2017年普通高等学校招生全国统一考试 理科数学(海南卷)解析版
高考理科数学(精校解析版、公式可编辑)全国三2017

2017年普通高等学校招生全国统一考试理科数学·全国Ⅲ卷1、已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为A.3B.2C.1D.0答案:B解析:本题考查集合的交运算、直线与圆的位置关系,意在考查考生对基本概念的掌握.A表示圆x2+y2=1上的点的集合,B表示直线y=x上的点的集合,直线y=x与圆x2+y2=1有两个交点,所以A∩B中元素的个数为2.2、设复数z满足(1+i)z=2i,则|z|=A. B. C. D.2答案:C解析:本题考查复数的四则运算与复数的模,意在考查考生的计算能力.z==i(1-i)=1+i,所以|z|=.3、某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳答案:A解析:本题考查折线图,考查考生的识图能力.根据折线图可知,2014年8月到9月、2014年10月到11月等月接待游客量都是减少,所以A错误.4、(x+y)(2x-y)5的展开式中x3y3的系数为A.-80B.-40C.40D.80答案:C解析:本题考查二项展开式的通项,考查分类讨论思想的应用与考生的计算能力.当第一个括号内取x时,第二个括号内要取含x2y3的项,即(2x)2(-y)3,当第一个括号内取y 时,第二个括号内要取含x3y2的项,即(2x)3(-y)2,所以x3y3的系数为×23-×22=10×(8-4)=40.5、已知双曲线C:=1(a>0,b>0)的一条渐近线方程为y=x,且与椭圆=1有公共焦点,则C的方程为A.=1B.=1C.=1D.=1答案:B解析:本题考查双曲线的方程、渐近线,椭圆的几何性质,意在考查考生的运算求解能力. 根据双曲线C的渐近线方程为y=x,可知①,又椭圆=1的焦点坐标为(3,0)和(-3,0),所以a2+b2=9②,根据①②可知a2=4,b2=5,所以选B.6、设函数f(x)=cos(x+π),则下列结论错误的是A.f(x)的一个周期为-2πB.y=f(x)的图象关于直线x=π对称C.f(x+π)的一个零点为x=πD.f(x)在(π,π)单调递减答案:D解析:本题考查三角函数的图象与性质,考查考生的计算能力.根据函数解析式可知函数f(x)的最小正周期为2π,所以函数的一个周期为-2π,A正确;当x=π时,x+π=3π,所以cos(x+π)=-1,所以B正确;f(x+π)=cos(x+π+π)=cos(x+π),当x=π时,x+ππ,所以f(x+π)=0,所以C正确;函数f(x)=cos(x+π)在(π,π)上单调递减,在(π,π)上单调递增,故D不正确.所以选D.7、执行下面的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为A.5B.4C.3D.2答案:D解析:本题考查程序框图,考查考生的识图能力与计算能力.S= 0+100=100,M=-10,t=2,100>91;S=100-10=90,M=1,t=3,90<91,输出S,此时,t=3不满足t ≤N,所以输入的正整数N的最小值为2,故选D.8、已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.πB.πC.πD.π答案:B解析:本题考查圆柱的体积,意在考查数形结合思想及考生的空间想象能力.设圆柱的底面半径为r,则r2=12-()2=,所以,圆柱的体积V=π×1=π,故选B.9、等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为A.-24B.-3C.3D.8答案:A解析:本题考查等差数列的通项公式与等比数列的性质,考查考生的计算能力.设等差数列{a n}的公差为d,因为a2,a3,a6成等比数列,所以a2a6=,即(a1+d)(a1+5d)=(a1+2d)2,又a1=1,所以d2+2d=0,又d≠0,则d=-2,所以a6=a1+5d=-9,所以{a n}前6项的和S6=×6=-24,故选A.10、已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为A. B. C. D.答案:A解析:本题考查直线与圆的位置关系以及椭圆的性质,考查数形结合思想以及考生的计算能力.以线段A1A2为直径的圆的方程为x2+y2=a2,由原点到直线bx-ay+2ab=0的距离d==a,得a2=3b2,所以C的离心率e=,选A.11、已知函数f(x)=x2-2x+a(e x-1+e-x+1)有唯一零点,则a=A.-B.C.D.1答案:C解析:本题考查函数的零点,意在考查数形结合思想.由f(x)=x2-2x+a(e x-1+e-x+1),得f(2-x)=(2-x)2-2(2-x)+a[e2-x-1+e-(2-x)+1]=x2-4x+4-4+2x+a(e1-x+e x-1)=x2-2x+a(e x-1+e-x+1),所以f(2-x)=f(x),即x=1为f(x)图象的对称轴.由题意,f(x)有唯一零点,所以f(x)的零点只能为x=1,即f(1)=12-2×1+a(e1-1+e-1+1)=0,解得a=.故选C.12、在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为A.3B.2C.D.2答案:A解析:本题考查直线与圆的位置关系,平面向量的坐标运算,意在考查考生的分析与转化能力.以A为坐标原点,AB,AD所在直线分别为x,y轴建立如图所示的平面直角坐标系,则A(0,0),B(1,0),C(1,2),D(0,2),可得直线BD的方程为2x+y-2=0,点C到直线BD的距离为,圆C:(x-1)2+(y-2)2=,因为P在圆C上,所以P(1+cos θ,2+sin θ),=(1,0),=(0,2),=λ+μ=(λ,2μ),所以λ+μ=2+cos θ+sin θ=2+sin(θ+φ)≤3,tan φ=2,选A.13、若x,y满足约束条件则z=3x-4y的最小值为.答案:-1解析:本题考查线性规划问题,意在考查数形结合思想.作出约束条件表示的可行域如图中阴影部分所示,作出直线l:3x-4y=0,平移直线l,当直线z=3x-4y经过点A(1,1)时,z取得最小值,最小值为3-4=-1.14、设等比数列{a n}满足a1+a2=-1,a1-a3=-3,则a4=.答案:-8解析:本题考查等比数列的通项公式与性质的应用,意在考查考生的计算能力.设等比数列{a n}的公比为q,则a1+a2=a1(1+q)=-1,a1-a3=a1(1-q2)=-3,两式相除,得,解得q=-2,a1=1,所以a4=a1q3=-8.15、设函数f(x)=则满足f(x)+f(x-)>1的x的取值范围是.答案:(-,+∞)解析:本题考查分段函数与不等式的解法,意在考查考生的化归与转化能力.当x>0时,f(x)=2x>1恒成立,当x->0,即x>时,f(x-)=>1,当x-≤0,即0<x≤时,f(x-)=x+,则不等式f(x)+f(x-)>1恒成立.当x≤0时,f(x)+f(x-)=x+1+x+=2x+>1,所以-<x≤0.综上所述,x的取值范围是(-,+∞).16、a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最大值为60°.其中正确的是.(填写所有正确结论的编号)答案:②③解析:本题考查空间线线角的求解,意在考查考生的空间想象能力.解法一由题意知,a,b,AC三条直线两两相互垂直,画出图形如图.不妨设图中所示正方体的棱长为1,则AC=1,AB=,斜边AB以直线AC为旋转轴旋转,则A点保持不变,B点的运动轨迹是以C为圆心,1为半径的圆.以C为坐标原点,以的方向为x轴正方向,的方向为y轴正方向,的方向为z轴正方向建立空间直角坐标系.则D(1,0,0),A(0,0,1),直线a的单位方向向量a=(0,1,0),|a|=1.B点起始坐标为(0,1,0),直线b的单位方向向量b=(1,0,0),|b|=1.设B点在运动过程中的坐标B'(cos θ,sin θ,0),其中θ为CB′与的夹角,θ∈[0,2π).那么AB'在运动过程中的向量′=(cos θ,sin θ,-1),|′|=.设直线AB'与a所成的夹角为α∈[0,π],|sin θ|∈[0,].cos α=′故α∈[π,π],所以③正确,④错误.设直线AB'与b所成的夹角为β,则β∈[0,π],cos β=′′=′=|cos θ|.当AB'与a成60°角时,α=π,|sin θ|=cos α=cosπ.因为cos2θ+sin2θ=1,所以|cos θ|=.所以cos β=|cos θ|=.因为β∈[0,π],所以β=π,此时AB'与b成60°角.所以②正确,①错误.解法二由题意,AB是以AC为轴,BC为底面半径的圆锥的母线,又AC⊥a,AC⊥b ,AC⊥圆锥底面,∴在底面内可以过点B,作BD∥a,交底面圆C于点D,如图所示,连接DE,则DE⊥BD,∴DE∥b,连接AD,设BC=1,在等腰△ABD中,AB=AD=,当直线AB与a成60°角时,∠ABD=60°,故BD=,又在Rt△BDE中,BE=2,∴DE=,过点B作BF∥DE,交圆C于点F,连接AF,EF,∴BF=DE=,∴△ABF为等边三角形,∴∠ABF=60°,即AB与b成60°角,故②正确,①错误.由最小角定理可知③正确;很明显,可以满足平面ABC⊥直线a,∴直线AB与a所成角的最大值为90°,④错误.∴正确的说法为②③.17、△ABC的内角A,B,C的对边分别为a,b,c.已知sin A+cos A=0,a=2,b=2.(1)求c;(2)设D为BC边上一点,且AD⊥AC,求△ABD的面积.答案:(1)由已知可得tan A=-,所以A=π.在△ABC中,由余弦定理得28=4+c2-4c cos π,即c2+2c-24=0.解得c=-6(舍去),c=4.(2)由题设可得∠CAD=π,所以∠BAD=∠BAC-∠CAD=π.故△ABD面积与△ACD面积的比值为π=1.又△ABC的面积为×4×2sin∠BAC=2,所以△ABD的面积为.解析:本题考查正弦、余弦定理在解三角形中的应用,主要通过正弦、余弦定理建立方程进行求解,意在考查考生对函数与方程思想的应用以及数形结合能力.