第三节 全等三角形(玩转中考真题)
全等三角形中考真题汇编[解析版]
![全等三角形中考真题汇编[解析版]](https://img.taocdn.com/s3/m/2902cef1ccbff121dc36837c.png)
全等三角形中考真题汇编[解析版]一S八年级数学轴对称三角形填空题(难)1.如图所示,“ABC为等边三角形,P是4ABC内任一点,PDW AB9 PE//BC.PF//AC,若厶ABC的周长为12cm ,则PD+PE+PF= C航.【答案】4【解析】【分析】先说明四边形HBDP是平行四边形,AAHE和AAHE是等边三角形,然后得到一系列长度相等的线段,最后求替换求和即可.【详解】解:∙.∙PD∣∣4B, PE 〃BC・•.四边形HBDP是平行四边形APD=HB•・• MBC为等边三角形,周长为12CmΛZ B=Z A二60°,AB二4•・・ PE//BCΛZAHE=Z B=60oΛZAHE=Z A=60o.∙. ∆AHE是等边三角形AHE=AH•・・ ZHFP=Z A=60o••・ZHFP=ZAHE=60°.∙∙ ΔAHE是等边三角形,AFP=PHΛPD+PE+PF=BH+(HP+PE)=BH+HE=BH+AH=AB=4cm故答案为4cm・【点睛】本题考查了平行四边形的判定和性质以及等边三角形的性质,掌握等边三角形的性质是解答本题的关键.2.如图,点P是AoB内任意一点,OP = 5cm,点P与点C关于射线QA对称,点P与点D关于射线OB对称,连接CD交OA于点E,交OB于点F ,当的周长是【答案】30【解析】【分析】根据轴对称得出OA为PC的垂直平分线,OB是PD的垂直平分线,根据线段垂宜平分线性质得出ZCOA ZAOP丄ZCOP f ZPoB /DOB丄ZPOD、PE=CE, OP=OC=5cm t2 2PF=FD, OP=OD=5cm,求岀ZkCOD是等边三角形,即可得岀答案.【详解】解:如图示:连接0C, 0D,J点P与点C关于射线OA对称,点P与点D关于射线OB对称•.∙.0A为PC的垂直平分线,OB是PD的垂直平分线,VOP=5cm,:∙ ZCOA = ZAOP = LZCoP , ZPoB = ZDOB = LZPOD , PE=CEt OP=OC=5cm, PF=FD, 2 2 OP=OD=5cm,V∆PEF的周长是5cm,.∙∙ PE+EF+PF=CE+EF+FD=CD=5cm,CD=OD=OD=5cm»Λ∆OCD是等边三角形,ΛZ∞D=60∖:• ZAoB = ΛAOP + ZBoP =丄ACOP + 丄ADOP= IZCoD = 30° ,2 2 2故答案为:30.【点睛】本题考查了线段垂直平分线性质,轴对称性质和等边三角形的性质和判左,能求出ACOD 是等边三角形是解此题的关键.3.如图,点P是ZAOB内任意一点,0P=5cm ,点M和点N分別是射线OA和射线OB上的动点,PN + PM+MN的最小值是5cm,则ZAOB的度数是___________________________________ .【答案】30°【解析】试题解析:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD X PM X PN S MN,如图所示:•••点P关于OA的对称点为D,关于OB的对称点为C ,ΛPM=DM r OP=OD , ZDOA=ZPOA ;T点P关于OB的对称点为C ,APN=CN , OP=OC r ZCOB=ZPOB ,AOC=OP=OD , ZAOB=- ZcOD f2VPN+PM+MN的最小值是5cm zΛPM+PN+MN=5 ,ΛDM+CN+MN=5 ,即CD=S=OP jAOC=OD=CD r即AOCD是等边三角形,∙∙∙ ZCOD=60o Z∙∙∙ZAOB=30° ・4.如图,在厶ABC 中,AB>AC,按以下步骤作图:分别以点〃和点C 为圆心,大于BC-半长为半径作画弧,两弧相交于点M 和点N ,过点M 、N 作直线交AB 于点D,连接CD,若AB = 10, AC = 6,则的周长为 ________________________________________________________ •【答案】16【解析】【分析】利用基本作图可以判定MN 垂直平分BC,则DC=DB,然后利用等线段代换得到MCD 的 周长=AB+AC,再把AB = 10, AC = 6代入计算即可.【详解】解:由作法得MN 垂直平分BC,则DC=DB,C^CD =CD+ AC + AD = DB + AD + AC = AB + AC = ∖O + 6 = 16故答案为:16.【点睛】本题考查了基本作图和线段垂直平分线的性质,熟练掌握基本作图(作一条线段等于已知 线段:作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线:过一点作 已知直线的垂线)是本题的关键. 5.如图,AB = A l B , A l Bl = A i A 2, A 2B 2 = A 2A 3, A 3B 3=A 3A 4t ...» 当n≥2tZA = 70。
初中数学《全等三角形》中考专题复习

初中数学《全等三角形》中考专题复习1.理解全等三角形及其对应边、对应角的概念;能准确辨认全等三角形的对应元素.2.掌握全等三角形的性质;会用全等三角形的性质进行简单的推理和计算,解决某些实际问题.【知识点1】全等形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.知识点透视:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.【知识点2】全等三角形能够完全重合的两个三角形叫全等三角形.【知识点3】对应顶点,对应边,对应角1. 对应顶点,对应边,对应角定义两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.知识点透视:在写两个三角形全等时,通常把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角.如下图,△ABC与△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C 和∠F是对应角.2. 找对应边、对应角的方法(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边是对应边;(4)有公共角的,公共角是对应角;(5)有对顶角的,对顶角一定是对应角;(6)两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角),等等. 【知识点4】、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等.知识点透视:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其它全等图形的重要工具.例题1、下列每组中的两个图形,是全等图形的为()A. B.C.D.【答案】A【解析】B,C,D选项中形状相同,但大小不等.【总结归纳】是不是全等形,既要看形状是否相同,还要看大小是否相等.举一反三:【变式】如图,在5个条形方格图中,图中由实线围成的图形与①全等的有______________.【答案】②、④;提示:找与①形状、大小相同的图形.例题2、请观察下图中的6组图案,其中是全等形的是__________.【答案】(1)(4)(5)(6);【解析】(1)(5)是由其中一个图形旋转一定角度得到另一个图形的,(4)是将其中一个图形翻折后得到另一个图形的,(6)是将其中一个图形旋转180°再平移得到的,(2)(3)形状相同,但大小不等.【总结归纳】是不是全等形,既要看形状是否相同,还要看大小是否相等.举一反三:【变式1】全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC和△A1B1C1是全等(合同)三角形,点A与点A1对应,点B与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,若运动方向相同,则称它们是真正合同三角形(如图1),若运动方向相反,则称它们是镜面合同三角形(如图2),两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°,下列各组合同三角形中,是镜面合同三角形的是( )【答案】B;提示:抓住关键语句,两个镜面合同三角形要重合,则必须将其中一个翻转180°,B答案中的两个三角形经过翻转180°就可以重合,故选B;其它三个选项都需要通过平移或旋转使它们重合.例题1、如图,△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,写出其他对应边和对应角.【答案与解析】对应边:AN与AM,BN与CM对应角:∠BAN与∠CAM,∠ANB与∠AMC【总结归纳】全等三角形对应角所对的边是对应边;全等三角形对应边所对的角是对应角.举一反三:【变式】如图,△ABD≌△ACE,AB=AC,写出图中的对应边和对应角.【答案】AB和AC是对应边,AD和AE、BD和CE是对应边,∠A和∠A是对应角,∠B和∠C,∠ADB和∠AEC是对应角.例题2、如图,△ABD≌△CDB,若AB∥CD,则AB的对应边是()A.DB B. BC C. CD D. AD【答案】C【解析】因为AB∥CD,所以∠CDB=∠ABD,这两个角为对应角,对应角所对的边为对应边,所以,BC和DA为对应边,所以AB的对应边为CD.【总结归纳】公共边是对应边,对应角所对的边是对应边.例题1、已知:如图所示,Rt△EBC中,∠EBC=90°,∠E=35°.以B为中心,将Rt△EBC绕点B逆时针旋转90°得到△ABD,求∠ADB的度数.解:∵Rt△EBC中,∠EBC=90°,∠E=35°,∴∠ECB=________°.∵将Rt△EBC绕点B逆时针旋转90°得到△ABD,∴△________≌△_________.∴∠ADB=∠________=________°.【思路点拨】由旋转的定义,△ABD ≌△EBC ,∠ADB 与∠ECB 是对应角,通过计算得出结论.【答案】55;ABD ,EBC ;ECB ,55【解析】旋转得到的图形是全等形,全等三角形对应边相等,对应角相等.【总结归纳】根据全等三角形的性质来解题.例题2、如图,把△ABC 绕C 点顺时针旋转35°,得到△A B C '',A B ''交AC 于点D ,则AB D '∠= °.【思路】由旋转的定义,B C BC '=,A B C=ABC ''∠∠=∠BB C ',由平角的定义及三角形的内角和可知AB D '∠=旋转角度.【答案】35°;【解析】旋转得到的三角形和原三角形全等,所以B C BC '=,A B C=ABC ''∠∠,所以, AB D ='∠180°-∠BB C '-∠A B C ''=180°-(∠ABC +∠BB C ')=∠BCB '=35°.【总结归纳】旋转得到的三角形与原三角形全等,并且对应边的夹角等于旋转角度.这道题要注意隐含条件B C BC '=,这是一对对应边. 举一反三:【变式】如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B '位置,A 点落在A '位置,若AC A B ''⊥,则BAC ∠的度数是____________.【答案】70°;提示:BAC ∠=∠B A C ''=90°-20°=70°.例题3、如图,将长方形ABCD 沿AE 折叠,使D 点落在BC 边上的F点处,如果∠BAF =60°,那么∠DAE 等于( ).A.60°B.45°C.30°D.15°【思路】△AFE 是由△ADE 折叠形成的,由全等三角形的性质,∠FAE =∠DAE ,再由∠BAD =90°,∠BAF =60°可以计算出结果.【答案】D ;【解析】因为△AFE 是由△ADE 折叠形成的,所以△AFE ≌△ADE ,所以∠FAE =∠DAE ,又因为∠BAF =60°,所以∠FAE =∠DAE︒-︒=15°.=90602【总结归纳】折叠所形成的三角形与原三角形是全等的关系,抓住全等三角形对应角相等来解题.举一反三:【变式】如图,在长方形ABCD中,将△BCD沿其对角线BD翻折得到△BED,若∠1=35°,则∠2=________.【答案】35°;提示:将△BCD沿其对角线BD翻折得到△BED,所以∠2=∠CBD,又因为AD∥BC,所以∠1=∠CBD,所以∠2=35°.例题4、如图,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,∠α的度数是_________.【思路】(1)由∠1,∠2,∠3之间的比例关系及利用三角形内角和可求出∠1,∠2,∠3的度数;(2)由全等三角形的性质求∠EBC,∠BCD的度数;(3)运用外角求∠α的度数.【答案】∠α=80°【解析】∵∠1∶∠2∶∠3=28∶5∶3,设∠1=28x,∠2=5x,∠3=3x,∴28x+5x+3x=36x=180°,x=5°即∠1=140°,∠2=25°,∠3=15°∵△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的,∴△ABE≌△ADC≌△ABC∴∠2=∠ABE,∠3=∠ACD∴∠α=∠EBC+∠BCD=2∠2+2∠3=50°+30°=80°【总结归纳】此题涉及到了三角形内角和,外角和定理,并且要运用全等三角形对应角相等的性质来解决问题.见“比例”设未知数x是比较常用的解题思路.举一反三:【变式】如图,在△ABC中,∠A:∠ABC:∠BCA =3:5:10,又△MNC ≌△ABC,则∠BCM:∠BCN等于()A.1:2 B.1:3 C.2:3 D.1:4【答案】D;提示:设∠A=3x,∠ABC=5x,∠BCA=10x,则3x+5x+10x=18x=180°,x=10°. 又因为△MNC≌△ABC,所以∠N=∠B=50°,CN=CB,所以∠N=∠CBN=50°,∠ACB=∠MCN=100°,∠BCN=180°-50°-50°=80°,所以∠BCM:∠BCN=20°:80°=1:4.1. 如图,△ABC≌△ECD,AB和EC是对应边,C和D是对应顶点,则下列结论中错误的是()A. AB=CEB. ∠A=∠EC. AC=DED.∠B=∠D2. 如图,△ABC≌△BAD,A和B,C和D分别是对应顶点,若AB=6cm,AC=4cm,BC=5cm,则AD的长为()A. 4cmB. 5cmC. 6cmD. 以上都不对3. 下列说法中正确的有()①形状相同的两个图形是全等图形②对应角相等的两个三角形是全等三角形③全等三角形的面积相等④若△ABC≌△DEF,△DEF ≌△MNP,△ABC≌△MNP.A.0个B.1个C.2个D.3个4. 如图,△ABE≌△ACD,∠B=50°,∠AEC=120°,则∠DAC的度数等于()A.120°B.70°C.60°D.50°5. 已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18平方厘米,则EF 边上的高是( )A.6cmB.7cmC.8cmD.9cm6. 将一张长方形纸片按如图所示的方式折叠,BC 、BD 分别为折痕,则∠CBD 的度数为( )A .60°B .75°C .90°D .95°7. 如图,在△ABC 中,AC >BC >AB ,且△ABC ≌△DEF ,则在△DEF 中,______<______<_______(填边).8. 如图,△ABC ≌△AED ,AB =AE ,∠1=27°,则∠2=___________.9. 已知△DEF ≌△ABC ,AB =AC ,且△ABC 的周长为23cm ,BC =4cm ,则△DEF 的边中必有一条边等于______.F ED C BA10. 如图,如果将△ABC 向右平移CF 的长度,则与△DEF 重合,那么图中相等的线段有__________;若∠A =46°,则∠D =________.11.已知△ABC ≌△'''A B C ,若△ABC 的面积为10 2cm ,则△'''A B C 的面积为________ 2cm ,若△'''A B C 的周长为16cm ,则△ABC 的周长为________cm .12. △ABC 中,∠A ∶∠C ∶∠B =4∶3∶2,且△ABC ≌△DEF ,则∠DEF =______ .13.