泰勒公式与拉格朗日中值定理在证明不等式中的简单应用

合集下载

罗尔、拉格朗日、柯西中值定理、洛必达法则、泰勒公式等与导数的应用

罗尔、拉格朗日、柯西中值定理、洛必达法则、泰勒公式等与导数的应用
中值定理与导 的应用
内容概要

要内容 3.令 3.以
3.令


结论
中值 罗尔 y = f (x) 令 在[a,b] 连续 以 在 (a,b) 至 少 存 在 一 点 ξ ∈ (a,b) 使 得
定理 中值
定理 内可
3 f (a) = f (b)
f / (ξ ) = 0
拉格 y = f (x) 令 在[a,b] 连续 以 在 (a,b) 至 少 存 在 一 点 ξ ∈ (a, b) 使 得
区间[0,1] 满足拉格朗日中值定理的条 又 f (1) = −2,f (0) = −2 f ′(x) = 12x2 −10x +1
要使
f ′(ξ ) =
f (1) − f (0) 1− 0
=0
只要
ξ = 5 ± 13 ∈ (0,1) 12
∃ξ = 5 ± 13 ∈ (0,1) 12
使
f ′(ξ ) =
=
f (2) − f (1) g(2) − g(1)
3ξ 2
只要
=7
2ξ 3

得 ξ = 14 ∈ (1,2) ξ 即 满足定理的数值 9
★★★6.设 f (x) 在[0,1] 连续 在 (0,1) 内可
且 f (1) = 0 求证
存在 ξ ∈ (0,1) 使 f ′(ξ ) = − f (ξ ) ξ
解 令 f (x) = 2x 2 − x − 3 在[−1,1.5] 连续 在 (−1,1.5) 内可 且 f (−1) = f (1.5) = 0
f (x) = 2x 2 − x − 3 在 [−1,1.5] 满 足 罗 尔 定 理 的 条
f ′(ξ ) = 4ξ −1 = 0 得

泰勒中值定理

泰勒中值定理


Rn ( x) f ( x) pn ( x)
( 在 x0 与 x 之间)
( n1) ( n1) pn ( x) 0 , Rn ( x) f ( n1) ( x)
Rn ( x)
f ( n1) ( ) (n 1) !
( x x0 ) n1 ( 在 x0 与 x 之间)
称为麦克劳林( Maclaurin )公式 .
(n) f (0) 2 f ( 0 ) n f ( x) f (0) f (0) x x x f ( x0 ) 2 2 ! n ! x0 ) f ( x) f ( x0 ) f ( x0 )( x ( x x0 ) ( n1) 2 ! , 则有误差估计式 若在公式成立的区间上 f ( x ) M ( n 1) f ( n ) ( x0 ) f ( ) n n 1 ( x x0 ) M n 1 ( x x0 ) n ! Rn ( x) (n x 1) ! ( 在 x0 与 x 之间) (n 1) !
当在 x0 的某邻域内 f ( n1) ( x) M 时 M n 1 Rn ( x) x x0 (n 1)! n Rn ( x) o(( x x0 ) ) ( x x0 )
带拉格朗日余项的泰勒公式
时, 有 f ( x0 ) f ( x0 ) f ( x0 )( x x0 ) ( x x0 ) 2 2! (n) f ( x0 ) n ( x x0 ) Rn ( x) ① n! 其中 Rn ( x) 阶的导数 , 则当
则f ( x)在x0 1处的三阶泰勒公式为 1 1 2 f ( x) 1 5( x 1) 10 ( x 1) 12 ( x 1)3 2! 3!

泰勒公式的证明及应用

泰勒公式的证明及应用

泰勒公式的证明及应用work Information Technology Company.2020YEAR摘要:泰勒公式是数学分析中的重要组成部分,是一种非常重要的数学工具。

它集中体现了微积分“逼近法”的精髓,在微积分学及相关领域的各个方面都有重要的应用。

本文通过对泰勒公式的证明方法进行介绍,归纳整理其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用,从而进一步加深对泰勒公式的认识。

关键词:泰勒公式,佩亚诺余项,拉格朗日余项,验证,应用绪论随着近代微积分的发展,许多数学家都致力于相关问题的研究,尤其是泰勒,麦克劳林、费马等人作出了具有代表性的工作。

泰勒公式是18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒,在微积分学中将函数展开成无穷级数而定义出来的。

泰勒将函数展开成级数从而得到泰勒公式,对于一般函数f ,设它在点0x 存在直到n 阶的导数,由这些导数构成一个n 次多项式()20000000()()()()()()()(),1!2!!n n n f x f x f x T x f x x x x x x x n '''=+-+-++-称为函数f 在点0x 处的泰勒多项式,若函数f 在点0x 存在直至n 阶导数,则有0()()(()),n n f x T x x x ο=+-即()200000000()()()()()()()()(()).2!!n n f x f x f x f x f x x x x x x x x x n ο'''=+-+-++-+- 称为泰勒公式.众所周知,泰勒公式是数学分析中非常重要的内容,是研究函数极限和估计误差等方面不可或缺的数学工具,集中体现了微积分“逼近法”的精髓,在近似计算上有着独特的优势,利用它可以将非线性问题化为线性问题,且有很高的精确度,在微积分的各个方面都有重要的应用。

不等式的性质及应用

不等式的性质及应用
柯西不等式的证明
利用数学归纳法,从归纳证明的一般形式入手,通过构造辅助函数,利用基本不等式等方 法进行证明。
柯西不等式的应用
在最大值、最小值、最值等问题中,常常需要使用柯西不等式来展开式子,进行求解和分 析。同时,柯西不等式也在信号处理、图像处理等领域中有广泛应用。
04
不等式的证明方法
代数方法
归纳法
方程求解
利用不等式解方程
对于形如一元二次不等式等可以通过移项将其转化为一元一 次不等式,然后利用不等式的性质求解不等式的解集。
利用导数求解方程
对于较为复杂的方程可以利用导数求解方程的根,通过计算 函数的导数,然后找到函数的极值点和极值,比较极值和边 界值的大小即可得到方程的解。
03
常见的几种不等式
THANKS
谢谢您的观看
三角不等式
要点一
三角不等式的表述
对于任意实数x和y,有$|x-y| \leq |x|+|y|$。
要点二
三角不等式的证明
利用绝对值的几何意义,将x和y分别 表示为向量$\mathbf{x}$和 $\mathbf{y}$的模,然后利用三角形 两边之和大于第三边的几何性质进行 证明。
要点三
三角不等式的应用
利用拉格朗日中值 定理
通过拉格朗日中值定理研究函数 的极值和最值,从而证明不等式 。
05
不等式的应用场景
工程应用
结构设计
在工程建设中,不等式可以用来描述结构的安全性和稳定性,例如通过计算 截面面积、惯性矩等参数,可以得出结构在承受载荷情况下的应力、应变关 系,确保结构不会发生破坏。
控制工程
在控制系统中,不等式可以用来描述系统的稳定性和性能约束,例如通过传 递函数的确定,可以得到系统的幅值和相位裕度等参数,保证系统的稳定性 和响应性能。

