,求∠BOE 的度数.解析:5°【解析】【分析】首先根据角的和差关系算出∠AOD 的度数,再根据角平分线的性质可得∠AOE =12∠AOD ,进而得到答案.【详解】∵∠AOB =35°,∠BOC =50°,∠COD =22°,∴∠AOD =35°+50°+22°=107°.∵OE 平分∠AOD ,∴∠AOE =12∠AOD =12×107°=53.5°,∴∠BOE =∠AOE -∠AOB =53.5°-35°=18.5°.【点睛】本题考查了角平分线的性质,关键是掌握角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.3.如图是由若干个正方体形状的木块堆成的,平放于桌面上。

其中,上面正方体的下底面的四个顶点恰是下面相邻正方体的上底面各边的中点,如果最下面的正方体的棱长为1.(1)当只有两个正方体放在一起时,这两个正方体露在外面的面积和是;(2)当这些正方体露在外面的面积和超过8时,那么正方体的个数至少是多少?(3)按此规律下去,这些正方体露在外面的面积会不会一直增大?如果会,请说明理由;如果不会,请求出不会超过哪个数值?(提示:所有正方体侧面面积加上所有正方体上面露出的面积之和,就是需求的面积,从简单入手,归纳规律.)解析:(1)7;(2)4个;(3)不会,理由见解析【分析】(1)若只有一层(即只有一个)时,每个面的面积是1,共露出5个面,所以外露面积为:1+1×4=5;若有两层,则第二层每个侧面的面积是12,与一层相比,多了4个侧面,所以外露面积为:1+(1+12)×4=7;(2)若有三层,则第三层的每个侧面的面积是14,与两层相比,多了4个侧面,所以外露面积=1+(1+12+14)×4=8,这些正方体露在外面的面积和超过8,那么正方体的个数至少是4个;(3)若有n层,所以,露在外面的面积为:1+[1+12+14+……+(1)12n]×4<1+2×4=9,即按此规律堆下去,总面积最大不会超过9.【详解】解:(1)若只有一层(即只有一个)时,每个面的面积是1,共露出5个面,所以外露面积为:1+1×4=5;若有两层,则第二层每个侧面的面积是12,与一层相比,多了4个侧面,所以外露面积为:1+(1+12)×4=7;(3)若有三层,则第三层的每个侧面的面积是14,与两层相比,多了4个侧面,所以外露面积=1+(1+12+14)×4=8,∴这些正方体露在外面的面积和超过8,那么正方体的个数至少是4个;(3)若有n层,所以,露在外面的面积为:1+[1+12+14+……+(1)12n]×4<1+2×4=9,∴按此规律堆下去,总面积最大不会超过9.【点睛】此题考查了立体图形的表面积问题.解决本题的关键是得到上下正方体的一个面积之间的关系,从而即可得出依次排列的正方体的一个面的面积,这里还要注意把最下面的正方体看做是5个面之外,上面的正方体都是露出了4个面.解决本题的关键是得到上下正方体的一个面积之间的关系.4.(1)如图,AC=DB,请你写出图中另外两条相等的线段.(2)在一直道边植树8棵,若相邻两树之间距离均为1.5m,则首尾两颗大树之间的距离是_____.解析:(1)AB=CD;(2)10.5m.【分析】(1)根据等式的性质即可得出结论;(2)8棵树之间共有7段距离,从而计算即可.【详解】(1)因为AC=BD,∴AC-BC=DB-BC,即AB=CD.(2)设首尾之间的距离为x,由8棵树之间共有7段间隔,可得x=7×1.5=10.5(m).故答案为:10.5m.【点睛】本题考查了等式的性质及线段的计算,属于基础题,明白8棵树之间的间隔是关键.5.如图,一个五棱柱的盒子(有盖),有一只蚂蚁在A处发现一只虫子在D处,立刻赶去捕捉,你知道它怎样去的吗?请在图中画出它的爬行路线,如果虫子正沿着DI方向爬行,蚂蚁预想在点I处将它捕捉,应沿着什么方向?请在图中画出它的爬行路线.解析:第一问:如图沿线段AD爬行;第二问取线段E J的中点M,连结AM和MI,此路线为蚂蚁爬行的路线.【分析】根据两点之间线段最短,结合图形得出蚂蚁爬行的路线.【详解】解:第一问:如图沿线段AD 爬行;第二问取线段E J 的中点M ,连结AM 和MI ,此路线为蚂蚁爬行的路线.理由都是:两点之间线段最短.【点睛】本题考查了几何体的展开图与两点之间线段最短,利用展开图的性质得出答案是解题的关键.6.百羊问题 甲赶群羊逐草茂,乙牵肥羊一只随其后,戏问甲及一百否?甲云所说无差谬.若得原有一群凑,再添一半小一半,得你一只来方凑,玄机奥妙谁猜透?请列出方程.(说明:“小一半”是指一半的一半,即四分之一)解析:x +x +12x +14x +1=100. 【分析】 根据“再有这么一群,再加半群,又加四分之一群,再把你的一只凑进来,才满100只”这一等量关系列出方程即可.【详解】设羊群原有羊x 只,根据题意可列出方程:x +x +12x +14x +1=100. 【点睛】此题考查由实际问题抽象出一元一次方程,解题关键在于理解题意列出方程.7.如图,以直线AB 上一点O 为端点作射线OC ,使70AOC ∠=︒,在同一个平面内将一个直角三角板的直角顶点放在点O 处.(注:90DOE ∠=︒)(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,那么COE ∠的度数为______;(2)如图2,将直角三角板DOE 绕点O 按顺时针方向转动到某个位置,如果OC 恰好平分AOE ∠,求COD ∠的度数;(3)如图3,将直角三角板DOE 绕点O 任意转动,如果OD 始终在AOC ∠的内部,请直接用等式表示AOD ∠和COE ∠之间的数量关系.解析:(1)20︒;(2)20︒;(3)20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.【分析】(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,则∠COE =20°; (2)由角平分线可得70COE AOC ∠=∠=︒,再利用角的和差进行计算即可; (3)分别用∠COE 及∠AOD 的式子表达∠COD ,进行列式即可.【详解】解:(1)∵90DOE ∠=︒,70AOC ∠=︒∴907020COE DOE AOC =∠-∠=︒-︒=︒∠故答案为:20︒(2)∵OC 平分AOE ∠,70AOC ∠=︒,∴70COE AOC ∠=∠=︒,∵90DOE ∠=︒,∴907020COD DOE COE ∠=∠-∠=︒-︒=︒.(3)∵90COD DOE COE COE =∠-∠=︒-∠∠,70COD AOC AOD AOD =∠-∠=︒-∠∠∴9070COE AOD ︒-∠=︒-∠∴20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.故答案为:20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.【点睛】本题考查了角的和差关系,准确表达出角的和差关系是解题的关键.8.[阅读理解]射线OC 是AOB ∠内部的一条射线,若1,2COA BOC ∠=∠则我们称射线OC 是射线OA 的伴随线.例如,如图1,60 20AOB AOC COD BOD ∠=∠=∠=∠=,,则12AOC BOC ∠=∠,称射线OC 是射线OA 的伴随线:同时,由于12BOD AOD ∠=∠,称射线OD 是射线OB 的伴随线.[知识运用] (1)如图2,120AOB ∠=,射线OM 是射线OA 的伴随线,则AOM ∠= ,若AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线,则NOC ∠的度数是 .(用含α的代数式表示)(2)如图,如180AOB ∠=,射线OC 与射线OA 重合,并绕点O 以每秒3的速度逆时针旋转,射线OD 与射线OB 重合,并绕点O 以每秒5的速度顺时针旋转,当射线OD 与射线OA 重合时,运动停止,现在两射线同时开始旋转.①是否存在某个时刻t (秒),使得COD ∠的度数是20,若存在,求出t 的值,若不存在,请说明理由;②当t 为多少秒时,射线OC OD OA 、、中恰好有一条射线是其余两条射线的伴随线. 解析:(1)40︒,16α;(2)①存在,当20t =秒或25秒时,∠COD 的度数是20︒;②当907t =,36019,1807,30时,OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线.【分析】(1)根据伴随线定义即可求解;(2)①利用分类讨论思想,分相遇之前和之后进行列式计算即可;②利用分类讨论思想,分相遇之前和之后四个图形进行计算即可.【详解】(1)∵120AOB ∠=,射线OM 是射线OA 的伴随线, 根据题意,12AOM BOM ∠=∠,则111204033AOM AOB ∠=∠=⨯︒=︒; ∵AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线, ∴111233BON AON AOB α∠=∠=∠=,1122BOC AOB α∠=∠=, ∴111236NOC BOC BON ααα∠=∠-∠=-=; 故答案为:40︒,16α; (2)射线OD 与OA 重合时,180365t ==(秒), ①当∠COD 的度数是20°时,有两种可能: 若在相遇之前,则1805320t t --=,∴20t =;若在相遇之后,则5318020t t +-=,∴25t =;所以,综上所述,当20t =秒或25秒时,∠COD 的度数是20°;②相遇之前:(i )如图1,OC 是OA 的伴随线时,则12AOC COD ∠=∠, 即()13180532t t t =--, ∴907t =; (ii )如图2,OC 是OD 的伴随线时, 则12COD AOC ∠=∠, 即11805332t t t --=⨯, ∴36019t =; 相遇之后: (iii )如图3,OD 是OC 的伴随线时, 则12COD AOD ∠=∠, 即()153********t t t +-=-, ∴1807t =; (iv )如图4,OD 是OA 的伴随线时,则12AOD COD ∠=∠, 即()118053t 5t 1802t -=+-, ∴30t =;所以,综上所述,当907t =,36019,1807,30时,OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线.