(1)先求出角A,再根据余弦定理求出c即可;(2)根据△ABD,△ACD,△ABC的面积之间的关系求解即可.18、某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数 2 16 36 25 7 4以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?答案:(1)由题意知,X所有可能取值为200,300,500,由表格数据知P(X=200)==0.2,P(X=300)==0.4,P(X=500)==0.4.因此X的分布列为X200 300 500P0.2 0.4 0.4(2)由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑200≤n≤500. 当300≤n≤500时,若最高气温不低于25,则Y=6n-4n=2n;若最高气温位于区间 [20,25),则Y=6×300+2(n-300)-4n=1 200-2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n.因此EY=2n×0.4+(1 200-2n)×0.4+(800-2n)×0.2=640-0.4n.当200≤n<300时,若最高气温不低于20,则Y=6n-4n=2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n.因此EY=2n×(0.4+0.4)+(800-2n)×0.2=160+1.2n.所以n=300时,Y的数学期望达到最大值,最大值为520元.解析:本题考查概率分布列的求解以及根据统计结果解决具体问题的能力,意在考查考生的数据处理能力与分析问题、解决问题的能力.(1)根据表格提供的数据进行分类求解即可;(2)根据分布列得到关于利润的函数表达式,进而求解最值.19、如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=B D.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D-AE-C的余弦值.答案:(1)由题设可得,△ABD≌△CBD,从而AD=D C.又△ACD是直角三角形,所以∠ADC=90°.取AC的中点O,连接DO,BO,则DO⊥AC,DO=AO.又由于△ABC是正三角形,故BO⊥A C.所以∠DOB为二面角D-AC-B的平面角.在Rt△AOB中,BO2+AO2=AB2.又AB=BD,所以BO2+DO2=BO2+AO2=AB2=BD2,故∠DOB=90°.所以平面ACD⊥平面AB C.(2)由题设及(1)知,OA,OB,OD两两垂直.以O为坐标原点,的方向为x轴正方向,||为单位长,建立如图所示的空间直角坐标系O-xyz,则A(1,0,0), B(0,,0),C(-1,0,0),D(0,0,1).由题设知,四面体ABCE的体积为四面体ABCD的体积的,从而E到平面ABC的距离为D到平面ABC的距离的,即E为DB的中点,得E(0,,).故=(-1,0,1),=(-2,0,0),=(-1,,).设n=(x,y,z)是平面DAE的法向量,则即可取n=(1,,1).设m是平面AEC的法向量,则同理可取m=(0,-1,).则cos<n,m>=.所以二面角D-AE-C的余弦值为.解析:本题考查空间线面位置关系的推导与证明以及二面角的求解,考查考生的空间想象能力与计算能力.(1)通过题目中的边角关系证明线线垂直,进而得二面角D-AC-B的平面角为∠DOB,最后利用勾股定理的逆定理得∠DOB=90°,从而得证;(2)根据(1)中得到的垂直关系,建立空间直角坐标系计算即可.20、已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,-2),求直线l与圆M的方程.答案:(1)设A(x1,y1),B(x2,y2),l:x=my+2.由可得y2-2my-4=0,则y1y2=-4.又x1=,x2=,故x1x2==4.因此OA的斜率与OB的斜率之积为·=-1,所以OA⊥O B.故坐标原点O在圆M上.(2)由(1)可得y1+y2=2m,x1+x2=m(y1+y2)+4=2m2+4.故圆心M的坐标为(m2+2,m),圆M的半径r=.由于圆M过点P(4,-2),因此·=0,故(x1-4)(x2-4)+(y1+2)(y2+2)=0,即x1x2-4(x1+x2)+y1y2+2(y1+y2)+20=0.由(1)可得y1y2=-4,x1x2=4.所以2m2-m-1=0,解得m=1或m=-.当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为,圆M的方程为(x-3)2+(y-1)2=10.当m=-时,直线l的方程为2x+y-4=0,圆心M的坐标为(,-),圆M的半径为,圆M的方程为(x-)2+(y+)2=.解析:本题考查直线与抛物线的位置关系,直线方程,圆的方程,意在考查数形结合思想和化归与转化能力.(1)设出l的方程,通过联立方程,证明直线OA与OB的斜率之积为-1即可;(2)根据(1)的结论及P点的坐标即可求解直线与圆的方程.21、已知函数f(x)=x-1-a ln x.(1)若f(x)≥0,求a的值;(2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值.答案:(1)f(x)的定义域为(0,+∞).①若a≤0,因为f()=-+a ln 2<0,所以不满足题意;②若a>0,由f'(x)=1-知,当x∈(0,a)时,f'(x)<0;当x∈(a,+∞)时,f'(x)>0.所以f(x)在(0,a)单调递减,在(a,+∞)单调递增.故x=a是f(x)在(0,+∞)的唯一最小值点. 由于f(1)=0,所以当且仅当a=1时,f(x)≥0.故a=1.(2)由(1)知当x∈(1,+∞)时,x-1-ln x>0.令x=1+得ln(1+)<.从而ln(1+)+ln(1+)+…+ln(1+)<+…+=1-<1.故(1+)(1+)…(1+)<e.而(1+)(1+)(1+)>2,所以m的最小值为3.解析:本题主要考查导数在解决函数的单调性、函数与数列不等式的综合问题中的应用,意在考查考生的运算求解能力及化归与转化思想.(1)通过求函数的导数,对函数的单调性进行研究,求解函数的最小值点即可;(2)将问题转化为“和”式不等式,根据数列求和公式求解即可.22、在直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cos θ+sin θ)-=0,M 为l3与C的交点,求M的极径.答案:(1)消去参数t得l1的普通方程l1:y=k(x-2);消去参数m得l2的普通方程l2:y=(x+2). 设P(x,y),由题设得消去k得x2-y2=4(y≠0).所以C的普通方程为x2-y2=4(y≠0).(2)C的极坐标方程为ρ2(cos2θ-sin2θ)=4(0<θ<2π,θ≠π).联立得cos θ-sin θ=2(cos θ+sin θ).故tan θ=-,从而cos2θ=,sin2θ=.代入ρ2(cos2θ-sin2θ)=4得ρ2=5,所以交点M的极径为.解析:本题主要考查曲线的极坐标方程与直线的参数方程,意在考查考生的运算求解能力.(1)先将两条直线的参数方程化为普通方程,联立,消去k,即可得所求曲线C的普通方程;(2)先将(1)中求得的曲线C的普通方程化为极坐标方程,再与l3的极坐标方程联立,求出M的极径即可.23、已知函数f(x)=|x+1|-|x-2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2-x+m的解集非空,求m的取值范围.答案:(1)f(x)=当x<-1时,f(x)≥1无解;当-1≤x≤2时,由f(x)≥1得,2x-1≥1,解得1≤x≤2;当x>2时,由f(x)≥1解得x>2.所以f(x)≥1的解集为{x|x≥1}.(2)由f(x)≥x2-x+m得m≤|x+1|-|x-2|-x2+x.而|x+1|-|x-2|-x2+x≤|x|+1+|x|-2-x2+|x|=-(|x|-)2+≤,且当x=时,|x+1|-|x-2|-x2+x=.故m的取值范围为(-∞,].解析:本题考查绝对值不等式以及不等式有解求参数问题,意在考查考生的运算求解能力.(1)直接分段讨论即可解决问题;(2)先分离出参数m,再将问题转化为最值问题,进而求解参数的取值范围.。
2017高考全国1卷理科数学试题和答案解析精校解析版

2021年普通高等学校招生全国统一考试〔全国卷Ⅰ〕理科数学考前须知:1、答题前,先将自己的、号填写在试题卷和答题卡上,并将号条形码粘贴在答题卡上的指定位置.用2B 铅笔将答题卡上试卷类型A 后的方框涂黑.2、选择题的作答:每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑.答案写在答题卡上对应的答题区域,写在试题卷、草稿纸和答题卡上的非答题区域均无效.5、 考试完毕后,请将本试题卷和答题卡一并上交.第一卷一. 选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.设集合{}2430A x x x =-+<,{}230x x ->,那么AB =〔A 〕33,2⎛⎫--⎪⎝⎭ 〔B 〕33,2⎛⎫- ⎪⎝⎭ 〔C 〕31,2⎛⎫ ⎪⎝⎭〔D 〕3,32⎛⎫⎪⎝⎭2.设yi x i +=+1)1(,其中y x ,是实数,那么=+yi x 〔A 〕1〔B 〕2〔C 〕3〔D 〕23.等差数列{}n a 前9项的和为27,108a =,那么100a = 〔A 〕100 〔B 〕99 〔C 〕98 〔D 〕974.某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,那么他等车时间不超过10分钟的概率是 〔A 〕13 〔B 〕12 〔C 〕23 〔D 〕345.方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,那么n 的取值围是〔A 〕()1,3- 〔B〕(- 〔C 〕()0,3 〔D〕(6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.假设该几何体的体积是283π,那么它的外表积是 〔A 〕17π 〔B 〕18π 〔C 〕20π 〔D 〕28π7.函数22xy x e =-在[]2,2-的图像大致为〔A 〕〔B(C )〔D8.