关于微积分中不等式的证明问题

关于微积分中不等式的证明问题
往 往不易掌握 , 其 实, 总结起 来证 明方法就 常见的几种, 本文主要 关于这些方法进行 总结与探讨. 【 关键 词】 中值 定理 ; 单调性 ; 最值 ; 凹凸性
在数 学世界里 . 不等关 系要 比相等 关系更广泛 的存在 . 不 等式的 即: ( 1 + x ) l n ( 1 慨) > V1 - x ‘ a r c s i n x , 所以、 / 生 < l n n ̄ . V I arc sl 研 究是不 等关 系的一个 重要 内容 . 数学不等式不仅在数 学的各个分支 上述例子 中对 于构造 的函数 厂 ( ) 的单调性 可以从 一阶导数 的正 都有广泛应用 , 它还广泛应用在物理 , 工程 , 经济 , 科学等各领域 . 我们 从 数学 学习这个角度看 . 从初 等数学到 高等数学 , 不 等式的证 明一直 负直接判断 出来 , 但很 多时候 , 有些题 目 并 不能一步到位 , 这时 , 可对 都 占有非 常重要 的地位 , 它 的题型多变 , 方法也很多 , 在初等数 学中主 阶导数 ( 或其一 部分) 在求一次导数 。 根 据二阶导数 的正负 ( 结合相 要 有 比较法 、 综合 法 、 分析 法 、 反证 法 、 换元 法 、 数学归 纳法等 常用 方 应的条件 ) 作出判断. 例: 设e < a < b , 证 明不等式 : > 6 法. 在高考 中 。 不等式 的证 明是一个重 点也是难 点. 到 了高等数学 , 不 等式的证 明仍是 重要 的研究 内容 . 这里 主要谈谈 高等数 学中常用的证 分析 : 对 于关 于两个常数 的不等 式 . 一般 的办法 是将其 中的一个 明不等式 的方法 . 常数转换成变量 . 然后 构造辅 助函数 . 再利用函数 的单调性证 明. 当然 构造辅助 函数时 . 也要考虑是否直接 构造还是恒等变形后再构造辅 助 1 利用 中值定理证明不等式 函数. 证 明: 因为 6 等价变形为 b l n a > d n b , 所以构造辅 助函数 ) = 中值定理 主要是指 罗尔定理 . 拉格 朗 日中值定理 , 柯西 中值定 理 ,