如图,已知△ABC ≌△DEF ,∠A =30°,∠B =50°,BF =2,求∠DFE 的度数与EC 的长.14.已知:如图,△ABC ≌△DEF ,且B ,E ,C ,F 四点在一条直线上,∠A =85°,∠B =60°,AB =8,EH =2.(1)求∠F 的度数与DH 的长;(2)求证:AB ∥DE.(1)解:∵∠A =85°,∠B =60°,∴∠ACB=180°-∠______-∠______=______°.∵△________≌△ABC,∴_______=AB()∠________=∠ACB=_____°()∵AB=8,EH=2,∴DH=DE-HE=______-HE =_______.(2)证明:∵△________≌△_________,∴∠______=∠______()∴_____∥_______()15. 如图,E为线段BC上一点,AB⊥BC,△ABE≌△ECD.判断AE与DE的关系,并证明你的结论.1. 【答案】D;2. 【答案】B;【解析】AD与BC是对应边,全等三角形对应边相等.3. 【答案】C;【解析】③和④是正确的;4. 【答案】B;【解析】由全等三角形的性质,易得∠BAD=∠CAE=10°,∠BAC=80°,所以∠DAC =70°.5. 【答案】A ;【解析】EF 边上的高=18266⨯=; 6. 【答案】C ;【解析】折叠所成的两个三角形全等,找到对应角可解.7. 【答案】 DE EF DF ;8. 【答案】27°;9. 【答案】4cm 或9.5cm ;【解析】DE =DF =9.5cm ,EF =4cm ;10.【答案】AB =DE 、AC =DF 、BC =EF 、BE =CF , 46°;11.【答案】10,16;【解析】全等三角形面积相等,周长相等;12.【答案】40°;【解析】见“比例”设k ,用三角形内角和为180°求解.13.【解析】解: 在△ABC 中,∠ACB =180°-∠A -∠B ,又∠A =30°,∠B =50°,所以∠ACB =100°.又因为△ABC ≌△DEF ,所以∠ACB =∠DFE ,BC =EF (全等三角形对应角相等,对应边相等)所以∠DFE=100°EC=EF-FC=BC-FC=BF=2.14. 【解析】(1)A,B,35;DEF;DE,全等三角形对应边相等;F,35,全等三角形的对应角相等;AB,6(2)ABC,DEF;B,DEF,全等三角形的对应角相等;AB,DE,同位角相等,两直线平行.15. 【解析】 AE=DE ,且AE⊥DE证明:∵△ABE≌△ECD,∴∠B=∠C,∠A=∠DEC,∠AEB=∠D,AE=DE 又∵AB⊥BC∴∠A+∠AEB=90°,即∠DEC+∠AEB=90°∴AE⊥DE∴AE与DE垂直且相等.1.下列命题中,真命题的个数是()①全等三角形的周长相等②全等三角形的对应角相等③全等三角形的面积相等④面积相等的两个三角形全等A.4个 B.3个 C.2个 D.1个2. 如图,△ABC≌ΔADE,若∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40° B.35° C.30°D.25°3.下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有( )A.3个B.2个C.1个D.0个4.△ABC≌△DEF,且△ABC的周长为100cm,A、B分别与D、E对应,且AB=35cm,DF=30cm,则EF的长为()A.35cm B.30cm C.45cm D.55cm5. 在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是120°,那么在△ABC中与这个120°的角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C6.如图,△ABE≌△ACD,AB=AC, BE=CD, ∠B=50°,∠AEC=120°,则∠DAC的度数为()A.120°B.70 °C.60°D.50°7. 如图,把△ABC绕C点顺时针旋转35°,得到△''A B C,''A B交∠ .AC于点D,则AB'D =8. 如图,△ABC≌△ADE,如果AB=5cm,BC=7cm,AC=6cm,那么DE的长是________.9. 如图,△ABC≌△ADE,则,AB=,∠E =∠;若∠BAE=120°,∠BAD=40°,则∠BAC=___________.10. 将一张长方形纸片按如图所示的方式折叠,BC、BD分别为折痕,则∠CBD的度数为________.11. △ABC中,∠A∶∠C∶∠B=4∶3∶2,且△ABC≌△DEF,则∠DEF =______12. 如图,AC、BD相交于点O,△AOB≌△COD,则AB与CD的位置关系是.13. 如图,△ABC中,∠ACB=90°,△ABC≌△DFC,你能判断DE与AB互相垂直吗?说出你的理由.14. 如图,E为线段BC上一点,AB⊥BC,△ABE≌△ECD.判断AE与DE的关系,并证明你的结论.15.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,(1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设的度数为x ,∠的度数为y ,那么∠1,∠2的度数分别是多少?(用含有x 或y 的代数式表示)(3)∠A 与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.1. 【答案】 B ;【解析】①②③是正确的;2. 【答案】B ;【解析】∠EAC =∠BAD =180°-80°-30°-35°=35°;3. 【答案】C ;【解析】只有(3)是正确的命题;4. 【答案】A ;【解析】AC =DF=30,EF=BC =100-35-30=35;AED ∠ADE5. 【答案】A ;【解析】不可能是∠B 或∠C ,这样三角形内角和就大于180°;6. 【答案】B ;【解析】由全等三角形的性质,易得∠BAD =∠CAE =10°,∠BAC=80°,所以∠DAC =70°.7. 【答案】35° ;【解析】旋转得到的三角形和原三角形全等,所以'B C BC =,A B C=ABC ''∠∠,所以,AB D ='∠180°-∠BB C '-∠A'B'C=180°-(∠ABC +∠BB C ')=∠BCB '=35°.8. 【答案】7cm ;【解析】BC 与DE 是对应边;9.【答案】AD C 80°;【解析】∠BAC =∠DAE =120°-40°=80°;10.【答案】90°;【解析】折叠所形成的三角形全等,再利用对应角相等求解;11.【答案】40°;【解析】∠DEF =∠ABC =2432++×180°=40°; 12.【答案】平行;【解析】由全等三角形性质可知∠B =∠D ,所以AB ∥CD.13.【解析】DE 与AB 互相垂直.∵△ABC ≌△DFC∴∠A =∠D ,∠B =∠CFD ,又∵∠ACB =90°∴∠B +∠A =90°,而∠AFE =∠CFD∴∠AFE +∠A =90°,即DE ⊥AB.14. 【解析】 AE =DE ,且AE ⊥DE证明:∵△ABE ≌△ECD ,∴∠B =∠C ,∠A =∠DEC ,∠AEB =∠D ,AE =DE 又∵AB ⊥BC∴∠A +∠AEB =90°,即∠DEC +∠AEB =90°∴AE ⊥DE∴AE 与DE 垂直且相等.15.【解析】(1)△EAD ≌△,其中∠EAD =∠,;(2)∠1=180°-2x ,∠2=180°-2y ;(3)规律为:∠1+∠2=2∠A .EA D 'EA D 'AED A ED ADE A DE ''=∠=,∠∠∠。
2023年中考数学考点总结+题型专训专题06 全等三角形的性质与判定篇(原卷版)

专题06 全等三角形的判定与性质知识回顾1.三角形的三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边。
三角形的三边一旦确定,这三角形就固定了,这是三角形具有稳定性。
2.三角形的内角和定理:三角形的三个内角之和等于180°。
3.三角形的外角定理:三角形的一个外角等于它不相邻的两个内角之和。
大于它不相邻的任意一个内角。
4.全等三角形的性质:若两个三角形全等,则他们的对应边相等;对应角相等;对应边上的中线相等,高线相等,角平分线也相等;且这两个三角形的周长和面积均相等。
5.全等三角形的判定:①边边边(SSS):三条边分别对应性相等的两个三角形全等。
②边角边(SAS):两边及其这两边的夹角对应相等的两个三角形全等。
③角边角(ASA):两角及其这两角的夹边对应相等的两个三角形全等。
④角角边(AAS):两角及其其中一角的对边对应相等的两个三角形全等。
⑤直角三角形判定(HL):直角三角形中斜边与其中任意一直角边分别对应相等的两个直角三角形全等。
全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件。
在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形。
微专题1.已知:如图,∠1=∠2,∠3=∠4.求证:AB=AD.2.如图,△ABC是等腰三角形,点D,E分别在腰AC,AB上,且BE=CD,连接BD,CE.求证:BD=CE.3.如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠BAD=∠EAC,∠C=50°,求∠D的大小.4.如图,AC平分∠BAD,CB⊥AB,CD⊥AD,垂足分别为B,D.(1)求证:△ABC≌△ADC;(2)若AB=4,CD=3,求四边形ABCD的面积.5.如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=BC.6.如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.(1)求证:MP=NP;(2)若AB=a,求线段PH的长(结果用含a的代数式表示).7.如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=DF,②∠ABC=∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.8.在△ABC中,∠ACB=90°,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF.若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2.若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.9.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,且点D在线段BC上,连CE.(1)求证:△ABD≌△ACE;(2)若∠EAC=60°,求∠CED的度数.10.如图,在△ABC中(AB<BC),过点C作CD∥AB,在CD上截取CD=CB,CB上截取CE=AB,连接DE、DB.(1)求证:△ABC≌△ECD;(2)若∠A=90°,AB=3,BD=2,求△BCD的面积.11.如图,在Rt△ABC中,∠BAC=90°,AB=AC=1,D是BC边上的一点,以AD为直角边作等腰Rt△ADE,其中∠DAE=90°,连接CE.(1)求证:△ABD≌△ACE;(2)若∠BAD=22.5°时,求BD的长.12.如图,已知矩形ABCD中,AB=8,BC=x(0<x<8),将△ACB沿AC对折到△ACE的位置,AE和CD交于点F.(1)求证:△CEF≌△ADF;(2)求tan∠DAF的值(用含x的式子表示).13.如图,△ABC和△DEF,点E,F在直线BC上,AB=DF,∠A=∠D,∠B=∠F.如图①,易证:BC+BE =BF.请解答下列问题:(1)如图②,如图③,请猜想BC,BE,BF之间的数量关系,并直接写出猜想结论;(2)请选择(1)中任意一种结论进行证明;(3)若AB=6,CE=2,∠F=60°,S△ABC=123,则BC=,BF=.14.△ABC和△ADE都是等边三角形.(1)将△ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有P A+PB=PC(或P A+PC=PB)成立(不需证明);(2)将△ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC之间有怎样的数量关系?并加以证明;(3)将△ADE绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC之间有怎样的数量关系?直接写出结论,不需要证明.15.【情境再现】甲、乙两个含45°角的直角三角尺如图①放置,甲的直角顶点放在乙斜边上的高的垂足O处.将甲绕点O顺时针旋转一个锐角到图②位置.小莹用作图软件Geogebra按图②作出示意图,并连接AG,BH,如图③所示,AB交HO于E,AC交OG于F,通过证明△OBE≌△OAF,可得OE=OF.请你证明:AG=BH.【迁移应用】延长GA分别交HO,HB所在直线于点P,D,如图④,猜想并证明DG与BH的位置关系.【拓展延伸】小亮将图②中的甲、乙换成含30°角的直角三角尺如图⑤,按图⑤作出示意图,并连接HB,AG,如图⑥所示,其他条件不变,请你猜想并证明AG与BH的数量关系.。
[经典]中考全等三角形历年真题全集
![[经典]中考全等三角形历年真题全集](https://img.taocdn.com/s3/m/c19e940678563c1ec5da50e2524de518964bd360.png)
[经典]中考全等三角形历年真题全集第22章全等三角形一、选择题1.(2022安徽芜湖,6,4分)如图,已知△ABC中,ABC45,F是高AD和BE的交点,CD4,则线段DF的长度为().A.22B.4C.32D.42【答案】B2.(2022山东威海,6,3分)在△ABC中,AB>AC,点D、E分别是边AB、AC的中点,点F在BC边上,连接DE,DF,EF.则添加下列哪一个条件后,仍无法判定△BFD与△EDF全等().A.EF∥ABB.BF=CFC.∠A=∠DFED.∠B=∠DFE【答案】C3.(2022浙江衢州,1,3分)如图,OP平分MON,PAON于点A,点Q 是射线OM上的一个动点,若PA2,则PQ的最小值为()A.1B.2C.3D.4MPA(第6题)QON【答案】B4.(2022江西,7,3分)如图下列条件中,不能证明△ABD≌△ACD的是()...A.BD=DC,AB=ACB.∠ADB=∠ADCC.∠B=∠C,∠BAD=∠CADD.∠B=∠C,BD=DC【答案】D5.(2022江苏宿迁,7,3分)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是...(▲)A.AB=ACB.BD=CDC.∠B=∠CD.∠BDA=∠CDA【答案】B6.(2022江西南昌,7,3分)如图下列条件中,不能证明△ABD≌△ACD的是()...A.BD=DC,AB=ACB.∠ADB=∠ADCC.∠B=∠C,∠BAD=∠CADD.∠B=∠C,BD=DC【答案】D7.(2022上海,5,4分)下列命题中,真命题是().(A)周长相等的锐角三角形都全等;(B)周长相等的直角三角形都全等;(C)周长相等的钝角三角形都全等;(D)周长相等的等腰直角三角形都全等.【答案】D8.(2022安徽芜湖,6,4分)如图,已知△ABC中,ABC45,F是高AD和BE的交点,CD4,则线段DF的长度为().A.22B.4C.32D.42【答案】B二、填空题1.(2022江西,16,3分)如图所示,两块完全相同的含30°角的直角三角形叠放在一起,且∠DAB=30°。
【精选】全等三角形中考真题汇编[解析版]
![【精选】全等三角形中考真题汇编[解析版]](https://img.taocdn.com/s3/m/6048c24e700abb68a982fbf8.png)