【点睛】 本题是几何变换综合题,考查了角的计算,考查了动点问题,解题的关键是理解题意,学会用分类讨论的思想思考问题.9.(1)已知一个角的补角比它的余角的3倍多10︒,求这个角的度数.(2)已知α∠的余角是β∠的补角的13,并且32βα∠=∠,试求a β∠+∠的度数. 解析:(1)50°;(2)150°【分析】 (1)设这个角为α,则补角为(180°-α),余角为(90°-α),再由补角比它的余角的3倍多10°,可得方程,解出即可;(2)根据互余和互补的定义,结合已知条件列出方程组,解方程组得到答案.【详解】(1)设这个角为α,根据题意,得18039010()a α︒-=︒-+︒.解得:50α=︒.答:这个角的度数为50︒.(2)根据题意,得190(180)3αβ︒︒-∠=⨯-∠且32βα∠=∠, ∴60α∠=︒,90β∠=︒.∴ 150αβ∠+∠≡︒.【点睛】本题考查的是余角和补角的概念,掌握若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补是解题的关键.10.如图,A 、B 、C 三点在一条直线上,根据图形填空:(1)AC = + + ;(2)AB =AC ﹣ ;(3)DB+BC = ﹣AD(4)若AC =8cm ,D 是线段AC 中点,B 是线段DC 中点,求线段AB 的长.解析:(1)AD ,DB ,BC ;(2)BC ;(3)AC ;(4)6cm .【分析】(1)根据图形直观的得到线段之间的关系;(2)根据图形直观的得到线段之间的关系;(3)根据图形直观的得到各线段之间的关系;(4)AD 和CD 的长度相等并且都等于AC 的一半,DB 的长度为CD 长度的一半即为AC 长度的四分之一.AB 的长度等于AD 加上DB ,从而可求出AB 的长度.【详解】(1)AC =AD+DB+BC故答案为:AD ,DB ,BC ;(2)AB =AC ﹣BC ;故答案为:BC ;(3)DB+BC =DC=AC ﹣AD故答案为:AC ;(4)∵D 是AC 的中点,AC =8时,AD =DC =4B 是DC 的中点,∴DB =2∴AB =AD+DB=4+2,=6(cm ).【点睛】本题重点是根据题干中的图形得出各线段之间的关系,在第四问中考查了线段中点的性质.线段的中点将线段分成两个长度相等的线段.11.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且22AB =,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为()0t t >秒.(1)数轴上点B 表示的数是___________;点P 表示的数是___________(用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P Q 、同时出发,问多少秒时P Q 、之间的距离恰好等于2?(3)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.解析:(1)14-,85t -;(2)2.5秒或3秒;(3)线段MN 的长度不发生变化,其值为11,图形见解析.【分析】(1)根据点B 和点P 的运动轨迹列式即可.(2)分两种情况:①点P Q 、相遇之前;②点P Q 、相遇之后,分别列式求解即可. (3)分两种情况:①当点P 在点A B 、两点之间运动时;②当点P 运动到点B 的左侧时, 分别列式求解即可.【详解】(1)14-,85t -;(2)分两种情况:①点P Q 、相遇之前,由题意得32522t t ++=,解得 2.5t =.②点P Q 、相遇之后,由题意得32522t t -+=,解得3t =.答:若点P Q 、同时出发,2.5或3秒时P Q 、之间的距离恰好等于2;(3)线段MN 的长度不发生变化,其值为11,理由如下:①当点P 在点A B 、两点之间运动时:11111()221122222MN MP NP AP BP AP BP AB =+=+=+==⨯=; ②当点P 运动到点B 的左侧时,1111()112222MN MP NP AP BP AP BP AB =-=-=-==; ∴线段MN 的长度不发生变化,其值为11.【点睛】本题考查了数轴动点的问题,掌握数轴的性质是解题的关键.12.如图,在数轴上有A ,B 两点,点A 在点B 的左侧.已知点B 对应的数为2,点A 对应的数为a .(1)若a =﹣1,则线段AB 的长为 ;(2)若点C 到原点的距离为3,且在点A 的左侧,BC ﹣AC =4,求a 的值.解析:(1)3;(2)﹣2【分析】(1)根据点A 、B 表示的数利用两点间的距离公式即可求出AB 的长度;(2)设点C 表示的数为c ,则|c|=3,即c =±3,根据BC ﹣AC =4列方程即可得到结论.【详解】(1)AB =2﹣a =2﹣(﹣1)=3,故答案为:3;(2)∵点C 到原点的距离为3,∴设点C 表示的数为c ,则|c|=3,即c =±3,∵点A 在点B 的左侧,点C 在点A 的左侧,且点B 表示的数为2,∴点C 表示的数为﹣3,∵BC ﹣AC =4,∴2﹣(﹣3)﹣[a ﹣(﹣3)]=4,解得a =﹣2.【点睛】本题主要考查数轴上两点之间的距离,解此题的关键在于熟练掌握其知识点.13.如图,点C 在线段AB 上,点,M N 分别是AC BC 、的中点.(1)若9,6AC cm CB cm ==,求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC CB acm +=,其它条件不变,你能求出MN 的长度吗?请说明理由.(3)若C 在线段AB 的延长线上,且满足,,AC BC bcm M N -=分别为 AC 、BC 的中点,你能求出MN 的长度吗?请画出图形,写出你的结论,并说明理由.解析:(1)7.5;(2)12a,理由见解析;(3)能,MN=12b,画图和理由见解析【分析】(1)据“点M、N分别是AC、BC的中点”,先求出MC、CN的长度,再利用MN=CM+CN 即可求出MN的长度即可.(2)据题意画出图形,利用MN=MC+CN即可得出答案.(3)据题意画出图形,利用MN=MC-NC即可得出答案.【详解】解:(1)点M、N分别是AC、BC的中点,∴CM=12AC=4.5cm,CN=12BC=3cm,∴MN=CM+CN=4.5+3=7.5cm.所以线段MN的长为7.5cm.(2)MN的长度等于12 a,根据图形和题意可得:MN=MC+CN=12AC+12BC=12(AC+BC)=12a;(3)MN的长度等于12 b,根据图形和题意可得:MN=MC-NC=12AC-12BC=12(AC-BC)=12b.【点睛】本题主要考查了两点间的距离,关键是掌握线段的中点把线段分成两条相等的线段,注意根据题意画出图形也是关键.14.如图所示,长度为12cm的线段AB的中点为点M,点C将线段MB分成:1:2MC CB=,求线段AC的长度.解析:8cm【解析】【分析】设MC=xcm,由MC:CB=1:2得到CB=2xcm,则MB=3x,根据M点是线段AB的中点,AB=12cm,得到AM=MB12=AB12=⨯12=3x,可求出x的值,又AC=AM+MC=4x,即可得到AC 的长.【详解】设MC =xcm ,则CB =2xcm ,∴MB =3x .∵M 点是线段AB 的中点,AB =12cm ,∴AM =MB 12=AB 12=⨯12=3x , ∴x =2,而AC =AM +MC ,∴AC =3x +x =4x =4×2=8(cm ).故线段AC 的长度为8㎝.【点睛】本题考查了两点间的距离:两点的连线段的长叫两点间的距离.也考查了方程思想的运用.15.如图,一个点从数轴上的原点开始,先向左移动2cm 到达A 点,再向左移动3cm 到达B 点,然后向右移动9cm 到达C 点.(1)用1个单位长度表示1cm ,请你在数轴上表示出A ,B , C 三点的位置;(2)把点C 到点A 的距离记为CA ,则CA=______cm.(3)若点B 以每秒2cm 的速度向左移动,同时A .C 点分别以每秒1cm 、4cm 的速度向右移动.设移动时间为t 秒,试探索:CA−AB 的值是否会随着t 的变化而改变?请说明理由. 解析:(1)数轴见解析;(2)6;(3)CA−AB 的值不会随着t 的变化而改变,理由见解析;【分析】(1)在数轴上表示出A ,B ,C 的位置即可;(2)求出CA 的长即可;(3)不变,理由如下:当移动时间为t 秒时,表示出A ,B ,C 表示的数,求出CA-AB 的值即可做出判断.【详解】(1)如图:(2)CA=4−(−2)=4+2=6cm ,(3)不变,理由如下:当移动时间为t 秒时,点A. B. C 分别表示的数为−2+t 、−5−2t 、4+4t ,则CA=(4+4t)−(−2+t)=6+3t ,AB=(−2+t)−(−5−2t)=3+3t ,∵CA−AB=(6+3t)−(3+3t)=3∴CA−AB的值不会随着t的变化而改变.【点睛】此题考查数轴,两点间的距离,整式的加减,列代数式,解题关键在于结合数轴进行解答. 16.把如图图形沿虚线折叠,分别能折叠成什么几何体(图中的五边形均为正五边形)?观察折成的几何体,回答下列问题:(1)每个几何体有多少条棱?哪些棱的长度相等?(2)每个几何体有多少个面?它们分别是什么图形?哪些面的形状、大小完全相同?解析:(1)第一个图形能折成一个正五棱锥,有10条棱,侧棱相等,底面上的五条棱相等;第二个图形能折成一个正五棱柱,有15条棱,上下底面上的棱相等,侧棱相等;(2)第一个几何体有6个面,分别是5个等腰三角形,1个正五边形,等腰三角形的形状、大小相同;第二个几何体有7个面,分别是5个长方形,2个正五边形,长方形的形状、大小相同,正五边形的形状、大小相同【分析】(1)由五棱锥与五棱柱的折叠及五棱锥与五棱柱的展开图解题.(2)根据五棱锥与五棱柱的特征即可求解.【详解】解:(1)图形(1)有10条棱,底面棱的长度相等,侧面棱的长度相等;图形(2)有15条棱,两个底面棱的长度相等,侧面棱的长度相等;(2)图形(1)有6个面,底面是五边形,侧面是形状、大小完全相同的三角形;图形(2)有7个面,底面是形状、大小完全相同的五边形,侧面是形状、大小完全相同的长方形.【点睛】本题考查了展开图折叠成几何体的知识,有一定难度,同时考查了学生的想象和动手能力.17.如图,∠AOC:∠COD:∠BOD=2:3:4,且A,O,B三点在一条直线上,OE,OF分别平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度数。