泰勒公式及其应用

泰勒公式及其应用

第一章 绪论近代微积分的蓬勃发展,促使几乎所有的数学大师都致力于相关问题的研究,特别是泰勒,笛卡尔,费马,巴罗,沃利斯等人作出了具有代表性的工作.泰勒公式是18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒,在微积分学中将函数展开成无穷级数而定义出来的.泰勒将函数展开成级数从而得到泰勒公式,对于一般函数f ,设它在点0x 存在直到n 阶的导数,由这些导数构成一个n 次多项式()20000000()()()()()()()(),1!2!!n n n f x f x f x T x f x x x x x x x n '''=+-+-++-称为函数f 在点0x 处的泰勒多项式,若函数f 在点0x 存在直至n 阶导数,则有0()()(()),n n f x T x x x ο=+-即()200000000()()()()()()()()(()).2!!n n f x f x f x f x f x x x x x x x x x n ο'''=+-+-++-+-称为泰勒公式.众所周知,泰勒公式是数学分析中非常重要的内容,它的理论方法已经成为研究函数极限和估计误差等方面不可或缺的数学工具,集中体现了微积分“逼近法”的精髓,在近似计算上有着独特的优势,利用它可以将非线性问题化为线性问题,并能满足很高的精确度要求,在微积分的各个方面都有重要的应用. 泰勒公式在分析和研究数学问题中有着重要作用,它可以应用于求极限、判断函数极值、求高阶导数在某些点的数值、判断广义积分收敛性、近似计算、不等式证明等方面.关于泰勒公式的应用,已有许多专家学者对它产生了浓厚的兴趣,它们对某些具体的题目作出了具体的解法,如求极限,判断函数凹凸性和收敛性,求渐近线,界的估计和近似值的计算等等.虽然泰勒公式应用到各个数学领域很多,但也还有很多方面学者还很少提及,因此在这泰勒公式及其应用方面我们有研究的必要,并且有很大的空间.泰勒公式不仅在极限和不等式证明中能解决许多问题,同时也是研究分析数学的重要工具.其原理是很多函数都能用泰勒公式表示,又能借助于泰勒公式来研究函数近似值式和判断级数收敛性的问题.因此泰勒公式在数学实际应用中是一种重要的应用工具,我们必须掌握它,用泰勒公式这一知识解决更多的数学实际问题.第二章 泰勒公式1.1泰勒公式的意义泰勒公式的意义是,用一个n 次多项式来逼近函数f .而多项式具有形式简单,易于计算等优点.泰勒公式由()f x 的n 次泰勒多项式()n P x 和余项0()[()]n n R x o x x =-组成,我们来详细讨论它们. 当n =1时,有1000()()()()P x f x f x x x '=+-,是()y f x =的曲线在点00(,())x f x 处的切线(方程),称为曲线()y f x =在点00(,())x f x 的一次密切,显然,切线与曲线的差异是较大的,只是曲线的近似. 当n =2时,有2020000()()()()()()2!f x P x f x f x x x x x '''=+-+-, 是曲线()y f x =在点00(,())x f x 的“二次切线”,也称曲线()y f x =在点00(,())x f x 的二次密切.可以看出,二次切线与曲线的接近程度比切线要好.当次数越来越高时,接近程度越来越密切,近似程度也越来越高.1.2泰勒公式余项的类型泰勒公式的余项分为两类,一类是定性的,一类是定量的,它们的本质相同,但性质各异.定性的余项如佩亚诺型余项0(())n o x x -,仅表示余项是比0()n x x -(当0x x →时)高阶的无穷小.如33sin ()6x x x o x =-+,表示当0x →时,sin x 用36x x -近似,误差(余项)是比3x 高阶的无穷小.定量的余项如拉格朗日型余项(1)101()()(1)!n n f x x n ξ++-+(ξ也可以写成00()x x x θ+-)、柯西余项(如在某些函数的幂级数展开时用).定量的余项一般用于函数值的计算与函数形态的研究. 1.3泰勒公式的定义(1)带有佩亚诺(Peano )型余项的泰勒公式如果函数()f x 在点0x 的某邻域内具有n 阶导数, 则对此邻域内的点x ,有()200000000()()()()()()()()(()).2!!n n f x f x f x f x f x x x x x x x x x n ο'''=+-+-++-+-当00x =时, 上式称为麦克劳林(Maclaurin )公式.即()(1)21(0)(0)(0)()(0)(0)(01)2!!(1)!n n n n f f f f x f f x x x x n n θθ++'''=+++++<<+(2)带有拉格朗日(Lagrange )型余项的泰勒公式如果函数()f x 在点0x 的某邻域内具有1n +阶导数, 则对此邻域内的点x , 有()(1)2100000000()()()()()()()()()()2!!(1)!n n n n f x f x f f x f x f x x x x x x x x x n n ξ++'''=+-+-++-+-+(ξ介于0x 与x 之间)第三章 泰勒公式的实际应用2.1利用泰勒公式求极限对于待定型的极限问题,一般可以采用洛比达法则来求,但是,对于一些求导比较繁琐,特别是要多次使用洛比达法则的情况,泰勒公式往往是比洛比达法则更为有效的求极限工具.利用泰勒公式求极限,一般用麦克劳林公式形式,并采用佩亚诺型余项.当极限式为分式时,一般要求分子分母展成同一阶的麦克劳林公式,通过比较求出极限. 例1 求224cos limx x x ex -→-分析:此题分母为4x ,如果用洛比达法则,需连用4次,比较麻烦.而用带佩亚诺余项的泰勒公式解求较简单. 解: 因为2211()2!x e x x o x =+++ 将x 换成22x -有222222211()()(())22!22x x x x eo -=+-+-+-又244cos 1()2!4!x x x o x =-++所以 24442111cos ()()()2484x x ex o x o x --=-+- 441()12x o x =-+ 故2442441()cos 112lim lim 12x x x x o x x e x x -→∞→∞-+-==- 例2 求极限2240cos limsin x x x e x-→-.解: 因为分母的次数为4,所以只要把cos x ,22x e -展开到x 的4次幂即可.24411cos 1()2!4!x x x o x =-++ 22224211()()22!2x x x eo x -=-+-+故 2240cos limsin x x x e x-→-444011()()4!8lim x x o x x→-+= 112=- 带有佩亚诺型余项的泰勒公式是求函数极限的一个非常有力的工具 ,运用得当会使求函数的极限变得十分简单. 2.2利用泰勒公式进行近似计算例1 用x e 的10次泰勒多项式求e 的近似值i ,并估计误差. 解:在x e 的泰勒公式中取1,10x n ==,则有111112!3!10!e ≈+++++2.718281801=由于e 的精确度值e 2.718281801=,可以看出这么算得的结果是比较准确的.关于计算的误差,则有如下的估计11813()6.81011!11!x e d x ξ==<≈⨯. 必须注意,泰勒公式只是一种局部性质,因此在用它进行近似计算时,x 不能远离0x ,否则效果会比较差,甚至产生完全错误的结果.如在ln(1)x +的泰勒多项式中令x =1,取它的前10项计算ln 2的近似值,得到111111111ln 212345678910≈-+-+-+-+-=0.645 634 92…而ln 2=0.693 147 28…,误差相当大,但如改用其他泰勒多项式,如1lnln(1)ln(1)1xx x x+=+--- 23223221()232232n n nx x x x x x x x o x n n ⎡⎤⎡⎤=-+--------+⎢⎥⎢⎥⎣⎦⎣⎦352122()3521n nx x x x o x n -⎡⎤=+++++⎢⎥-⎣⎦, 令1,3x =只取前两项便有3111ln 22()333⎡⎤≈+=⎢⎥⎣⎦0.69135…,取前四项则可达到3571111111ln 22()()()3335373⎡⎤≈+++⎢⎥⎣⎦=0.693 124 75…,效果比前面好得多.例2 当x 很小时,推出331111x x x x +-⎛⎫⎛⎫-- ⎪ ⎪-+⎝⎭⎝⎭的简单的近似公式. 解: 当x 很小时,111133331122111111x x x x x x x x +-⎛⎫⎛⎫⎛⎫⎛⎫-=+-- ⎪ ⎪ ⎪ ⎪-+-+⎝⎭⎝⎭⎝⎭⎝⎭2224[1][1]3(1)3(1)3(1)x x xx x x ≈+--=--- 43x≈2.3在不等式证明中的应用关于不等式的证明,我们已经在前面介绍了多种方法,如利用拉格朗日中值定理来证明不等式,利用函数的凸性来证明不等式,以及通过讨论导数的符号来得到函数的单调性,从而证明不等式的方法.下面我们举例说明,泰勒公式也是证明不等式的一个重要方法.例1 设()f x 在[0,1]二次可导,而且(0)(1)0f f ==,01lim ()1x f x ≤≤=-,试求存在(0,1)ξ∈,使()8f ξ''≥.证: 由于()f x 在[0,1]的最小值不等于在区间端点的值,故在[0,1]内存在1x ,使1()1f x =-,由费马定理知,1()0f x '=. 又21111()()()()()()2!f f x f x f x x x x x η'''=+-+- 21()1()2!f x x η''=-+-(η介于x 与1x 之间) 由于(0)(1)0f f ==,不令0x =和1x =,有211()0(0)1(0)2f f x ξ''==-+- 所以21112()2(1)(1)f x x ξξ-''=-<<当1112x <≤时,2128x -≥,而当1112x <<时,212(1)8x --≥,可见1()f ξ''与2()f ξ''中必有一个大于或等于8.2.4泰勒公式在外推上的应用外推是一种通过将精度较低的近似值进行适当组合,产生精度较高的近似值的方法,它的基础是泰勒公式,其原理可以简述如下. 若对于某个值a ,按参数h 算出的近似值1()a h 可以展开成231123()a h a c h c h c h =++++(*)(这里先不管i c 的具体形式),那么按参数2h 算出的近似值1()2h a 就是231123111()2248h a a c h c h c h =++++ (**)1()a h 和1()2ha 与准确值a 的误差都是()o h 阶的.现在,将后(**)式乘2减去(*)式,便得到11232232()()2()21ha a h a h a d h d h -==+++-也就是说,对两个()o h 阶的近似值化了少量几步四则运算进行组合之后,却得到了具有2()o h 阶的近似值2()a h .这样的过程就称为外推.若进行了一次外推之后精度仍未达到要求,则可以从2()a h 出发再次外推,22343344()()2()41ha a h a h a e h e h -==+++-,得到3()o h 阶的近似值3()a h .这样的过程可以进行1k -步,直到11112()()2()()21k k k k k k ha a h a h a o h -----==+-, 满足预先给定的精度.外推方法能以较小的待解获得高精度的结果,因此是一种非常重要的近似计算技术.例 1 单位圆的内接正n 边形的面积可以表示为1()sin(2)2S h h hπ=, 这里1h n=,按照泰勒公式351(2)(2)()223!5!h h S h h h πππ⎡⎤=-+-⎢⎥⎣⎦246123c h c h c h π=++++因此,其内接正2n 边形的面积可以表示为351()()()23!5!h h h S h h πππ⎡⎤=-+-⎢⎥⎣⎦24612314c h c h c h π=++++,用它们作为π的近似值,误差都是()o h 量级的.现在将这两个近似的程度不够理想的值按以下方式组合:4()()()()22()()4123h hS S h S S h h S h S --==+- 那么通过简单的计算就可以知道4623()S h d h d h π=+++2h 项被消掉了!也就是说,用()S h 近似表示π,其精度可以大大提高.2.5求曲线的渐近线方程若曲线()y f x =上的点(,())x f x 到直线y ax b =+的距离在x →+∞或x →-∞时趋于零,则称直线y ax b =+是曲线()y f x =的一条渐近线.当0a =时称为水平渐近线,否则称为斜渐近线.显然,直线y ax b =+是曲线()y f x =的渐近线的充分必要条件为lim [()()]0x f x ax b →+∞-+=或lim [()()]0x f x ax b →-∞-+=如果y ax b =+是曲线()y f x =的渐近线,则()()lim 0x f x ax b x →+∞-+=(或()()lim 0x f x ax b x→-∞-+=). 因此首先有()lim x f x a x →+∞=(或()lim x f x a x→-∞=). 其次,再由lim [()()]0x f x ax b →+∞-+=(或lim [()()]0x f x ax b →-∞-+=)可得 lim [()]x b f x ax →+∞=-(或lim [()]x b f x ax →-∞=-) 反之,如果由以上两式确定了a 和b ,那么y ax b =+是曲线()y f x =的一条渐近线.中至少有一个成立,则称直线y ax b =+是曲线()y f x =的一条渐近线,当0a =时,称为水平渐近线,否则称为斜渐近线.而如果()f x 在x 趋于某个定值a 时趋于+∞或-∞,即成立lim ()x f x →∞=±∞则称直线x a =是()f x 的一条垂直渐近线.注意,如果上面的极限对于x →∞成立,则说明直线y ax b =+关于曲线()y f x =在x →+∞和x →-∞两个方向上都是渐近线.除上述情况外,如果当x a +→或a -时,()f x 趋于+∞或-∞,即lim ()x a f x +→=±∞或lim ()x a f x -→=±∞,则称直线x a =是曲线()y f x =的一条垂直渐近线.例1 求 2(1)3(1)x y x -=+的渐近线方程. 解: 设 2(1)3(1)x y x -=+的渐近线方程为y ax b =+,则由定义 2(1)1lim lim 3(1)3x x y x a x x x →∞→∞-===+ 2(1)lim[]3(1)x x b ax x →∞-=-+ 2(1)1l i m []3(1)3x x x x →∞-=-+ =131lim 131x x x →∞-+=-+ 由此13x y =-为曲线y =2(1)3(1)x x -+的渐近线方程。