一、八年级数学全等三角形解答题压轴题(难)1.如图1,等腰△ABC中,AC=BC=42, ∠ACB=45˚,AO是BC边上的高,D为线段AO上一动点,以CD为一边在CD下方作等腰△CDE,使CD=CE且∠DCE=45˚,连结BE.(1) 求证:△ACD≌△BCE;(2) 如图2,在图1的基础上,延长BE至Q, P为BQ上一点,连结CP、CQ,若CP=CQ=5,求PQ的长.(3) 连接OE,直接写出线段OE的最小值.【答案】(1)证明见解析;(2)PQ=6;(3)OE=422-【解析】试题分析:()1根据SAS即可证得ACD BCE≌;()2首先过点C作CH BQ⊥于H,由等腰三角形的性质,即可求得45DAC∠=︒,则根据等腰三角形与直角三角形中的勾股定理即可求得PQ 的长.()3OE BQ⊥时,OE取得最小值.试题解析:()1证明:∵△ABC与△DCE是等腰三角形,∴AC=BC,DC=EC,45ACB DCE∠=∠=,45ACD DCB ECB DCB∴∠+∠=∠+∠=,∴∠ACD=∠BCE;在△ACD和△BCE中,,AC BCACD BCEDC EC=⎧⎪∠=∠⎨⎪=⎩(SAS)ACD BCE∴≌;()2首先过点C作CH BQ⊥于H,(2)过点C作CH⊥BQ于H,∵△ABC是等腰三角形,∠ACB=45˚,AO是BC边上的高,45DAC∴∠=,ACD BCE≌,45PBC DAC∴∠=∠=,∴在Rt BHC中,2242422CH BC=⨯=⨯=,54PC CQ CH===,,3PH QH∴==,6.PQ∴=()3OE BQ⊥时,OE取得最小值.最小值为:42 2.OE=-2.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.【答案】(1)见解析(2)成立(3)△DEF为等边三角形【解析】解:(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=900.∵∠BAC=900,∴∠BAD+∠CAE=900.∵∠BAD+∠ABD=900,∴∠CAE=∠ABD.又AB="AC" ,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE="AE+AD=" BD+CE.(2)成立.证明如下:∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=1800—α.∴∠DBA=∠CAE.∵∠BDA=∠AEC=α,AB=AC,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE.(3)△DEF为等边三角形.理由如下:由(2)知,△ADB≌△CEA,BD=AE,∠DBA =∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=600.∴∠DBA+∠ABF=∠CAE+∠CAF.∴∠DBF=∠FAE.∵BF=AF,∴△DBF≌△EAF(AAS).∴DF=EF,∠BFD=∠AFE.∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600.∴△DEF为等边三角形.(1)因为DE=DA+AE,故由AAS证△ADB≌△CEA,得出DA=EC,AE=BD,从而证得DE=BD+CE.(2)成立,仍然通过证明△ADB≌△CEA,得出BD=AE,AD=CE,所以DE=DA+AE=EC+BD.(3)由△ADB≌△CEA得BD=AE,∠DBA =∠CAE,由△ABF和△ACF均等边三角形,得∠ABF=∠CAF=600,FB=FA,所以∠DBA+∠ABF=∠CAE+∠CAF,即∠DBF=∠FAE,所以△DBF≌△EAF,所以FD=FE,∠BFD=∠AFE,再根据∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600得到△DEF是等边三角形.3.如图,AB=12cm,AC⊥AB,BD⊥AB ,AC=BD=9cm,点P在线段AB上以3 cm/s的速度,由A向B运动,同时点Q在线段BD上由B向D运动.(1)若点Q的运动速度与点P的运动速度相等,当运动时间t=1(s),△ACP与△BPQ 是否全等?说明理由,并直接判断此时线段PC和线段PQ的位置关系;(2)将“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,其他条件不变.若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能使△ACP与△BPQ全等.(3)在图2的基础上延长AC,BD交于点E,使C,D分别是AE,BE中点,若点Q以(2)中的运动速度从点B出发,点P以原来速度从点A同时出发,都逆时针沿△ABE三边运动,求出经过多长时间点P与点Q第一次相遇.【答案】(1)△ACP ≌△BPQ ,理由见解析;线段PC 与线段PQ 垂直(2)1或32(3)9s 【解析】 【分析】(1)利用SAS 证得△ACP ≌△BPQ ,得出∠ACP=∠BPQ ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP ≌△BPQ ,分两种情况:①AC=BP ,AP=BQ ,②AC=BQ ,AP=BP ,建立方程组求得答案即可.(3)因为V Q <V P ,只能是点P 追上点Q ,即点P 比点Q 多走PB+BQ 的路程,据此列出方程,解这个方程即可求得. 【详解】(1)当t=1时,AP=BQ=3,BP=AC=9, 又∵∠A=∠B=90°,在△ACP 与△BPQ 中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BPQ (SAS ), ∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP=90°, ∠CPQ=90°,则线段PC 与线段PQ 垂直. (2)设点Q 的运动速度x,①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,912tt xt=-⎧⎨=⎩, 解得31t x =⎧⎨=⎩, ②若△ACP ≌△BPQ ,则AC=BQ ,AP=BP ,912xtt t =⎧⎨=-⎩解得632t x =⎧⎪⎨=⎪⎩,综上所述,存在31t x =⎧⎨=⎩或632t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等.(3)因为V Q <V P ,只能是点P 追上点Q ,即点P 比点Q 多走PB+BQ 的路程, 设经过x 秒后P 与Q 第一次相遇,∵AC=BD=9cm ,C ,D 分别是AE ,BD 的中点; ∴EB=EA=18cm. 当V Q =1时, 依题意得3x=x+2×9, 解得x=9; 当V Q =32时, 依题意得3x=32x+2×9, 解得x=12.故经过9秒或12秒时P 与Q 第一次相遇. 【点睛】本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的性质与运算.4.如图,在△ABC 中,∠ABC 为锐角,点D 为直线BC 上一动点,以AD 为直角边且在AD 的右侧作等腰直角三角形ADE ,∠DAE =90°,AD =AE .(1)如果AB =AC ,∠BAC =90°.①当点D 在线段BC 上时,如图1,线段CE 、BD 的位置关系为___________,数量关系为___________②当点D 在线段BC 的延长线上时,如图2,①中的结论是否仍然成立,请说明理由. (2)如图3,如果AB ≠AC ,∠BAC ≠90°,点D 在线段BC 上运动.探究:当∠ACB 多少度时,CE ⊥BC ?请说明理由.【答案】(1)①垂直,相等.②都成立,理由见解析;(2)45°,理由见解析【解析】 【分析】(1)①根据∠BAD=∠CAE ,BA=CA ,AD=AE ,运用“SAS ”证明△ABD ≌△ACE ,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE 、BD 之间的关系; ②先根据“SAS ”证明△ABD ≌△ACE ,再根据全等三角形性质得出对应边相等,对应角相等,即可得到①中的结论仍然成立;(2)先过点A 作AG ⊥AC 交BC 于点G ,画出符合要求的图形,再结合图形判定△GAD ≌△CAE ,得出对应角相等,即可得出结论. 【详解】(1):(1)CE 与BD 位置关系是CE ⊥BD ,数量关系是CE=BD . 理由:如图1,∵∠BAD=90°-∠DAC ,∠CAE=90°-∠DAC , ∴∠BAD=∠CAE . 又 BA=CA ,AD=AE , ∴△ABD ≌△ACE (SAS ) ∴∠ACE=∠B=45°且 CE=BD . ∵∠ACB=∠B=45°,∴∠ECB=45°+45°=90°,即 CE ⊥BD . 故答案为垂直,相等; ②都成立,理由如下: ∵∠BAC =∠DAE =90°, ∴∠BAC +∠DAC =∠DAE +∠DAC , ∴∠BAD =∠CAE , 在△DAB 与△EAC 中,AD AE BAD CAE AB AC ⎧⎪∠∠⎨⎪⎩=== ∴△DAB ≌△EAC , ∴CE =BD ,∠B =∠ACE ,∴∠ACB +∠ACE =90°,即CE ⊥BD ; (2)当∠ACB =45°时,CE ⊥BD (如图).理由:过点A 作AG ⊥AC 交CB 的延长线于点G ,则∠GAC =90°,∵∠ACB =45°,∠AGC =90°﹣∠ACB , ∴∠AGC =90°﹣45°=45°,∴∠ACB =∠AGC =45°, ∴AC =AG , 在△GAD 与△CAE 中,AC AG DAG EAC AD AE ⎧⎪∠∠⎨⎪⎩=== ∴△GAD ≌△CAE , ∴∠ACE =∠AGC =45°,∠BCE =∠ACB +∠ACE =45°+45°=90°,即CE ⊥B C .5.如图,在ABC∆中,90C ∠=︒,4cm AC BC ==,点D 是斜边AB 的中点.点E 从点B 出发以1cm/s 的速度向点C 运动,点F 同时从点C 出发以一定的速度沿射线CA 方向运动,规定当点E 到终点C 时停止运动.设运动的时间为x 秒,连接DE 、DF .(1)填空:ABC S ∆=______2cm ;(2)当1x =且点F 运动的速度也是1cm/s 时,求证:DE DF =;(3)若动点F 以3cm /s 的速度沿射线CA 方向运动,在点E 、点F 运动过程中,如果存在某个时间x ,使得ADF ∆的面积是BDE ∆面积的两倍,请你求出时间x 的值. 【答案】(1)8;(2)见解析;(3)45或4. 【解析】 【分析】(1)直接可求△ABC 的面积;(2)连接CD ,根据等腰直角三角形的性质可求:∠A=∠B=∠ACD=∠DCB=45°,即BD=CD ,且BE=CF ,即可证△CDF ≌△BDE ,可得DE=DF ;(3)分△ADF 的面积是△BDE 的面积的两倍和△BDE 与△ADF 的面积的2倍两种情况讨论,根据题意列出方程可求x 的值. 【详解】 解:(1)∵S △ABC =12⨯AC×BC∴S△ABC=12×4×4=8(cm2)故答案为:8(2)如图:连接CD∵AC=BC,D是AB中点∴CD平分∠ACB又∵∠ACB=90°∴∠A=∠B=∠ACD=∠DCB=45°∴CD=BD依题意得:BE=CF∴在△CDF与△BDE中BE CFB DCABD CD=⎧⎪∠=∠⎨⎪=⎩∴△CDF≌△BDE(SAS)∴DE=DF(3)如图:过点D作DM⊥BC于点M,DN⊥AC于点N,∵AD=BD,∠A=∠B=45°,∠AND=∠DMB=90°∴△ADN≌△BDM(AAS)∴DN=DM当S△ADF=2S△BDE.∴12×AF×DN=2×12×BE×DM∴|4-3x|=2x∴x1=4,x2=45综上所述:x=45或4 【点睛】本题考查了动点问题的函数图象,全等三角形的性质和判定,利用分类思想解决问题是本题的关键.6.如图1,在等边△ABC 中,E 、D 两点分别在边AB 、BC 上,BE =CD ,AD 、CE 相交于点F .(1)求∠AFE 的度数;(2)过点A 作AH ⊥CE 于H ,求证:2FH +FD =CE ;(3)如图2,延长CE 至点P ,连接BP ,∠BPC =30°,且CF =29CP ,求PF AF的值. (提示:可以过点A 作∠KAF =60°,AK 交PC 于点K ,连接KB )【答案】(1)∠AFE =60°;(2)见解析;(3)75【解析】 【分析】(1)通过证明 BCE CAD ≌ 得到对应角相等,等量代换推导出60AFE ∠=︒; (2)由(1)得到60AFE ∠=︒,CE AD = 则在Rt AHF △ 中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF 上取一点K 使得KF =AF ,作辅助线证明ABK 和ACF 全等,利用对应边相等,等量代换得到比值.(通过将ACF 顺时针旋转60°也是一种思路.) 【详解】(1)解:如图1中.∵ABC 为等边三角形,∴AC=BC,∠BAC=∠ABC=∠ACB=60°,在BCE和CAD中,60BE CDCBE ACDBC CA=⎧⎪∠=∠=︒⎨⎪=⎩,∴BCE CAD≌(SAS),∴∠BCE=∠DAC,∵∠BCE+∠ACE=60°,∴∠DAC+∠ACE=60°,∴∠AFE=60°.(2)证明:如图1中,∵AH⊥EC,∴∠AHF=90°,在Rt△AFH中,∵∠AFH=60°,∴∠FAH=30°,∴AF=2FH,∵EBC DCA≌,∴EC=AD,∵AD=AF+DF=2FH+DF,∴2FH+DF=EC.(3)解:在PF上取一点K使得KF=AF,连接AK、BK,∵∠AFK=60°,AF=KF,∴△AFK为等边三角形,∴∠KAF=60°,∴∠KAB=∠FAC,在ABK和ACF中,AB ACKAB ACFAK AF=⎧⎪∠=∠⎨⎪=⎩,∴ABK ACF≌(SAS),BK CF=∴∠AKB=∠AFC=120°,∴∠BKE=120°﹣60°=60°,∵∠BPC=30°,∴∠PBK=30°,∴29BK CF PK CP===,∴79PF CP CF CP=-=,∵45 ()99AF KF CP CF PK CP CP CP==-+=-=∴779559CPPFAF CP== .【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.7.在ABC中,AB AC=,点D在BC边上,且60,ADB E∠=︒是射线DA上一动点(不与点D重合,且DA DB≠),在射线DB上截取DF DE=,连接EF.()1当点E在线段AD上时,①若点E与点A重合时,请说明线段BF DC=;②如图2,若点E不与点A重合,请说明BF DC AE=+;()2当点E在线段DA的延长线上()DE DB>时,用等式表示线段,,AE BF CD之间的数量关系(直接写出结果,不需要证明).【答案】(1)①证明见解析;②证明见解析;(2)BF=AE-CD【解析】【分析】(1)①根据等边对等角,求到B C∠=∠,再由含有60°角的等腰三角形是等边三角形得到ADF∆是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到120AFB ADC∠=∠=︒,推出ABF ACD∆∆≌,根据全等三角形的性质即可得出结论;②过点A做AG∥EF交BC于点G,由△DEF为等边三角形得到DA=DG,再推出AE=GF,根据线段的和差即可整理出结论;(2)根据题意画出图形,作出AG,由(1)可知,AE=GF,DC=BG,再由线段的和差和等量代换即可得到结论.【详解】(1)①证明:AB AC=B C∴∠=∠,60DF DE ADB=∠=︒,且E与A重合,ADF∴∆是等边三角形60ADF AFD∴∠=∠=︒120AFB ADC∴∠=∠=︒在ABF∆和ACD∆中AFB ADCB CAB AC∠=∠⎧⎪∠=∠⎨⎪=⎩ABF ACD∴∆∆≌BF DC∴=②如图2,过点A做AG∥EF交BC于点G,∵∠ADB=60°DE=DF∴△DEF为等边三角形∵AG∥EF∴∠DAG=∠DEF=60°,∠AGD=∠EFD=60°∴∠DAG=∠AGD∴DA=DG∴DA-DE=DG-DF,即AE=GF由①易证△AGB≌△ADC∴BG=CD∴BF=BG+GF=CD+AE(2)如图3,和(1)中②相同,过点A做AG∥EF交BC于点G,由(1)可知,AE=GF ,DC=BG ,BF CD BF BG GF AE ∴+=+==故BF AE CD =-.【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.8.