新教材 人教A版高中数学必修第二册 第六章 平面向量及其应用 知识点汇总及解题规律方法提炼

6.1 平面向量的概念1.向量的概念及表示(1)概念:既有大小又有方向的量. (2)有向线段①定义:具有方向的线段. ②三个要素:起点、方向、长度.③表示:在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB→.④长度:线段AB 的长度也叫做有向线段AB →的长度,记作|AB →|.(3)向量的表示■名师点拨(1)判断一个量是否为向量,就要看它是否具备大小和方向两个因素. (2)用有向线段表示向量时,要注意AB →的方向是由点A 指向点B ,点A 是向量的起点,点B 是向量的终点.2.向量的有关概念(1)向量的模(长度):向量AB →的大小,称为向量AB →的长度(或称模),记作|AB →|.(2)零向量:长度为0的向量,记作0.(3)单位向量:长度等于1个单位长度的向量. 3.两个向量间的关系(1)平行向量:方向相同或相反的非零向量,也叫做共线向量.若a ,b 是平行向量,记作a ∥b .规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(2)相等向量:长度相等且方向相同的向量,若a ,b 是相等向量,记作a =b .■名师点拨(1)平行向量也称为共线向量,两个概念没有区别. (2)共线向量所在直线可以平行,与平面几何中的共线不同. (3)平行向量可以共线,与平面几何中的直线平行不同.典型例题1向量的相关概念给出下列命题:①若AB→=DC →,则A ,B ,C ,D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →;③若a =b ,b =c ,则a =c .其中所有正确命题的序号为________.【解析】 AB→=DC →,A ,B ,C ,D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB→|=|DC →|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a=b ,则|a |=|b |,且a 与b 的方向相同;b =c ,则|b |=|c |,且b 与c 的方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确.【答案】 ②③(1)判断一个量是否为向量的两个关键条件 ①有大小;②有方向.两个条件缺一不可. (2)理解零向量和单位向量应注意的问题①零向量的方向是任意的,所有的零向量都相等; ②单位向量不一定相等,易忽略向量的方向. 典型例题2向量的表示在如图所示的坐标纸上(每个小方格的边长为1),用直尺和圆规画出下列向量:(1)OA→,使|OA →|=42,点A 在点O 北偏东45°方向上; (2)AB→,使|AB →|=4,点B 在点A 正东方向上; (3)BC→,使|BC →|=6,点C 在点B 北偏东30°方向上. 【解】 (1)由于点A 在点O 北偏东45°方向上,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又|OA→|=42,小方格的边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 的位置可以确定,画出向量OA→,如图所示.(2)由于点B 在点A 正东方向上,且|AB→|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 的位置可以确定,画出向量AB →,如图所示.(3)由于点C 在点B 北偏东30°方向上,且|BC→|=6,依据勾股定理可得,在坐标纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 的位置可以确定,画出向量BC→,如图所示.用有向线段表示向量的步骤典型例题3共线向量与相等向量如图所示,O 是正六边形ABCDEF 的中心,且OA→=a ,OB →=b ,在每两点所确定的向量中.(1)与a 的长度相等、方向相反的向量有哪些? (2)与a 共线的向量有哪些?【解】 (1)与a 的长度相等、方向相反的向量有OD→,BC →,AO →,FE →.(2)与a 共线的向量有EF→,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →.1.[变条件、变问法]本例中若OC →=c ,其他条件不变,试分别写出与a ,b ,c 相等的向量.解:与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,F A →;与c 相等的向量有FO→,ED →,AB →. 2.[变问法]本例条件不变,与AD→共线的向量有哪些?解:与AD→共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,OA →.共线向量与相等向量的判断(1)如果两个向量所在的直线平行或重合,那么这两个向量是共线向量. (2)共线向量不一定是相等向量,但相等向量一定是共线向量.(3)非零向量的共线具有传递性,即向量a ,b ,c 为非零向量,若a ∥b ,b ∥c ,则可推出a ∥c .[注意]对于共线向量所在直线的位置关系的判断,要注意直线平行或重合两种情况.6.2.1向量的加法运算1.向量加法的定义及运算法则(1)两个法则的使用条件不同.三角形法则适用于任意两个非零向量求和,平行四边形法则只适用于两个不共线的向量求和.(2)在使用三角形法则时,应注意“首尾连接”;在使用平行四边形法则时应注意范围的限制及和向量与两向量起点相同.(3)位移的合成可以看作向量加法三角形法则的物理模型.力的合成可以看作向量加法平行四边形法则的物理模型.2.|a +b |,|a |,|b |之间的关系一般地,|a +b |≤|a |+|b |,当且仅当a ,b 方向相同时等号成立. 3.向量加法的运算律交换律 a +b =b +a 结合律 (a +b )+c =a +(b +c )典型例题1平面向量的加法及其几何意义如图,已知向量a ,b ,c ,求作和向量a +b +c .【解】 法一:可先作a +c ,再作(a +c )+b ,即a +b +c .如图,首先在平面内任取一点O ,作向量OA→=a ,接着作向量AB →=c ,则得向量OB→=a +c ,然后作向量BC →=b ,则向量OC →=a +b +c 为所求.法二:三个向量不共线,用平行四边形法则来作.如图,(1)在平面内任取一点O ,作OA→=a ,OB →=b ;(2)作平行四边形AOBC ,则OC →=a +b ;(3)再作向量OD→=c ;(4)作平行四边形CODE ,则OE→=OC →+c =a +b +c .OE →即为所求.(1)应用三角形法则求向量和的基本步骤①平移向量使之“首尾相接”,即第一个向量的终点与第二个向量的起点重合;②以第一个向量的起点为起点,并以第二个向量的终点为终点的向量,即为两个向量的和.(2)应用平行四边形法则求向量和的基本步骤 ①平移两个不共线的向量使之共起点; ②以这两个已知向量为邻边作平行四边形;③平行四边形中,与两向量共起点的对角线表示的向量为两个向量的和. 典型例题2平面向量的加法运算化简: (1)BC→+AB →; (2)DB→+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →.【解】 (1)BC →+AB →=AB →+BC →=AC →. (2)DB→+CD →+BC → =BC→+CD →+DB → =(BC→+CD →)+DB → =BD→+DB →=0. (3)AB →+DF →+CD →+BC →+F A →=AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A → =AD →+DF →+F A →=AF →+F A →=0.向量加法运算中化简的两种方法(1)代数法:借助向量加法的交换律和结合律,将向量转化为“首尾相接”,向量的和即为第一个向量的起点指向最后一个向量终点的向量.(2)几何法:通过作图,根据三角形法则或平行四边形法则化简. 典型例题3向量加法的实际应用某人在静水中游泳,速度为43千米/小时,他在水流速度为4千米/小时的河中游泳.若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度大小为多少?【解】 如图,设此人游泳的速度为OB→,水流的速度为OA →,以OA→,OB →为邻边作▱OACB ,则此人的实际速度为OA →+OB →=OC →. 由勾股定理知|OC→|=8,且在Rt △ACO 中,∠COA =60°,故此人沿与河岸成60°的夹角顺着水流的方向前进,速度大小为8千米/小时.应用向量解决平面几何和物理学问题的基本步骤(1)表示:用向量表示有关量,将所要解答的问题转化为向量问题. (2)运算:应用向量加法的平行四边形法则和三角形法则,将相关向量进行运算,解答向量问题.(3)还原:根据向量的运算结果,结合向量共线、相等等概念回答原问题.6.2.2 向量的减法运算1.相反向量(1)定义:与a 长度相等,方向相反的向量,叫做a 的相反向差,记作-a ,并且规定,零向量的相反向量仍是零向量.(2)结论①-(-a )=a ,a +(-a )=(-a )+a =0;②如果a 与b 互为相反向量,那么a =-b ,b =-a ,a +b =0. ■名师点拨相反向量与相等向量一样,从“长度”和“方向”两方面进行定义,相反向量必为平行向量.2.向量的减法(1)向量a 加上b 的相反向量,叫做a 与b 的差,即a -b =a +(-b ).求两个向量差的运算叫做向量的减法.(2)作法:在平面内任取一点O ,作OA →=a ,OB →=b ,则向量BA →=a -b ,如图所示.(3)几何意义:a -b 可以表示为从向量b 的终点指向向量a 的终点的向量. ■名师点拨(1)减去一个向量相当于加上这个向量的相反向量.(2)在用三角形法则作向量减法时,只要记住“连接向量终点,箭头指向被减向量”即可.(3)对于任意两个向量a ,b ,都有||a |-|b ||≤|a +b |≤|a |+|b |. 典型例题1向量的减法运算化简下列各式: (1)(AB→+MB →)+(-OB →-MO →); (2)AB→-AD →-DC →.【解】 (1)法一:原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB→=AB →. 法二:原式=AB→+MB →+BO →+OM →=AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0 =AB→. (2)法一:原式=DB→-DC →=CB →.法二:原式=AB→-(AD →+DC →)=AB →-AC →=CB →.