拉格朗日提出的定理

拉格朗日提出的定理
拉格朗日提出的定理是数学中一条非常重要的定理,它在微积分中有
着广泛的应用。

该定理通常被称为拉格朗日中值定理,也叫一阶微积
分中值定理。

拉格朗日中值定理是微积分中的基础定理之一,它为解
决许多微积分问题提供了便利。

下面将从概念、公式、应用等几个方
面详细阐述该定理。

概念:拉格朗日中值定理的精髓在于求解函数在某区间内的导数值与
函数在某一点的函数值之间的关系。

中值定理表明:如果函数满足一
定的条件,就一定存在一个点,使该点的导数等于函数在区间两端点
上的函数值之差的比值。

这个点就叫做函数的导数存在的一个中间点,也叫中值点。

公式:如果函数f(x)在区间[a, b]上连续,在(a, b)内可导,则在(a, b)
中至少存在一点c,使得 f(b) - f(a) = f'(c)(b - a)。

应用:由于拉格朗日中值定理表明了函数在某个区间内导数的存在性
和其函数值的关系,因此它在微积分中有着广泛的应用。

例如:
1. 利用拉格朗日中值定理可以证明某些不等式。

2. 利用中值定理可以解决函数递增、递减以及最值问题。

3. 利用中值定理可以计算定积分。

4. 利用中值定理还可以证明泰勒公式。

总之,拉格朗日中值定理是微积分中非常重要的一条基础定理,它把函数在某一区间内的导数和函数在该区间两端点上的函数值联系在了一起,为求解微积分难题提供了方法。

与其他的微积分学方法相比,这个方法具有普遍适用性,广泛应用于数学、物理、工程学等各个领域。

泰勒公式及其应用论

本科毕业论文(设计) 论文题目:泰勒公式及其应用学生姓名:学号:专业:数学与应用数学班级:指导教师:完成日期:2012年 5月20日泰勒公式及其应用内容摘要本文介绍泰勒公式及其应用,分为两大部分:第一部分介绍了泰勒公式的相关基础知识,包括带Lagrange余项、带Peano余项两类不同泰勒公式;第二部分通过详细的例题介绍了泰勒公式在八个方面的应用.通过本文的阅读,可以提高对泰勒公式及其应用的认识,明确其在解题中的作用,为我们以后更好的应用它解决实际问题打好坚实的基础.关键词:泰勒公式Lagrange余项Peano余项应用The Taylor Formula and The Application Of Taylor FormulaAbstractThis paper focuses on Taylor formula and the application of Taylor formula. It has two parts. The first part of this paper introduces the basic knowledge of the Taylor formula,Including Taylor formula with Lagrange residual term and with Peano residual term. With the detailed examples,The second part introduces eight applications of Taylor formula.By reading this paper,you can build a preliminary understanding of Taylor formula,define the function in problem solving ,in the later application that can be a good reference.Key Words:Taylor formula Lagrange residual term Peano residual term application目录一、泰勒公式 (1)(一)带Lagrange余项的泰勒公式 (1)(二)带Peano余项的泰勒公式 (2)二、公式的应用 (3)(一)、泰勒公式在近似运算上的应用 (3)(二)、泰勒公式在求极限中的应用 (5)(三)、泰勒公式在方程中的应用 (6)(四)、泰勒公式在中值公式证明中的应用 (8)(五)、泰勒公式在有关于界的估计中的应用 (9)(六)、泰勒公式在证明不等式中的应用 (10)(七)、泰勒公式在级数中的应用 (11)(八)、泰勒公式在求高阶导数值中的应用 (13)三、结论 (14)参考文献 (15)序 言泰勒公式是数学分析中一个非常重要的内容,它将一些复杂函数近似地表示为简单的多项式函数.这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆.[]1因为泰勒公式在解决一些数学问题时的确有着不可替代的作用,故有关它的理论在教材中一般都有比较详细的介绍,而关于它的应用则介绍甚少或不全面.本文比较详细地介绍了泰勒公式在近似计算、求极值、方程、证明中值公式、关于界的估计、证明不等式、级数、高阶导数值等方面的应用.作者在阅读了大量参考文献的基础上,通过例题给出了泰勒公式的许多应用,使我们能更直接的看到泰勒公式在各方面的运用.一、泰勒公式对于函数f ,设它在点0x 存在直到n 阶的导数.由这些导数构造一个n 次多项式()20000000'()''()()()()()()...()1!2!!n n f x f x f x Tn x f x x x x x x x n =+-+-++-,称为函数f 在点0x 处的泰勒多项式.[2]泰勒公式根据所带的余项的不同有不同的定义.泰勒公式的余项分为两类,一类是定量的,一类是定性的,它们的本质相同,但性质各异.下面我们来介绍一下:(一)带Lagrange 余项的泰勒公式对于这种泰勒公式,Lagrange 余项是一种定量形式. 定理1[]3 若函数f 在[,]a b 上存在直到n 阶的连续导函数,在),(b a 内存在直到+1n 阶导函数,则对任意给定的0[,]x x a b ∈、,至少存在一点(,)a b ξ∈,使得()(1)2100000000''()()()()()'()()()...()()2!!(1)!n n nn f x f x f f x f x f x x x x x x x x x n n ξ++=+-+-++-+-+,该式称为(带有Lagrange 余项的)泰勒公式.证明 作辅助函数])(!)())(()([)()()('n n t x n t f t x t f t f x f t F -++---= ,1)()(+-=n t x t G ,所以要证明的式子即为)!1()()()()()!1()()()1(000)1(0+=+=++n f x G x F x G n f x F n n ζζ或. 不妨设x x <0,则)(t F 与)(t G 在],[0x x 上连续,在),(0x x 内可导,且 0))(1()()(!)()(')1('≠-+-=--=+n nn t x n t G t x n t f t F , 又因0)()(==x G x F ,所以由柯西中值定理证得)!1()()()()()()()()()()1(''0000+==--=+n f G F x G x G x F x F x G x F n ζζζ, 其中),(),(0b a x x ⊂∈ζ. 所以定理1成立.(二)带Peano 余项的泰勒公式对于这种泰勒公式,Peano 余项是一种定性形式. 定理2[]3 若函数f 在点0x 存在直到n 阶导数,则有0()()(())nf x Tn x o x x =+-,即()200000000''()()()()'()()()...()(())2!!n n n f x f x f x f x f x x x x x x x o x x n =+-+-++-+-,称为函数f 在点0x 处的(带有Peano 余项的)泰勒公式,该公式定性的说明当x 趋于0x 时,逼近误差是较0()nx x -高阶的无穷小量.证明 设)()()(x T x f x R n n -=,n n x x x Q )()(0-=,现在只需证0)()(lim0=-x Q x R nn x x .由n k x T x f k n k ,,2,1,0)()(0)(0)( ==,可知,0)()()(0)(0'0====x R x R x R n n n n .并易知!)(,0)()()(0)(0)1(0'0n x Q x Q x Q x Q n n n n n n =====- ,因为)(0)(x f n 存在,所以在点0x 的某邻域)(0x U 内)(x f 存在1-n 阶导函数)(x f .于是,当o0x U x ∈()且0x x →时,允许接连使用洛必达(L'Hospital )法则1-n 次,得到)]()()([lim !1)(2)1())(()()(lim )()(lim )()(lim )()(lim 0)(00)1()1(000)(0)1()1()1()1(''00000=---=-----====--→--→--→→→x f x x x f x f n x x n n x x x f x f x f x Q x R x Q x R x Q x R n n n x x n n n x x n nn n x x n n x x n n x x 所以定理2成立.当00x =时,得到泰勒公式)10(,)!1()(!)0(...!2)0('')0(')0()(1)1()(2<<++++++=++θθn n n n x n x f x n f x f x f f x f ,该式称为(带有Lagrange 余项的)麦克劳林公式. 