假设a >〔A 〕c c a b < 〔B 〕c c ab ba < 〔C 〕log log b a a c b c < 〔D 〕log log a b c c < 9.执行右面的程序框图,如果输入的011x y n ===,,,那么输出x ,y 的值满足 〔A 〕2y x = 〔B 〕3y x = 〔C 〕4y x = 〔D 〕5y x = 10.以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E 两点.|AB |=DE|=那么C 的焦点到准线的距离为 (A)2 (B)4 (C)6 (D)811.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1,α平面ABCD =m ,α平面AB B 1A 1=n ,那么m 、n 所成角的正弦值为(D)13结束12.函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-, 为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,那么ω的最大值为 〔A 〕11 〔B 〕9 〔C 〕7 〔D 〕5 二、填空题:本大题共3小题,每题5分13.设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,那么m =.14.5(2x +的展开式中,x 3的系数是.〔用数字填写答案〕15.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,那么a 1a 2 …a n 的最大值为.16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时.生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,那么在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为元. 三.解答题:解容许写出文字说明,证明过程或演算步骤. 17.〔本小题总分值为12分〕ABC ∆的角A ,B ,C 的对边分别为a ,b ,c ,2cos (cos cos ).C a B+b A c =〔I 〕求C ; 〔II〕假设=c ∆ABC∆ABC 的周长.18.〔本小题总分值为12分〕如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,90AFD ∠=,且二面角D -AF -E 与二面角C -BE -F 都是60. 〔I 〕证明:平面ABEF ⊥平面EFDC ; 〔II 〕求二面角E -BC -A 的余弦值.CABDEF19.〔本小题总分值12分〕某公司方案购置2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购置这种零件作为备件,每个200元.在机器使用期间,如果备件缺乏再购置,那么每个500元.现需决策在购置机器时应同时购置几个易损零件,为此搜集并整理了100台这种机器在三年使用期更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年共需更换的易损零件数,n 表示购置2台机器的同时购置的易损零件数. 〔I 〕求X 的分布列;〔II 〕假设要求()0.5P X n ≤≥,确定n 的最小值;〔III 〕以购置易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?20.〔本小题总分值12分〕设圆222150x y x ++-=的圆心为A ,直线l 过点B 〔1,0〕且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . 〔I 〕证明EA EB +为定值,并写出点E 的轨迹方程;〔II 〕设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值围.21.〔本小题总分值12分〕函数()()()221xf x x e a x =-+-有两个零点.(I)求a 的取值围;(II)设x 1,x 2是()f x 的两个零点,证明:122x x +<. 请考生在22、23、24题中任选一题作答,如果多做,那么按所做的第一题计分.22.〔本小题总分值10分〕选修4-1:几何证明选讲 如图,△OAB 是等腰三角形,∠AOB =120°.以O 为圆心,12OA 为半径作圆. (I)证明:直线AB 与⊙O 相切;(II)点C ,D 在⊙O 上,且A ,B ,C ,D 四点共圆,证明:AB ∥CD .ODCBA23.〔本小题总分值10分〕选修4—4:坐标系与参数方程 在直角坐标系x O y 中,曲线C 1的参数方程为cos 1sin x a ty a t=⎧⎨=+⎩〔t 为参数,a >0〕.在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. 〔I 〕说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;〔II 〕直线C 3的极坐标方程为0θα=,其中0α满足tan 0α=2,假设曲线C 1与C 2的公共点都在C 3上,求a .24.〔本小题总分值10分〕选修4—5:不等式选讲函数()123f x x x =+--. 〔I 〕画出()y f x =的图像; 〔II 〕求不等式()1f x >的解集.2021年高考全国1卷理科数学参考答案1.{}{}243013A x x x x x =-+<=<<,{}32302B x x x x ⎧⎫=->=>⎨⎬⎩⎭. 故332AB x x ⎧⎫=<<⎨⎬⎩⎭.应选D .2.由()11i x yi +=+可知:1x xi yi +=+,故1x x y =⎧⎨=⎩,解得:11x y =⎧⎨=⎩.所以,x yi + 应选B .3.由等差数列性质可知:()1959599292722a a a S a +⨯====,故53a =, 而108a =,因此公差1051105a a d -==-∴100109098a a d =+=. 应选C .4.如下图,画出时间轴:8:208:107:507:408:308:007:30小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10分钟 根据几何概型,所求概率10101402P +==. 应选B .5.222213x y m n m n-=+-表示双曲线,那么()()2230m n m n +->∴223m n m -<<由双曲线性质知:()()222234c m n m n m =++-=,其中c 是半焦距 ∴焦距2224c m =⋅=,解得1m = ∴13n -<< 应选A . 6.原立体图如下图:是一个球被切掉左上角的18后的三视图外表积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯ 应选A .7.()22288 2.80f e =->->,排除A()22288 2.71f e =-<-<,排除B0x >时,()22x f x x e =-()4x f x x e '=-,当10,4x ⎛⎫∈ ⎪⎝⎭时,()01404f x e '<⨯-=因此()f x 在10,4⎛⎫⎪⎝⎭单调递减,排除C应选D .8.对A :由于01c <<,∴函数c y x =在R 上单调递增,因此1c c a b a b >>⇔>,A 错误对B :由于110c -<-<,∴函数1c y x -=在()1,+∞上单调递减,∴111c c c c a b a b ba ab -->>⇔<⇔<,B 错误对C :要比拟log b a c 和log a b c ,只需比拟ln ln a c b 和ln ln b c a ,只需比拟ln ln c b b 和ln ln ca a,只需ln b b和ln a a构造函数()()ln 1f x x x x =>,那么()'ln 110f x x =+>>,()f x 在()1,+∞上单调递增,因此()()110ln ln 0ln ln f a f b a a b b a a b b>>⇔>>⇔<又由01c <<得ln 0c <,∴ln ln log log ln ln a b c cb c a c a a b b<⇔<,C 正确 对D : 要比拟log a c 和log b c ,只需比拟ln ln c a 和ln ln cb而函数ln y x =在()1,+∞上单调递增,故111ln ln 0ln ln a b a b a b>>⇔>>⇔<又由01c <<得ln 0c <,∴ln ln log log ln ln a b c cc c a b>⇔>,D 错误 应选C . 9.如下表:输出32x =,6y =,满足4y x = 应选C .10. 以开口向右的抛物线为例来解答,其他开口同理设抛物线为22y px =()0p >,设圆的方程为222x y r +=, 题目条件翻译如图:设(0A x ,2p D ⎛- ⎝,点(0A x 在抛物线22y px =上,∴082px =……①点2p D ⎛- ⎝在圆222x y r +=上,∴2252p r ⎛⎫+= ⎪⎝⎭……②点(0A x 在圆222x y r +=上,∴2208x r +=……③ 联立①②③解得:4p =,焦点到准线的距离为4p =. 应选B . 11. 如下图:∵11CB D α∥平面,∴假设设平面11CB D 平面1ABCD m =,那么1m m ∥又∵平面ABCD ∥平面1111A B C D ,结合平面11B D C 平面111111A B C D B D =∴111B D m ∥,故11B D m ∥ 同理可得:1CD n ∥故m 、n 的所成角的大小与11B D 、1CD 所成角的大小相等,即11CD B ∠的大小. 而1111B C B D CD ==〔均为面对交线〕,因此113CD B π∠=,即11sin CD B ∠=. 应选A . 12. 