高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题

合集下载

高考物理带电粒子在无边界匀强磁场中运动解题技巧及经典题型及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧及经典题型及练习题(含答案)

一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,在x 轴上方有一匀强磁场,磁感应强度为B 。

x 轴下方有一匀强电场,电场强度为E 。

屏MN 与y 轴平行且相距L ,一质量为m ,电荷量为e 的电子,在y 轴上某点A 自静止释放,如果要使电子垂直打在屏MN 上,那么: (1)电子释放位置与原点O 点之间的距离s 需满足什么条件? (2)电子从出发点到垂直打在屏上需要多长时间?【答案】(1)()222s 221eL B Em n =+ (n =0,1,2,3…);(2)()212BL m t n E eBπ=++ (n =0,1,2,3…) 【解析】 【分析】 【详解】(1)在电场中电子从A →O 过程,由动能定理可得2012eEs mv =在磁场中电子偏转,洛伦兹力提供向心力,有200v qv B m r=可得mv r qB=根据题意有(2n +1)r =L所以解得()222221eL B s Em n =+ (n =0,1,2,3…)(2)电子在电场中做匀变速直线运动的时间与在磁场中做部分圆周运动的时间之和为电子运动的总时间,即)2(2214s T T t n n a ++⋅=+ 由公式 eE ma =可得eEa m=由公式20v qvB m r = 和 02r T v π=可得2mT eBπ=综上整理可得()212BL m t n E eBπ=++ (n =0,1,2,3…)2.如图所示,半径为R 的半圆形区域内存在垂直纸面向内的匀强磁场,磁感应强度大小为B,圆弧上P 点与圆心O 的连线垂直于直径MN,P 点放置一粒子源,其向纸面内各个方向均匀发射两种原子核、,的速率为v,的速率为 ,沿PO 方向发射的恰好从N 点离开磁场,忽略原子核间的相互作用及原子核的重力,取sin53°=0.8,cos53°=0.6。

(1)求原子核的比荷 (用B 、v 、R 表示)及其从P 点到边界MN 的最短时间;(2)其中一原子核的轨迹恰能与ON 的中点A 相切,求粒子的质量数a ;(3)在直径MN 上安装金属板,并与电阻r 串联后接地,带正电的原子核到达金属板后被吸收形成电流。

高考物理高考物理带电粒子在无边界匀强磁场中运动的基本方法技巧及练习题及练习题(含答案)

高考物理高考物理带电粒子在无边界匀强磁场中运动的基本方法技巧及练习题及练习题(含答案)

高考物理高考物理带电粒子在无边界匀强磁场中运动的基本方法技巧及练习题及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,圆心为O、半径为R的圆形磁场区域中存在垂直纸面向外的匀强磁场,以圆心O为坐标原点建立坐标系,在y=-3R 处有一垂直y轴的固定绝缘挡板,一质量为m、带电量为+q的粒子,与x轴成 60°角从M点(-R,0)以初速度v0斜向上射入磁场区域,经磁场偏转后由N点离开磁场(N点未画出)恰好垂直打在挡板上,粒子与挡板碰撞后原速率弹回,再次进入磁场,最后离开磁场.不计粒子的重力,求:(1)磁感应强度B的大小;(2)N点的坐标;(3)粒子从M点进入磁场到最终离开磁场区域运动的总时间.【答案】(1)0mvqR (2)31(,)2R R- (3)(5)Rvπ+【解析】(1)设粒子在磁场中运动半径为r,根据题设条件画出粒子的运动轨迹:由几何关系可以得到:r R=由洛伦兹力等于向心力:2vqv B mr=,得到:0mvBqR=.(2)由图几何关系可以得到:3sin602x R R==o,1cos602y R Ro=-=-N点坐标为:31,2R R⎫-⎪⎪⎝⎭.(3)粒子在磁场中运动的周期2m TqBπ=,由几何知识得到粒子在磁场在中运动的圆心角共为180o,粒子在磁场中运动时间:12Tt=,粒子在磁场外的运动,由匀速直线运动可以得到:从出磁场到再次进磁场的时间为:22stv=,其中132s R R==,粒子从M点进入磁场到最终离开磁场区域运动的总时间12t t t=+解得:()5Rtvπ+=.2.如图甲所示,在直角坐标系中的0≤x≤L区域内有沿y轴正方向的匀强电场,右侧有以点(2L,0)为圆心、半径为L的圆形区域,与x轴的交点分别为M、N,在xOy平面内,从电离室产生的质量为m、带电荷量为e的电子以几乎为零的初速度从P点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q点沿x轴正方向进入匀强电场,已知O、Q两点之间的距离为2L,飞出电场后从M点进入圆形区域,不考虑电子所受的重力。