当上式中00x =时有()2''(0)(0)()(0)'(0)...()2!!n nn f f f x f f x x x o x n =+++++,它称为(带有Peano 余项的)麦克劳林公式.二、公式的应用(一)、泰勒公式在近似运算上的应用利用泰勒公式可以得到函数的近似计算式和一些数值的近似计算,利用)(x f 麦克劳林展开得到函数的近似计算式为'''2(0)(0)()(0)(0)2!!n n f f f x f f x x xn ≈++++[]4,其误差是余项()n R x . 例1[]5:计算e 的值,使其误差不超过610-.解 应用泰勒公式有11111...2!3!!(1)!e e n n θ=+++++++,(01)θ<<,估3(1)!(1)!n e R n n θ=<++,当=9n 时,便有6331010!3628800n R -<=<, 从而略去9R 而求得e 的近似值为718285.2!91...!31!2111≈+++++≈e . 例2[]5: 求21x edx -⎰的近似值,精确到510-.解 因为21x e dx -⎰中的被积函数是不可积的(即不能用初级函数表达),现用泰勒公式的方法求21x e dx -⎰的近似值.在xe 的展开式中以2x -代替x 得24221(1)2!!nx nx x e x n -=-+++-+,逐项积分,得2421111121(1)2!!nx nx x edx dx x dx dx dx n -=-+-+-+⎰⎰⎰⎰⎰111111(1)32!5!2n 1n n =-+-+-++11111111310422161329936075600=-+-+-+-+,上式右端为一个收敛的交错级数,由其余项()n R x 的估计式知71||0.00001575600R ≤<,所以2111111110.7468363104221613299360x e dx -≈-+-+-+≈⎰.由于泰勒公式可以将一些复杂函数近似地表示为简单的多项式函数,所以当选定函数中的自变量时,就可以进行近似计算.在这个应用中主要注意选择适当的函数,然后运用麦克劳林展开式,带入数值.(二)、泰勒公式在求极限中的应用为了简化极限运算,有时可用某项的泰勒展开式来代替该项,使得原来函数的极限转化为类似多项式有理式的极限,就能简洁的求出.接下来我们用两个例子来说明: 例3[]6:求极限2240cos limx x x ex -→-.解 考虑到极限式的分母为4x ,我们用麦克劳林公式表示极限的分子(取=4n )245cos 1()224x x x o x =-++ ,)(82154222x o x x ex ++-=-,)(12cos 5422x o x ex x +-=--,因而求得,245244001()cos 112limlim 12x x x x o x x e x x -→→-+-==-. 例4[]7: 求极限 )3(211ln 3)76(sin 6lim 2202x x xx x x x e x x +--+---→.解 )(!51!31sin 653x o x x x x ++-=, )(402767sin e 5532x o x x x x x ++-=-)(51413121)1ln(55432x o x x x x x x ++-+-=+ )(51413121)1ln(55432x o x x x x x x +-----=-)(52322)1ln()1ln(11ln 553x o x x x x x x x +++=+-+=-+,原式=5505527()40lim 6()5x x o x x o x →++=169.由上边两个例子可见,因为通常情况下对于函数多项式和有理分式的极限问题的计算是十分简单的,所以对于一些复杂的函数可以根据泰勒公式将原来的复杂的问题转化为类似多项式和有理分式的极限问题.综上所述,在式子满足下列情况时可以考虑用泰勒公式来求极限:(1)用洛必达法则时,次数比较多、求导过程和化简过程比较复杂的情况. (2)分子或分母中有无穷小的差, 且此差不容易转化为等价无穷小替代形式. (3)函数可以很容易的展开成泰勒公式.(三)、泰勒公式在方程中的应用泰勒公式在函数方程中应用比较广泛,题型也比较多,主要有判断根,方程次数等等一些证明类问题,做此类题,要注意观察题目中导数阶数,以便用泰勒公式展开到相应阶数.我们用三个例子来说明: 例5[]8: 设()f x 在[,)a +∞上二阶可导,且()0f a >,'()0f a <,对(,)x a ∈+∞,''0f ≤证明 ()0f x =在(,)a +∞内存在唯一实根.分析: 这里()f x 是抽象函数,直接讨论()0f x =的根有困难,由题设()f x 在[,)a +∞上二阶可导且()0f a >,'()0f a <,可考虑将()f x 在a 点展开一阶泰勒公式,然后设法应用介值定理证明.证明 因为''()0f x ≤,所以'()f x 单调减少,又'()0f a <,因此>x a 时,''()()0f x f a <<, 故()f x 在(,)a +∞上严格单调减少.在a 点展开一阶泰勒公式有''2()()()()()()()2f f x f a f a x a x a a x ξξ=+-+-<<.由题设'()0f a <,'()0f ξ≤,于是有lim ()x f x →∞=-∞,从而必存在b a >,使得()0f b <,又因为()0f a >,在[,]a b 上应用连续函数的介值定理,存在0(,)x a b ∈,使0()0f x =,由()f x 的严格单调性知0x 唯一,因此方程()0f x =在(,)a +∞内存在唯一实根.例6[]8: 设()f x 在(,)-∞+∞内有连续三阶导数,且满足方程,()()'(),01f x h f x hf x h θθ+=++<<. (1)试证:()f x 是一次或二次函数.证明 问题在于证明:''()0f x ≡或'''()0f x ≡.为此将(1)式对h 求导,注意θ与h 无 关.我们有'()'()''()f x h f x h hf x h θθθ+=+++, (2) 从而'()'()'()'()''()f x h f x f x f x h f x h hθθθ+-+-+=+.令0→h 取极限,得''()''()''()f x f x f x θθ-=,''()2''()f x f x θ=. 若21≠θ,由此知)(,0)(''x f x f ≡为一次函数;若21=θ,(2)式给出 111'()'()''()222f x h f x h hf x h +=+++,此式两端同时对h 求导,减去''()f x ,除以h ,然后令0→h 取极限,即得'''()0f x ≡,()f x 为 二次函数. 例7[]9: 已知函数)(x f 在区间(-1,1)内有二阶导数,且(0)'(0)0f f ==,''()()'()f x f x f x ≤+试证:0δ∃>,使得δδ-(,)内()0f x ≡. 证明 为了证明)(x f 在0=x 处的邻域内恒为零.我们将(3)式右端的)(x f ,)('x f 在0=x 处按公式展开.注意到(0)'(0)0f f ==.我们有22''()1()(0)'(0)''()22f f x f f x x f x ξξ=++=, '()'(0)''()''()f x f f x f x ηη=+=.从而21()|'()|''()''()2f x f x f x f x ξη+=+, 今限制11[,]44x ∈-,则()'()f x f x +在11[,]44-上连续有界,011[,]44x ∃∈-,使得 001144()'()max ()'().x f x f x f x f x M -≤≤+=+≡我们只要证明0M =即可.事实上20000001()'()''()''()2M f x f x f x f x ξη=+=+, ))('')(''(4100ηξf f +≤, ))()(')()('(410000ηηξξf f f f +++≤, 11242M M ≤⋅=. 即102M M ≤≤.所以0M =,在11[]44-,上()0f x ≡.由以上例题可见,在函数方程方面,泰勒公式对于求二阶或二阶以上的连续导数的问题来说十分的好用,主要是通过作辅助函数,对有用的点进行泰勒公式展开并对余项作合适的处理.(四)、泰勒公式在中值公式证明中的应用由于泰勒公式将函数和它的高阶导数结合了起来,所以遇到这类有高阶导数的证明时,首先应考虑用泰勒公式来求解.接下来我们用一个例子来说明: 例8[]9: 设)(x f 在],[b a 上三次可导,试证:(,)c a b ∃∈,使得31()()'()()'''()()224a b f b f a f b a f c b a +=+-+-. 证明 设k 为使下式成立的实数:31()()'()()()0224a b f b f a f b a k b a +-----=, 这时,我们的问题归为证明:(,)c a b ∃∈,使得'''()k f c =.令31()()()'()()()0224a x g x f x f a f x a k x a +=-----=. 则0)()(==b g a g ,根据Rolle 定理,(,)a b ξ∃∈,使得,0)('=ξg 即:1'()'()''()()202228a a a f f f k a ξξξξξ++-----=. 