向量减法运算的常用方法典型例题2向量的减法及其几何意义如图,已知向量a ,b ,c 不共线,求作向量a +b -c . 【解】 法一:如图①,在平面内任取一点O ,作OA →=a ,OB →=b ,OC→=c ,连接BC , 则CB→=b -c . 过点A 作AD 綊BC ,连接OD , 则AD→=b -c , 所以OD→=OA →+AD →=a +b -c . 法二:如图②,在平面内任取一点O ,作OA →=a ,AB →=b ,连接OB ,则OB →=a +b ,再作OC →=c ,连接CB ,则CB→=a +b -c . 法三:如图③,在平面内任取一点O ,作OA →=a ,AB →=b ,连接OB , 则OB→=a +b ,再作CB →=c ,连接OC , 则OC→=a +b -c .求作两个向量的差向量的两种思路(1)可以转化为向量的加法来进行,如a -b ,可以先作-b ,然后作a +(-b )即可.(2)可以直接用向量减法的三角形法则,即把两向量的起点重合,则差向量为连接两个向量的终点,指向被减向量的终点的向量. 典型例题3用已知向量表示其他向量如图所示,四边形ACDE 是平行四边形,点B 是该平行四边形外一点,且AB→=a ,AC →=b ,AE →=c ,试用向量a ,b ,c 表示向量CD →,BC →,BD →.【解】 因为四边形ACDE 是平行四边形, 所以CD→=AE →=c ,BC →=AC →-AB →=b -a , 故BD→=BC →+CD →=b -a +c .用已知向量表示其他向量的三个关注点(1)搞清楚图形中的相等向量、相反向量、共线向量以及构成三角形的三个向量之间的关系,确定已知向量与被表示向量的转化渠道.(2)注意综合应用向量加法、减法的几何意义以及向量加法的结合律、交换律来分析解决问题.(3)注意在封闭图形中利用向量加法的多边形法则. 例如,在四边形ABCD 中,AB →+BC →+CD →+DA →=0.6.2.3 向量的数乘运算1.向量的数乘的定义一般地,规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1)|λa |=|λ||a |.(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0.■名师点拨λ是实数,a 是向量,它们的积λa 仍然是向量.实数与向量可以相乘,但是不能相加减,如λ+a ,λ-a 均没有意义.2.向量数乘的运算律 设λ,μ为实数,那么: (1)λ(μa )=(λμ)a . (2)(λ+μ)a =λa +μa . (3)λ(a +b )=λa +λb .3.向量的线性运算及向量共线定理(1)向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .(2)向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa . ■名师点拨若将定理中的条件a ≠0去掉,即当a =0时,显然a 与b 共线. (1)若b ≠0,则不存在实数λ,使b =λa . (2)若b =0,则对任意实数λ,都有b =λa . 典型例题1向量的线性运算(1)计算:①4(a +b )-3(a -b )-8a ; ②(5a -4b +c )-2(3a -2b +c ); ③23⎣⎢⎡⎦⎥⎤(4a -3b )+13b -14(6a -7b ).(2)设向量a =3i +2j ,b =2i -j ,求⎝ ⎛⎭⎪⎫13a -b -⎝ ⎛⎭⎪⎫a -23b +(2b -a ).【解】 (1)①原式=4a +4b -3a +3b -8a =-7a +7b .②原式=5a -4b +c -6a +4b -2c =-a -c .③原式=23⎝ ⎛⎭⎪⎫4a -3b +13b -32a +74b=23⎝ ⎛⎭⎪⎫52a -1112b=53a -1118b .(2)原式=13a -b -a +23b +2b -a =⎝ ⎛⎭⎪⎫13-1-1a +⎝ ⎛⎭⎪⎫-1+23+2b =-53a +53b =-53(3i +2j )+53(2i -j ) =⎝ ⎛⎭⎪⎫-5+103i +⎝ ⎛⎭⎪⎫-103-53j =-53i -5j .向量线性运算的基本方法(1)类比方法:向量的数乘运算可类似于代数多项式的运算.例如,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在数与向量的乘积中同样适用,但是在这里的“同类项”“公因式”指向量,实数看作是向量的系数.(2)方程方法:向量也可以通过列方程来解,把所求向量当作未知数,利用代数方程的方法求解,同时在运算过程中要多注意观察,恰当运用运算律,简化运算.典型例题2向量共线定理及其应用已知非零向量e 1,e 2不共线.(1)如果AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线;(2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.【解】 (1)证明:因为AB →=e 1+e 2,BD →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB→. 所以AB→,BD →共线,且有公共点B , 所以A 、B 、D 三点共线. (2)因为k e 1+e 2与e 1+k e 2共线,所以存在实数λ,使k e 1+e 2=λ(e 1+k e 2), 则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有⎩⎨⎧k -λ=0,λk -1=0,所以k =±1.向量共线定理的应用(1)若b =λa (a ≠0),且b 与a 所在的直线无公共点,则这两条直线平行. (2)若b =λa (a ≠0),且b 与a 所在的直线有公共点,则这两条直线重合.例如,若AB→=λAC →,则AB →与AC →共线,又AB →与AC →有公共点A ,从而A ,B ,C 三点共线,这是证明三点共线的重要方法. 典型例题3用已知向量表示其他向量如图,ABCD 是一个梯形,AB→∥CD →且|AB →|=2|CD →|,M ,N 分别是DC ,AB 的中点,已知AB →=e 1,AD →=e 2,试用e 1,e 2表示下列向量.(1)AC→=________;(2)MN →=________.【解析】 因为AB →∥CD →,|AB →|=2|CD →|,所以AB→=2DC →,DC →=12AB →. (1)AC →=AD →+DC →=e 2+12e 1. (2)MN→=MD →+DA →+AN → =-12DC →-AD →+12AB → =-14e 1-e 2+12e 1=14e 1-e 2. 【答案】 (1)e 2+12e 1 (2)14e 1-e 2[变条件]在本例中,若条件改为BC →=e 1,AD →=e 2,试用e 1,e 2表示向量MN →.解:因为MN→=MD →+DA →+AN →, MN→=MC →+CB →+BN →, 所以2MN→=(MD →+MC →)+DA →+CB →+(AN →+BN →).又因为M ,N 分别是DC ,AB 的中点, 所以MD→+MC →=0,AN →+BN →=0. 所以2MN→=DA →+CB →,所以MN →=12(-AD →-BC →)=-12e 2-12e 1.用已知向量表示其他向量的两种方法(1)直接法(2)方程法当直接表示比较困难时,可以首先利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程.6.2.4 向量的数量积1.两向量的夹角(1)定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角.(2)特例:①当θ=0时,向量a 与b 同向; ②当θ=π2时,向量a 与b 垂直,记作a ⊥b ; ③当θ=π时,向量a 与b 反向. ■名师点拨按照向量夹角的定义,只有两个向量的起点重合时所对应的角才是两向量的夹角,如图所示,∠BAC 不是向量CA →与AB →的夹角.作AD →=CA →,则∠BAD 才是向量CA →与AB →的夹角.2.向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,把数量|a ||b |cos__θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos__θ.规定零向量与任一向量的数量积为0. ■名师点拨(1)两向量的数量积,其结果是数量,而不是向量,它的值等于两向量的模与两向量夹角余弦值的乘积,其符号由夹角的余弦值来决定.(2)两个向量的数量积记作a ·b ,千万不能写成a ×b 的形式. 3.投影向量如图(1),设a ,b 是两个非零向量,AB→=a ,CD →=b ,我们考虑如下变换:过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1→,我们称上述变换为向量a 向向量b投影(project),A 1B 1→叫做向量a 在向量b 上的投影向量.如图(2),在平面内任取一点O ,作OM→=a ,ON →=b ,过点M作直线ON 的垂线,垂足为M 1,则OM 1→就是向量a 在向量b 上的投影向量.(2)若与b 方向相同的单位向量为e ,a 与b 的夹角为θ,则OM 1→=|a |cos θ e .■名师点拨当θ=0时,OM 1→=|a |e ;当θ=π2时,OM 1→=0;当θ∈⎣⎢⎡⎭⎪⎫0,π2时,OM 1→与b 方向相同;当θ∈⎝ ⎛⎦⎥⎤π2,π时,OM 1→与b 方向相反;当θ=π时,OM 1→=-|a |e .4.向量数量积的性质设a ,b 是非零向量,它们的夹角是θ,e 是与b 方向相同的单位向量,则 (1)a ·e =e ·a =|a |cos θ. (2)a ⊥b ⇔a·b =0.(3)当a 与b 同向时,a·b =|a ||b |;当a 与b 反向时,a·b =-|a ||b |.特别地,a·a =|a |2或|a |=a·a . (4)|a·b |≤|a ||b |. ■名师点拨对于性质(2),可以用来解决有关垂直的问题,即若要证明某两个非零向量垂直,只需判定它们的数量积为0即可;若两个非零向量的数量积为0,则它们互相垂直.5.向量数量积的运算律 (1)a·b =b·a (交换律).(2)(λa )·b =λ(a·b )=a ·(λb )(结合律). (3)(a +b )·c =a·c +b·c (分配律). ■名师点拨(1)向量的数量积不满足消去律;若a ,b ,c 均为非零向量,且a·c =b·c ,但得不到a =b .(2)(a·b )·c ≠a·(b·c ),因为a·b ,b·c 是数量积,是实数,不是向量,所以(a·b )·c与向量c 共线,a·(b·c )与向量a 共线,因此,(a·b )·c =a·(b·c )在一般情况下不成立.(3)(a ±b )2=a 2±2a ·b +b 2. 