如图1,在长方形ABCD 中,AB=CD=5 cm , BC=12 cm ,点P 从点B 出发,以2cm/s 的速度沿BC 向点C 运动,设点P 的运动时间为ts .(1)PC=___cm ;(用含t 的式子表示)(2)当t 为何值时,△ABP ≌△DCP ?.(3)如图2,当点P 从点B 开始运动,此时点Q 从点C 出发,以vcm/s 的速度沿CD 向点D 运动,是否存在这样的v 值,使得某时刻△ABP 与以P ,Q ,C 为顶点的直角三角形全等?若存在,请求出v 的值;若不存在,请说明理由.【答案】(1)()122t -;(2)3t =;(3)存在,2v =或53v =【解析】【分析】(1)根据P 点的运动速度可得BP 的长,再利用BC 的长减去BP 的长即可得到PC 的长; (2)先根据三角形全等的条件得出当BP=CP ,列方程求解即得;(3)先分两种情况:当BP=CQ ,AB=PC 时,△ABP ≌△PCQ ;或当BA=CQ ,PB=PC 时,△ABP ≌△QCP ,然后分别列方程计算出t 的值,进而计算出v 的值.【详解】解:(1)当点P 以2cm/s 的速度沿BC 向点C 运动时间为ts 时2BP tcm =∵12BC cm =∴()122PC BC BP t cm =-=-故答案为:()122t -(2)∵ABP DCP ∆≅∆∴BP CP =∴2122t t =-解得3t =.(3)存在,理由如下:①当BP=CQ ,AB=PC 时,△ABP ≌△PCQ ,∴PC=AB=5∴BP=BC-PC=12-5=7∵2BP tcm =∴2t=7解得t=3.5∴CQ=BP=7,则3.5v=7解得2v =.②当BA CQ =,PB PC =时,ABP QCP ∆≅∆∵12BC cm = ∴162BP CP BC cm === ∵2BP tcm =∴26t =解得3t =∴3CQ vcm = ∵5AB CQ cm ==∴35v = 解得53v =. 综上所述,当2v =或53v =时,ABP ∆与以P ,Q ,C 为顶点的直角三角形全等. 【点睛】本题考查全等三角形的判定及性质和矩形的性质,解题关键是将动态情况化为某一状态情况,并以这一状态为等量关系建立方程求解.9.如图,在边长为 4 的等边△ABC 中,点 D 从点A 开始在射线 AB 上运动,速度为 1 个单位/秒,点F 同时从 C 出发,以相同的速度沿射线 BC 方向运动,过点D 作 DE ⊥AC ,连结 DF 交射线 AC 于点 G(1)当 DF⊥AB 时,求 t 的值;(2)当点 D 在线段 AB 上运动时,是否始终有 DG=GF?若成立,请说明理由。
九年级中考临考专题训练:全等三角形(含答案)

2021中考临考专题训练:全等三角形一、选择题1. 如图,小强画了一个与已知△ABC全等的△DEF,他画图的步骤是:(1)画DE =AB;(2)在DE的同旁画∠HDE=∠A,∠GED=∠B,DH,EG相交于点F,小强画图的依据是()A.ASA B.SASC.SSS D.AAS2. 如图所示,∠C=∠D=90°,若要用“HL”判定Rt△ABC与Rt△ABD全等,则可添加的条件是()A.AC=AD B.AB=ABC.∠ABC=∠ABD D.∠BAC=∠BAD3. 如图,李颖同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最合理的办法是带哪块玻璃去()A.只带①B.只带②C.只带③D.带①和②4. 如图,在直角坐标系中,AD是Rt△OAB的角平分线,点D的坐标是(0,-3),那么点D到AB的距离是()A .3B .-3C .2D .-25. (2019•张家界)如图,在ABC △中,90C ∠=︒,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于A .4B .3C .2D .16. 如图,已知在四边形ABCD 中,∠BCD=90°,BD 平分∠ABC ,AB=6,BC=9,CD=4,则四边形ABCD 的面积是 ( )A .24B .30C .36D .427. 现已知线段a ,b (a<b ),∠MON=90°,求作Rt △ABO ,使得∠O=90°,OA=a ,AB=b.小惠和小雷的作法分别如下:小惠:①以点O 为圆心、线段a 的长为半径画弧,交射线ON 于点A ;②以点A 为圆心、线段b 的长为半径画弧,交射线OM 于点B ,连接AB ,△ABO 即为所求. 小雷:①以点O 为圆心、线段a 的长为半径画弧,交射线ON 于点A ;②以点O 为圆心、线段b 的长为半径画弧,交射线OM 于点B ,连接AB ,△ABO 即为所求. 则下列说法中正确的是 ( ) A .小惠的作法正确,小雷的作法错误B .小雷的作法正确,小惠的作法错误C .两人的作法都正确D.两人的作法都错误8. 如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()二、填空题9. 如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件:______________,使得△ABD≌△CDB.(只需写出一个)10. 如图,已知AC=EC,∠ACB=∠ECD,要直接利用“AAS”判定△ABC≌△EDC,应添加的条件是__________.11. 如图,在Rt△ABC中,∠C=90°,∠B=20°,以点A为圆心,小于AC的长为半径画弧与AB,AC分别交于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧相交于点P,连接AP并延长交BC于点D,则∠ADB=°.12. 如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B,F,C,E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是________(只填一个即可).13. 如图,在△ABC 中,分别以AC ,BC 为边作等边三角形ACD 和等边三角形BCE ,连接AE ,BD 交于点O ,则∠AOB 的度数为 .14. 如图,AB ∥CD ,点P 到AB ,BD ,CD 的距离相等,则∠BPD 的度数为________.15. 如图,点O 在△ABC 的内部,且到三边的距离相等.若∠BOC =130°,则∠A=________°.16. (2019•襄阳)如图,已知ABC DCB ∠=∠,添加下列条件中的一个:①A D ∠=∠,②AC DB =,③AB DC =,其中不能确定ABC △≌△DCB △的是__________(只填序号).三、解答题17. (2019•泸州)如图,AB CD ∥,AD 和BC 相交于点O ,OA OD =.求证:OB OC =.18. 如图所示,在△ADF 和△BCE 中,∠A =∠B ,点D ,E ,F ,C 在同一条直线上,有如下三个关系式:①AD =BC ;②DE =CF ;③BE ∥AF.(1)请你用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的命题(用序号写出命题的书写形式,如:如果⊗⊗,那么⊗); (2)选择(1)中你写的一个命题,说明它的正确性.19. 如图,四边形ABCD 是正方形,以边AB 为直径作☉O ,点E 在BC 边上,连接AE 交☉O 于点F ,连接BF 并延长交CD 于点G . (1)求证:△ABE ≌△BCG. (2)若∠AEB=55°,OA=3,求的长.(结果保留π)20. (2019•苏州)如图,ABC △中,点E 在BC 边上,AE AB =,将线段AC 绕点A旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G . (1)求证:EF BC =;(2)若65ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.21. 如图,BE,CF都是△ABC的高,在BE上截取BD=AC,在射线CF上截取CG=AB,连接AG,AD.求证:(1)△BAD≌△CGA;(2)AD⊥AG.22. 如图,A,B两点分别在射线OM,ON上,点C在∠MON的内部且CA=CB,CD⊥OM,CE⊥ON,垂足分别为D,E,且AD=BE.(1)求证:OC平分∠MON;(2)如果AO=10,BO=4,求OD的长.23. 如图②,在△ABC中,AB=AC,AB>BC,点D在边BC上,且CD=2BD,点E,F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,求△ABE与△CDF的面积之和.24. 如图,⊙O 的直径AB =4,C 为⊙O 上一点,AC =2.过点C 作⊙O 的切线DC ,P 点为优弧CBA ︵上一动点(不与A 、C 重合). (1)求∠APC 与∠ACD 的度数;(2)当点P 移动到劣弧CB ︵的中点时,求证:四边形OBPC 是菱形; (3)当PC 为⊙O 的直径时,求证:△APC 与△ABC 全等.2021中考 临考专题训练:全等三角形-答案一、选择题1. 【答案】A2. 【答案】A3. 【答案】C[解析] 由“ASA”的判定方法可知只带③去就可以配出一块和以前一样(全等)的三角形玻璃.4. 【答案】A[解析] 如图,过点D 作DE ⊥AB 于点E.∵点D 的坐标是(0,-3), ∴OD=3.∵AD 是△OAB 的角平分线, ∴ED=OD=3,即点D 到AB 的距离是3.5. 【答案】C【解析】如图,过点D 作DE AB ⊥于E ,∵8AC =,13DC AD =,∴18213CD =⨯=+, ∵90C ∠=︒,BD 平分ABC ∠,∴2DE CD ==,即点D 到AB 的距离为2,故选C .6. 【答案】B[解析]过点D 作DH ⊥AB 交BA 的延长线于H.∵BD 平分∠ABC ,∠BCD=90°, ∴DH=CD=4,∴四边形ABCD 的面积=S △ABD +S △BCD =AB ·DH +BC ·CD=×6×4+×9×4=30.7. 【答案】A[解析] AB=b ,AB 是斜边,小惠作的斜边长是b 符合条件,而小雷作的是一条直角边长是b.故小惠的作法正确,小雷的作法错误.8. 【答案】C[解析] 选项A 中由全等三角形的判定定理“SAS”证得图中两个小三角形全等.选项B 中由全等三角形的判定定理“SAS”证得图中两个小三角形全等. 选项C 中,如图①,∵∠DEC=∠B+∠BDE ,∴x °+∠FEC=x °+∠BDE.∴∠FEC=∠BDE.这两个角所对的边是BE 和CF ,而已知条件给的是BD=CF=3,故不能判定两个小三角形全等.选项D 中,如图②,∵∠DEC=∠B+∠BDE ,∴x °+∠FEC=x °+∠BDE.∴∠FEC=∠BDE.又∵BD=CE=2,∠B=∠C ,∴△BDE ≌△CEF .故能判定两个小三角形全等.二、填空题9. 【答案】答案不唯一,如AB =CD [解析] 由已知AB ∥CD 可以得到一对角相等,还有BD =DB ,根据全等三角形的判定,可添加夹这个角的另一边相等,或添加另一个角相等均可.10. 【答案】∠B =∠D11. 【答案】125[解析] 由题意可得AD 平分∠CAB.∵∠C=90°,∠B=20°,∴∠CAB=70°.∴∠CAD=∠BAD=35°.∴∠ADB=180°-20°-35°=125°.12. 【答案】答案不唯一,如AB =DE[解析] ∵BF =CE ,∴BC =EF.在△ABC 和△DEF 中,⎩⎨⎧AB =DE ,∠B =∠E ,BC =EF ,∴△ABC ≌△DEF(SAS).13. 【答案】120°[解析]如图,设AC ,DB 的交点为H.∵△ACD ,△BCE 都是等边三角形, ∴CD=CA ,CB=CE ,∠ACD=∠BCE=60°, ∴∠DCB=∠ACE ,在△DCB 和△ACE 中,∴△DCB ≌△ACE , ∴∠CAE=∠CDB ,又∵∠DCH +∠CHD +∠BDC=180°,∠AOH +∠AHO +∠CAE=180°,∠DHC=∠OHA ,∴∠AOH=∠DCH=60°, ∴∠AOB=180°-∠AOH=120°.14. 【答案】90°[解析] ∵点P 到AB ,BD ,CD 的距离相等,∴BP ,DP 分别平分∠ABD ,∠BDC.∵AB ∥CD ,∴∠ABD +∠BDC =180°. ∴∠PBD +∠PDB =90°.故∠BPD =90°.15. 【答案】80[解析] ∵点O 到△ABC 三边的距离相等,∴BO 平分∠ABC ,CO 平分∠ACB.∴∠A =180°-(∠ABC +∠ACB)=180°-2(∠OBC +∠OCB)=180°-2(180°-∠BOC)=80°.16. 【答案】②【解析】∵已知ABC DCB ∠=∠,且BC CB =,∴若添加①A D ∠=∠,则可由AAS 判定ABC △≌DCB △;若添加②AC DB =,则属于边边角的顺序,不能判定ABC △≌DCB △; 若添加③AB DC =,则属于边角边的顺序,可以判定ABC △≌DCB △. 故答案为:②.三、解答题17. 【答案】∵AB CD ∥,∴A D ∠=∠,B C ∠=∠,在AOB △和DOC △中,A D B C OA OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴AOB DOC △≌△,∴OB OC =.18. 【答案】解:(1)如果①③,那么②;如果②③,那么①.(2)对于“如果①③,那么②”说明如下:因为BE ∥AF ,所以∠AFD =∠BEC.在△ADF 和△BCE 中,⎩⎨⎧∠AFD =∠BEC ,∠A =∠B ,AD =BC ,所以△ADF ≌△BCE.所以DF =CE.所以DF -EF =CE -EF ,即DE =CF.对于“如果②③,那么①”说明如下:因为BE ∥AF ,所以∠AFD =∠BEC.因为DE =CF ,所以DE +EF =CF +EF ,即DF =CE.在△ADF 和△BCE 中,⎩⎨⎧∠AFD =∠BEC ,∠A =∠B ,DF =CE ,所以△ADF ≌△BCE ,所以AD =BC.19. 【答案】解:(1)证明:∵四边形ABCD 是正方形,AB 为☉O 的直径,∴∠ABE=∠BCG=∠AFB=90°,AB=BC ,∴∠BAF +∠ABF=90°,∠ABF +∠EBF=90°,∴∠EBF=∠BAF ,在△ABE 与△BCG 中,∴△ABE ≌△BCG (ASA).(2)连接OF ,∵∠ABE=∠AFB=90°,∠AEB=55°,∴∠BAE=90°-55°=35°,∴∠BOF=2∠BAE=70°.∵OA=3, ∴的长==.20. 【答案】 (1)∵CAF BAE ∠=∠,∴BAC EAF ∠=∠,∵AE AB AC AF ==,, ∴BAC EAF △≌△,∴EF BC =.(2)∵65AB AE ABC =∠=︒,,∴18065250BAE ∠=︒-︒⨯=︒,∴50FAG ∠=︒,∵BAC EAF △≌△,∴28F C ∠=∠=︒,∴502878FGC ∠=︒+︒=︒.21. 【答案】证明:(1)∵BE ,CF 都是△ABC 的高,∴∠ABE +∠BAC =90°,∠ACF +∠BAC =90°.∴∠ABE =∠ACF.在△BAD 和△CGA 中,⎩⎨⎧AB =GC ,∠ABD =∠GCA ,BD =CA ,∴△BAD ≌△CGA(SAS).(2)∵△BAD ≌△CGA ,∴∠G =∠BAD.∵∠AFG =90°,∴∠GAD =∠BAD +∠BAG =∠G +∠BAG =90°.∴AD ⊥AG .22. 【答案】解:(1)证明:∵CD ⊥OM ,CE ⊥ON ,∴∠CDA =∠CEB =90°.在Rt △ACD 与Rt △BCE 中,⎩⎨⎧CA =CB ,AD =BE ,∴Rt △ACD ≌Rt △BCE(HL).∴CD =CE.又∵CD ⊥OM ,CE ⊥ON ,∴OC 平分∠MON.(2)在Rt △ODC 与Rt △OEC 中,⎩⎨⎧CD =CE ,OC =OC , ∴Rt △ODC ≌Rt △OEC.∴OD =OE.设BE =x.∵BO =4,∴OE =OD =4+x.∵AD =BE =x ,∴AO =OD +AD =4+2x =10.∴x =3.∴OD =4+3=7.23. 【答案】∵∠1=∠2=∠BAC ,且∠1=∠BAE +∠ABE ,∠2=∠CAF +∠ACF ,∠BAC =∠BAE +∠CAF ,∴∠BAE =∠ACF ,∠ABE =∠CAF.在△ABE 和△CAF 中,⎩⎨⎧∠BAE =∠ACF ,AB =CA ,∠ABE =∠CAF , ∴△ABE ≌△CAF(ASA).∴S △ABE =S △CAF .∴S △ABE +S △CDF =S △CAF +S △CDF =S △ACD . ∵CD =2BD ,△ABC 的面积为15, ∴S △ACD =10.∴S △ABE +S △CDF =10.24. 【答案】(1)解:∵AC =2,OA =OB =OC =12AB =2,∴AC =OA =OC ,∴△ACO 为等边三角形,∴∠AOC =∠ACO =∠OAC =60°,∴∠APC =12∠AOC =30°,又∵DC 与⊙O 相切于点C ,∴OC ⊥DC ,∴∠DCO =90°,∴∠ACD =∠DCO -∠ACO =90°-60°=30°;解图(2)证明:如解图,连接PB ,OP ,∵AB 为直径,∠AOC =60°,∴∠COB =120°,当点P 移动到CB ︵的中点时,∠COP =∠POB =60°, ∴△COP 和△BOP 都为等边三角形, ∴OC =CP =OB =PB ,∴四边形OBPC 为菱形;(3)证明:∵CP 与AB 都为⊙O 的直径, ∴∠CAP =∠ACB =90°,在Rt △ABC 与Rt △CP A 中,⎩⎨⎧AB =CP AC =AC, ∴Rt △ABC ≌Rt △CP A (HL).。