这是关于k 的方程,注意到)('ξf 在点2ξ+a 处的泰勒公式: 21'()'()''()'''()()022222a a a a f f f f c ξξξξξ++--=++=. (五)、泰勒公式在有关于界的估计中的应用我们知道有些函数是有界的,有的有上界,而有的有下界,结合泰勒公式的知识与泰勒公式的广泛应用,这里我们将探讨泰勒公式关于界的估计,下面通过例题来分析. 例9[]9: 设)(x f 在[0,1]上有二阶导数,10≤≤x 时|()|1f x ≤,''()2f x <.试证:当10≤≤x时,|'()|3f x ≤.证明 21(1)()'()(1)''()(1)2f f x f x x f x ξ=+-+-, 21(0)()'()()''()()2f f x f x x f x η=+-+-, 所以2211(1)(0)'()''()(1)''()22f f f x f x f x ξη-=+--, 22)1(|)(''|21)(''21|)0(||)1(||)('|x f x f f f x f -+++≤ξη,222(1)213x x ≤+-+≤+=.例10[]10: 设)(x f 二次可微,(0)(1)0f f ==,01max ()2x f x ≤≤=,试证01max ''()16x f x ≤≤≤-.证明 因)(x f 在[0,1]上连续,有最大、最小值.又因01max ()2x f x ≤≤=,(0)(1)0f f ==,最大值在(0,1)内部达到.所以)1,0(0∈∃x 使得001()max ()x f x f x ≤≤=.于是)(0x f 为最大值.由Fermat 定理,有0'()0f x =,在0x x =处按泰勒公式展开,)1,0(,∈∃ηξ使得:22000110(0)()''()(0)2''()22f f x f x f x ξξ==+-=+, 22000110(1)()''()(1)2''()(1)22f f x f x f x ηη==+-=+-.因此22010044max ''()min{''(),''()}min{,}(1)x f x f f x x ξη≤≤≤=---. 而 01[,1]2x ∈时,222000444min{,}16(1)1x x x --=-≤---(), 01[0,]2x ∈时,222000444min{,}16(1)x x x --=-≤--, 所以 01max ''()16x f x ≤≤≤-.由上边例题可以总结出一些经验,比如当遇到求有关于界的问题,且涉及高阶导数时,通常考虑用泰勒公式来解题.在解题时可以应用这个经验尝试解题.(六)、泰勒公式在证明不等式中的应用当所要证明的不等式是含有多项式和初等函数的混合物,不妨作一个辅助函数并用泰勒公式代替,往往使证明方便简捷.[]7例11[]11: 设)(x f 在],[b a 上二次可微,''()0f x <.试证:12...0,n i a x x x b k ∀≤<<<≤≥,11nii k==∑,有)()(11i ni i i ni i x f k x k f ∑∑==>.证明 取01ni ii x k x==∑,将)(i x f 在0x x =处按泰勒公式展开有:20000))((''21))((')()(x x f x x x f x f x f i i i i -+-+=ξ, ))((')(000x x x f x f i -+<, (1,2,3...,)i n = 以i k 乘此式两端,然后n 个不等式相加,注意11nii k==∑,11()0nniii ii i k x x k x x==-=-=∑∑,得)()()(101∑∑===<ni i i i ni ix k f x f x f k.例12[]11: 当0x ≥时,证明31sin 6x x x ≥-. 证明 取31()sin 6f x x x x =-+,00x =,则 '''''''''(0)0(0)0(0)0()1cos (0)0f f f f x x f ====-≥,,,,.带入泰勒公式,其中=3n ,得31cos ()0003!x f x x θ-=+++,其中10<<θ. 故当0x ≥时,31sin 6x x x ≥-. 由此可见,关于不等式的证明,有多种方法,如利用拉格朗日中值定理来证明不等式,利用函数的凸性来证明不等式,以及通过讨论导数的符号来得到函数的单调性,从而证明不等式的方法.但归结起来都可以看做是泰勒公式的特殊情形,所以证明不等式时,注意应用泰勒公式这个重要方法.(七)、泰勒公式在级数中的应用在级数敛散性的理论中,要判断一个正项级数∑=nn na1是否收敛,通常找一个简单的函数,)0(111>=∑∑==p n b nn p nn n ,在用比较判定法来判定,但是在实际应用中比较困难的问题是如何选取适当的∑=nn pn11(0>p 中的p 值).如 当2=p ,此时∑∞=121n n收敛,但是+∞=∞→21lim n a n n , 当1=p 时,此时∑∞=11n n发散,但是01lim =∞→na n n . 在这种情况下我们就无法判定∑=nn n a 1的敛散性,为了更好的选取∑=nn pn11中p 的值,使得lim 1n n p a t n→∞=且0t <<+∞,在用比较判别法,我们就可以判定∑=nn n a 1的敛散性. 例13[]11:讨论级数1n ∞=∑的敛散性.分析:直接根据通项去判断该级数是正向级数还是非正项级数比较困难,因而也就无法恰当选择判敛方法,注意到11lnln(1)n n n +=+,若将其泰勒展开为1n 的幂的形式,相呼应,会使判敛容易进行.解 因为2341111111lnln(1)234n n nn n n nn+=+=-+-+<, 所以<从而0n u=>,故该级数是正项级数.又因为3212n =>==-, 所以332211)22nun n=-<-=.因为31212n n∞=∑收敛,所以由正项级数比较判别法知原级数收敛.利用基本初等函数的幂级数展开式,通过加减乘等运算进而可以求得一些较复杂的初等函数的幂级数展开式.例14[]12:求211x x++的幂级数展开式.解利用泰勒公式231111xx x x-=++-36934679103467910(1)(1)1()222222222(1)[sin]3nnx x x x x x x x x x xx x x x x x xnxπ∞=-++++=-+-+-+-+=-+-+-+-++=由例题可见,当级数的通项表达式是由不同类型函数式构成的繁难形式时,往往利用泰勒公式将级数通项简化成统一形式,以便利用判敛准则.利用基本初等函数的幂级数展开式,通过加减乘等运算进而可以求得一些较复杂的初等函数的幂级数展开式.(八)、泰勒公式在求高阶导数值中的应用如果()f x泰勒公式已知,其通项中的加项nxx)(-的系数正是)(!1)(xfnn,从而可反过来求高阶导数数值,而不必再依次求导.例15[]12: 求函数x exxf2)(=在1x=处的高阶导数(100)(1)f.解设=+1x u,则eeueuugxf uu⋅+=+==+2)1(2)1()1()()(,)0()1()()(nn gf=,ue在=0u的泰勒公式为)(!100!99!9811001009998uouuuue u++++++= ,从而))(!100!99!981)(12()(10010099982u o u u u u u u e u g +++++++= ,而()g u 中的泰勒展开式中含100u的项应为100100!100)0(u g ,从()g u 的展开式知100u 的项为100)!1001!992!981(u e ++,因此 100(0)121()100!98!99!100!g e =++,100(0)10101g e =⋅,e gf 10101)0()1(100100==.通过泰勒公式求高阶导数,这是泰勒公式比较简单的一种应用,重点就在于掌握,其通项中的加项nx x )(0-的系数正是)(!10)(x f n n .在求导数时只需在系数上乘以!n 即可. 三、结 论泰勒公式是数学分析中的重要组成部分,是一种非常重要的数学工具.它集中体现了微积分“逼近法”的精髓,在微积分学及相关领域的各个方面都有重要的应用.本文介绍了泰勒公式以及它在八个方面应用,使我们对泰勒公式有了更深一层的理解,对怎样应用泰勒公式解答具体问题有了更深一层的认识,只要在解题过程中注意分析,研究题设条件及其形式特点,并把握上述处理规则,就能比较好地掌握利用泰勒公式解题的技巧.参考文献[1]华东师范大学数学系,《数学分析》(上),高等数学出版社,2008,134-141[2]裴礼文,《数学分析中的典型问题及方法》,高等教育出版社,2009,150-157[3]同济大学数学教研室主编,《高等数学》,人民教育出版社,2007,139-145[4]刘玉琏,《数学分析讲义》,人民教育出版社,2000,120-138[5]张利凯,《高等数学学习辅导》,科学技术文献出版社,2002,138-156[6]M.克莱因,《古今数学思想》,上海科学技术出版社,1988,165-168[7]W.盖勒特、H.奎斯特纳等,《简明数学全书Ⅱ.高等数学与现代数学》,上海科学技术出版社,1985,295-297[8]H.J.巴茨,《数学公式书册》,科学出版社,1987,439-440[9]闵祥伟,《高等数学学习指导与例题分析》,北京邮电大学出版社,2004,520-521,539-540[10]吴炯圻,陈跃辉等,《高等数学及其思想方法与实验》(上),厦门大学出版社,2008,122-127[11]上海财经大学应用数学系,《高等数学》,上海财经大学出版社,2004,66-71[12]蔡子华,《新编高等数学导学》,科学出版社,2002,336-337,369-376(本资料素材和资料部分来自网络,仅供参考。