典型例题1平面向量的数量积运算(1)已知|a |=6,|b |=4,a 与b 的夹角为60°,求(a +2b )·(a +3b ).(2)如图,在▱ABCD 中,|AB →|=4,|AD →|=3,∠DAB =60°,求:①AD→·BC →;②AB →·DA →. 【解】 (1)(a +2b )·(a +3b ) =a·a +5a·b +6b·b =|a |2+5a·b +6|b |2=|a |2+5|a ||b |cos 60°+6|b |2=62+5×6×4×cos 60°+6×42=192. (2)①因为AD→∥BC →,且方向相同,所以AD→与BC →的夹角是0°, 所以AD→·BC →=|AD →||BC →|·cos 0°=3×3×1=9. ②因为AB→与AD →的夹角为60°,所以AB→与DA →的夹角为120°, 所以AB→·DA →=|AB →||DA →|·cos 120° =4×3×⎝ ⎛⎭⎪⎫-12=-6.[变问法]若本例(2)的条件不变,求AC →·BD →.解:因为AC→=AB →+AD →,BD →=AD →-AB →,所以AC→·BD →=(AB →+AD →)·(AD →-AB →) =AD→2-AB →2=9-16=-7.向量数量积的求法(1)求两个向量的数量积,首先确定两个向量的模及向量的夹角,其中准确求出两向量的夹角是求数量积的关键.(2)根据数量积的运算律,向量的加、减与数量积的混合运算类似于多项式的乘法运算.典型例题2向量模的有关计算(1)已知平面向量a与b的夹角为60°,|a|=2,|b|=1,则|a+2b|=()A.3B.23C.4 D.12(2)向量a,b满足|a|=1,|a-b|=32,a与b的夹角为60°,则|b|=()A.13 B.12C.15 D.14【解析】(1)|a+2b|=(a+2b)2=a2+4a·b+4b2=|a|2+4|a||b|cos 60°+4|b|2=4+4×2×1×12+4=2 3.(2)由题意得|a-b|2=|a|2+|b|2-2|a||b|·cos 60°=34,即1+|b|2-|b|=34,解得|b|=12.【答案】(1)B(2)B求向量的模的常见思路及方法(1)求模问题一般转化为求模的平方,与向量数量积联系,并灵活应用a2=|a|2,勿忘记开方.(2)a·a=a2=|a|2或|a|=a2,可以实现实数运算与向量运算的相互转化.典型例题3向量的夹角与垂直命题角度一:求两向量的夹角(1)已知|a |=6,|b |=4,(a +2b )·(a -3b )=-72,则a 与b 的夹角为________;(2)(2019·高考全国卷Ⅰ改编)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为______.【解析】 (1)设a 与b 的夹角为θ,(a +2b )·(a -3b )=a ·a -3a ·b +2b ·a -6b ·b =|a |2-a ·b -6|b |2 =|a |2-|a ||b |cos θ-6|b |2=62-6×4×cos θ-6×42=-72, 所以24cos θ=36+72-96=12, 所以cos θ=12.又因为θ∈[]0,π,所以θ=π3.(2)设a 与b 的夹角为θ,由(a -b )⊥b ,得(a -b )·b =0,所以a ·b =b 2,所以cos θ=b 2|a ||b |.又因为|a |=2|b |,所以cos θ=|b |22|b |2=12.又因为θ∈[0,π],所以θ=π3. 【答案】 (1)π3 (2)π3 命题角度二:证明两向量垂直已知a ,b 是非零向量,当a +t b (t ∈R )的模取最小值时,求证:b ⊥(a+t b ).【证明】 因为|a +t b |=(a +t b )2=a 2+t 2b 2+2t a ·b =|b |2t 2+2a ·b t +|a |2,所以当t =-2a ·b 2|b |2=-a·b|b |2时,|a +t b |有最小值. 此时b ·(a +t b )=b·a +t b 2=a·b +⎝ ⎛⎭⎪⎫-a·b |b |2·|b |2=a·b-a·b=0.所以b⊥(a+t b).命题角度三:利用夹角和垂直求参数(1)已知a⊥b,|a|=2,|b|=3且向量3a+2b与k a-b互相垂直,则k 的值为()A.-32B.32C.±32D.1(2)已知a,b,c为单位向量,且满足3a+λb+7c=0,a与b的夹角为π3,则实数λ=________.【解析】(1)因为3a+2b与k a-b互相垂直,所以(3a+2b)·(k a-b)=0,所以3k a2+(2k-3)a·b-2b2=0.因为a⊥b,所以a·b=0,又|a|=2,|b|=3,所以12k-18=0,k=3 2.(2)由3a+λb+7c=0,可得7c=-(3a+λb),即49c2=9a2+λ2b2+6λa·b,而a,b,c为单位向量,则a2=b2=c2=1,则49=9+λ2+6λcos π3,即λ2+3λ-40=0,解得λ=-8或λ=5.【答案】(1)B(2)-8或5求向量a与b夹角的思路(1)求向量a与b夹角的关键是计算a·b及|a||b|,在此基础上结合数量积的定义或性质计算cos θ=a·b|a||b|,最后借助θ∈[0,π],求出θ的值.(2)在个别含有|a|,|b|与a·b的等量关系中,常利用消元思想计算cos θ的值.6.3.1 平面向量基本定理平面向量基本定理(1)e 1,e 2是同一平面内的两个不共线的向量,{e 1,e 2}的选取不唯一,即一个平面可以有多个基底.(2)基底{e 1,e 2}确定后,实数λ1,λ2是唯一确定的. 典型例题1平面向量基本定理的理解设e 1,e 2是不共线的两个向量,给出下列四组向量:①e 1与e 1+e 2;②e 1-2e 2与e 2-2e 1;③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中,不能作为平面内所有向量的一组基底的是________(写出满足条件的序号).【解析】 ①设e 1+e 2=λe 1,则⎩⎨⎧λ=1,1=0,无解,所以e 1+e 2与e 1不共线,即e 1与e 1+e 2能作为一组基底. ②设e 1-2e 2=λ(e 2-2e 1),则(1+2λ)e 1-(2+λ)e 2=0,则⎩⎨⎧1+2λ=0,2+λ=0,无解,所以e 1-2e 2与e 2-2e 1不共线,即e 1-2e 2与e 2-2e 1能作为一组基底.③因为e 1-2e 2=-12(4e 2-2e 1), 所以e 1-2e 2与4e 2-2e 1共线,即e 1-2e 2与4e 2-2e 1不能作为一组基底.④设e 1+e 2=λ(e 1-e 2),则(1-λ)e 1+(1+λ)e 2=0,则⎩⎨⎧1-λ=0,1+λ=0,无解,所以e 1+e 2与e 1-e 2不共线,即e 1+e 2与e 1-e 2能作为一组基底.【答案】 ③对基底的理解(1)两个向量能否作为一个基底,关键是看这两个向量是否共线.若共线,则不能作基底,反之,则可作基底.(2)一个平面的基底一旦确定,那么平面上任意一个向量都可以用这个基底唯一线性表示出来.设向量a 与b 是平面内两个不共线的向量,若x 1a +y 1b =x 2a +y 2b ,则⎩⎨⎧x 1=x 2,y 1=y 2.[提醒] 一个平面的基底不是唯一的,同一个向量用不同的基底表示,表达式不一样. 典型例题2用基底表示平面向量如图所示,在▱ABCD 中,点E ,F 分别为BC ,DC 边上的中点,DE与BF 交于点G ,若AB→=a ,AD →=b ,试用基底{a ,b }表示向量DE →,BF →.【解】 DE →=DA →+AB →+BE →=-AD→+AB →+12BC → =-AD→+AB →+12AD →=a -12b . BF→=BA →+AD →+DF →=-AB →+AD →+12AB →=b -12a .1.[变问法]本例条件不变,试用基底{a ,b }表示AG →.解:由平面几何知识知BG =23BF , 故AG→=AB →+BG →=AB →+23BF → =a +23⎝ ⎛⎭⎪⎫b -12a =a +23b -13a =23a +23b .2.[变条件]若将本例中的向量“AB →,AD →”换为“CE →,CF →”,即若CE →=a ,CF →=b ,试用基底{a ,b }表示向量DE→,BF →. 解:DE→=DC →+CE →=2FC →+CE →=-2CF →+CE →=-2b +a . BF→=BC →+CF →=2EC →+CF → =-2CE→+CF →=-2a +b .用基底表示向量的两种方法(1)运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止.(2)通过列向量方程或方程组的形式,利用基底表示向量的唯一性求解. 典型例题3平面向量基本定理的应用如图,在△ABC 中,点M 是BC 的中点,点N 在AC 上,且AN =2NC ,AM 与BN 相交于点P ,求AP ∶PM 与BP ∶PN .【解】 设BM →=e 1,CN →=e 2,则AM →=AC →+CM →=-3e 2-e 1,BN →=BC →+CN →=2e 1+e 2. 因为A ,P ,M 和B ,P ,N 分别共线,所以存在实数λ,μ使得AP →=λAM →=-λe 1-3λe 2,BP →=μBN →=2μe 1+μe 2. 故BA →=BP →+P A →=BP →-AP →=(λ+2μ)e 1+(3λ+μ)e 2. 而BA →=BC →+CA →=2e 1+3e 2,由平面向量基本定理, 得⎩⎨⎧λ+2μ=2,3λ+μ=3,解得⎩⎪⎨⎪⎧λ=45,μ=35.所以AP→=45AM →,BP →=35BN →, 所以AP ∶PM =4∶1,BP ∶PN =3∶2.1.[变问法]在本例条件下,若CM→=a ,CN →=b ,试用a ,b 表示CP →.解:由本例解析知BP ∶PN =3∶2,则NP→=25NB →,CP→=CN →+NP →=CN →+25NB →=b +25(CB →-CN →) =b +45a -25b =35b +45a .2.[变条件]若本例中的点N 为AC 的中点,其他条件不变,求AP ∶PM 与BP ∶PN .解:如图,设BM →=e 1,CN →=e 2,则AM →=AC →+CM →=-2e 2-e 1,BN →=BC →+CN →=2e 1+e 2. 因为A ,P ,M 和B ,P ,N 分别共线,所以存在实数λ,μ使得AP →=λAM →=-λe 1-2λe 2, BP →=μBN →=2μe 1+μe 2. 故BA →=BP →+P A →=BP →-AP →=(λ+2μ)e 1+(2λ+μ)e 2. 而BA →=BC →+CA →=2e 1+2e 2,由平面向量基本定理, 得⎩⎨⎧λ+2μ=2,2λ+μ=2,解得⎩⎪⎨⎪⎧λ=23,μ=23.所以AP→=23AM →,BP →=23BN →, 所以AP ∶PM =2,BP ∶PN =2.