方差分析(单因素,多因素,协方差)课堂演示课件

合集下载

实验二方差分析过程PPT课件

实验二方差分析过程PPT课件
完全相等) B因素的主效应(说明B无影响) H0B:μ*j=μ,即βj=0,j=1,…,s(或者因素B的主效应是否
显著异于零) H1B:βj不全等于零 (或者μ*1、μ*2 、…… 、μ*s 之间不
完全相等) A、B因素的互交作用(说明A与B无互交效应) H0C:Cij=μij-μ-αi-βj=0(或者因素A和因素B的互交
总和
SST
n-1
SPSS判断:当Sig.<α时,拒绝零假设,认为因素A影响显著; Sig. >α , 接受零假设,认为因素A影响不显著。
2015/11/5
15
(三)应用举例 不同的施肥量是否对亩产量造成了显著影响 观测变量的数据安排 控制变量可以定义成定类或定序变量 观察方差分析表 不同推销方式是否对推销额有显著影响 观察方差分析表 (四)进一步的分析 前提的检验:各水平下方差齐性检验 实现方法: option中的statistics:Homogeneity-of-variance,检验各水平下
平下对应变量的附加效果,并假设所有的αi之 和为零 εij~为第i组实验第j个处理单位的个别效应,也 称个别差异或随机效应 ,εij~N(0,σ2),表 示随机误差项,且所有εij间相互独立。
2015/11/5
7
单因素方差分析的假设检验
H0:μ1=μ2=,…,=μr=μ,即αi=0,i=1,…,r H1: μ1、μ2 、…… 、μr 之间不完全相等 (或
S-N-K:即Student Newman Keuls法,是运用最广泛的一 种两两比较法。他采用Student Range分布进行所有各组均 值间的配对比较。该方法保证在H0真正成立时总的α水准 等于实际设定值即控制了第一类错误。
Bonfeeroni:由LDS法修正而来,通过设置每个检验的水准 来控制总的α水准,该方法的敏感度介于LDS法和Scheffe 法之间。

单因素方差分析课件

单因素方差分析课件

将原始数据减去1000,列表给出计算过程 表8.1.2 例2的计算表
水平
数据(原始数据-1000)
m
Ti
2
Ti
yi2j
j 1
A1 73 9 60 1 2 12 9 28 194 37636 10024
A2 107 92 -10 109 90 74 122 1 585 342225 60355
A3 93 29 80 21 22 32 29 48 354 125316 20984 1133 505177 91363
单因素试验的方差分析的数学模型
首先,我们作如下假设:
1. Xi ~ N i , 2 , i 1, 2,...a 具有方差齐性。
2. X1, X 2 ,...X a 相互独立,从而各子样也相互独立。
由于同一水平下重复试验的个体差异是随机误差, 所以设:
Xij i ij , j 1, 2,..., r, i 1, 2,..., a. 线性统计模型
j 1
xi
41 33 38 37 31 39 37 35 39 34 40 35 35 38 34
120 105 108 114 99
40 35 36 38 33
53
xij 546
i1 j 1
53
xij 15 36.4
i1 j 1
纵向个体间的差异称为随机误差(组内差异),由试验造 成;横向个体间的差异称为系统误差(组间差异),由因素的 不同水平造成。
集装箱类 型
最大抗压强度
平均抗压强 度
1
655.5 788.3 734.3 721.6 679.4 699.4 713.08
2
789.2 772.5 786.9 686.1 732.1 774.8 756.93

第九章 方差分析ppt课件

第九章 方差分析ppt课件
SSW/dW f MW S 14.71/5 1 9410 .4111
(3)计算F值。
精选PPT课件
18
(4) 确定显著性水平和F临界值 取α=0.05,查F分布表得 F0.05(3,14) 3.34。由于计
算的F=3.52> F0.05(3,14) 3.34,P<0.05,所以拒绝原假
设,接受备择假设,认为各组平均数中至少有一对不
精选PPT课件
25
计算自由度: dBfk 14 13;
dW fk n k4 5 4 1;6
df T df B df W =16+3=19
求均方:
MS B
SS B df B
370122.3 3