中考数学总复习《全等三角形》专项提升练习题(附答案)
中考数学总复习《全等三角形》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列各组中的两个图形属于全等图形的是( )A. B. C. D.2.下列叙述中错误的是( )A.能够重合的图形称为全等图形B.全等图形的形状和大小都相同C.所有正方形都是全等图形D.形状和大小都相同的两个图形是全等图形3.下列四个选项图中,与题图中的图案完全一致的是( )A. B. C. D.4.如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是( )A.AD=AEB.DB=AEC.DF=EFD.DB=EC5.如果两个三角形全等,那么下列结论不正确的是( )A.这两个三角形的对应边相等B.这两个三角形都是锐角三角形C.这两个三角形的面积相等D.这两个三角形的周长相等6.已知图中的两个三角形全等,则∠a度数是( )A.72°B.60°C.58°D.50°7.已知下列条件,不能作出唯一三角形的是( )A.两边及其夹角B.两角及其夹边C.三边D.两边及除夹角外的另一个角8.如图,某同学不小心将一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,最省事的办法是( )A.带①去B.带②去C.带③去D.带①和②去9.如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,∠ADC+∠ABC=180°,有下列结论:①CD=CB;②AD+AB=2AE;③∠ACD=∠BCE;④AB-AD=2BE.其中正确的是( )A.②B.①②③C.①②④D.①②③④10.如图,在△ABC中,高AD和BE交于点H,且∠1=∠2=22.5°.下列结论:①∠1=∠3;②BD+DH=AB;③2AH=BH;④若DF⊥BE于点F,则AE﹣FH=DF.其中正确的结论是( )A.①②③B.③④C.①②④D.①②③④二、填空题11.如图,四边形ABCD≌四边形A/B/C/D/,则∠A的大小是________.12.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、4,若这两个三角形全等,则x+y=.13.工人师傅常用角尺平分一个任意角.作法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C作射线OC.由此作法得△MOC≌△NOC的依据是.14.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=38°,则∠AEB= .15.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD =BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC ≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是16.在△ABC中,AB=8,AC=10,则BC边上的中线AD的取值范围是 .三、解答题17.如图,线段AC与线段BD相交于点O,连结AB,BC,CD,∠A=∠D,OA=OD.求证:∠1=∠2.18.如图,在△ABC中,AB=AC.分别以点B,C为圆心,BC长为半径在BC下方画弧,设两弧交于点D,与AB,AC的延长线分别交于点E,F,连结AD,BD,CD.求证:AD平分∠BAC.19.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.20.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB的延长线上一点,点E在BC 边上,且BE=BD,连结AE,DE,CD.(1)求证:△ABE≌△CBD.(2)若∠CAE=27°,∠ACB=45°,求∠BDC的度数.21.如图,AD∥BC,∠D=90°.(1)如图1,若∠DAB的平分线与∠CBA的平分线交于点P,试问:点P是线段CD的中点吗?为什么?(2)如图2,如果P是DC的中点,BP平分∠ABC,∠CPB=35°,求∠PAD的度数为多少?22.(1)如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试探究AB,AD,DC之间的等量关系,证明你的结论;(2)如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,证明你的结论.答案1.D.2.C3.A4.B.5.B6.D7.D.8.C9.C10.C.11.答案为:95°.12.答案为:10.13.答案为:SSS.14.答案为:128°.15.答案为:ASA.16.答案为:1<AD <9.17.证明:在△AOB 和△DOC 中∵⎩⎨⎧∠A =∠D ,OA =OD ,∠AOB =∠DOC ,∴△AOB ≌△DOC(ASA)∴AB =DC ,OB =OC.∴OA +OC =OD +OB ,即AC =DB.在△ABC 和△DCB 中∵⎩⎨⎧AC =DB ,AB =DC ,BC =CB ,∴△ABC ≌△DCB(SSS)∴∠1=∠2.18.证明:在△ABD 和△ACD 中∵⎩⎨⎧AB =AC ,BD =CD ,AD =AD ,∴△ABD ≌△ACD(SSS)∴∠BAD =∠CAD即AD 平分∠BAC .19.解:(1)∵AE 和BD 相交于点O∴∠AOD =∠BOE.在△AOD 和△BOE 中∠A =∠B ,∠AOD =∠BOE∴∠BEO =∠2.又∵∠1=∠2∴∠1=∠BEO∴∠AEC =∠BED.在△AEC 和△BED 中⎩⎨⎧∠A =∠B ,AE =BE ,∠AEC =∠BED ,∴△AEC ≌△BED(ASA);(2)∵△AEC ≌△BED∴EC =ED ,∠C =∠BDE.在△EDC 中∵EC =ED ,∠1=42°∴∠C =∠EDC =69°∴∠BDE =∠C =69°.20.证明:(1)∵∠ABC =90°∴∠CBD =90°=∠ABC .在△ABE 和△CBD 中∵⎩⎨⎧AB =CB ,∠ABE =∠CBD ,BE =BD ,∴△ABE ≌△CBD(SAS).(2)∵△ABE ≌△CBD∴∠AEB =∠CDB .∵∠AEB 为△AEC 的一个外角∴∠AEB =∠CAE +∠ACB =27°+45°=72° ∴∠BDC =72°.21.解:点P 是线段CD 的中点. 证明如下:过点P 作PE ⊥AB 于E∵AD ∥BC ,PD ⊥CD 于D∴PC ⊥BC∵∠DAB 的平分线与∠CBA 的平分线交于点P ∴PD =PE ,PC =PE∴PC =PD∴点P 是线段CD 的中点.(2)35°22.解:(1)证明:延长AE 交DC 的延长线于点F∵E 是BC 的中点∴CE =BE∵AB ∥DC∴∠BAE =∠F在△AEB 和△FEC 中∴△AEB≌△FEC∴AB=FC∵AE是∠BAD的平分线∴∠BAE=∠EAD∵AB∥CD∴∠BAE=∠F∴∠EAD=∠F∴AD=DF∴AD=DF=DC+CF=DC+AB(2)如图②,延长AE交DF的延长线于点G∵E是BC的中点∴CE=BE∵AB∥DC∴∠BAE=∠G在△AEB和△GEC中∴△AEB≌△GEC∴AB=GC∵AE是∠BAF的平分线∴∠BAG=∠FAG∵AB∥CD∴∠BAG=∠G∴∠FAG=∠G∴FA=FG∴AB=CG=AF+CF第11 页共11 页。
2023年中考数学----全等三角形的判定与性质知识回顾与专项练习题(含答案解析)
2023年中考数学----全等三角形的判定与性质知识回顾与专项练习题(含答案解析)知识回顾1.三角形的三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边。
三角形的三边一旦确定,这三角形就固定了,这是三角形具有稳定性。
2.三角形的内角和定理:三角形的三个内角之和等于180°。
3.三角形的外角定理:三角形的一个外角等于它不相邻的两个内角之和。
大于它不相邻的任意一个内角。
4.全等三角形的性质:若两个三角形全等,则他们的对应边相等;对应角相等;对应边上的中线相等,高线相等,角平分线也相等;且这两个三角形的周长和面积均相等。
5.全等三角形的判定:①边边边(SSS):三条边分别对应性相等的两个三角形全等。
②边角边(SAS):两边及其这两边的夹角对应相等的两个三角形全等。
③角边角(ASA):两角及其这两角的夹边对应相等的两个三角形全等。
④角角边(AAS):两角及其其中一角的对边对应相等的两个三角形全等。
⑤直角三角形判定(HL):直角三角形中斜边与其中任意一直角边分别对应相等的两个直角三角形全等。
全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件。
在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形。
专项练习题(含答案解析)1.已知:如图,∠1=∠2,∠3=∠4.求证:AB=AD.【分析】根据邻补角的定义得出∠ACB=∠ACD,利用ASA证明△ACB≌△ACD,根据全等三角形的性质即可得解.【解答】证明:∵∠3=∠4,∴∠ACB=∠ACD,在△ACB和△ACD中,,∴△ACB≌△ACD(ASA),∴AB=AD.2.如图,△ABC是等腰三角形,点D,E分别在腰AC,AB上,且BE=CD,连接BD,CE.求证:BD=CE.【分析】根据等腰三角形的性质得出∠EBC=∠DCB,进而利用SAS证明△EBC与△DCB全等,再利用全等三角形的性质解答即可.【解答】证明:∵△ABC∴∠EBC=∠DCB,在△EBC与△DCB中,,∴△EBC≌△DCB(SAS),∴BD=CE.3.如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠BAD=∠EAC,∠C=50°,求∠D的大小.【分析】由∠BAD=∠EAC可得∠BAC=∠EAD,根据SAS可证△BAC≌△EAD,再根据全等三角形的性质即可求解.【解答】解:∵∠BAD=∠EAC,∴∠BAD+∠CAD=∠EAC+∠CAD,即∠BAC=∠EAD,在△BAC与△EAD中,,∴△BAC≌△EAD(SAS),∴∠D=∠C=50°.4.如图,AC平分∠BAD,CB⊥AB,CD⊥AD,垂足分别为B,D.(1)求证:△ABC≌△ADC;(2)若AB=4,CD=3,求四边形的面积.【分析】(1)由AC平分∠BAD,得∠BAC=∠DAC,根据CB⊥AB,CD⊥AD,得∠B=90°=∠D,用AAS 可得△ABC≌△ADC;(2)由(1)△ABC≌△ADC,得BC=CD=3,S△ABC=S△ADC,求出S△ABC=AB•BC=6,即可得四边形ABCD的面积是12.【解答】(1)证明:∵AC平分∠BAD,∴∠BAC=∠DAC,∵CB⊥AB,CD⊥AD,∴∠B=90°=∠D,在△ABC和△ADC中,,∴△ABC≌△ADC(AAS);(2)解:由(1)知:△ABC≌△ADC,∴BC=CD=3,S△ABC=S△ADC,∴S△ABC=AB•BC=×4×3=6,∴S△ADC=6,∴S四边形ABCD=S△ABC+S△ADC=12,答:四边形ABCD的面积是12.5.如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=BC.【分析】利用平行线的性质得∠EDC=∠B,再利用ASA证明△CDE≌△ABC,可得结论.【解答】证明:∵DE∥AB,∴∠EDC=∠B,在△CDE和△ABC中,,∴△CDE≌△ABC(ASA),∴DE=BC.6.如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.(1)求证:MP=NP;(2)若AB=a,求线段PH的长(结果用含a的代数式表示).【分析】(1)过点M作MQ∥BC,交AC于点Q,根据等边三角形的性质以及平行线的性质可得∠AMQ=∠AQM=∠A=60°,可得△AMQ是等边三角形,易证△QMP≌△CNP(AAS),即可得证;(2)根据等边三角形的性质可知AH=HQ,根据全等三角形的性质可知QP=PC,即可表示出HP的长.【解答】(1)证明:过点M作MQ∥BC,交AC于点Q,如图所示:在等边△ABC中,∠A=∠B=∠ACB=60°,∵MQ∥BC,∴∠AMQ=∠B=60°,∠AQM=∠ACB=60°,∠QMP=∠N,∴△AMQ是等边三角形,∴AM=QM,∵AM=CN,∴QM=CN,在△QMP和△CNP中,,∴△QMP≌△CNP(AAS),∴MP=NP;(2)解:∵△AMQ是等边三角形,且MH⊥AC,∴AH=HQ,∵△QMP≌△CNP,∴QP=CP,∴PH=HQ+QP=AC,∵AB=a,AB=AC,∴PH=a.7.如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=DF,②∠ABC =∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.【分析】(1)根据SSS ABC≌△DEF,即可解决问题;(2)根据全等三角形的性质可得∠A=∠EDF,再根据平行线的判定即可解决问题.【解答】(1)解:在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴在上述三个条件中选取一个条件,使得△ABC≌△DEF,选取的条件为①,判定△ABC≌△DEF的依据是SSS.故答案为:①,SSS;(答案不唯一).(2)证明:∵△ABC≌△DEF.∴∠A=∠EDF,∴AB∥DE.8.在△ABC中,∠ACB=90°,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF.若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2.若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.【分析】(1)证明△BCD≌△FCE(SAS),由全等三角形的性质得出∠DBC=∠EFC,证出BD∥EF,则可得出结论;(2)由题意画出图形,延长BC到F,使CF=BC,连接AF,EF,由(1)可知BD∥EF,BD=EF,证出∠AEF=90°,得出∠DHE=90°,由直角三角形的性质可得出结论.【解答】(1)证明:在△BCD和△FCE中,,∴△BCD≌△FCE(SAS),∴∠DBC=∠EFC,∴BD∥EF,∵AF⊥EF,∴BD⊥AF;(2)解:由题意补全图形如下:CD=CH.证明:延长BC到F,使CF=BC,连接AF,EF,∵AC⊥BF,BC=CF,∴AB=AF,由(1)可知BD∥EF,BD=EF,∵AB2=AE2+BD2,∴AF2=AE2+EF2,∴∠AEF=90°,∴AE⊥EF,∴BD⊥AE,∴∠DHE=90°,又∵CD=CE,∴CH=CD=CE.9.