由题意知:12π+π 4ππ+π+42k k ωϕωϕ⎧-=⎪⎪⎨⎪=⎪⎩ 那么21k ω=+,其中k ∈Z()f x 在π5π,1836⎛⎫⎪⎝⎭单调,5π,123618122T ππω∴-=≤≤接下来用排除法假设π11,4ωϕ==-,此时π()sin 114f x x ⎛⎫=- ⎪⎝⎭,()f x 在π3π,1844⎛⎫ ⎪⎝⎭递增,在3π5π,4436⎛⎫⎪⎝⎭递减,不满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调111假设π9,4ωϕ==,此时π()sin 94f x x ⎛⎫=+ ⎪⎝⎭,满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调递减应选B .13.-2 14.10 15.64 16. 216000 13. 由得:()1,3a b m +=+∴()22222222213112a b a b m m +=+⇔++=+++,解得2m =-.14. 设展开式的第1k +项为1k T +,{}0,1,2,3,4,5k ∈∴()5552155C 2C 2k kkkk kk T x x---+==.当532k -=时,4k =,即454543255C 210T x x --==故答案为10.15.由于{}n a 是等比数列,设11n n a a q -=,其中1a 是首项,q 是公比.∴2131132411101055a a a a q a a a q a q ⎧+=+=⎧⎪⇔⎨⎨+=+=⎪⎩⎩,解得:1812a q =⎧⎪⎨=⎪⎩. 故412n n a -⎛⎫= ⎪⎝⎭,∴()()()()21174932 (472)22412111...222n n n n n a a a ⎡⎤⎛⎫-+-++----⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎛⎫⎛⎫⎛⎫⋅⋅⋅=== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭当3n =或4时,21749224n ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦取到最小值6-,此时2174922412n ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎛⎫⎪⎝⎭取到最大值62.所以12...n a a a ⋅⋅⋅的最大值为64.16. 设生产A 产品x 件,B 产品y 件,根据所消耗的材料要求、工时要求等其他限制条件,构造线性规那么约束为目标函数2100900z x y =+作出可行域为图中的四边形,包括边界,顶点为(60,100)(0,200)(0,0)(90,0) 在(60,100)处取得最大值,210060900100216000z =⨯+⨯= 17.解: ⑴()2cos cos cos C a B b A c +=由正弦定理得:()2cos sin cos sin cos sin C A B B A C ⋅+⋅=()2cos sin sin C A B C ⋅+=∵πA B C ++=,()0πA B C ∈、、, ∴()sin sin 0A B C +=> ∴2cos 1C =,1cos 2C = ∵()0πC ∈,∴π3C =⑵ 由余弦定理得:2222cos c a b ab C =+-⋅221722a b ab =+-⋅()237a b ab +-=1sin 2S ab C =⋅∴6ab = ∴()2187a b +-=5a b +=∴ABC △周长为5a b c ++= 18.解:(1) ∵ABEF 为正方形∴AF EF ⊥∵90AFD ∠=︒ ∴AF DF ⊥ ∵=DFEF F∴AF ⊥面EFDCAF ⊥面ABEF∴平面ABEF ⊥平面EFDC ⑵ 由⑴知60DFE CEF ∠=∠=︒∵AB EF ∥AB ⊄平面EFDC EF ⊂平面EFDC∴AB ∥平面ABCDAB ⊂平面ABCD∵面ABCD 面EFDC CD = ∴AB CD ∥ ∴CD EF ∥∴四边形EFDC 为等腰梯形以E 为原点,如图建立坐标系,设FD a =()()000020E B a ,,,,()02202a C A a a ⎛⎫⎪ ⎪⎝⎭,,,()020EB a =,,,22a BC a ⎛⎫=- ⎪ ⎪⎝⎭,,()200AB a =-,, 设面BEC 法向量为()m x y z =,,.00m EB m BC ⎧⋅=⎪⎨⋅=⎪⎩,即111120202a y a x ay z ⋅=⎧⎪⎨⋅-+⋅=⎪⎩11101x y z ===-, ()301m =-,,设面ABC 法向量为()222nx y z =,,=00n BC n AB ⎧⋅⎪⎨⋅=⎪⎩.即222220220a x ay ax ⎧-+=⎪⎨⎪=⎩22204x y z ===, ()034n =,设二面角E BC A --的大小为θ. cos 3m n m nθ⋅===+⋅ ∴二面角E BC A --的余弦值为 19解: ⑴ 每台机器更换的易损零件数为8,9,10,11记事件i A 为第一台机器3年换掉7i +个零件()1,2,3,4i = 记事件i B 为第二台机器3年换掉7i +个零件()1,2,3,4i =由题知()()()()()()1341340.2P A P A P A P B P B P B ======,()()220.4P A P B == 设2台机器共需更换的易损零件数的随机变量为X ,那么X 的可能的取值为16,17,18,19,20,21,22()()()11160.20.20.04P X P A P B ===⨯=()()()()()1221170.20.40.40.20.16P X P A P B P A P B ==+=⨯+⨯=()()()()()()()132231180.20.20.20.20.40.40.24P X P A P B P A P B P A P B ==++=⨯+⨯+⨯=()()()()()()()()()14233241190.20.20.20.20.40.2P X P A P B P A P B P A P B P A P B ==+++=⨯+⨯+⨯0.20.40.24+⨯=()()()()()()()243342200.40.20.20.40.20.20.2P X P A P B P A P B P A P B ==++=⨯+⨯+⨯=()()()()()3443210.20.20.20.20.08P x P A P B P A P B ==+=⨯+⨯= ()()()44220.20.20.04P x P A P B ===⨯=0.04 0.16⑵ 要令(P x n ≤,0.040.16+0.5≥ 那么n 的最小值为19⑶ 购置零件所需费用含两局部,一局部为购置机器时购置零件的费用,另一局部为备件缺乏时额外购置的费用当19n =时,费用的期望为192005000.210000.0815000.044040⨯+⨯+⨯+⨯= 当20n =时,费用的期望为202005000.0810000.044080⨯+⨯+⨯= 所以应选用19n =20.(1)圆A 整理为()22116x y ++=,A 坐标(-BE AC ∥,那么C EBD =∠∠,由,AC AD D C ==则∠∠,EBD D ∴=∠∠,那么EB ED = 4AE EB AE ED AD ∴+=+==所以E 的轨迹为一个椭圆,方程为22143x y +=,(0y ≠);⑵221:143x y C +=;设:1l x my =+,因为PQ l ⊥,设():1PQ y m x =--,联立221143x my x y =+⎧⎪⎨+=⎪⎩得()2234690m y my ++-=那()22121|||34M N m MN y y m +=-==+;圆心A 到PQ 距离d ==所以||PQ ==,()2212111||||2234MPNQm S MN PQ m +⎡∴=⋅=⋅==⎣+ 21. 〔Ⅰ〕'()(1)2(1)(1)(2)x xf x x e a x x e a =-+-=-+.〔i 〕设0a =,那么()(2)xf x x e =-,()f x 只有一个零点.〔ii 〕设0a >,那么当(,1)x ∈-∞时,'()0f x <;当(1,)x ∈+∞时,'()0f x >.所以()f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增.又(1)f e =-,(2)f a =,取b 满足0b <且ln2ab <,那么 223()(2)(1)()022a fb b a b a b b >-+-=->,故()f x 存在两个零点.〔iii 〕设0a <,由'()0f x =得1x =或ln(2)x a =-. 假设2ea ≥-,那么ln(2)1a -≤,故当(1,)x ∈+∞时,'()0f x >,因此()f x 在(1,)+∞上单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点. 假设2ea <-,那么ln(2)1a ->,故当(1,ln(2))x a ∈-时,'()0f x <;当(ln(2),)x a ∈-+∞时,'()0f x >.因此()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点.综上,a 的取值围为(0,)+∞.II ()不妨设12x x <,由〔Ⅰ〕知1(,1)x ∈-∞,2(1,)x ∈+∞,22(,1)x -∈-∞,()f x 在(,1)-∞上单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<. 由于222222(2)(1)x f x x ea x --=-+-,而22222()(2)(1)0x f x x e a x =-+-=,所以222222(2)(2)x x f x x e x e --=---.设2()(2)xx g x xex e -=---,那么2()(1)()x x g x x e e -'=--.所以当1x >时,()0g x '<,而(1)0g =,故当1x >时,()0g x <. 从而22()(2)0g x f x =-<,故122x x +<. 22.⑴ 设圆的半径为r ,作OK AB ⊥于K∵120OA OB AOB =∠=︒,∴30sin302OAOK AB A OK OA r ⊥∠=︒=⋅︒==,, ∴AB 与O ⊙相切 ⑵ 方法一:假设CD 与AB 不平行CD 与AB 交于F2FK FC FD =⋅① ∵A B C D 、、、四点共圆∴()()FC FD FA FB FK AK FK BK ⋅=⋅=-+ ∵AK BK =∴()()22FC FD FK AK FK AK FK AK ⋅=-+=-②由①②可知矛盾 ∴AB CD ∥方法二:因为,,,A B C D 四点共圆,不妨设圆心为T ,因为,OA OB TA TB ==,所以,O T 为AB 的中垂线上,同理,OC OD TC TD ==,所以OT CD 为的中垂线,所以AB CD ∥.23.