MSW
SSW dfW
35622.25 16
(3)计算F值:
FMBS12.325.50 MW S 22.25
1、提出假设 2、计算平方和与自由度 3、计算F值 4、确定显著性水平并查F临界值表 5、列方差分析总表
精选PPT课件
3
一、方差分析的逻辑思想
1、方差分析是一种综合的检验方法
方差分析是对引起方差变化的各种因 素进行统计分析,检验引起各样本差异 的主要原因(或因素),并与理论值比 较,以判断其显著性。
首先将总体变异分解成样本组间变异 和由抽样误差等其它原因产生的组内变 异,然后分析变异各组成部分的关系。
如果样本组间变异比抽样误差等其它 原因产生的变异显著地大,则认为样本 组间有本质性的差异,否则,认为样本 组间无本质差异。
精选PPT课件
6
在方差分析中,观测值之间的差异情 况用离差平方和表示,符号为SS。方差分析首先 是把总体平方和分解为组间平方和和组内平方和, 即:

单因素方差分析 PPT课件

单因素方差分析 PPT课件

解:
ssA
5 i1
1 m
10 l1
2 xil
1 510
5 i1
10 l1
2 xil
22.865
fA 51 4
ssE
5 i1
10 l1
x
2 il
1 510
5 i1
10 xil 2 l1
53.055
fE 510 5 45
s 2A
ssA fA
22.865 4
5.71
1 m
m L1
xiL
2
fE km k
m
有km个数据,但存在 k个约束条件,即有 k个 xiL xi 0 L1
3.总离差平方和ssT、自由度fT
• 它反映了全部数据的波动程度。
k m
2
ssT
xiL x
i1 L1
k m
2 km
2
xiL xi
xi x
i1 L1
试验次数
1
2
34
水平
A1
38
36
35 31
A2
20
24
26 30
A3
21
22
31 34
样本 X1 X2
试验数据 X11,X12,..X1L…X1m X21,X22,…X2L,…X2m
.
Xi
Xi1,Xi2,…XiL…Xim
.
.Xk
Xk1,Xk2,…XkL,…Xkm
样本平均值
x1
x2
xi
xk
m
xiL
L1
因素A第i个水平平均值为
xi
1 m
m
xiL
L1
1.因素A离差平方和 ssA、自由度fA

方差分析 PPT课件

方差分析 PPT课件

【案例2】如何确定最优生产工艺

影响某化工厂化工产品得率的主要因素是反应温 度和催化剂种类。 为研究产品的最优生产工艺,在其他条件不变的 情况下,选择了四种温度和三种催化剂,在不同 温度和催化剂的组合下各做了一次试验,测得结 果如下: 化工产品得率试验(得率:%)
催化剂 温度 A1(60 A2(70 A3(80 A4(90

四、问题的一般提法
零售业
旅游业
航空公司
家电制造
1
2
3
4
5
行业
不同行业被投诉次数的散点图
方差分析的基本思想和原理

仅从散点图上观察还不能提供充分的证据证明不同
行业被投诉的次数之间有显著差异
这种差异也可能是由于抽样的随机性所造成的

需要有更准确的方法来检验这种差异是否显著,也 就是进行方差分析 所以叫方差分析,因为虽然我们感兴趣的是均值, 但在判断均值之间是否有差异时则需要借助于方
1. 因素或因子(factor)
所要检验的对象 要分析行业对投诉次数是否有影响,行业是要检验的因
素或因子
2. 水平或处理(treatment)
因子的不同表现 零售业、旅游业、航空公司、家电制造业是因子的水平
3. 观察值
在每个因素水平下得到的样本数据 每个行业被投诉的次数就是观察值
4. 试验
这里只涉及一个因素,因此称为单因素四水平的试验
5. 总体
因素的每一个水平可以看作是一个总体
比如零售业、旅游业、航空公司、家电制造业可以看
作是四个总体
6. 样本数据
被投诉次数可以看作是从这四个总体中抽取的样本数