高考物理高考物理带电粒子在无边界匀强磁场中运动的基本方法技巧及练习题及练习题(含答案)

高考物理高考物理带电粒子在无边界匀强磁场中运动的基本方法技巧及练习题及练习题(含答案)

一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,虚线为两磁场的边界,虚线左侧存在着半径为R 的半圆形匀强磁场,磁感应强度为B ,方向垂直纸面向里,圆心O 为虚线上的一点,虚线右侧存在着宽度为R 的匀强磁场,方向垂直纸面向外。

质量为m 、电荷量为q 的带负电的粒子,从圆周上的A 点以某一初速度沿半径方向射入半圆形磁场区域,恰好从D 点射出,AO 垂直OD 。

若将带电粒子从圆周上的C 点,以相同的初速度射入磁场,已知∠AOC =53°,粒子刚好能从虚线右侧磁场区域射出,不计粒子重力,sin53°=0.8,cos53°=0.6,求: (1)带电粒子的初速度及其从A 到D 的运动时间;(2)粒子从C 点入射,第一次运动到两磁场的边界时速度的方向及其离O 点的距离; (3)虚线右侧磁场的磁感应强度。

【答案】(1)0qBR v m=,2m t qB π=;(2)速度的方向与磁场边界的夹角为53°,0.6R ;(3)2 1.6B B = 【解析】 【分析】 【详解】(1)粒子从A 点进磁场D 点出磁场,作出轨迹如图由几何关系得轨道半径1r R =洛伦兹力提供匀速圆周运动的向心力,有200mv qv Bm= 解得0qBRv m =粒子在磁场中运动的圆心角为90°,有4T t =而周期为12r T v π=解得2mt qBπ=(2)粒子从C 点入射,作出轨迹如图由几何知识得EF 的长度L EF =R cos53°在三角形EFO 1中,有sin 0.6EFL Rθ== 即粒子转过的圆心角37θ=︒,则速度的方向与磁场边界的夹角为53° 而CE 的长度cos37CE L R R =-︒OF 的长度为sin 53OF CE L R L =︒-联立解得0.6OF L R =(3)粒子在右侧磁场的半径为2r ,由几何关系有22sin 37r r R ︒+=由向心力公式得2022mvqv Br=联立解得21.6B B=2.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O,外圆弧面AB的电势为2L()oϕ>,内圆弧面CD的电势为φ,足够长的收集板MN平行边界ACDB,ACDB与MN板的距离为L.假设太空中漂浮着质量为m,电量为q的带正电粒子,它们能均匀地吸附到AB圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB的粒子再次返回.(1)求粒子到达O点时速度的大小;(2)如图2所示,在PQ(与ACDB重合且足够长)和收集板MN之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB圆弧面的粒子经O点进入磁场后最多有23能打到MN板上,求所加磁感应强度的大小;(3)如图3所示,在PQ(与ACDB重合且足够长)和收集板MN之间区域加一个垂直MN的匀强电场,电场强度的方向如图所示,大小4ELφ=,若从AB圆弧面收集到的某粒子经O点进入电场后到达收集板MN离O点最远,求该粒子到达O点的速度的方向和它在PQ 与MN间运动的时间.【答案】(1)2qvmϕ=2)12mBL qϕ=3)060α∴=;22mLqϕ【解析】【分析】【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m=222mL mt L qE q ϕ==22x Eq qELq v t m m m ϕ===若速度与x 轴方向的夹角为α角 cos xv v α=1cos 2α=060α∴=3.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、Q 两点之间的距离为2L,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题含解析