若直接利用基底表示向量比较困难,可设出目标向量并建立其与基底之间满足的二元关系式,然后利用已知条件及相关结论,从不同方向和角度表示出目标向量(一般需建立两个不同的向量表达式),再根据待定系数法确定系数,建立方程或方程组,解方程或方程组即得.6.3.2 平面向量的正交分解及坐标表示 6.3.3 平面向量加、减运算的坐标表示 6.3.4 平面向量数乘运算的坐标表示第1课时 平面向量的分解及加、减、数乘运算的坐标表示1.平面向量坐标的相关概念■名师点拨(1)平面向量的正交分解实质上是平面向量基本定理的一种应用形式,只是两个基向量e 1和e 2互相垂直.(2)由向量坐标的定义知,两向量相等的充要条件是它们的横、纵坐标对应相等,即a =b ⇔x 1=x 2且y 1=y 2,其中a =(x 1,y 1),b =(x 2,y 2).2.平面向量的坐标运算(1)若a =(x 1,y 1),b =(x 2,y 2),λ∈R ,则 ①a +b =(x 1+x 2,y 1+y 2); ②a -b =(x 1-x 2,y 1-y 2); ③λa =(λx 1,λy 1).(2)一个向量的坐标等于表示此向量的有向线段的终点坐标减去起点坐标. ■名师点拨(1)向量的坐标只与起点、终点的相对位置有关,而与它们的具体位置无关. (2)已知向量AB →的起点A (x 1,y 1),终点B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1). 典型例题1平面向量的坐标表示已知O 是坐标原点,点A 在第一象限,|OA →|=43,∠xOA =60°,(1)求向量OA→的坐标;(2)若B (3,-1),求BA→的坐标.【解】 (1)设点A (x ,y ),则x =|OA →|cos 60°=43cos 60°=23,y =|OA →|sin60°=43sin 60°=6,即A (23,6),所以OA→=(23,6). (2)BA→=(23,6)-(3,-1)=(3,7).求点和向量坐标的常用方法(1)求一个点的坐标,可以转化为求该点相对于坐标原点的位置的坐标. (2)求一个向量的坐标时,可以首先求出这个向量的始点坐标和终点坐标,再运用终点坐标减去始点坐标得到该向量的坐标. 典型例题2平面向量的坐标运算(1)已知向量a =(5,2),b =(-4,-3),若c 满足3a -2b +c =0,则A .(-23,-12)B .(23,12)C .(7,0)D .(-7,0)(2)已知A (-2,4),B (3,-1),C (-3,-4),且CM →=3 CA →,CN →=2 CB →,求点M ,N 的坐标.【解】 (1)选A.因为a =(5,2),b =(-4,-3),且c 满足3a -2b +c =0,所以c =2b -3a =2(-4,-3)-3(5,2)=(-8-15,-6-6)=(-23,-12).(2)法一:因为A (-2,4),B (3,-1),C (-3,-4), 所以CA→=(-2,4)-(-3,-4)=(1,8), CB→=(3,-1)-(-3,-4)=(6,3). 因为CM→=3 CA →,CN →=2 CB →, 所以CM→=3(1,8)=(3,24),CN →=2(6,3)=(12,6). 设M (x 1,y 1),N (x 2,y 2),所以CM →=(x 1+3,y 1+4)=(3,24), CN →=(x 2+3,y 2+4)=(12,6), 所以⎩⎨⎧x 1+3=3,y 1+4=24,⎩⎨⎧x 2+3=12,y 2+4=6.解得⎩⎨⎧x 1=0,y 1=20,⎩⎨⎧x 2=9,y 2=2.所以M (0,20),N (9,2).法二:设O 为坐标原点,则由CM→=3 CA →,CN →=2 CB →, 可得OM→-OC →=3(OA →-OC →),ON →-OC →=2(OB →-OC →), 所以OM→=3 OA →-2 OC →,ON →=2 OB →-OC →. 所以OM→=3(-2,4)-2(-3,-4)=(0,20), ON→=2(3,-1)-(-3,-4)=(9,2). 所以M (0,20),N (9,2).平面向量坐标(线性)运算的方法(1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则(2)若已知有向线段两端点的坐标,则必须先求出向量的坐标,然后再进行向量的坐标运算.(3)向量的线性坐标运算可类比数的运算进行. 典型例题3向量坐标运算的综合应用已知点O (0,0),A (1,2),B (4,5),及OP→=OA →+tAB →.(1)t 为何值时,点P 在x 轴上?点P 在y 轴上?点P 在第二象限? (2)四边形OABP 能为平行四边形吗?若能,求出t 的值;若不能,请说明理由.【解】 (1)OP→=OA →+tAB →=(1,2)+t (3,3)=(1+3t ,2+3t ).若点P 在x 轴上,则2+3t =0,所以t =-23. 若点P 在y 轴上,则1+3t =0,所以t =-13. 若点P 在第二象限,则⎩⎨⎧1+3t <0,2+3t >0,所以-23<t <-13.(2)OA→=(1,2),PB →=(3-3t ,3-3t ).若四边形OABP 为平行四边形, 则OA →=PB →,所以⎩⎨⎧3-3t =1,3-3t =2,该方程组无解.故四边形OABP 不能为平行四边形.[变问法]若保持本例条件不变,问t 为何值时,B 为线段AP 的中点? 解:由OP→=OA →+tAB →,得AP →=tAB →.所以当t =2时,AP→=2AB →,B 为线段AP 的中点.向量中含参数问题的求解策略(1)向量的坐标含有两个量:横坐标和纵坐标,如果纵坐标或横坐标是一个变量,则表示向量的点的坐标的位置会随之改变.(2)解答这类由参数决定点的位置的题目,关键是列出满足条件的含参数的方程(组),解这个方程(组),就能达到解题的目的.第2课时 两向量共线的充要条件及应用两向量共线的充要条件设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.则a ,b (b ≠0)共线的充要条件是x 1y 2-x 2y 1=0.■名师点拨(1)两个向量共线的坐标表示还可以写成x 1x 2=y 1y 2(x 2≠0,y 2≠0),即两个不平行于坐标轴的共线向量的对应坐标成比例.(2)当a ≠0,b =0时,a ∥b ,此时x 1y 2-x 2y 1=0也成立,即对任意向量a ,b 都有x 1y 2-x 2y 1=0⇔a ∥b . 典型例题1向量共线的判定(1)已知向量a =(1,-2),b =(3,4).若(3a -b )∥(a +k b ),则k =________.(2)已知A (-1,-1),B (1,3),C (2,5),判断AB →与AC →是否共线?如果共线,它们的方向相同还是相反?【解】 (1)3a -b =(0,-10),a +k b =(1+3k ,-2+4k ), 因为(3a -b )∥(a +k b ),所以0-(-10-30k )=0, 所以k =-13.故填-13.(2)因为AB→=(1-(-1),3-(-1))=(2,4),AC→=(2-(-1),5-(-1))=(3,6), 因为2×6-3×4=0,所以AB→∥AC →,所以AB →与AC →共线.又AB →=23AC →,所以AB →与AC →的方向相同.[变问法]若本例(1)条件不变,判断向量(3a -b )与(a +k b )是反向还是同向? 解:由向量(3a -b )与(a +k b )共线,得k =-13, 所以3a -b =(3,-6)-(3,4)=(0,-10), a +k b =a -13b =(1,-2)-13(3,4) =⎝ ⎛⎭⎪⎫0,-103=13(0,-10), 所以向量(3a -b )与(a +k b )同向.向量共线的判定方法典型例题2三点共线问题(1)已知OA→=(3,4),OB →=(7,12),OC →=(9,16),求证:点A ,B ,C 共线;(2)设向量OA →=(k ,12),OB →=(4,5),OC →=(10,k ),求当k 为何值时,A ,B ,C 三点共线.【解】 (1)证明:由题意知AB→=OB →-OA →=(4,8),AC→=OC →-OA →=(6,12),所以AC →=32AB →, 即AB→与AC →共线. 又因为AB→与AC →有公共点A ,所以点A ,B ,C 共线.(2)法一:因为A ,B ,C 三点共线,即AB →与AC →共线,所以存在实数λ(λ∈R ),使得AB→=λAC →.因为AB →=OB →-OA →=(4-k ,-7),AC →=OC →-OA →=(10-k ,k -12), 所以(4-k ,-7)=λ(10-k ,k -12), 即⎩⎨⎧4-k =λ(10-k ),-7=λ(k -12),解得k =-2或k =11. 所以当k =-2或k =11时,A ,B ,C 三点共线. 法二:由已知得AB→与AC →共线,因为AB→=OB →-OA →=(4-k ,-7),AC →=OC →-OA →=(10-k ,k -12), 所以(4-k )(k -12)+7(10-k )=0, 所以k 2-9k -22=0,解得k =-2或k =11. 所以当k =-2或k =11时,A ,B ,C 三点共线.判断向量(或三点)共线的三个步骤典型例题3向量共线的应用如图所示,在△AOB 中,A (0,5),O (0,0),B (4,3),OC→=14OA →,OD →=12OB →,AD 与BC 相交于点M ,求点M 的坐标. 【解】 因为OC →=14OA →=14(0,5)=⎝ ⎛⎭⎪⎫0,54, 所以C ⎝ ⎛⎭⎪⎫0,54. 因为OD →=12OB →=12(4,3)=⎝ ⎛⎭⎪⎫2,32, 所以D ⎝ ⎛⎭⎪⎫2,32.设M (x ,y ),则AM→=(x ,y -5),AD →=⎝ ⎛⎭⎪⎫2-0,32-5=⎝ ⎛⎭⎪⎫2,-72.因为AM→∥AD →, 所以-72x -2(y -5)=0, 即7x +4y =20.①又CM →=⎝ ⎛⎭⎪⎫x ,y -54,CB →=⎝ ⎛⎭⎪⎫4,74,因为CM →∥CB →,所以74x -4⎝ ⎛⎭⎪⎫y -54=0,即7x -16y =-20.②联立①②解得x =127,y =2,故点M 的坐标为⎝ ⎛⎭⎪⎫127,2.应用向量共线的坐标表示求解几何问题的步骤1.平面向量数量积的坐标表示已知a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2. 即两个向量的数量积等于它们对应坐标的乘积的和. ■名师点拨公式a ·b =|a ||b |cos 〈a ,b 〉与a ·b =x 1x 2+y 1y 2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.2.两个公式、一个充要条件(1)向量的模长公式:若a =(x ,y ),则|a |(2)向量的夹角公式:设a ,b 都是非零向量,a =(x 1,y 1),b =(x 2,y 2),θ是。