6.1 方差分析引论

方差分析PPT课件

方差分析PPT课件

方差分析的用途
1. 用于多个样本平均数的比较 2. 分析多个因素间的交互作用 3. 回归方程的假设检验 4. 方差的同质性检验
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
第一节 方差分析的基本问题
▪ 一、方差分析问题的提出 问题:为了探索简便易行的发展大学生心 血管系统机能水平的方法,在某年级各项 身体发育水平基本相同,同年龄女生中抽 取36人随机分为三组,用三种不同的方法 进行训练,三个月后,测得哈佛台阶指数 如表 1 ,试分析三种不同的训练方法对女 大学生心血管系统的影响有无显著性差异。
结果的好坏和处理效应的高低,实际中具体测 定的性状或观测的项目称为试验指标。常用的 试验指标例如有:身高、体重、日增重、酶活 性、DNA含量等等。
影响因素( experimental factor): 观测中所
研究的影响观测指标的定性变量称之为因素。 当考察的因素只有一个时,称为单因素试验; 若同时研究两个或两个以上因素的影响时,则 称为两因素或多因素试验。
N (3, 2)
A3
61.31 60.00
┆ 67.26 69.05
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
分析
根据研究目的,这里有三个正态总体 N (1, 2),N (2, 2 ), N (3 , a2 ) 。三组数据分别为来自三个总体的样本,问题是 推断 1 ,2 和 3 之间有无显著差异。 由 x1, x2, x3不相等,不能直接得出1, 2, 3不尽相等的结论, 原因是:造成 x1, x2, x3不相等可能有两个方面因素:一是 1, 2, 3 不等,二是1 2 3,但由于抽样误差,造成 x1, x2, x3 之间有差异。现在的任务是通过样本推断1, 2, 3之间有无 显著性差异。

第六 方差分析PPT课件


第10页/共50页
计算总均值
x xij n
n nj
x 26.5 31.2 32.8 20
573.9 28.695 20
第11页/共50页
(二)计算离差平方和
总离差平方和:
SST xij x 2 n 1s 2
组内误差项离差平方和:
SSE
xij x j
第38页/共50页
它们的计算公式分别为:
SST xij x 2 n 1s2
SSA
x• j x 2
k
x• j
x
2
k
r
1
s2 x•
j
SSB
xi• x 2
r
xi•
x
2
r
k
1
s2 xi •
SSE SST SSA SSB
第39页/共50页
它们的自由度分别为: SST: rk-1=n-1 SSA: r-1 SSB: k-1 SSE: (r-1)(k-1)=n-r-k+1
2
20 1.25
组内 192 12
16
总和 232 14
第29页/共50页
由 0.05知F0.052,12 3.89
而1.25<3.89 所以:接受原假设,即三种培训方法对 工人的日产量没有影响.
第30页/共50页
二、单因素方差分析的其它问题 1、进行方差分析的数据结构
观察值
因素(A)j
i
水平1 水平2
2
nj
1
s
2 j
j i
j
组间水平项离差平方和:
SSA x j x 2 n j x j x 2
第12页/共50页
SSA=SST-SSE

方差分析ppt课件

推断控制变量是否给观测变量带来了显 著影响。
在观测变量总离差平方和中,如果组
间离差平方和所占比例较大,则说明观 测变量的变动主要是由控制变量引起的, 可以由控制变量来解释,控制变量给观 测变量带来了显著影响;反之,如果组 间离差平方和所占比例小,则说明观测 变量的变动不是主要由控制变量引起的, 不可以主要由控制变量来解释,控制变 量的不同水平没有给观测变量带来显著 影响,观测变量值的变动是由随机变量 因素引起的。
不同饲料对牲畜体重增长的效果等, 都可以使用方差分析方法去解决。
方差或叫均方,是标准差的平方,是
表示变异的量。在一个多处理试验中, 可以得到一系列不同的观测值。造成观 测值不同的原因是多方面的,有的是处 理不同引起的,叫处理效应或条件变异, 有的是试验过程中偶然性因素的干扰和 测量误差所致,称为实验误差。
dfT nk 1 20 1 19
dft k 1 5 1 4
dfe 5(4 1) 15
st 2
SSt dft
103.94 3
34.65
se2
SSe dfe
109.36 12
9.11
进行F检验:
F st2 34.65 50.15 se2 9.11
F0.05(4,15) 3.06, F0.01(4,15) 4.89, F
x1 x2
ts x1 x2
x1 x2
LSD0.05 t s 0.05 x1x2
LSD0.01
t0.01
s x1 x2