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题含解析

一、带电粒子在无边界匀强磁场中运动1专项训练1.相距为L 的平行金属板 M 、N ,板长也为L ,板间可视为匀强电场,两板的左端与虚线 EF 对齐,EF 左侧有水平匀强电场,M 、N 两板间所加偏转电压为 U ,PQ 是两板间的中轴线.一质量为 m 、电量大小为+q 的带电粒子在水平匀强电场中 PQ 上 A 点由静止释放,水平电场强度与M 、N 之间的电场强度大小相等,结果粒子恰好从 N 板的右边緣飞出,立即进入垂直直面向里的足够大匀强磁场中 ,A 点离 EF 的距离为 L /2;不计粒子的重力,求: (1)磁感应强度B 大小(2)当带电粒子运动到 M 点后,MN 板间偏转电压立即变为−U ,(忽略电场变化带来的影响)带电粒子最终回到 A 点,求带电粒子从出发至回到 A 点所需总时间.【答案】(12mU L q 2)344L mL qUπ+()【解析】 【详解】(1)由题意知:对粒子在水平电场中从点A 到点O :有:21022U l qmv L =-……………① 在竖直向下的电场中从点O 到N 右侧边缘点B : 水平方向:0L v t =……………②竖直方向:2122L qU t mL=……………③ 在B 点设速度v 与水平初速度成θ角 有:2tan 21LLθ=⨯=……………④粒子在磁场中做匀速圆周运动 由几何关系可得:22R L =……………⑤ 又:2vqvB m R=……………⑥联解①②③④⑤⑥得:2L mUB q=……………⑦(2)粒子在磁场中运动的圆心角32πα=22R mT v qBππ== 在磁场中运动时间:2t T απ'=在水平电场中运动时间:00v v t qU a mL==''……………⑧总的时间:22t t t t '='++'总……………⑨联解得:344L mt L qUπ=+总()……………⑩2.某种回旋加速器的设计方案如俯视图甲所示,图中粗黑线段为两个正对的极板,两个极板的板面中部各有一极窄狭缝(沿OP 方向的狭长区域,),带电粒子可通过狭缝穿越极板(见图乙),极板A 、B 之间加如图丙所示的电压,极板间无磁场,仅有的电场可视为匀强电场;两细虚线间(除两极板之间的区域)既无电场也无磁场;其它部分存在垂直纸面向外的匀强磁场.在离子源S 中产生的质量为m 、带电荷量为q 的正离子,飘入电场,由电场加速后,经狭缝中的O 点进入磁场区域,O 点到极板右端的距离为0.99D ,到出射孔P 的距离为5D .已知磁感应强度大小可调,离子从离子源上方的O 点射入磁场区域,最终只能从出射孔P 射出.假设离子打到器壁即被吸收,离子可以无阻碍的通过离子源装置.忽略相对论效应,不计离子重力,0.992≈1.求: (1)磁感应强度B 的最小值; (2)若磁感应强度62mUB D q=,则离子从P 点射出时的动能和离子在磁场中运动的时间;(3)若磁感应强度62mUB D q=,如果从离子源S 飘出的离子电荷量不变,质量变为原来的K 倍(K 大于1的整数),为了使离子仍从P 点射出,则K 可能取哪些值.【答案】(1)225mU D q (2)33962D m qUπ (3) K =9,n =25;K =15,n =15;K =25,n=9;K =45,n =5;K =75,n =3;K =225,n =1 【解析】 【详解】(1)设离子从O 点射入磁场时的速率为v ,有2102qU mv =-设离子在磁场中做匀速圆周运动的轨迹半径为r ,2v qvB m r=若离子从O 点射出后只运动半个圆周即从孔P 射出,有2r =5D 此时磁感应强度取得最小值,且最小值为225mUD q(2)若磁感应强度62mUB D q=,正离子在磁场中的轨道半径16r D =,经分析可知离子在磁场中运动半圈后将穿过上极板进入电场区域做减速运动,速度减小到零后又重新反向加速到进入时的速度,从进入处到再次回到磁场区域,因为16r D=,这样的过程将进行2次,然后第3次从极板右边界进入虚线下方磁场并进入电场区域被加速,如图所示,若离子绕过两极板右端后被加速了n 次,则此时离子运动的半径为被加速了(n+1)次对应的半径11n n mv r qB++=.离子从孔P 射出满足的条件 11425n r r D ++=解得n +1=132,即离子从静止开始被加速169次后从P 点离开,最大动能2max 13169k E qU qU == 在磁场中的总时间t =169.5T , 因为32DmT qUπ=可得33962D mt qUπ=;(3)若离子电荷量为q ,质量变为Km ,设在电场中被加速一次后直接进入磁场的半径为r K ,在电场中被加速n 次进入磁场的半径为r n ,则1K r Kr =,1n r Knr =,其中16r D=,由上面1K r Kr =知,K 越大,离子被加速一次后直接进入磁场半径越大,由(2)问知,分三种情况讨论:情况一:在电场中被加速三次后(即第三个半圆)越过极板右侧:如图,此时,要满足的条件为:2×2r K <0.99D ①同时2×2r K +2r n =5D ②由①知:K <2.2,因为K >1的整数,故K =2,代入②知:22158602n =+-,由于n 要求取整数,情况一中n 不存在.情况二:在电场中被加速二次后(即第二个半圆)越过极板右侧:如图,此时,要满足的条件为2r K <0.99D ①2×2r K ≥0.99D ② 2r K +2r n =5D ③由①②知2.2≤K <9,由③知:21530Kn K K =-,当K 分别取3、4、…8时,n 不可能取整数,情况二也不存在. 情况三:在电场中被加速一次后(即第一个半圆)直接越过极板右侧:如图,此时,要满足的条件2r K ≥0.99D ①2r n =5D ②由①知:K ≥9,由②知:Kn =152=3×5×3×5,故K 可能有6组取值,分别为:K =9,n =25;K =15,n =15;K =25,n =9;K =45,n =5;K =75,n =3;K =225,n =1.3.如图所示,xOy 平面内存在垂直纸面向里的匀强磁场,磁感应强度B =0. 1T ,在原点O 有一粒子源,它可以在xOy 平面内向各个方向发射出质量276.410m -=⨯kg 电荷量193.210q -=⨯C 、速度61.010v =⨯m/s 的带正电的粒子。