线段双中点模型例题

线段双中点模型例题线段双中点模型是几何中一种重要的模型,它是指在一条线段上,有两个点分别是其双中点。

这种模型具有很多性质,能够帮助我们解决一些几何问题。

下面我们将详细介绍线段双中点模型,并通过对例题的解析,来掌握这一模型的应用和求解方法。

一、线段双中点模型的概念及性质线段双中点模型是指一条线段上的两个中点,分别记为M1、M2。

根据中点性质,我们知道线段双中点M1M2的中点O是线段AB的中点,即OM1 = OM2 = OA = OB。

同时,M1、M2分别是线段AM和线段MB的中点。

性质1:线段双中点模型中,四边形OM1AM1和OM2BM2为平行四边形。

性质2:线段双中点模型中,OM1 = OM2,AM1 = BM2。

性质3:线段双中点模型中,∠M1OM2 = ∠M2OM1,∠AM1MB =∠BM2MA。

二、线段双中点模型在几何中的应用线段双中点模型在几何中的应用非常广泛,如证明线段相等、证明角度相等、证明平行线等。

通过运用线段双中点模型的性质,我们可以简化证明过程,提高解题效率。

三、线段双中点模型的求解方法求解线段双中点模型的问题,一般可以分为以下几个步骤:步骤1:根据题意,找出线段双中点模型的相关线段和点。

步骤2:运用线段双中点模型的性质,转化问题。

步骤3:根据转化后的问题,运用几何知识求解。

四、例题解析题目:已知线段AB,点C、D分别为线段AB的中点,求证:AC = BD。

解:根据线段双中点模型,我们有OM1 = OM2,AM1 = BM2。

又因为AC = AM1 + MC,BD = BM2 + MD。

由于MC = MD(均为AB的一半),所以AC = BD。

五、总结与拓展线段双中点模型是几何中一种重要的模型,掌握其性质和应用,能够帮助我们解决一些复杂的几何问题。

在实际解题过程中,我们要灵活运用线段双中点模型的性质,简化问题,提高解题效率。

数学零点问题解题技巧

数学零点问题解题技巧
以下是 9 条关于数学零点问题解题技巧:
1. 嘿,你知道吗,判断零点所在区间就像是找宝藏的范围!比如说函数f(x)=x²-2x-3,我们来看看在区间[1,3]是不是有零点呀!这就需要我们计算
f(1)和 f(3)的正负性,简单吧!
2. 哇塞,计算函数的零点,就好像要解开一个神秘的密码!像f(x)=ln(x)-1,怎么找到它的零点呢?嘿嘿,就需要我们动点小脑筋啦!
3. 嘿呀,要想快速找到零点的个数,那可不能瞎碰运气哟!比如
f(x)=sin(x)+,我们通过图像来分析,不就一目了然了嘛,是不是很神奇呀!
4. 哎呀呀,有时候求零点就像是在迷雾中找路,可不能着急!像函数
f(x)=e^x-x,我们要耐心分析它的单调性,然后呢,零点就会乖乖现身啦!
5. 嘿,遇到复杂的函数不要怕,就把它当成一个小怪兽来打败!就拿
f(x)=x³-5x²+6x 来说,一步一步来分析,零点不就被我们找到啦!
6. 哇哦,利用二分法求零点,那可真是个厉害的招数呢!好比说有个函数
f(x)=x^4-3x+1,我们不断缩小范围,不就离零点越来越近了嘛!
7. 哎呀,零点问题有时候就像个调皮的小孩子,可得抓住它的特点!像
f(x)=2^x-3x,观察它的变化趋势,零点就难逃我们的法眼啦!
8. 嘿哟,谁说零点问题很难呀,我们把它当成游戏来玩嘛!比如 f(x)=x-1,通过分段讨论,零点不就显而易见了么!
9. 看呐,解决零点问题其实没那么难,只要我们有耐心和方法!就像探索未知的世界一样,充满了惊喜和挑战呢!总之,掌握了这些技巧,零点问题就不再是难题啦!。

微考点6-5 利用二级结论秒杀抛物线中的选填题(解析版)

微考点6-5 利用二级结论秒杀抛物线中的选填题【考点目录】考点一:抛物线中焦半径焦点弦三角形面积秒杀公式考点二:过焦点的直线与抛物线相交坐标之间的关系秒杀公式考点三:过焦点的两条相互垂直的弦的和及构成四边形面积最小值秒杀公式考点四:抛物线中点弦求斜率秒杀公式考点五:抛物线中以焦半径焦点弦为直径的圆相切问题考点六:抛物线中阿基米德三角形相关秒杀结论【考点分类】考点一:抛物线中焦半径焦点弦三角形面积秒杀公式已知倾斜角为θ直线的l 经过抛物线px y 22=的焦点F ,且与抛物线交于B A ,两点,则①pFB FA P BF p AF 2||1||1cos 1||,cos 1||=++=-=,θθ.②)11(2||sin 2sin 2||222kp AB p S p AB OAB +===∆,,θθ.③2||p x AF A +=2||px BF B +=,p x x AB B A ++=||.【精选例题】【详解】抛物线的焦点3(,0)2F ,122),(,)B x y ,假设2y >AB 所在的直线的斜率存在且不等于零,所在的直线方程为y =2故选:ACD.【跟踪训练】1.已知抛物线22(y px =则直线l 的斜率为 .【答案】1±2.在直角坐标系xOy中,已知抛物线C:22y=相交于A,B两点,且点A在第一象限,OABV的面积是A.8AB=B.C.1112AF BF+=D.【答案】BCD3.已知直线l :y x m =+过抛物线A .1m =B .8AB =C .2AF BF=D .抛物线C 上的动点到直线①抛物线px y 22= 的焦点为F ,),(),,(2211y x B y x A 是过F 的直线与抛物线的两个交点,求证:221221,4p y y p x x -==.②一般地,如果直线l 恒过定点)0,(m M 与抛物线)0(22>=p px y 交于B A ,两点,那么pm y y m x x B A B A 2,2-==.③若AB OB OA ⇒⊥恒过定点)0,2(p .【精选例题】对于B选项,抛物线C的焦点为若直线l与x轴重合,此时,直线①已知CD AB ,是抛物线)0(2:2>=p px y E 中过焦点F 的两条相互垂直的弦,CD AB +存在最小值,且最小值为p 8.②已知CD AB ,是抛物线)0(2:2>=p px y E 中过焦点F 的两条相互垂直的弦,则四边形ABCD 的面积的最小值为28p .【精选例题】【例2】在平面直角坐标系心M 的轨迹为曲线E .(1)求曲线E 的方程;(2)过点()1,0F 作两条互相垂直的直线与曲线的最小值.【答案】(1)24y x =;(2)32【跟踪训练】依题意知,直线,m n 的斜率存在且不为与抛物线方程联立,得⎧⎨⎩消去y ,整理得(222k x -则34242x x k +=+.由抛物线的定义可知,设直线l 与抛物线px y 22=相交所得的弦AB 的中点坐标为()00,y x ,则0y p k AB =【精选例题】【例2】直线2y kx =-与抛物线A .1-B .【答案】B【分析】设112(,),(,A x y B x y考点五:抛物线中以焦半径焦点弦为直径的圆相切问题设AB是过抛物线y2=2px(p>0)焦点F的弦,若A(x1,y1),B(x2,y2),则①以弦AB为直径的圆与准线相切.②以AF或BF为直径的圆与y轴相切.【精选例题】则由抛物线的定义可得,因为AB中点为M,所以有所以以AB为直径的圆与对于选项B:由抛物线由题意可知直线AB【详解】由题,焦点()1,0F ,设直线2144ty y ty x+⇒--=124,4t y y =-,2.已知抛物线2:2(C y px p =考点六:抛物线中阿基米德三角形相关秒杀结论①知识要点:如图,假设抛物线方程为)0(22>=p py x , 过抛物线准线2py -=上一点),(00y x P 向抛物线引两条切线,切点分别记为B A ,,其坐标为),(),,(2211y x y x . 则以点P 和两切点B A ,围成的三角形PAB 中,有如下的常见结论:结论1.直线AB 过抛物线的焦点F . 结论2.直线AB 的方程为)(22000y y p yy px x +=+=.结论3.过F 的直线与抛物线交于B A ,两点,以B A ,分别为切点做两条切线,则这两条切线的交点),(00y x P 的轨迹即为抛物线的准线.证明:过A 点的切线方程为)(11y y p x x +=,过B 点的切线方程为)(22y y p x x +=,两式相除可得:22212121122121pp x x y x x y x y x y y y y y x x -==⇒--=⇒++=.这就证明了该结论.结论4.AB PF ⊥.证明:由结论3,px k AB 0=,002x p y k PF -=.那么12120000-=-=-⋅=⋅p y x py p x k k PFAB .结论5.PB AP ⊥.证明:p x k p x k BP AP 21,==,则22121pxx p x p x k k BP AP ⋅=⋅=⋅.由抛物线焦点弦的性质可知221p x x -=,代入上式即可得1221-=⋅=⋅px x k k BP AP ,故PB AP ⊥.结论6.直线AB 的中点为M ,则PM 平行于抛物线的对称轴.证明:由结论3的证明可知,过点B A ,的切线的交点P 在抛物线准线上.且P 的坐标为2,2(2121px x x x +,显然PM 平行于抛物线的对称轴.【例4】已知抛物线2:4C x =别作C 的切线1l ,2l ,其交点为【答案】4【详解】如图,设11(,),(A x y B【跟踪训练】作抛物线准线的垂线,AA BB '' ,则 11,,FA PA x pk k x p '=-=显然 FA k 线段 FA ' 的中垂线,得到PA 'PA PB PF ''==,即PA B ''∠=1.已知抛物线C :22y px =(坐标原点,若OAB V 的面积为9A .32B .2【答案】A故选:A2.已知O为坐标原点,过抛物线()A.5【答案】B3.已知抛物线2Γ:y 3AF BF =,则k =(A .33【答案】D【分析】根据题意,作出抛物线与直线则////BN AM x 轴,设(BF t =由抛物线的定义得BN BF =在Rt ABC △中,BAC ∠等于直线12AC AB =,30ABC ∠= ,6.已知抛物线2:6C y =为.【答案】3250x y --=【分析】根据中点坐标以及点差法即可求解斜率,进而由点斜式求直线方程7.已知倾斜角为π3的直线在第一象限),与抛物线A .以AF 为直径的圆与B .准线m 上存在唯一点C .2BDBF=8.(多选题)已知抛物线以A、B为切点作抛物线则()A.点M的横坐标为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 中等数学 密克点在解题中的应用 叶中豪 (1. 海教育出版社,200031 中图分类号:Ol23.1 文献标识码:A (本讲适合高中) 1 知识介绍 命题如图1,直线AF、AE、BF、DE两两 相交成四个三角形,则这四个三角形的外接 圆通过同一点 . 图1 证明 如图1,设四条直线两两相交所 得的六个交点分别为A、B、C、D、 、F,且设 △ABF的外接圆与△ADE的外接圆的另一 交点为 ,将 与六个交点连线. 由点 在△ADE的外接圆和△ABF的 外接圆上,分别知 DEM= MAD= MBF. 这表明, 、C、 、E四点共圆,即点 在 △BCE的外接圆上. 类似地,点 也在△DCF的外接圆上. 从而,四个三角形的外接圆均通过点M. 提出这一结论的是英国几何学家密克 (A.Mique1). 收稿口期:2014—12—08 卢业照 2.安徽合肥一六八中学,230000) 文章编号:1005—6416(2015)01—0002—05 