x1
x 2 >t0.05
s x1
x2

x1
ห้องสมุดไป่ตู้
x2

t0.01
s x1 x2

第5章方差分析PPT学习教案

2_new1 2_new2 2_new3 2_new4 2_new5 2_new6 2_new7 2_new8 2_new9
三组不同性别学生的数学成绩
数学 99.00 88.00 99.00 89.00 94.00 90.00 79.00 56.00 89.00 99.00 70.00 0 56.00 56.00
以上F统计量服从F分布。SPSS将自动计 算F值,并根据F分布表给出相应的相伴概率 值。 如果F控制变量的相伴概率小于或等于显著性 水平,则控制变量的不同水平对观察变量产 生显著的影响;如果F协变量的相伴概率小于 或等于显著性水平,则协变量的不同水平对 观察变量产生显著的影响。
第57页/共65页
研究问题
第20页/共65页
图5-4 “One-Way ANOVA:Post Hoc Multiple Comparisons”对话框
第21页/共65页
图5-5 “One-Way ANOVA:Contrasts”对话框
第22页/共65页
(1)首先是单因素方差分析的前提检验 结果,也就是Homogeneity of variance test
第23页/共65页
(2)输出的结果文件中第2个表格如下所示 。
第24页/共65页
(3)输出的结果文件中第3个表格如下所示 。
第25页/共65页
(4)输出的结果文件中第4个表格如下所示 。
第26页/共65页
(5)输出结果的最后部分是各组观察变 量均值的折线图,如图5-6所示。
第27页/共65页
第62页/共65页
小结
单因素方差分析所解决的是一个因素下 的多个不同水平之间的相关问题;多因素方 差分析的控制变量在两个或两个以上,其主 要用于分析多个控制变量的作用、多个控制 变量的交互作用以及其他随机变量是否对结 果产生了显著影响;协方差分析将那些很难 控制的因素作为协变量,在排除协变量影响 的条件下,分析控制变量对观察变量的影响 ,从而更准确地对控制因素进行评价。

方差分析及回归分析ppt60页课件

单因素试验的方差分析
设因素有S个水平,在水平Aj (j=1,2,…,s)下,进行nj (nj≥2)次独立试验,结果如下:
水平 观察结果
A1
A2

As
X11 X21 …
X11 X21 …
… … …
X11 X21 …
样本总和 样本均值 总体均值
T.1 X.1 μ 1
T.2 X.2 μ 2
… … …
160
180
60
80
100
40
设Y关于x的回归函数为μ(x)。利用样本来估计μ(x)的问题称为求Y关于x的回归问题。 若μ(x)是线性函数μ(x)=a+bx,此时的估计问题称为求一元线性回归问题。 一元线性回归模型: 设Y~N(a+bx, σ2 )其中a,b, σ2是未知参数,记 ε = Y-(a+bx),则 Y= a+bx + ε, ε ~N(0, σ2 ) (1) 称上式为一元线性回归模型。 称a+bx为x的线性函数,而ε ~N(0, σ2 )是随机误差。
SE称为误差平方和, SA表示Aj水平下的样本均值与数据总平均的差异,叫做效应平方和,他是由水平Aj的效应的差异以及随机误差引起的。
(1,8)
则得 ST=SE+SA ,
(1,9)
(1,10)
(三) SE,SA的统计特性 1、SE的统计特性
由于 是总体 的nj-1倍, 所以 由于独立,(1,11)中各式独立,根据 分布的可加性,得
(1,14)
(1,15)
可以证明SE,SA的是相互独立的,且H0当为真时 (四)假设检验问题的拒绝域 由(1,15)式,当H0为真时 所以SA /(s-1)是σ2的无偏估计,而当当H1为真时, 这时 而由于
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档