高考物理带电粒子在无边界匀强磁场中运动的基本方法技巧及练习题及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动的基本方法技巧及练习题及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动的基本方法技巧及练习题及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,在x 轴上方有一匀强磁场,磁感应强度为B 。

x 轴下方有一匀强电场,电场强度为E 。

屏MN 与y 轴平行且相距L ,一质量为m ,电荷量为e 的电子,在y 轴上某点A 自静止释放,如果要使电子垂直打在屏MN 上,那么: (1)电子释放位置与原点O 点之间的距离s 需满足什么条件? (2)电子从出发点到垂直打在屏上需要多长时间?【答案】(1)()222s 221eL B Em n =+ (n =0,1,2,3…);(2)()212BL m t n E eBπ=++ (n =0,1,2,3…) 【解析】 【分析】 【详解】(1)在电场中电子从A →O 过程,由动能定理可得2012eEs mv =在磁场中电子偏转,洛伦兹力提供向心力,有200v qv B m r=可得mv r qB=根据题意有(2n +1)r =L所以解得()222221eL B s Em n =+ (n =0,1,2,3…)(2)电子在电场中做匀变速直线运动的时间与在磁场中做部分圆周运动的时间之和为电子运动的总时间,即)2(2214s T T t n n a ++⋅=+ 由公式 eE ma =可得eEa m=由公式 20v qvB m r = 和 02r T v π=可得2mT eBπ=综上整理可得()212BL m t n E eBπ=++ (n =0,1,2,3…)2.如图所示,虚线为两磁场的边界,虚线左侧存在着半径为R 的半圆形匀强磁场,磁感应强度为B ,方向垂直纸面向里,圆心O 为虚线上的一点,虚线右侧存在着宽度为R 的匀强磁场,方向垂直纸面向外。