四条直线两两相交于六点,此图形称为 完全四边形. 每个完全四边形共有四条边和六个顶 点,不共边的两个顶点称为对顶点,其连线称 为对角线,三条对角线交成的三角形称为对 角三角形. 将 称为上述完全四边形的密克点. 如图2,在△ABC的边AB、AC上各取一 点E、F,设△ABC的外接圆与经过 、 、,三 点的圆交于4、 两点.联结ME、MF.则由 ABM= ACM,/AEM= AFM. 得△MBE∽△MCF. ① 

2 图2可看作完全四边形及其密克点的等 

价构造. 设 与BC的延长线交于点D,则D即 为完全四边形的第六个顶点,而 正是该完 全四边形的密克点. 由式①亦可反推点 同时在△ABC的 外接网及△AEF的外接圆上. 这一基本图形在解几何题中具有比较广 2015年第1期 3 泛的应用. 2应用举例 例1 已知动点E、F分别在△ABC的 边A 、AC_L,且 BE为,定值证明:/ ̄AEF的 

外接圆过定点. 证明如图3,在 △ABC的外接圆上 取一点 ,使得 MB BE MC—CF’ 

联结MB、MC. 又 MBA = MCA. 

△朋F∽△PCE : AFP:/AEP. 这表明,A、P、E、F四点共圆. 又易知A,为所共圆的直径,根据直径所 对网周角为直角,知 AN=90。. 例3 如图 

图3 则△MBE∽△MCF j EMF=/BMC= A ==>A、M、E、F四点共圆. 故△AEF的外接圆始终经过定点 例2如图4,已知,为△ABC的内心, ,D上BC于点D,A,与△ABC的外接圆交于 点S,延长SD,与外接圆交于点P.证明: /API:90 ̄. 

图4 证明如图4,作饱_l’AC于点E, 上 

AB于点 联结PB、PC、PE、PF. 易知,PS平分 BPC. 在△PBC中,由角平分线定理得 丝= : 且 :ACP PC CD CE’ _L —一… 

C DF上AC.证明:E、 、F三点共线. 证明如图6,延长MH,与△ABC的外 接圆交于点P、Q. 

图6 Itl/k PEB o9/k PFC = . 

由Js△删=Js 口 = . 又四边形HBQC为平行四边形,则 QB=CH.QC=BH. 故 BE: BH,H. ̄ABH=Z ACH 

△BEH∽△CFH j AEH= AFH. 若点E、H、F不共线.则由四边形AEDF 4 中等数学 的对称性,知点 在角平分线AT上. 从而,△ABC必为等腰三角形,与已知 条件矛盾. 因此,只可能是E、 、F三点共线. 例4如图7,在△ABC中,已知E、F分 别为边AC、AB上的任意点,0、0 分别为 AABC、△AEF的外心,P、Q分别为线段 E、 上的 俩 ̄足 BP= =器.证明: 

00f PQ. 

7 证明如图7,分别作出△ABC、△AEF 的外接圆o0、o0 ,设两圆交于另一点 联结AM、BM、CM、EM、FM.另在线段BC上 取一点R,使得袱ffAC,联结QR. 由 ∥AC : = BF2 

j RP= F2.CE B 4-CE2’ 

又 = =塑j QRffABPE RC .入pC~ 一 一 ’ 

类似地,RQ= CE .BF B +CE ’ 

于是,篙= . ① 

由 ABM=/ACM, AFM= AEM A MBF∽△MCE 

: ② ——~一 I… MC CE‘ 由式①、②得 = ,且 9= BAC= BMC. 则△RPQ∽△MBC p= MBC: MAC. 已知PR#AC,于是,PQ,//AM. 而AM为o0与o0 的公共弦,故 00 上AM. 于是,00 上PQ. 例5 如图8, 、Ⅳ分别为锐角△ABC 

的外接圆上劣弧AC、AB的中点,过点 作MN 的平行线,与外接圆交于点A ,,为A ABC 的内心,4 ,的延长线与外接网交于点P.设 △GAB、A GAC的内心分别为,I、,2.证明: (1)MA ·MP=NA ·ⅣP; (2)P、G、,I、,2四点共圆. (2009,全国高中数学联合竞赛) 

4 

8 证明 如图8. (1)由内心性质知 NA=NI=NI1,MA=MI= . 由此A AMN A IMN. 又A AMN △A NM,这表明,四边形 A MIN为平行四边形. 2015年第1期 5 则A P经过MN的中点L. 故S△M仰:S△ P 1 MAt·MP n A MP 

1 = NA ·NPsin A NP 

j MA -MP=NA ·NP. (2)为证P、G、,l、, 四点共圆,只需证 △PNII∽△PMI2. 而易知 PNG= PMG,且 NP MA, NIl MP—NA 一Ml2‘ 

故△PNII∽△PMI2 PI.G= G P、G、,l、,2四点共圆. 例6 如图9,已知点E、F分别在AABC 的边AC、AB上,且 BEC= BFC,BE与 CF交于点D,△AEF的外接圆与△ABC的 外接圆的另一个交点为M.证明:AM上MD. 

图9 证明辅助线如图9. 由 AMC= ABC= AEF =180。一 AMF. 知 为 FMC的外角平分线. 注意到,A MBF c/)A MCE BF= MF

 ̄A MBC c/gA MFE = . 由共边原理知 FD SABFE EF-BF MF DC S八日cE BC·CE MC‘ 这表明,MD为 FMC的平分线. 由上即得AM-l_DM. 例7如图10,设D为A ABC的外接圆 ,上任意一点,自D作内切圆的两条切线, 分别与边BC交于点 、Ⅳ, 为弧BAC的中 点,,为△ABC的内心,延长",与网厂交于 另一点P.证明:D、 、N、P四点共圆. 71 图1O 证明如图10,延长DN、DM,分别与圆 ,交于点E、F. 由彭赛列(Poncelet)闭合定理,知直线 也一定与AABC的内切圆相切. 延长 、仃,分另0与圆厂交于点I/、 1 1 则 IMN=÷ FMN=÷ TOV= 二 二 类似地, INM= 眦 因此,A IMN∽△TUV. 要证明△P ∽△PFM,注意到, FM SAlFM IF·IM EN sNEN lE·lN S~FTl SAFTP TF·FP s S TP TE-EP’ 又△TUV∽△IMN,则 6 中等数学 IM TU sin TvU sin TFI |N—Tv—sin TUV 

S FTl S△ " 

sin TEI TF·IF n TFI TE·IEsin TEl‘ 

由以上各式得 

= FP,_ ̄Z PFD=Z PED 

: A PEN∽△pFM PND= PMD D、M、N、P四点共圆. 

练习题 1.分别在△ABC的边AB、AC上截取BE =CF.证明:线段 的中垂线经过定点. 提示:记EF的中垂线与AABC的外接 圆交于点Ⅳ.易知A NBE—G,O△NCF,得NE= ⅣF.由此知EF的中垂线始终经过定点Ⅳ. 2.已知M为劣弧AC的中点, 为弧AM 上任意一点,作MD上BC于点D.证明: 1 ’ BD= it(BC—AB). 提示:作ME上AB于点E. 由Rt A MAE Rt△MCD AE=CD. 由Rt△MBE Rt△MBD BD=BE. 故CD:AE=AB+BE=AB+ D. 移项即得结论. 3.自o 0外一点P作o 0的两条切线 PD及割线PBC,作AE上BC于点E,直 线DE与o 0交于另一点 , 为△ABC的 垂心.证明: AFH=90。. 提示:作高BM、CN. 由△PAB∽△PCA,APBD C/)△PDC, AAMN∽△ABC及塞瓦定理得 △FBN COAFCM. 于是, AⅣF= AMF. 由此得F、4、M、Ⅳ四点共网,即F、 、 、 Ⅳ、 五点共网,而AH为此网直径,故 /AFH=90 ̄. 4.设 为锐角A ABC的垂心,D为边 BC的中点,过点 的直线分别与边AB、 AC交于点F、E,使得4E=AF,射线DH与 △ABC的外接圆交于点P.证明:P、A、E、F四 点共圆. (2009,中国西部数学奥林匹克) 提示:构造ETHBQC,易知点Q必在外接 圆上.  ̄A BFH c,oA CEH BF= =器. 由|s Q=SAPCQ 器= . 故△脚∽△PCE 4 = AEP P、A、E、F四点共圆. 5.已知非等腰锐角△ABC的两条高线 BE、CF交于点H,BC与FE交于点K, 上 证明: 过BC的中点 提示:如图1 1,只需证D、E、F、 四点共 圆,该圆即为A ABC的九点圆.因此,M为 日C的中点. A 

6.如图 12,E、F分别 在Rt A ABC 的直角边AC、 AB 。BE与B 

CF交于点D, 

图1l 

图12 C △AEF的外接网o 与△ABC的外接圆6)0 交于点P.证明:AP上PD. (下转第12页)

相关文档
最新文档