⑴cos 1sin x a ty a t=⎧⎨=+⎩ 〔t 均为参数〕∴()2221x y a +-=①∴1C 为以()01,为圆心,a 为半径的圆.方程为222210x y y a +-+-= ∵222sin x y y ρρθ+==,∴222sin 10a ρρθ-+-= 即为1C 的极坐标方程⑵24cos C ρθ=:两边同乘ρ得22224cos cos x y x ρρθρρθ==+=,224x y x ∴+= 即()2224x y -+=②3C :化为普通方程为2y x =由题意:1C 和2C 的公共方程所在直线即为3C ①—②得:24210x y a -+-=,即为3C ∴210a -=∴1a =24.⑴ 如下图:⑵()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥()1f x >当1x -≤,41x ->,解得5x >或3x <1x -∴≤当312x -<<,321x ->,解得1x >或13x < 113x -<<∴或312x <<当32x ≥,41x ->,解得5x >或3x <332x <∴≤或5x > 综上,13x <或13x <<或5x >()1f x >∴,解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭,,,。
(word版)2017海南高考数学试题

2021年普通高等学校招生全国统一考试(海南)理科数学一、选择题:此题共12小题,每题5分,共60分。
在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
1.3i〔〕1iA.12i B.12i C.2i D.2i2.设集合1,2,4,xx24x m0.假设I1,那么〔〕A.1,3B.1,0C.1,3D.1,53.我国古代数学名著?算法统宗?中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?〞意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,那么塔的顶层共有灯〔〕A.1盏B.3盏C.5盏D.9盏4.如图,网格纸上小正方形的边长为1,学科&网粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一局部所得,那么该几何体的体积为〔〕A.90B.63C.42D.36设x,2x3y30的最小值是〔〕满足约束条件2x3y30,那么z2xy5.yy30A.15B.9C.1D.96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,那么不同的安排方式共有〔〕A.12种B.18种C.24种D.36种7.甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,那么〔〕A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩8.执行右面的程序框图,如果输入的a1,那么输出的S〔〕A.2B.3C.4D.5开始输入aS=o,k=1否k<6S=S+a·k a=-ak=k+1输出S结束x 2y22y29.假设双曲线C:1〔a0,b0〕的一条渐近线被圆x4所2a2b2截得的弦长为2,那么C的离心率为〔〕A.2B.3C.2D.23310.直三棱柱C11C1中,C120o,2,C CC11,那么异面直线1与C1所成角的余弦值为〔〕A.3B.15C.10D.3255311.假设x2是函数f(x)(x2ax1)e x1`的极值点,那么f(x)的极小值为〔〕A.1 B.2e3 C.5e312.uuur uuur uuur ABC是边长为2的等边三角形,P为平面ABC内一点,那么PA(PB PC)的最小值是〔〕A.2B.3C.4 D. 123二、填空题:此题共 4小题,每题5分,共20分。
2017年高考真题——理科数学(全国Ⅲ卷)+Word版含答案

绝密★启用前2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B .22C .2D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳4.(x +y )(2x -y )5的展开式中x 3y 3的系数为 A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 A .221810x y -=B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6π D .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A.3B.3C.3D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP u u u r=λAB u u u r +μAD u u u r,则λ+μ的最大值为A .3B .CD .2二、填空题:本题共4小题,每小题5分,共20分。
2017年高考理数真题全国卷III(全国卷3,试题及答案解析)

12017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}22(,)1=+=A x y x y ,{}(,)==B x y y x ,则 A B 中元素的个数为()A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣=()A .12B .22C .2D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳4.5()(2)+-x y x y 的展开式中33x y 的系数为()A.-80B.-40C.40D.805.已知双曲线C:22221x y a b -=(a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为()A.221810x y -= B.22145x y -= C.22154x y -= D.22143x y -=26.设函数f (x )=cos(x +3π),则下列结论错误的是()A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为()A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.3π4C.π2 D.π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为()A.-24B.-3C.3D.810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为()A.63 B.33C.23D.1311.已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a =()A.12-B.13C.12D.112.在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为()A.3B.22C.5D.2二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0,20,0,-⎧⎪+-⎨⎪⎩x y x y y ≥≤≥则34=-z x y 的最小值为________.14.设等比数列{}n a 满足121+=-a a ,133-=-a a ,则4=a ________.15.设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是_________.16.a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所称角的最小值为45°;④直线AB与a所称角的最小值为60°;其中正确的是________.(填写所有正确结论的编号)三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:60分.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知sin A+3cos A=0,a=27,b=2.(1)求c;(2)设D为BC边上一点,且AD AC,求△ABD的面积.18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?19.(12分)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABD;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.3420.(12分)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的方程.21.(12分)已知函数()1ln f x x a x =--.(1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222nm ++<,求m 的最小值.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m my k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.23.[选修4—5:不等式选讲](10分)已知函数f (x )=│x +1│–│x –2│.(1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围.5参考答案1.【答案】B【解析】A 表示圆221x y +=上所有点的集合,B 表示直线y x =上所有点的集合,故A B 表示两直线与圆的交点,由图可知交点的个数为2,即A B 元素的个数为2,故选B.2.