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,且点D在线段BC上,连CE.(1)求证:△ABD≌△ACE;(2)若∠EAC=60°,求∠CED的度数.【分析】(1)可利用SAS证明结论;(2)由全等三角形的性质可得∠ACE=∠ABD,利用等腰直角三角形的性质可求得∠ACE=∠ABD=∠AED =45°,再根据三角形的内角和定理可求解∠AEC的度数,进而可求可求解【解答】(1)证明:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵△ABD≌△ACE,∴∠ACE=∠ABD,∵△ABC和△ADE都是等腰直角三角形,∴∠ACE=∠ABD=∠AED=45°,∵∠EAC=60°,∴∠AEC=180°﹣∠ACE﹣∠EAC=180°﹣45°﹣60°=75°,∴∠CED=∠AEC﹣∠AED=75°﹣45°=30°.10.如图,在△ABC中(AB<BC),过点C作CD∥AB,在CD上截取CD=CB,CB上截取CE=AB,连接DE、DB.(1)求证:△ABC≌△ECD;(2)若∠A=90°,AB=3,BD=2,求△BCD的面积.【分析】(1)由CD∥AB得∠ABC=∠ECD,而CD=CB,CE=AB,即可根据全等三角形的判定定理“SAS”证明△ABC≌△ECD;(2))由∠A=90°,根据全等三角形的对应角相等证明∠BED=∠CED=∠A=90°,设BE=x,由BD2﹣BE2=CD2﹣EC2=DE2,列方程(2)2﹣x2=(3+x)2﹣32,解方程求得符合题意的x的值为2,则BC =5,再根据勾股定理求出DE的长,即可求出△BCD的面积.【解答】(1)证明:∵CD∥AB,CD=CB,CE=AB,∴∠ABC=∠ECD,在△ABC和△ECD中,,∴△ABC≌△ECD(SAS).(2)解:∵∠A=90°,∴∠CED=∠A=90°,∴∠BED=180°﹣∠CED=90°,设BE=x,∵EC=AB=3,BD=2,∴CD=BC=3+x,∵BD2﹣BE2=CD2﹣EC2=DE2,∴(2)2﹣x2=(3+x)2﹣32,整理得x2+3x﹣10=0,解得x1=2,x2=﹣5(不符合题意,舍去),∴BE=2,BC=3+2=5,∴DE===4,∴S△BCD=BC•DE=×5×4=10,∴△BCD的面积为10.11.如图,在Rt△ABC中,∠BAC=90°,AB=AC=1,D是BC边上的一点,以AD为直角边作等腰Rt △ADE,其中∠DAE=90°,连接CE.(1)求证:△ABD≌△ACE;(2)若∠BAD=22.5°时,求BD的长.【分析】(1)由“SAS”可证△ACE;(2)由等腰三角形三角形的性质可得BC的长,由角度关系可求∠ADC=67.5°=∠CAD,可得AC=CD =1,即可求解.【解答】(1)证明:∵∠BAC=90°=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵∠BAC=90°,AB=AC=1,∴BC=,∠B=∠ACB=45°,∵∠BAD=22.5°,∴∠ADC=67.5°=∠CAD,∴AC=CD=1,∴BD=﹣1.12.如图,已知矩形ABCD中,AB=8,BC=x(0<x<8),将△ACB沿AC对折到△ACE的位置,AE和CD交于点F.(1)求证:△CEF≌△ADF;(2)求tan∠DAF的值(用含x的式子表示).【分析】(1)根据矩形的性质得到∠B=∠D=90°,BC=AD,根据折叠的性质得到BC=CE,∠E=∠B =90°,等量代换得到∠E=∠D=90°,AD=CE,根据AAS证明三角形全等即可;(2)设DF=a,则CF=8﹣a,根据矩形的性质和折叠的性质证明AF=CF=8﹣a,在Rt△ADF中,根据勾股定理表示出DF的长,根据正切的定义即可得出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=90°,BC=AD,根据折叠的性质得:BC=CE,∠E=∠B=90°,∴∠E=∠D=90°,AD=CE,在△CEF与△ADF中,,∴△CEF≌△ADF(AAS);(2)解:设DF=a,则CF=8﹣a,∵四边形ABCD是矩形,∴AB∥CD,AD=BC=x,∴∠DCA=∠BAC,根据折叠的性质得:∠EAC=∠BAC,∴∠DCA=∠EAC,∴AF=CF=8﹣a,在Rt△ADF中,∵AD2+DF2=AF2,∴x2+a2=(8﹣a)2,∴a=,∴tan∠DAF==.13.如图,△ABC和△DEF,点E,F在直线BC上,AB=DF,∠A=∠D,∠B=∠F.如图①,易证:BC+BE =BF.请解答下列问题:(1)如图②,如图③,请猜想BC,BE,BF之间的数量关系,并直接写出猜想结论;(2)请选择(1)中任意一种结论进行证明;(3)若AB=6,CE=2,∠F=60°,S△ABC=123,则BC=,BF=.【分析】(1)根据图形分别得出答案;(2)利用AAS证明△ABC≌△DFE,得BC=EF,再根据图形可得结论;(3)首先利用含30°角的直角三角形的性质求出BH和AH的长,从而得出BC,再对点E的位置进行分类即可.【解答】解:(1)图②:BC+BE=BF,图③:BE﹣BC=BF;(2)图②:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BC+CE,∴BC+BE=EF+BC+CE=BF;图③:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BF+EF,∴BE﹣BC=BF+EF﹣BC=BF+BC﹣BC=BF;(3)当点E在BC上时,如图,作AH⊥BC于H,∵∠B=∠F=60°,∴∠BAH=30°,∴BH=3,∴AH=3,∵S△ABC=12,∴=12,∴BC=8,∵CE=2,∴BF=BE+EF=8﹣2+8=14;同理,当点E在BC延长线上时,如图②,BF=BC+BE=8+10=18,故答案为:8,14或18.14.△ABC和△ADE都是等边三角形.(1)将△ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有P A+PB =PC(或P A+PC=PB)成立(不需证明);(2)将△ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC 之间有怎样的数量关系?并加以证明;(3)将△ADE绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC 之间有怎样的数量关系?直接写出结论,不需要证明.【分析】(2)证明△ABD≌△ACE(SAS)和△BAF≌△CAP(SAS),得AF=AP,∠BAF=∠CAP,再证明△AFP是等边三角形,最后由线段的和可得结论;(3)如图③,在PC上截取CM=PB,连接AM,同理可得结论.【解答】解:(2)PB=P A+PC,理由如下:如图②,在BP上截取BF=PC,连接AF,∵△ABC、△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC+∠CAD=∠CAD+∠DAE,即∠DAB=∠EAC,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,BF=CP,∴△BAF≌△CAP(SAS),∴AF=AP,∠BAF=∠CAP,∴∠BAC=∠P AF=60°,∴△AFP是等边三角形,∴PF=P A,∴PB=BF+PF=PC+P A;(3)PC=P A+PB,理由如下:如图③,在PC上截取CM=PB,连接AM,同理得:△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,PB=CM,∴△AMC≌△APB(SAS),∴AM=AP,∠BAP=∠CAM,∴∠BAC=∠P AM=60°,∴△AMP是等边三角形,∴PM=P A,∴PC=PM+CM=P A+PB.15.【情境再现】甲、乙两个含45°角的直角三角尺如图①放置,甲的直角顶点放在乙斜边上的高的垂足O处.将甲绕点O 顺时针旋转一个锐角到图②位置.按图②作出示意图,并连接AG,BH,如图③所示,AB交HO于E,AC 交OG于F,通过证明△OBE≌△OAF,可得OE=OF.请你证明:AG=BH.【迁移应用】延长GA分别交HO,HB所在直线于点P,D,如图④,猜想并证明DG与BH的位置关系.【拓展延伸】小亮将图②中的甲、乙换成含30°角的直角三角尺如图⑤,按图⑤作出示意图,并连接HB,AG,如图⑥所示,其他条件不变,请你猜想并证明AG与BH的数量关系.【分析】【情境再现】由△OBE≌△OAF,得BE=AF,OE=OF,∠BEO=∠AFO,可证明△BHE≌△AGF (SAS),得BH=AG;【迁移应用】由△BHE≌△AGF,得∠BHE=∠AGF,可得∠AGF+∠GPO=90°,从而∠BHE+∠HPD=90°,∠HDP=90°,故DG⊥BH;【拓展延伸】设AB交OH于T,OG交AC于K,根据△ABC,△HOG是含30°角的直角三角形,AO⊥BC,可得OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,即得△BOT∽△AOK,有===,∠BTO=∠AKO,又OH=GO,可得==,故△BTH∽△AKG,即得==,BH=AG.【解答】【情境再现】证明:由阅读材料知△OBE≌△OAF,∴BE=AF,OE=OF,∠BEO=∠AFO,∴∠BEH=∠AFG,∵OH=OG,∴OH﹣OE=OG﹣OF,即EH=GF,在△BHE和△AGF中,,∴△BHE≌△AGF(SAS),∴BH=AG;【迁移应用】解:猜想:DG⊥BH;证明如下:由【情境再现】知:△BHE≌△AGF,∴∠BHE=∠AGF,∵∠HOG=90°,∴∠AGF+∠GPO=90°,∴∠BHE+∠GPO=90°,∵∠GPO=∠HPD,∴∠BHE+∠HPD=90°,∴∠HDP=90°,∴DG⊥BH;【拓展延伸】解:猜想:BH=AG,证明如下:设AB交OH于T,OG交AC于K,如图:由已知得:△ABC,△HOG是含30°角的直角三角形,AO⊥BC,∴∠AOB=90°,∴OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,∴△BOT∽△AOK,∴===,∠BTO=∠AKO,∴OT=OK,BT=AK,∠BTH=∠AKG,∵OH=GO,∴HT=OH﹣OT=GO﹣OK=(GO﹣OK)=KG,∴==,∴△BTH∽△AKG,∴==,∴BH=AG19。
全等三角形中考真题汇编[解析版]
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
重庆市2019届中考数学一轮复习《4.3全等三角形》讲解含答案
第三节全等三角形课标呈现指引方向1.理解全等三角形的概念,能识别全等三角形中的对应边、对应角.2.掌握基本事实:两边及其夹角分别相等的两个三角形全等.3.掌握基本事实:两角及其夹边分别相等的两个三角形全等.4.掌握基本事实:三边分别相等的两个三角形全等.5.证明定理:两角分别相等且其中一组等角的对边相等的两个三角形全等,考点梳理夯实基础1.全等图形:能够完全重合的两个图形叫做__全等图形__.注:能够完全重合即形状、大小完全相同.2.全等三角形:能够完全重合的两个三角形叫做__全等__三角形.3.全等三角形的性质:(1)全等三角形的对应边__相等__;全等三角形的对应角__相等__.(2)全等三角形的对应线段(角平分线、中线、高线)__相等__,周长__相等__,面积__相等__.4.一般三角形全等的判定:(1)若两个三角形的三条边分别__对应相等__,那么这两个三角形全等,简记为“SSS”;(2)若两个三角形的两边及其__夹角__分别相等,那么这两个三角形全等,简记为“SAS”:(3)若两个三角形的两角及其__夹边__分别相等,那么这两个三角形全等,简记为“ASA”:(4)若丙个三角形的两角及其中一角的对边分别对应相等,那么这两个三角形全等,简记为__“AAS"__.5.直角三角形全等的判定:(1)两直角边对应相等的两个直角三角形全等;(2)一边一锐角对应相等的两个直角三角形全等;(3)若两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等,简记为__“HL”__.6.寻找对应边、对应角的方法:(1)有公共边的,公共边一定是对应边;(2)有公共角的,公共角一定是对应角;(3)有对顶角的,对顶角一定是对应角;(4)两个全等三角形中一对最长的边(或最大的角)是对应边(角),一对最短的边(或最小的角)是对应边(或角).7.证明三角形全等的思路:(1)已知两边:①找夹角(SAS);②找直角(HL);③找第三边( SSS).(2)已知一边和一角:①边为角的对边,找任意一角(AAS);②边为角的邻边,找夹角的另一边(SAS);③找夹边的另一角(ASA);④找边的对角(AAS).(3)已知两角:①找夹边(ASA);②找角的对边(AAS).考点精析专项突破考点一三角形全等判定方法的选择【例l】(2019云南)如图,已知∠ABC= ∠BAD,添加下列条件还不能判定△ABC≌△BAD的是 ( A )2A.AC = BDB.∠CAB=∠DBAC.∠C=∠DD.BC=AD觯题点拨:本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【例2】(2019泰州)如图,△ABC 中,AB=AC ,D 是BC 的中点,AC 的垂直平分线分别交AC 、AD 、AB 于点E 、O 、F ,则图中全等三角形的对数是 ( D )A .1对B .2对C .3对D .4对解题点拨:根据已知条件“AB=AC.D 为BC 中点”,得出△ABD ≌△ACD ,然后再由AC 的垂直平分线分别交AC 、AD 、AB 于点E 、O 、F ,推出△AOE ≌△EOC ,从而根据“SSS”或“SAS”找到更多的全等三角形,要由易到难,不重不漏.考点二 全等三角形的性质与判定综合【例3】如图,在平行四边形ABCD 中,∠B= ∠AFE ,EA 是∠BEF 的角平分线.求证: (1)△ABE ≌△AFE ; (2)∠FAD= ∠CDE .解题点拨:此题主要考查了平行四边形的性质,以及全等三角 形的判定与性质,(2)问关键是正确证明△AFD ≌△DCE . 证明:(1)∵EA 是∠BEF 的角平分线, ∴∠1=∠2.在△ABE 和△AFE 中,,12,,B AFE AE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△AFE(AAS). (2)∵△ABE ≌△AFE , ∴AB=AF ,∵四边形ABCD 是平行四边形. ∴AB=CD ,AD ∥CB ,AB ∥CD ,∴AF=CD ,∠ADF= ∠DEC ,∠B+∠C=180°, ∴∠B= ∠AFE ,∠AFE+∠AFD=180°, ∴AFD= ∠C ,在△AFD 和△DCE 中,,,,ADF FEC C AFD AF DC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFD≌△DCE(AAS) , ∴∠FAD= ∠CDE.课堂训练 当堂检测1.如图,已知AB=AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是 ( C) A .CB= CDB .∠BAC= ∠DAC C .∠BCA=∠DCAD .∠B=∠D= 90°2.如图,平行四边形ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件使△4BE 竺△CDF .则添加的条件不能是( A )A .AE=CFB .BE= FDC .BF= DED .∠1= ∠23.(2019成都)如图,△ABC ≌△A'B'C',其中∠A= 36°, ∠C'=24°,则∠B= __120°__.4.已知,如图.AB=AC ,BD=CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,求证:DE=DF .证明:连接AD ,在△ACD 和△ABD 中,,,,AC AB CD BD AD AD =⎧⎪=⎨⎪=⎩△ACD ≌△ABD(SSS),∴∠EAD=∠FAD ,即AD 平分∠EAF , ∵DE ⊥AE .DF ⊥AF . ∴DE=DF .