质量为m 、电荷量为q 的带负电的粒子,从圆周上的A 点以某一初速度沿半径方向射入半圆形磁场区域,恰好从D 点射出,AO 垂直OD 。

若将带电粒子从圆周上的C 点,以相同的初速度射入磁场,已知∠AOC =53°,粒子刚好能从虚线右侧磁场区域射出,不计粒子重力,sin53°=0.8,cos53°=0.6,求: (1)带电粒子的初速度及其从A 到D 的运动时间;(2)粒子从C 点入射,第一次运动到两磁场的边界时速度的方向及其离O 点的距离; (3)虚线右侧磁场的磁感应强度。

高考物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题含解析

高考物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题含解析

高考物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题含解析一、带电粒子在无边界匀强磁场中运动1专项训练1.(加试题)有一种质谱仪由静电分析器和磁分析器组成,其简化原理如图所示。

左侧静电分析器中有方向指向圆心O 、与O 点等距离各点的场强大小相同的径向电场,右侧的磁分析器中分布着方向垂直于纸面向外的匀强磁场,其左边界与静电分析器的右边界平行,两者间距近似为零。

离子源发出两种速度均为v 0、电荷量均为q 、质量分别为m 和0.5m 的正离子束,从M 点垂直该点电场方向进入静电分析器。

在静电分析器中,质量为m 的离子沿半径为r 0的四分之一圆弧轨道做匀速圆周运动,从N 点水平射出,而质量为0.5m 的离子恰好从ON 连线的中点P 与水平方向成θ角射出,从静电分析器射出的这两束离子垂直磁场方向射入磁分析器中,最后打在放置于磁分析器左边界的探测板上,其中质量为m 的离子打在O 点正下方的Q 点。