利用微分学理论证明不等式的几种方法


} _
max ∈[ 0

, 因而 } 。 _1
对一切 E[ ,]p>1 有 o1, 时,
4 利用 泰勒公 式证 明不等 式
- ∈n {( } -m l ) [] i 0 1

个例题 来说 明证 明 的方 法 。
1 利用 拉格 朗 日中值定 理证 明不等 式
应 用拉格 朗 日中值 定理证 明不 等式 的方法 :
() 1设辅助 函数 () 2对
)并确 定 ,
) 用拉格 期 日中值定 理 的区 间[ , ] 施 n6;
) [ 6 上施 用拉 格 朗 日中值 定理 ; 在 口, ]
维普资讯
第2 6卷第 3期
V 12 N . o.6 o3
长 春师 范学 院学报 ( 自然 科学版 )
Ju a o C aghnN r a U i rt( a r c ne or l f hncu o l n esy N t a Si c) n m v i ul e
( ) F ( , 证 出 F ( O 且 F ( =0的点不构 成 区间 ; 2 求 )并 ) , )
() 2 即证得 : ) 厂 ) 3 由() ( < ( 。
例 2 证 明不 等式 <I( + < , n 1 ) >0 。
[ 收稿 日期】20 —1 一I 06 2 2 [ 基金项 目】黑龙江省教育学会 “ 十一五”规 划课题~ 一 学分析教 学中的改革与 实践 ( g:15 数 n- - 1C一57 5) [ 作者简介】祝 微 (9 7 ,女 ,黑龙江 齐齐哈 尔人 ,齐齐哈 尔师范高等专科 学校讲师 ,从事数 学分析教 学研究。 17 一)
列’ >0 有 / ) f 0 = , I( + < 。 v , . < ( ) 0 f n 1 ) ( !

泰勒公式与导数的应用

泰勒公式与导数的应用名称主要内容泰勒中值定理:如果f ( x) 在含有x 0 的某个开区间( a,b) 内具有n1阶的导数,则对任一x (a,b) ,有 f (x) f (x0 ) f / (x0 )( x x0) f //2(!x0 )(xx0)20 2!f (n) (x0) n(x x0) R n( x) ,此公式称为n 阶泰勒公式;n!f (n 1)( )n 1其中R n (x) (x x 0) ( 介于x0 于x 之间),称为拉格朗日型余或泰(n 1)!R n(x) o[( x x0)n ] ,称为皮亚诺型余项。

勒n 阶麦克劳林公式:f (x) f (0) f/(0)x f //(0) x2 f (n)(0) x nx R n(x)2! n!公其中R n ( x) ( n 1)f ( x) n 1 x(0 1)或R n(x) o(x n ) 。

(n 1)!式常用的初等函数的麦克劳林公式:1)e x12x x n xo(x n) 2! n!35 2n 12) sin x x xx (n x 2n 2 )1) o( x3! 5! (2n 1)!246 2n3) cos x 1 xxx n x2n 1)( 1) n o(x2n2! 4! 6! (2n)!23xx x ( 1)n x n14) ln(1 x) n1o(x n1)23 n 15) 11x 12x x x n o(x n)1xm 6) (1 x)m(m1 mx1) 2 m( m 1) ( m n 1) nn)x n! x o( x2!13x巩固练习★1.按(x 1)的幂展开多项式 f (x) x 4 3x 2 4。

知识点 :泰勒公式。

思路:直接展开法。

求 f (x) 按(x x 0 )的幂展开的 n 阶泰勒公式,则依次求 f ( x) 直到 n 1 阶的导 数在 xx 0 处的值,然后带代入公式即可f (1) 10 ; f (x) 12x 2 6, f (1) 18;将以上结果代入泰勒公式,得介于 x 与 4之间)知识点 :麦克劳林公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 高三数学培优资料(10)教师版 泰勒公式与拉格朗日中值定理在证明不等式中的简单应用 泰勒公式是高等数学中的重点,也是一个难点,它贯穿于高等数学的始终。泰

勒公式的重点就在于使用一个n次多项式()npx,去逼近一个已知的函数fx,而且这种逼近有很好的性质:()npx与fx在x点具有相同的直到阶n的导数]31[.所以泰勒公式能很好的集中体现高等数学中的“逼近”这一思想精髓。泰勒公式的难点就在于它的理论性比较强,一般很难接受,更不用说应用了。但泰勒公式无论在科研领域还是在证明、计算应用等方面,它都起着很重要的作用.运用泰勒公式,对不等式问题进行分析、构造、转化、放缩是解决不等式证明问题的常用方法与基本思想.本文拟在前面文献研究的基础上通过举例归纳,总结泰勒公式在证明不等式中的应用方法. 泰勒公式知识:设函数fx在点0x处的某邻域内具有1n阶导数,则对该邻域内异于0x的任意点x,在0x与x之间至少存在一点,使得: fx=0fx+0'fx0(x-x)+0f''x2!02(x-x)++ 0nfxn!0n(x-x)+nRx,