【答案】C 【解析】由题,()()()2i 1i 2i 2i 2i 11i 1i 1i 2z -+====+++-,则22112z =+=,故选C.3.【答案】A【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误,故选A.4.【答案】C【解析】由二项式定理可得,原式展开中含33x y 的项为()()()()2332233355C 2C 240x x y y x y x y ⋅-+⋅-=,则33x y 的系数为40,故选C.5.【答案】B【解析】∵双曲线的一条渐近线方程为52y x =,则52b a =①又∵椭圆221123x y +=与双曲线有公共焦点,易知3c =,则2229a b c +==②由①②解得2,5a b ==,则双曲线C 的方程为22145x y -=,故选B.6.【答案】D【解析】函数()πcos 3f x x ⎛⎫=+ ⎪⎝⎭的图象可由cos y x =向左平移π3个单位得到,如图可知,()f x 在π,π2⎛⎫⎪⎝⎭上先递减后递增,D 选项错误,故选D.7.【答案】D6【解析】程序运行过程如下表所示:SMt初始状态01001第1次循环结束10010-2第2次循环结束9013此时9091S =<首次满足条件,程序需在3t =时跳出循环,即2N =为满足条件的最小值,故选D.8.【答案】B【解析】由题可知球心在圆柱体中心,圆柱体上下底面圆半径2213122r ⎛⎫=-= ⎪⎝⎭,则圆柱体体积23ππ4V r h ==,故选B.9.【答案】A【解析】∵{}n a 为等差数列,且236,,a a a 成等比数列,设公差为d .则2326a a a =⋅,即()()()211125a d a d a d +=++又∵11a =,代入上式可得220d d +=又∵0d ≠,则2d =-∴()61656561622422S a d ⨯⨯=+=⨯+⨯-=-,故选A.10.【答案】A【解析】∵以12A A 为直径为圆与直线20bx ay ab -+=相切,∴圆心到直线距离d 等于半径,∴222ab d aa b==+又∵0,0a b >>,则上式可化简为223a b =∵222b ac =-,可得()2223a a c =-,即2223c a =∴63c e a ==,故选A 11.【答案】C7【解析】由条件,211()2(e e )x x f x x x a --+=-++,得:221(2)1211211(2)(2)2(2)(e e )4442(e e )2(e e )x x x x x x f x x x a x x x a x x a ----+----+-=---++=-+-+++=-++∴(2)()f x f x -=,即1x =为()f x 的对称轴,由题意,()f x 有唯一零点,∴()f x 的零点只能为1x =,即21111(1)121(e e )0f a --+=-⋅++=,解得12a =.12.【答案】A【解析】由题意,画出右图.设BD 与C 切于点E ,连接CE .以A 为原点,AD 为x 轴正半轴,AB 为y 轴正半轴建立直角坐标系,则C 点坐标为(2,1).∵||1CD =,||2BC =.∴22125BD =+=.∵BD 切C 于点E .∴CE ⊥BD .∴CE 是Rt BCD △中斜边BD 上的高.12||||2222||5||||55BCD BC CD S EC BD BD ⋅⋅⋅====△即C 的半径为255.∵P 在 C 上.∴P 点的轨迹方程为224(2)(1)5-+-=x y .设P 点坐标00(,)x y ,可以设出P 点坐标满足的参数方程如下:00225cos 5215sin 5x y θθ⎧=+⎪⎪⎨⎪=+⎪⎩而00(,)AP x y = ,(0,1)AB = ,(2,0)AD =.∵(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=∴0151cos 25x μθ==+,0215sin 5y λθ==+.8两式相加得:222515sin 1cos 552552()()sin()552sin()3λμθθθϕθϕ+=+++=+++=++≤(其中5sin 5ϕ=,25cos 5ϕ=)当且仅当π2π2k θϕ=+-,k ∈Z 时,λμ+取得最大值3.二、填空题:(本题共4小题,每小题5分,共20分)13.【答案】1-【解析】由题,画出可行域如图:目标函数为34z x y =-,则直线344zy x =-纵截距越大,z 值越小.由图可知:z 在()1,1A 处取最小值,故min 31411z =⨯-⨯=-.14.【答案】8-【解析】{}n a 为等比数列,设公比为q .121313a a a a +=-⎧⎨-=-⎩,即1121113a a q a a q +=-⎧⎪⎨-=-⎪⎩①②,显然1q ≠,10a ≠,②①得13q -=,即2q =-,代入①式可得11a =,()3341128a a q ∴==⨯-=-.15.【答案】1,4⎛⎫-+∞ ⎪⎝⎭【解析】()1,02 ,0+⎧=⎨>⎩ x x x f x x ≤,()112f x f x ⎛⎫+-> ⎪⎝⎭,即()112f x f x ⎛⎫->- ⎪⎝⎭9由图象变换可画出12y f x ⎛⎫=- ⎪⎝⎭与()1y f x =-的图象如下:由图可知,满足()112f x f x ⎛⎫->- ⎪⎝⎭的解为1,4⎛⎫-+∞ ⎪⎝⎭.16.【答案】②③【解析】由题意知,a b AC 、、三条直线两两相互垂直,画出图形如图.不妨设图中所示正方体边长为1,故||1AC =,2AB =,斜边AB 以直线AC 为旋转轴旋转,则A 点保持不变,B 点的运动轨迹是以C 为圆心,1为半径的圆.以C 为坐标原点,以CD 为x 轴正方向,CB为y 轴正方向,CA为z 轴正方向建立空间直角坐标系.则(1,0,0)D ,(0,0,1)A ,直线a 的方向单位向量(0,1,0)=a ,||1=a .B 点起始坐标为(0,1,0),直线b 的方向单位向量(1,0,0)=b ,||1=b .设B 点在运动过程中的坐标(cos ,sin ,0)B θθ',其中θ为B C '与CD 的夹角,[0,2π)θ∈.那么'AB 在运动过程中的向量(cos ,sin ,1)AB θθ'=-- ,||2AB '=.设AB ' 与a 所成夹角为π[0,]2α∈,则(cos ,sin ,1)(0,1,0)22cos |sin |[0,]22a AB θθαθ--⋅==∈'.故ππ[,]42α∈,所以③正确,④错误.设AB ' 与b 所成夹角为π[0,]2β∈,10cos (cos ,sin ,1)(1,0,0)2|cos |2'⋅='-⋅='=βθθθAB bb AB b AB .当AB ' 与b 夹角为60︒时,即π3α=,12sin 2cos 2cos2322πθα====.∵22cos sin 1θθ+=,∴2|cos |2θ=.∴21cos |cos |22βθ==.∵π[0,]2β∈.∴π=3β,此时AB ' 与b 夹角为60︒.∴②正确,①错误.三、解答题:(共70分.第17-20题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答)(一)必考题:共60分.17.解:(1)由sin 3cos 0A A +=得π2sin 03A ⎛⎫+= ⎪⎝⎭,即()ππ3A k k +=∈Z ,又()0,πA ∈,∴ππ3A +=,得2π3A =.由余弦定理2222cos a b c bc A =+-⋅.又∵127,2,cos 2a b A ===-代入并整理得()2125c +=,故4c =.(2)∵2,27,4AC BC AB ===,由余弦定理22227cos 27a b c C ab +-==.∵AC AD ⊥,即ACD △为直角三角形,则cos AC CD C =⋅,得7CD =.11由勾股定理223AD CD AC =-=.又2π3A =,则2πππ326DAB ∠=-=,1πsin 326ABD S AD AB =⋅⋅=△.18.解:(1)易知需求量x 可取200,300,500()21612003035P X +===⨯()3623003035P X ===⨯()257425003035P X ++===⨯.则分布列为:X200300500P 152525⑵①当200n ≤时:()642Y n n =-=,此时max 400Y =,当200n =时取到.②当200300n <≤时:()()4122002200255Y n n =⋅+⨯+-⋅-⎡⎤⎣⎦880026800555n n n -+=+=此时max 520Y =,当300n =时取到.③当300500n <≤时,()()()()12220022002300230022555Y n n n =⨯+-⋅-+⨯+-⋅-+⋅⋅⎡⎤⎡⎤⎣⎦⎣⎦320025n-=此时520Y <.④当500n ≥时,易知Y 一定小于③的情况.综上所述:当300n =时,Y 取到最大值为520.19.解:(1)取AC 中点为O ,连接BO ,DO ;ABC ∆ 为等边三角形∴BO AC⊥∴AB BC=AB BC BD BD ABD DBC =⎧⎪=⎨⎪∠=∠⎩∴∆≅∆ABD CBD .∴AD CD =,即ACD ∆为等腰直角三角形,ADC∠为直角又O 为底边AC 中点12∴DO AC⊥令AB a =,则AB AC BC BD a====易得:22OD a =,32OB a =∴222OD OB BD+=由勾股定理的逆定理可得2DOB π∠=即OD OB⊥OD AC OD OB AC OB O AC ABC OB ABC ⊥⎧⎪⊥⎪⎪=⎨⎪⊂⎪⊂⎪⎩ 平面平面OD ABC ∴⊥平面又∵OD ADC⊂平面由面面垂直的判定定理可得ADC ABC⊥平面平面(2)由题意可知--=D ACE B ACEV V 即B ,D 到平面ACE 的距离相等即E 为BD 中点以O 为原点,OA 为x 轴正方向,OB 为y 轴正方向,OD 为z 轴正方向,设AC a =,建立空间直角坐标系,则()0,0,0O ,,0,02a A ⎛⎫ ⎪⎝⎭,0,0,2a D ⎛⎫ ⎪⎝⎭,30,,02B a ⎛⎫ ⎪ ⎪⎝⎭,30,,44a E a ⎛⎫ ⎪ ⎪⎝⎭易得:3,,244a a AE a ⎛⎫=- ⎪ ⎪⎝⎭,,0,22a a AD ⎛⎫=- ⎪⎝⎭ ,,0,02a OA ⎛⎫= ⎪⎝⎭ 设平面AED 的法向量为n 1,平面AEC 的法向量为n 2,则1100⎧⋅=⎪⎨⋅=⎪⎩ AE n AD n ,解得()13,1,3=n 2200⎧⋅=⎪⎨⋅=⎪⎩ AE n OA n ,解得()20,1,3=-n 若二面角D AE C --为θ,易知θ为锐角,则12127cos 7⋅==⋅θn n n n 20.