中考达标 模拟自测A 组 基础训练一、选择题1.如图,△ABC 和△DEF 中,AB= DE ,/B= LDEF ,添加下列哪一个条件无法证明△ABC ≌△DEF ( C )A .AC ∥DFB .∠A =∠DC .AC=DFD .∠ACB= ∠F2.(2019陕西)如图,在正方形ABCD 中,连接BD ,点O 是BD 的中点,若M 、N 是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M'、N',则图中的全等三角形共有 ( C )A.2对B.3对C.4对D.5对3.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC= BD,AB= ED,BC= BE,则∠ACB等于 ( C )A.∠EDBB.∠BEDC.12∠AFBD.2∠ABF4.将两个斜边长相等的三角形纸片如图①放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°,把△DCE 绕点C顺时针旋转15°得到△D1CE1,如图②,连接D1B则∠E1D1B的度数为 ( D )A.10°B.20°C.7.5°D.15°二、填空题5.如图,AC、BD相交于点O,∠A=∠D,请补充一个条件,使△AOB≌△DOC,你补充的条件__AB=CD__(填出一个即可).6.如图,△ABD≌△CBD,若∠A=80°,∠ABC= 70°,则∠ADC的度数为__130°__.7.在Rt △ABC 中,∠ACB =90°,BC =2cm ,CD ⊥AB ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC 交CD 的延长线于点F .若EF= 5cm .则AB=__29__cm .三、解答题8.(2019重庆)如图,点A ,B ,C ,D 在同一条直线上,CE ∥DF ,EC =BD ,AC =FD .求证:AE =FB .证明:CE ∥DF , ∴∠ACE= ∠D ,在△ACE 和△FDB 中,,,,AC FD ACE D EC BD =⎧⎪∠=∠⎨⎪=⎩△ACE ≌△FDB , ∴AE =FB .9.如图,∠ABC= 90°,D 、E 分别在BC 、AC 上,AD ⊥DE ,且AD= DE .点F 是AE 的中点.FD 与AB 相交于点M .(1)求证:∠FMC= ∠FCM;(2)AD 与MC 垂直吗?并说明理由.解:(1)证明:∵△ADE 是等腰直角三角形,F 是AE 中点, ∴DF ⊥AE ,DF =AF= EF ,又∵∠ABC=90, ∠DCF ,∠AMF 都与∠MAC 互余,∴∠DCF=∠AMF .在△DFC 和△AFM 中.,,,DCF AMF MFA CFD DF AF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DCF ≌△AMF(AAS),∴CF =MF ,∴∠FMC =∠FCM ; (2)AD ⊥MC ,理由:由 (1)知,∠MFC = 90°,FD = EF ,FM = FC ,∴∠FDE =∠FMC=45°, ∴DE//CM ,∴AD ⊥MC .B 组提高练习10.(2019丹东)如图,在△ABC 中,AD 和BE 是高,∠ABE= 45°,点F 是AB 的中点,AD 与FE 、BE 分别交于点G 、H ,∠CBE= ∠BAD .有下列结论:①FD=FE ;②AH=2CD ;③BC·AD=2AE 2;④4ABC ADF S S ∆∆=其中正确的有( D )A .1个B .2个C .3个D .4个(提示:∵在△ABC 中,AD 和BE 是高,∴∠ADB=∠AEB=∠CEB=90°,∵点F 是AB 的中点,∴FD=12AB ,∵∠ABE=45°,∴△ABE 是等腰直角三角形, ∴AE=BE ,∵点F 是AB 的中点,∴FE =12AB ,∴FD =FE ,①正确;∵∠CBE=∠BAD ,∠CBE+ ∠C= 90°,∠BAD+∠ABC=90°,∴∠ABC= ∠C ,∴AB =AC ,∴AD ⊥BC ,∴BC= 2CD ,∠BAD=∠CAD= ∠CBE ,在△AEH 和△BEC 中,,,,AEH CEB AE BE EAH CBE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AEH ≌△BEC(ASA),∴AH=BC=2CD ,②正确;∵∠BAD= ∠CBE , ∠ADB=∠CEB ,..,△ABD ∽△BCE ,BC BE AB AD=,即BC·AD=AB·BE,2AE 2=AB·AE=AB·BE,∴BC·AD =2AE 2;③正确;∵F 是AB 的中点,BD= CD ,∴24ABC ABD ADF S S S ∆∆∆==.④正确;故选:D .) 11.(2019丹东)如图,在平面直角坐标系中,A 、B 两点分别在x 轴、y 轴上,OA =3,OB=4,连接AB .点P 在平面内,若以点P\A 、B 为顶点的三角形与△AOB 全等(点P 与点O 不重合),则点P 的坐标为__(3,4),(9625,7225),(2125-,2825)__.(提示:如图所示:①∵OA =3,OB =4,∴P 1(3,4); ②连结OP 2,设AB 的解析式为y=kx+b ,则30,4,k b b +=⎧⎨=⎩解得4,34.k b ⎧=-⎪⎨⎪=⎩故AB 解析式为y=43-x +4,则OP 2的解析式为y =43x ,联立方程组得44,33,4y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩解得48,253625x y ⎧=⎪⎪⎨⎪=⎪⎩,则P 2(9625,7225);③连结P 2P 3,则四边形AP 2BP 3为平行四边形,则E 为线段AB 和P 2P 3的中点,设P 3(x ,y),则96032522x ++=,72042522x ++=, ∴x =2125-,y =2825,∴P 3(2125-,2825),故点P 的坐标为(3,4)或(9625,7225)或(2125-,2825).12.如图,△ABC 中,∠ABC =45°,过点C 作CD ⊥AB 于点D ,过点B 作BM ⊥AC 于点M ,BM 交CD 于点E ,且点E 为CD 的中点,连接MD ,过点D 作ND ⊥MD 于点D ,DN 交BM 于点N . (1)若BC =22,求△BDE 的周长; (2)求证:NE -ME =CM .解:(1)∵∠ABC =45°,CD ⊥AB ,∴在Rt △BCD 中,∠DBC =∠DCB =45°, ∵BC =22, ∴BD =CD =22×22=2, ∵点E 为CD 的中点,∴DE =CE =21CD =21×2=1, ∴BE =5122222=+=+DE BD ,∴△BDE 的周长=BD +DE +BE =2+1+5=3+5;(1) 证明:∵CD ⊥AB ,BM ⊥AC ,∴∠ABN +∠A =90°,∠ACD +∠A =90°, ∴∠ABN =∠ACD , ∵CD ⊥AB ,ND ⊥MD ,∴∠BDN +∠CDN =∠CDM +∠CDN =90°, ∴∠BDN =∠CDM , 在△BDN 和△CDM 中,⎪⎩⎪⎨⎧∠=∠=∠=∠CDM BDN CD BD ACD ABN , ∴△BDN ≌△CDM (ASA ), ∴DN =DM ,∴△DMN 是等腰直角三角形,过点D 作DF ⊥BE 于F ,则DF =NF , ∵BM ⊥AC 于点M ,∴∠DFE =∠CME =90°, 在△DEF 和△CEM 中,⎪⎩⎪⎨⎧=∠=∠∠=∠CE DE CEM DEF CME DFE , ∴△DEF ≌△CEM (AAS ), ∴DF =CM ,EF =ME ,∴NE -ME =NE -EF =NF =DF =CM , 即NE -ME =CM .2019-2020学年数学中考模拟试卷一、选择题1.一元二次方程x 2﹣x+2=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .只有一个实数根 2.如图,点是矩形的对角线上一点,正方形的顶点、都在边上,,,则的值为( )A.B.C. D.3.下列图形中,的是( )A. B.C. D.4.下列计算正确( )A .222a b a b +=+() B .235a a a ⋅=C .822a a a ÷=D .325a a a +=5.如图,AB ∥CD ,直线MN 与AB 、CD 分别交于点E 、F ,FG 平分∠EFD ,EG ⊥FG 于点G ,若∠CFN =110°,则∠BEG =( )A .20°B .25°C .35°D .40°6.如图,60AOB ∠=,以点O 为圆心,以任意长为半径作弧交OA ,OB 于,C D 两点,分别以,C D 为圆心,以大于12CD 的长为半径作弧,两弧相交于点P ;以O 为端点作射线OP ,在射线OP 上截取线段6OM =,则M 点到OB 的距离为( )A.3B.3C.6D.337.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点D是AC的中点,连接BD,按以下步骤作图:①分别以B,D为圆心,大于12BD的长为半径作弧,两弧相交于点P和点Q;②作直线PQ交AB于点E,交BC于点F,则BF=()A.56B.1 C.136D.528.一组数据:201、200、199、202、200,分别减去200,得到另一组数据:1、0、﹣1、2、0,其中判断错误的是()A.前一组数据的中位数是200B.前一组数据的众数是200C.后一组数据的平均数等于前一组数据的平均数减去200D.后一组数据的方差等于前一组数据的方差减去2009.已知:如图,四边形AOBC是矩形,以O为坐标原点,OB、OA分别在x轴、y轴上,点A的坐标为(0,3),∠OAB=60°,以AB为轴对折后,C点落在D点处,则D点的坐标为()A.(33322-,)B.(33322--,)C.(32,-332)D.(3,-33)10.下列运算正确的是()A.ab•ab=2ab B.(3a)3=9a3C .4a ﹣3a =3(a≥0)D .a ab b=(a≥0,b≥0) 11.如果a 2+2a ﹣1=0,那么代数式(a ﹣4a )•22a a -的值是( )A.1B.12C.2D.212.如图,在△ABC 中,AC =BC ,∠C =90°,折叠△ABC 使得点C 落在AB 边上的E 处,连接DE 、CE ,下列结论:①△DEB 是等腰直角三角形;②AB =AC+CD ;③BE BDAC AB= ;④S △CDE =S △BDE .其中正确的个数是( )A .1B .2C .3D .4二、填空题13.把多项式ax 2+2a 2x+a 3分解因式的结果是_____.14.如图所示,四边形ABCD 中,60BAD ∠=︒,对角线AC 、BD 交于点E ,且BD BC =,30ACD ∠=︒,若19AB =,7AC =,则CE 的长为_____.15.如图,直线l 为y=3x ,过点A 1(1,0)作A 1B 1⊥x 轴,与直线l 交于点B 1,以原点O 为圆心,OB 1长为半径画圆弧交x 轴于点A 2;再作A 2B 2⊥x 轴,交直线l 于点B 2,以原点O 为圆心,OB 2长为半径画圆弧交x 轴于点A 3;……,按此作法进行下去,则点A n 的坐标为(_______).16.计算:30=_____;=_____.17.截止到2018年5月31日,上海世博园共接待游客约8000000人,将数8000000用科学记数法表示为________. 18.函数15x y x -=+中,自变量x 的取值范围是________. 三、解答题19.先化简,再求值:(a ﹣2b )(a+2b )﹣(a ﹣2b )2+8b 2,其中a =﹣6,b =1320.大唐芙蓉园是中国第一个全方位展示盛唐风貌的大型皇家园林式文化主题公园,全园标志性建筑一紫云楼为代表,展示了“形神升腾紫云景,天下臣服帝王心”的唐代帝王风范(如图①).小风和小花等同学想用一些测量工具和所学的几何知识测量“紫云楼”的高度,来检验自己掌握知识和运用知识的能力,他们经过研究需要两次测量:首先,在阳光下,小风在紫云楼影子的末端C 点处竖立一根标杆CD ,此时,小花测得标杆CD 的影长CE =2米,CD =2米;然后,小风从C 点沿BC 方向走了5.4米,到达G 处,在G 处竖立标杆FG ,接着沿BG 后退到点M 处时,恰好看见紫云楼顶端A ,标杆顶端F 在一条直线上,此时,小花测得GM =0.6米,小风的眼睛到地面的距离HM =1.5米,FG =2米.如图②,已知AB ⊥BM ,CD ⊥BM ,FG ⊥BM ,HM ⊥BM ,请你根据题中提供的相关信息,求出紫云楼的高AB .21.如图,为了测量建筑物AD 的高度,小亮从建筑物正前方10米处的点B 出发,沿坡度i =1:3的斜坡BC 前进6米到达点C ,在点C 处放置测角仪,测得建筑物顶部D 的仰角为40°,测角仪CE 的高为1.3米,A 、B 、C 、D 、E 在同一平面内,且建筑物和测角仪都与地面垂直求建筑物AD 的高度.(结果精确到0.1米参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,3≈1.73)22.(1)计算:()112cos3020192π-⎛⎫---- ⎪⎝⎭(2)解方程:4501x x -=- 23.为了“天更蓝,水更绿”某市政府加大了对空气污染的治理力度,经过几年的努力,空气质量明显改善,现收集了该市连续30天的空气质量情况作为样本,整理并制作了如下表格和一幅不完整的条形统计图:环境空气质量指数( )30 40 70 80 90 110 120 140 天数(t) 1 2 3 5 7 6 4 2说明:环境空气质量指数(AQI)技术规定:ω≤50时,空气质量为优;51≤ω≤100时,空气质量为良;101≤ω≤150时,空气质量为轻度污染;151≤ω≤200时,空气质量为中度污染,…根据上述信息,解答下列问题:(1)请补全空气质量天数条形统计图:(2)根据已完成的条形统计图,制作相应的扇形统计图;(3)健康专家温馨提示:空气污染指数在100以下适合做户外运动,请根据以上信息,估计该市居民一年(以365天计)中有多少天适合做户外运动?24.在2018年梧州市体育中考中,每名学生需考3个项目(包括2个必考项目与1个选考项目)每个项目20分,总分60分.其中必考项目为:跳绳和实心球;选考项目:A篮球、B足球、C排球、D立定跳远、E50米跑,F女生800米跑或男生1000米跑.某兴趣小组随机对同学们的选考项目做了调查,根据调查结果绘制了两幅不完整的条形统计图与扇形统计图.结合图中信息,回答下列问题:(1)在这次调查中,一共调查了名学生,扇形统计图中C对应的圆心角的度数为;(2)在本次调查的必考项目的众数是;(填A、B、C、D、E、F选项)(3)选考项目包括球类与非球类,请用树状图或列表法求甲、乙两名同学都选球类的概率.25.已知抛物线C1:y=﹣x2+bx+3与x轴的一个交点为(1,0),顶点记为A,抛物线C2与抛物线C1关于y轴对称.(1)求抛物线C2的函数表达式;(2)若抛物线C2与x轴正半轴的交点记作B,在x轴上是否存在一点P,使△PAB为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C A C B C A C D A D A C 二、填空题13.a(x+a)214.16 515.2n﹣1,016.17.18.5x>-三、解答题19.-8【解析】【分析】原式利用平方差公式,完全平方公式计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【详解】原式=a2﹣4b2﹣a2+4ab﹣4b2+8b2=4ab,当a=﹣6,b=13时,原式=﹣8.【点睛】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.20.紫云楼的高AB为39米.【解析】【分析】根据已知条件得到AB=BC,过H作HN⊥AB于N,交FG于P,设AB=BC=x,则HN=BM=x+5.4+0.6=x+6,AN=x﹣1.5,FP=0.5,PH=GM=0.6,根据相似三角形的性质即可得到结论.