其中nRx(1)(1)!nfn10)(nxx称为余项,上式称为n阶泰勒公式; 若0x0,则上述的泰勒公式称为麦克劳林公式, 即fx= 0f+0'fx+02!f''2x++0!nfnnx+0()nx. 利用泰勒公式证明不等式:若函数)(xf在含有0x的某区间有定义,

并且有直到)1(n阶的各阶导数,又在点0x处有n阶的导数)(0)(xfn,则有公式

)()(!)()(!2)()(!1)()()()(00)(200000xRxxnxfxxxfxxxfxfxfnnn 在上述公式中若0)(xRn(或0)(xRn),则可得 )(00)(200000)(!)()(!2)()(!1)()()(nnxxnxfxxxfxxxfxfxf

或)(00)(200000)(!)()(!2)()(!1)()()(nnxxnxfxxxfxxxfxfxf 2

1、 证明: ).11(,32)1ln(32xxxxx 证明 设)11)1ln()(xxxf ( 则)(xf在0x处有带有拉格朗日余项三阶泰勒公式 )11()1(432)1ln(4432 xxxxx

0)1(444x  32)1ln(32xxxx 由以上证明可知,用泰勒公式证明不等式,首先构造函数,选取适当的点0x

在0x处展开,然后判断余项)(xRn的正负,从而证明不等式. 对于欲证不等式中含有初等函数、三角函数、超越函数与幂函数结合的证明问题,要充分利用泰勒公式在00x时的麦克劳林展开式,选取适当的基本函数麦克劳林的的展开式,对题目进行分析、取材、构造利用. 2、 证明不等式:316xx≤sinx. 2、不等式左边是三次二项式的初等函数,右边是三角函数,两边无明显的大小关系 。这时我们可用sinx在00x的二阶麦克劳林公式表示出来,然后进行比较判断两者的大小关系。 证明 31()sin6fxxxx,(0)0f,21'()cos12fxxx,'(0)0f,''()sinfxxx,

''(0)0f,'''()cos1fxx,'''()cos1f 当3n时,()fx的泰勒展式为:331()000(1cos)()3!fxxxox ()fx331(1cos)()6xxox≥0 (x≥0, 

≤x,0<<1)所以x≥0,,有 316xx≤sinx. 在含有无理函数与幂函数结合的不等式证明问题中,它们之间没有明显的大小关系。如果用常规方法(放缩法、比较法,代换法等),我们很难比较它们之间的大小关系,但这时用泰勒公式却能轻易解答. 3、 证明不等式:2128xx<1x,(x>0). 对于此题,若我们对不等式两边同时平方,虽可以去掉根号,但x的次数却 3

提高了2次,这还是难以比较他们之间的大小关系,但若用泰勒公式却可以轻易解答.

证明 设()1fxx,则(0)1f,121'()(1)2fxx,1'(0)2f, 321''()(1)4fxx,1''(0)4f,523

'''()(1)8fxx

代入0x=0的二阶泰勒公式,有1x=1+2x- 28x+5331(1)16xx (0<<1) ∵ x>0, ∴ 531(1)16x3x>0 所以 2128xx<1x(x>0). 在不等式的证明问题中,若题目中出现了一阶导数、二阶导数、初等函数、三角函数或超越函数等与幂函数结合时,可优先考虑泰勒公式在0x=0时的麦克劳林表达式。当然能做好此类题的前提条件是要对一些基本函数的麦克劳林表达式熟悉. 微分)(Lagrange中值定理: 若)(xf满足以下条件: (1) )(xf在闭区间],[ba内连续 (2) )(xf在开区间),(ba上可导 则 abafbffba)()()(),( 4、 若)()(1,011yxpyyxyxpypxypppp则 分析 因为,0xy则原不等式等价于11pppppxyxyxpy )1(p.令ptxf)(,则我们容易联想到Lagrange中值定理yxyfxfyxf)()())(('. 证明 设pttf)(,显然],[)(xytf在满足Lagrange中值定理的条件 则 ,)()()(),(yxyfxffxy 即yxyxpppp=1

111,),(ppppxppyxyxy 

)()(11yxpyyxyxpypppp 4

5、已知函数xxxxf1)1ln()(, 的极小值求)()1(xf; abbaba1lnln,0,2求证:)若(

2)1()(),1)()1(5xxxfxf

,的定义域为(函数、

.0)0()(0fxfx取得极小值时,函数易得当 (2))0(1ln,1)1ln(11xxxxxxxx可得时,)知,当由( )0(11lnxxx即,因为bababalnlnln,0, 所以abba1ln。故得证 (也可用Lagrange中值定理来证) 6、已知函数的最大值;求函数xxfxgxxf)1()()1(,ln)(

22)(2)()(02baabaafbfba时,求证:)当(

解:xxxxfxg)1ln()1()(),1((x

xxxxg1111)( 0)(,0,0)(,01xgxxgx时当当

0.)(0为取得最大值,且最大值时,故当xgx )0(1ln),0(1ln),1()1ln(12xxxxxxxxx得)知)由((

babbababax1ln,得令

0)())(()()(2))(()(2222222222babbaabbabababbaabbaababab

2222)(2)()(.)(2baabaafbfbaababab故所以

评注:本题得到不等式)1()1ln(xxx与不等式)1)(1ln(1xxxx 构成经典不等式,即)1()1ln(1xxxxx. 7、已知2ln)()2(2)()(0,0,ln)(abbagbgagbaxxxg求证:设 解析:)2ln(22lnln)2(2)()(bababbaabagbgag

babbbaaa2ln2ln 由经典不等式),01()1ln(xxxx且 及021,02,0bbaaabba得 5

因此,2)21ln(2ln2lnaabaabababaa ,2)21ln(2ln2lnaabbbabbabab

故022)2()2(2ln2lnabbabbabaabababbbaaa

又2ln2ln)(2ln2ln2ln2ln,22abbababbabbbbaababbbaaabbabaa 综上所述,得2ln)()2(2)()(0abbagbgag .)()1.(1ln)(8的最大值求、已知xfxxxf ),2()1(2)12)(1(ln33ln22ln2*222222Nnnnnnnn求证:

(1)略(2))0(11ln)0(01ln1xxxxxxx,)知由( 所以22222322211311211ln33ln22lnnnn

))1(1431321()1()13121()1(222nnnnn )1(2)12)(1()1121()1(nnnnn),2(*Nnn 9、求证:)()211()811)(411)(211(*2222Nnen要证明原不等式,就要证明1)]211()411)(211ln[(222n

即1)211ln()411ln()211ln(222

n

构造函数)0()()(,1,0,)1ln()(2fxfxfxxxxf递减,故易得 则有xx)1ln(2。故有nn21814121)211ln()411ln()211ln(222

得证,1211)211(21n。 10、)1ln()(2xxxf. 3)(0)1(xxfx时,求证:当; )1(2145131211)1()2(3313*nnnkfNnnk时,求证:当

解:)1()1(3)(,)1ln()()()1(23323xxxxhxxxxxfxh则令 易得3)(,0)0()(),0()(xxfhxhxh所以上单调递减,在

相关文档
最新文档