解:(1)显然,当直线斜率为0时,直线与抛物线交于一点,不符合题意.设:2l x my =+,11(,)A x y ,22(,)B x y ,联立:222y x x my ⎧=⎨=+⎩得2240y my --=,132416m ∆=+恒大于0,122y y m +=,124y y =-.1212OA OB x x y y ⋅=+uur uuu r 12(2)(2)my my =++21212(1)2()4m y y m y y =++++24(1)2(2)4m m m =-+++0=∴OA OB ⊥uur uuu r ,即O 在圆M 上.(2)若圆M 过点P ,则0AP BP ⋅=uuu r uur 1212(4)(4)(2)(2)0x x y y --+++=1212(2)(2)(2)(2)0my my y y --+++=21212(1)(22)()80m y y m y y +--++=化简得2210m m --=解得12m =-或1①当12m =-时,:240l x y +-=圆心为00(,)Q x y ,120122y y y +==-,0019224x y =-+=,半径2291||42r OQ ⎛⎫⎛⎫==+- ⎪ ⎪⎝⎭⎝⎭则圆229185:()()4216M x y -++=②当1m =时,:20l x y --=圆心为00(,)Q x y ,12012y y y +==,0023x y =+=,半径22||31r OQ ==+则圆22:(3)(1)10M x y -+-=21.解:(1)()1ln f x x a x =--,0x >则()1a x a f x x x-'=-=,且(1)0f =当0a ≤时,()0f x '>,()f x 在()0+∞,上单调增,所以01x <<时,()0f x <,不满足题意;当0a >时,当0x a <<时,()0f x '<,则()f x 在(0,)a 上单调递减;当x a >时,()0f x '>,则()f x 在(,)a +∞上单调递增.①若1a <,()f x 在(,1)a 上单调递增∴当(,1)x a ∈时()(1)0f x f <=矛盾②若1a >,()f x 在(1,)a 上单调递减∴当(1,)x a ∈时()(1)0f x f <=矛盾14③若1a =,()f x 在(0,1)上单调递减,在(1,)+∞上单调递增∴()(1)0f x f =≥满足题意综上所述1a =.(2)当1a =时()1ln 0f x x x =--≥即ln 1x x -≤则有ln(1)x x +≤当且仅当0x =时等号成立∴11ln(1)22k k +<,*k ∈N 一方面:221111111ln(1)ln(1)...ln(1)...112222222n n n ++++++<+++=-<,即2111(1)(1)...(1)e 222n +++<.另一方面:223111111135(1)(1)...(1)(1)(1)(1)222222264n +++>+++=>当3n ≥时,2111(1)(1)...(1)(2,e)222n +++∈∵*m ∈N ,2111(1)(1)...(1)222n m +++<,∴m 的最小值为3.22.解:(1)将参数方程转化为一般方程()1:2l y k x =-……①()21:2l y x k =+……②①⨯②消k 可得:224x y -=即P 的轨迹方程为224x y -=;(2)将参数方程转化为一般方程3:20l x y +-=……③联立曲线C 和3l 22204x y x y ⎧+-=⎪⎨-=⎪⎩解得32222x y ⎧=⎪⎪⎨⎪=-⎪⎩由cos sin x y ρθρθ=⎧⎨=⎩解得5ρ=即M 的极半径是5.23.解:(1)()|1||2|f x x x =+--可等价为()3,121,123,2--⎧⎪=--<<⎨⎪⎩x f x x x x ≤≥.由()1f x ≥可得:15①当1-x ≤时显然不满足题意;②当12x -<<时,211-x ≥,解得1x ≥;③当2x ≥时,()31=f x ≥恒成立.综上,()1f x ≥的解集为{}|1x x ≥.(2)不等式()2-+f x x x m ≥等价为()2-+f x x x m ≥,令()()2g x f x x x =-+,则()g x m ≥解集非空只需要()max ⎡⎤⎣⎦g x m ≥.而()2223,131,123,2⎧-+--⎪=-+--<<⎨⎪-++⎩x x x g x x x x x x x ≤≥.①当1-x ≤时,()()max 13115g x g =-=---=-⎡⎤⎣⎦;②当12x -<<时,()2max 3335312224g x g ⎛⎫⎛⎫==-+⋅-=⎡⎤ ⎪ ⎪⎣⎦⎝⎭⎝⎭;③当2x ≥时,()()2max 22231g x g ==-++=⎡⎤⎣⎦.综上,()max 54g x =⎡⎤⎣⎦,故54m ≤.。
(word完整版)2017全国三卷理科数学高考真题及答案,推荐文档

2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B .2 C .2 D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.(x +y )(2x -y )5的展开式中x 3y 3的系数为 A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .63B .33C .23D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP u u u r=λAB u u u r +μAD u u u r,则λ+μ的最大值为A .3B .CD .2二、填空题:本题共4小题,每小题5分,共20分。
2016年-2017年普通高等学校招生全国统一考试数学理试题(全国卷3,正式版解析)
高考衣食住用行衣:高考前这段时间,提醒同学们出门一定要看天气,否则淋雨感冒,就会影响考场发挥。
穿着自己习惯的衣服,可以让人在紧张时产生亲切感和安全感,并能有效防止不良情绪产生。
食:清淡的饮食最适合考试,切忌吃太油腻或者刺激性强的食物。
如果可能的话,每天吃一两个水果,补充维生素。
另外,进考场前一定要少喝水!住:考前休息很重要。
好好休息并不意味着很早就要上床睡觉,根据以往考生的经验,太早上床反而容易失眠。
考前按照你平时习惯的时间上床休息就可以了,但最迟不要超过十点半。
用:出门考试之前,一定要检查文具包。
看看答题的工具是否准备齐全,应该带的证件是否都在,不要到了考场才想起来有什么工具没带,或者什么工具用着不顺手。
行:看考场的时候同学们要多留心,要仔细了解自己住的地方到考场可以坐哪些路线的公交车?有几种方式可以到达?大概要花多长时间?去考场的路上有没有修路堵车的情况?考试当天,应该保证至少提前20分钟到达考场。
绝密★启封并使用完毕前试题类型:新课标Ⅲ2016年普通高等学校招生全国统一考试数学理试题(全国卷3)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3.全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的。
(1)设集合S ={}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则S I T =(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) 【答案】D考点:1、不等式的解法;2、集合的交集运算. (2)若12z i =+,则41izz =- (A)1 (B) -1 (C) i (D)-i 【答案】C 【解析】 试题分析:44(12)(12)11i ii i i zz ==+---,故选C . 考点:1、复数的运算;2、共轭复数.(3)已知向量13(,)22BA =uu v ,31(,),22BC =uu u v 则∠ABC= (A)300(B) 450(C) 600(D)1200【答案】A 【解析】试题分析:由题意,得133132222cos 112||||BA BC ABC BA BC ⋅∠===⨯u u u r u u u r u uu r u u u r ,所以30ABC ∠=︒,故选A . 考点:向量夹角公式.(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
2017年全国卷3理科数学理科综合试题及答案解析
1绝密★启用前2017年普通高等学校招生全国统一考试全国卷3理科数学注意事项:1 •答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2•回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3 •考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共 12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有 一项是符合题目要求的。