【详解】解:∵CD⊥BM,FG⊥BM,CE=2,CD=2,∴AB=BC,过H作HN⊥AB于N,交FG于P,设AB=BC=x,则HN=BM=x+5.4+0.6=x+6,AN=x﹣1.5,FP=0.5,PH=GM=0.6,∵∠ANH=∠FPH=90°,∠AHN=∠FHP,∴△ANH∽△FPH,∴AN NH PF PH =,即 1.560.50.6x x -+=, ∴x =39,∴紫云楼的高AB 为39米.【点睛】本题考查了相似三角形的应用,正确的识别图形是解题的关键. 21.建筑物AD 的高度约为17.1米. 【解析】 【分析】延长EC 交AB 于F ,作EM ⊥AD 于M ,根据坡比的定义求出,BF CF ,根据正切的定义求出DM ,计算即可. 【详解】解:延长EC 交AB 于F ,作EM ⊥AD 于M ,如下图所示:则四边形MAFE 为矩形, ∴MA =EF ,ME =AF ,∵斜坡BC 的坡度13i =:,BC =6, ∴CF =3,33 5.19BF ≈=, ∴15.19 4.3ME AF EF ==,=,在Rt DEM △中,DMtan DEM ME∠=, ∴•15.190.8412.76DM ME tan DEM ∠≈⨯== ,∴ 4.312.7617.0617.1AD DM AM ++≈===, 答:建筑物AD 的高度约为17.1米. 【点睛】本题主要考查了解直角三角形的应用,仰角俯角问题,掌握仰角俯角的概念,熟记锐角三角函数的定义是解题关键.22.(1)31+;(2)5x =. 【解析】 【分析】(1)根据整数指数幂的运算以及特殊三角函数值计算即可; (2)根据解分式方程的步骤解即可,注意要验根. 【详解】(1)()112cos3020192π-⎛⎫---- ⎪⎝⎭=321+22⨯-, =31+; (2)4501x x-=- , 去分母得:4x-5(x-1)=0 去括号得,4x-5x+5=0 移项得,4x-5x=-5, 合并,得:-x=-5, 系数化为1,得:x=5.经检验,x=5是原分式方程的解. 【点睛】本题主要考查了实数的运算以及解分式方程,计算时一定要细心,分式方程要检验. 23.(1)见解析;(2)见解析;(3)219天. 【解析】 【分析】(1)由题意,可得轻度污染的天数,即可补全条形统计图.(2)由题意,得优所占的圆心角的度数为:3÷30×360=36°,良所占的圆心角的度数为:15÷30×360=180°,轻度污染所占的圆心角的度数为:12÷30×360=144°. (3)由18÷30得出每天适合做户外运动的概率,再由得出的概率乘以365即可得到答案. 【详解】解:(1)由题意,得轻度污染的天数为:30﹣3﹣15=12天.(2)由题意,得优所占的圆心角的度数为:3÷30×360=36°,良所占的圆心角的度数为:15÷30×360=180°,轻度污染所占的圆心角的度数为:12÷30×360=144°(3)该市居民一年(以365天计)适合做户外运动天数为:18÷30×365=219天.【点睛】本题考查条形统计图和扇形统计图,解题的关键是读懂条形统计图和扇形统计图中包含的信息.24.(1)50,108°;(2)C;(3)1 4【解析】【分析】(1)用足球的人数除以它所占的百分比得到调查的总人数,用360°乘以C所占的百分比得到C的扇形圆心角度数;(2)根据众数的定义求解可得;(3)画树状图展示所有36种等可能的结果数,找出都选球类的结果数,然后根据概率公式求解.【详解】解:(1)5÷10%=50名,答:在这次调查中,一共调查了50名学生,扇形统计图中C对应的圆心角的度数为360×1550=108°,(2)在本次调查的必考项目的众数是C;(3)画树状图如图所示,共有36种等可能的结果,甲、乙两名同学都选球类的有9种情况,∴则P(甲、乙两名同学都选球类)=936=14.【点睛】本题主要考查数据统计里的知识,关键在于根据树状图计算概率.这道题的综合性比较强,是考试的热点问题,应当熟练掌握.25.(1)y=﹣x2+2x+3;(2) 点P坐标为(﹣5,0)或(3﹣42,0)或(3+42,0)或(﹣1,0)【解析】【分析】(1)把点(1,0)代入y=﹣x2+bx+3,解得b=﹣2,所以抛物线C1:y=﹣x2﹣2x+3,由抛物线C2与抛物线C1关于y轴对称.所以抛物线C2的函数表达式y=﹣(x﹣1)2+4;(2)令y=0,则﹣x2+2x+3=0,解得x=﹣1或3,所以B(3,0),OB=3,A(﹣1,4),AB=42,①当AP=AB=42时,PB=8,P1(﹣5,0)②当BP=AB=42时,P2(3﹣42,0),P3(3+42,0)③当AP=BP时,点P在AB垂直平分线上,PA=PB=4,P4(﹣1,0).【详解】解:(1)把点(1,0)代入y=﹣x2+bx+3,﹣1+b+3=0,解得b=﹣2∴抛物线C1:y=﹣x2﹣2x+3,∴抛物线C1顶点坐标A(﹣1,4),与y轴交点(0,3),∵抛物线C2与抛物线C1关于y轴对称.∴抛物线C2的函数表达式y=﹣(x﹣1)2+4=﹣x2+2x+3;(2)令y=0,则﹣x2+2x+3=0,解得x=﹣1或3,∴B(3,0),OB=3,∵A(﹣1,4),∴AB=42,①当AP=AB=42时,PB=8,∴P1(﹣5,0)②当BP=AB=42时,P2(3﹣42,0),P3(3+42,0)③当AP=BP时,点P在AB垂直平分线上,∴PA=PB=4,∴P4(﹣1,0)综上,点P坐标为(﹣5,0)或(3﹣42,0)或(3+42,0)或(﹣1,0)时,△PAB为等腰三角形.【点睛】本题考查了二次函数,熟练掌握二次函数的性质是解题的关键.2019-2020学年数学中考模拟试卷一、选择题1.下列图形既是轴对称图形,又是中心对称图形的是( ) A .三角形 B .菱形 C .角 D .平行四边形 2.不等式组的解集在数轴上表示正确的是( ) A.B .C .D.3.在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别减去正数a (a >1),那么所得的图案与原图案相比( )A .形状不变,大小扩大到原来的a 倍B .图案向右平移了a 个单位长度C .图案向左平移了a 个单位长度,并且向下平移了a 个单位长度D .图案向右平移了a 个单位长度,并且向上平移了a 个单位长度 4.如图所示的几何体的俯视图是( )A. B. C. D.5.若代数式42x -的值与0(1)-互为相反数,则x =( ) A .1B .2C .2-D .46.若整数a 使关于x 的不等式组()222233a xx x x +⎧≥-⎪⎪⎨⎪-->⎪⎩的解为2x <,且使关于x 的分手方程15444x a x x -++=---的解为正整数,则满足条件a 的的值之和为( ) A .12 B .11 C .10 D .97.如图,Rt △ABC 中,∠C =90°,AB =10,BC =8,将△ABC 折叠,使B 点与AC 的中点D 重合,折痕为EF ,则线段BF 的长是( )A.53B.2 C.166D.73168.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4,则m+n的值是()A.﹣10 B.10 C.﹣6 D.29.如图,AB是⊙O的弦,作OC⊥OA交⊙O的切线BC于点C,交AB于点D.已知∠OAB=20°,则∠OCB 的度数为()A.20°B.30°C.40°D.50°10.计算a2•(a2)3的结果是()A.a7B.a10C.a8D.a1211.如图,小山岗的斜坡AC的坡度是tanα=34,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,则小山岗的高AB是()(结果取整数,参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50)A.300米B.250米C.400米D.100米12.如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A.b2>4acB.ax2+bx+c≥﹣6C.关于x的一元二次方程ax2+bx+c=﹣4的两根分别为﹣5和﹣1D .若点(﹣2,m ),(﹣5,n )在抛物线上,则m >n二、填空题13.问题背景:如图,将ABC ∆绕点A 逆时针旋转60°得到ADE ∆,DE 与BC 交于点P ,可推出结论:PA PC PE +=问题解决:如图,在MNG ∆中,6MN =,75M ∠=︒,42MG =.点O 是MNG ∆内一点,则点O 到MNG ∆三个顶点的距离和的最小值是___________14.在实数范围内分解因式4m 4﹣16=_____.15.如图是一组有规律的图案,第个图案由个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由____个基础图形组成.16.某学校准备购买某种树苗,有A ,B ,C 三家公司出售.查阅有关信息:A ,B ,C 三家公司生产该树苗的成活频率分别稳定在0.902,0.913,0.899,该学校选择成活概率大的树苗,应该选择购买_____公司.17.如图,△ABC 是直角三角形,AB 是斜边,AC =3,AB =5,AB 的垂直平分线分别交BC ,AB 于D ,E ,则BD 的长为_____.18.如图,正方形ABCD 的边长为4,⊙B 的半径为2,P 为⊙B 上的动点,则PD+12PC 的最小值等于_____.三、解答题19.如图,一次函数y =kx+b 的图象与坐标轴分别交于A 、B 两点,与反比例函数y =m x的图象在第一象限的交点为C ,CD ⊥x 轴于D ,若OB =3,OD =6,△AOB 的面积为3.(1)求一次函数与反比例函数的表达式;(2)当x >0时,比较kx+b 与m x的大小.20.化简:(1)a (a ﹣b )﹣(a+b )(a+2b );(2)2233222a a a a a a -⎛⎫÷-- ⎪++⎝⎭21.如图,⊙O 是△ABC 的外接圆,O 点在BC 边上,∠BAC 的平分线交⊙O 于点D ,连接BD 、CD ,过点D 作BC 的平行线,与AB 的延长线相交于点P .(1)求证:PD 是⊙O 的切线;(2)若AB =3,AC =4,求线段PB 的长.22.在平面直角坐标系xOy 中. 已知抛物线22y ax bx a =++-的对称轴是直线x=1.(1)用含a 的式子表示b ,并求抛物线的顶点坐标;(2)已知点()0,4A -,()2,3B -,若抛物线与线段AB 没有公共点,结合函数图象,求a 的取值范围;(3)若抛物线与x 轴的一个交点为C (3,0),且当m x n ≤≤时,y 的取值范围是6m y ≤≤,结合函数图象,直接写出满足条件的m ,n 的值.23.如图,在平面直角坐标系中,直线y=34x+6与x 、y 轴分别交于点A,点B,双曲线的解析式为k y x=(1)求出线段AB的长(2)在双曲线第四象限的分支上存在一点C,使得CB⊥AB,且CB=AB,求k的值;(3)在(1)(2)的条件下,连接AC,点D为BC的中点,过D作AC的垂线BF,交AC于B,交直线AB于F,连AD,若点P为射线AD上的一动点,连接PC、PF,当点P在射线AD上运动时,PF2-PC2的值是否发生改变?若改变,请求出其范围;若不变,请证明并求出定值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 5 页
第四章 三角形
第三节 全等三角形
1. (2016重庆B卷19题7分)如图,在△ABC和△CED中,AB // CD,AB=CE,
AC=CD.
求证:∠B=∠E.
第1题图
2. (2011重庆19题6分)如图,点A、F、C、D在同一直线上,点B和点E分别
在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC // EF.
第2题图
3. (2012重庆18题6分)已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC
=ED.
第3题图
第 2 页 共 5 页
4. (2015重庆A卷20题7分)如图,在△ABD和△FEC中,点B,C,D,E在同
一直线上,且AB=FE,BC=DE,∠B=∠E.
求证:∠ADB=∠FCE.
第4题图
5. (2015重庆B卷20题7分)如图,△ABC和△EFD分别在线段AE的两侧,点
C,D在线段AE上,AC=DE,AB // EF,AB=EF.
求证:BC=FD.
第5题图
6. (2014重庆B卷24题10分)如图,在△ABC中,∠ACB=90°,AC=BC,E为
AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD
于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.
求证:(1)AF=CG;
(2)CF=2DE.
第 3 页 共 5 页
第6题图
【拓展猜押】已知:如图,AN⊥OB,BM⊥OA,垂足分别为N、M,OM=ON,
BM与AN相交于点P.求证:BN=AM.
拓展猜押题图
答案
1. 证明:∵AB // CD,
∴∠BAC=∠ECD,……………………………………………………………(2分)
在△ABC和△CED中,
,ABCEBACECDACCD
∴△ABC≌△CED,…………………………………………………………(5分)
∴∠B=∠E.……………………………………………………………………(7分)
2. 证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF.
又∵AB=DE,∠A=∠D,
∴△ABC≌△DEF(SAS).……………………………………………………(4分)
∴∠ACB=∠DFE,…………………………………………………………(5分)
∴BC // EF.……………………………………………………………………(6分)
3. 证明:∵∠1=∠2,
∴∠1+∠BAD=∠2+∠BAD,………………………………………………(1分)
第 4 页 共 5 页
即∠EAD=∠BAC,
在△EAD和△BAC中, BEABAEBACEAD,…………………………………(2分)
∴△ABC≌△AED(ASA),……………………………………………………(5分)
∴BC=ED.……………………………………………………………………(6分)
4. 证明:∵BC=DE,
∴BC+CD=DE+CD,
即BD=EC.……………………………………………………………………(3分)
又∵∠B=∠E,AB=FE,
∴△ABD≌△FEC(SAS),………………………………………………………(5分)
∴∠ADB=∠FCE.……………………………………………………………(7分)
5. 证明:∵AB // EF,点C、D在线段AE上,
∴∠A=∠E,……………………………………………………………………(3分)
∵AC=ED,AB=EF,
∴△ABC≌△EFD(SAS),………………………………………………………(5分)
∴BC=FD.……………………………………………………………………(7分)
6. 证明:(1)∵∠ACB=90°,AC=BC,
∴∠CAB=45°,
∵CG平分∠ACB,
∴∠BCG=12∠ACB=45°,
∴∠CAB=∠BCG,……………………………………………………………(2分)
在△ACF和△CBG中,
ACFCBGACCBCABBCG
,
∴△ACF≌△CBG(ASA),……………………………………………………(4分)
∴AF=CG.……………………………………………………………………(5分)
第6题解图
(2)如解图,延长CG交AB于点H.
∵AC=BC, CG平分∠ACB,
∴CH⊥AB,且点H是AB中点,
第 5 页 共 5 页
又∵AD⊥AB,
∴CH //AD,
∴∠D=∠CGE,
又∵点H是AB的中点,
∴点G是BD中点,
∴DG=GB,
∵△ACF ≌△CBG,
∴CF=BG,
∴CF=DG,……………………………………………………………………(7分)
∵E为AC边的中点,
∴AE=CE,
在△AED和△CEG中,
AECEDEAGECDCGE
,
∴△AED≌△CEG(AAS),……………………………………………………(8分)
∴DE=GE,
∴DG=2DE,
又∵CF=DG,
∴CF=2DE.…………………………………………………………………(10分)
【拓展猜押】证明:∵OM=ON,∠ONA=∠OMB=90°,∠O=∠O,
∴△BOM≌△AON,
∴OA=OB,
∴BN=AM.