A . 3B . 2C . 12 .设复数z 满足(1+i)z=2i ,则I z I =3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了 2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.学#科&网根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在 7,8月份D .各年1月至6月的月接待游客量相对 7月至12月,波动性更小,变化比较平稳2 2x y1231.已知集合A= (x, y)l x 2B=(x, y) yx,则 A lB 中元素的个数为4. (x + y )(2 x -y )5的展开式中x3 y 3的系数为-80-40C . 4080已知双曲线2x ~2 C : a 2 y_b 21(a > 0,b > 0)的一条渐近线方程为 5x2,且与椭圆有公共焦点,则C 的方程为2x2L 12x2y1 2x2I 1 2x2y1 A . 8 10B . 45C . 54D . 436. 设函数f(x)=cos(x+ 3 ),则下列结论错误的是8A . f(x)的一个周期为-2 nB . y=f(x)的图像关于直线 x= 3对称D . f(x)在(2 ,兀单调递减S 的值小于91,则输入的正整数 N 的最小值为A . 5B . 4C . 3D . 2&已知圆柱的高为 1,它的两个底面的圆周在直径为 2的同一个球的球面上,则该圆柱的体积为3n nnA .nB . 4C . 2D . 49 . 等差数列 K 的首项为1,公差不为0.若 a2, a3, a6成等比数列,则*n 前6项的和为A . -24B . -3C . 3D . 82 2与告110 .已知椭圆C : a 直径的圆与直线bxb ay,(a>b>0)的左、右顶点分别为A1 , A2,且以线段A1A2为2ab相切,则C 的离心率为辽1A . 3 B.3C . 3D . 3 11. 已知函数f(x)2x 2x .x 1X 1 \a(ee)有唯一零点,则a=C . f(x+ n)—个零点为x= 6 7.执行下面的程序框图,为使输出111A .2B . 3C . 2D . 1uuu12.在矩形 ABCD 中,AB=1 , AD=2 , 动点P 在以点C 为圆心且与 BD 相切的圆上.若APuuuuuur-AB +AD , 则 +的最大值为A . 3B . 2 2C .5D . 2二、填空题:本题共 4小题,每小题 5分,共20分。
2017年新课标Ⅲ理数高考真题(含解析)
绝密★启用前2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B .22C .2D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.学#科&网根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.(x +y )(2x -y )5的展开式中x 3y 3的系数为A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .63B .33C .23D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λ AB +μAD ,则λ+μ的最大值为 A .3B .22C .5D .2二、填空题:本题共4小题,每小题5分,共20分。
2017新课标全国卷3高考理科数学试题(卷)与答案解析
绝密★启用前2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣=A .12B .2C D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳4.(x +y )(2x -y )5的展开式中x 3y 3的系数为 A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为2y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为ABCD .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λAB +μAD ,则λ+μ的最大值为A .3B .CD .2二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
2017年普通高等学校招生全国统一考试
课标II理科数学
【试卷点评】
【命题特点】
2017年高考全国新课标II数学卷,试卷结构在保持稳定的前提下,进行了微调,一是
取消试卷中的第Ⅰ卷与第II卷,把解答题分为必考题与选考题两部分,二是根据中学教学实
际把选考题中的三选一调整为二选一.试卷坚持对基础知识、基本方法与基本技能的考查,
注重数学在生活中的应用.同时在保持稳定的基础上,进行适度的改革和创新,与2016年
相比难度稳中有降.具体来说还有以下几个特点:
1.知识点分布保持稳定
小知识点集合、复数、程序框图、线性规划、向量问题、三视图保持一道小题的占比,
大知识点三角数列三小一大、概率统计一大一小、立体几何两小一大、圆锥曲线两小一
大、函数导数三小一大(或两小一大).
2.注重对数学文化与数学应用的考查
教育部2017年新修订的《考试大纲(数学)》中增加了数学文化的考查要求.2017高考
数学全国卷II理科第3题以《算法统宗》中的数学问题为背景进行考查,理科19题、文
科18题以养殖水产为题材,贴近生活.
3.注重基础,体现核心素养
2017年高考数学试卷整体上保持一定比例的基础题,试卷注重通性通法在解题中的运用,
另外抽象、推理和建模是数学的基本思想,也是数学研究的重要方法,试卷对此都有涉
及.
【命题趋势】
1.函数知识:函数性质的综合应用、以导数知识为背景的函数问题是高考命题热点,函数
性质重点是奇偶性、单调性及图象的应用,导数重点考查其在研究函数中的应用,注重
分类讨论及化归思想的应用.
2.立体几何知识:立体几何一般有两道小题一道大题,小题中三视图是必考问题,常与几
何体的表面积与体积结合在一起考查,解答题一般分2步进行考查.
3.解析几何知识:解析几何试题一般有3道,圆、椭圆、双曲线、抛物线一般都会涉及,
双曲线一般作为客观题进行考查,多为容易题,解答题一般以椭圆与抛物线为载体进行
考查,运算量较大,不过近几年高考适当控制了运算量,难度有所降低.
4.三角函数与数列:三角函数与数列解答题一般轮流出现,若解答题为数列题,一般比较
容易,重点考查基本量求通项及几种求和方法,若解答题为三角函数,一般是解三角形
问题,此时客观题中一般会有一道与三角函数性质有关的题目,同时客观题中会有两道
数列题,一易一难,数列客观题一般具有小巧活的特点.
【试卷解析】
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一
项是符合题目要求的.
1.3i1i
A.12i B.12i C.2i D.2i
【答案】D
2.设集合1,2,4A,240Bxxxm.若1AB,则B
A.1,3 B.1,0 C.1,3
D.1,5
【答案】C
【解析】
试题分析:由1AB得1B,即1x是方程240xxm的根,所以
140,3mm
,1,3B,故选C.
【考点】 交集运算、元素与集合的关系
【名师点睛】集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集
合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.两个防范:①不要
忽视元素的互异性;②保证运算的准确性.
3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,
共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两
层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯
A.1盏 B.3盏 C.5盏 D.9盏
【答案】B
4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由
一平面将一圆柱截去一部分后所得,则该几何体的体积为
A.90
B.63
C.42
D.36
【答案】B
【解析】
试题分析:由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的
圆柱,其体积213436V,上半部分是一个底面半径为3,高为6的圆柱的一
半,其体积221(36)272V,故该组合体的体积
12
362763VVV
.故选B.
【考点】 三视图、组合体的体积
【名师点睛】在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根
据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图
中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图
进行综合考虑.求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图
的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.
5.设x,y满足约束条件2330233030xyxyy,则2zxy的最小值是
A.15 B.9 C.1 D.9
【答案】A
6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安
排方式共有
A.12种 B.18种 C.24种 D.36种
【答案】D
【解析】
试题分析:由题意可得,一人完成两项工作,其余两人每人完成一项工作,据此可得,
只要把工作分成三份:有24C种方法,然后进行全排列,由乘法原理,不同的安排方式
共有2343CA36种. 故选D.
【考点】 排列与组合、分步乘法计数原理
【名师点睛】(1)解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;
②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即
先满足特殊元素(或位置),再考虑其他元素(或位置).
(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均
匀分组;②均匀分组;③部分均匀分组.注意各种分组类型中,不同分组方法的求解.
7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2
位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看
后甲对大家说:我还是不知道我的成绩.根据以上信息,则
A.乙可以知道四人的成绩 B.丁可以知道四人的成绩
C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩
【答案】D
8.执行右面的程序框图,如果输入的1a,则输出的S
A.2 B.3 C.4 D.5