已知OP=0.5r 0,OQ=r 0,N 、P 两点间的电势差2NPmv Uq =,4cos θ5=,不计重力和离子间相互作用。

(1)求静电分析器中半径为r 0处的电场强度E 0和磁分析器中的磁感应强度B 的大小; (2)求质量为0.5m 的离子到达探测板上的位置与O 点的距离l (用r 0表示); (3)若磁感应强度在(B —△B )到(B +△B )之间波动,要在探测板上完全分辨出质量为m 和0.5m 的两東离子,求ΔBB的最大值 【答案】(1)200mv E qr =,00B mv qr =;(2)01.5r ;(3)12%【解析】 【详解】(1)径向电场力提供向心力:2c c cv E q m r =2c c cmv E qr = c c mv B qr =(2)由动能定理:22110.50.522c NP mv mv qU ⨯-⨯=c v ==或0.5c mv r qB == 2cos 0.5c l r r θ=-解得 1.5c l r =(3)恰好能分辨的条件:00022cos 211r r r B B B Bθ-=∆∆-+解得00412BB∆=≈2.在磁感应强度为B 的匀强磁场中,一个静止的放射性原子核发生了一次α衰变.放射出α粒子(42He )在与磁场垂直的平面内做圆周运动,其轨道半径为R .以m 、q 分别表示α粒子的质量和电荷量.(1)放射性原子核用 A Z X 表示,新核的元素符号用Y 表示,写出该α衰变的核反应方程.(2)α粒子的圆周运动可以等效成一个环形电流,求圆周运动的周期和环形电流大小. (3)设该衰变过程释放的核能都转为为α粒子和新核的动能,新核的质量为M ,求衰变过程的质量亏损△m .【答案】(1)放射性原子核用 A Z X 表示,新核的元素符号用Y 表示,则该α衰变的核反应方程为4422AA Z Z X Y H --→+ ;(2)α粒子的圆周运动可以等效成一个环形电流,则圆周运动的周期为 2m Bq π ,环形电流大小为 22Bq mπ ;(3)设该衰变过程释放的核能都转为为α粒子和新核的动能,新核的质量为M ,则衰变过程的质量亏损△m 为损2211()()2BqR m M c + . 【解析】(1)根据核反应中质量数与电荷数守恒可知,该α衰变的核反应方程为4422X Y He A A ZZ --→+(2)设α粒子在磁场中做圆周运动的速度大小为v ,由洛伦兹力提供向心力有2v qvB m R=根据圆周运动的参量关系有2πRT v=得α粒子在磁场中运动的周期2πmT qB=根据电流强度定义式,可得环形电流大小为22πq q BI T m==(3)由2v qvB m R =,得qBR v m=设衰变后新核Y 的速度大小为v ′,核反应前后系统动量守恒,有Mv ′–mv =0 可得mv qBR v M M='=根据爱因斯坦质能方程和能量守恒定律有2221122mc Mv mv '∆=+ 解得22()()2M m qBR m mMc +∆=说明:若利用44A M m -=解答,亦可. 【名师点睛】(1)无论哪种核反应方程,都必须遵循质量数、电荷数守恒.(2)α衰变的生成物是两种带电荷量不同的“带电粒子”,反应前后系统动量守恒,因此反应后的两产物向相反方向运动,在匀强磁场中,受洛伦兹力作用将各自做匀速圆周运动,且两轨迹圆相外切,应用洛伦兹力计算公式和向心力公式即可求解运动周期,根据电流强度的定义式可求解电流大小.(3)核反应中释放的核能应利用爱因斯坦质能方程求解,在结合动量守恒定律与能量守恒定律即可解得质量亏损.3.如图所示,平面直角坐标系xoy 被三条平行的分界线分为I 、II 、III 、IV 四个区域,每条分界线与x 轴所夹30º角,区域I 、II 分界线与y 轴的交点坐标(0,l ),区域I 中有方向垂直纸面向里、大小为B 的匀强磁场;区域 II 宽度为d ,其中有方向平行于分界线的匀强电场;区域III 为真空区域;区域IV 中有方向垂直纸面向外、大小为2B 的匀强磁场.现有不计重力的两粒子,粒子l 带正电,以速度大小v 1从原点沿x 轴正方向运动;粒子2带负电,以一定大小的速度从x 轴正半轴一点A 沿x 轴负向与粒子1同时开始运动,两粒子恰在同一点垂直分界线进入区域II ;随后粒子1以平行于x 轴的方向进入区域III ;粒子2以平行于y 轴的方向进入区域III ,最后两粒子均在第二次经过区城III 、IV 分界线时被引出.(1)求A 点与原点距离;(2)求区域II 内电场强度E 的大小和方向; (3)求粒子2在A 的速度大小;(4)若两粒子在同一位置处被引出,区城III 宽度应设计为多少? 【答案】(1)23OA l =(2)13Blv E =(3)21v v =(4)32d S l =-【解析】(1)因为粒子1和粒子2在同一点垂直分界线进入区域Ⅱ,所以粒子1在区域Ⅰ运动半径为R 1=l粒子2在区域Ⅰ运动半径为R 2由几何关系知22132R R l =+ 23R l =33323OA l l l =-=(2)要满足题设条件,区域Ⅱ中电场方向必须平行于分界线斜向左下方 两粒子进入电场中都做类平抛运动,区域Ⅱ的宽度为d ,出电场时,对粒子1沿电场方向的运动有 1313tan 30Ev v v ==︒11113q E d v m v =⋅又 21111v q v B m l= 所以111q v m Bl =1E d=(3)粒子2经过区域Ⅱ电场加速获得的速度大小为24E tan 60v v ==︒对粒子2在电场中运动有2222q E d m v =⋅ 又 222223v q v B m l= 所以2223Blq vm = 所以 21v v =(4)粒子1经过区域Ⅲ时的速度大小为1312sin 30v v v ==︒有 2313132v Bq v m R = 3R l = 粒子2经过区域Ⅲ时的速度大小为24cos30v v ==︒有 2424242v Bq v m R =4R =两粒子要在区域IV 运动后到达同一点引出,O 3圆对应的圆心角为60゜,O 4圆对应的圆心角为120゜3E 4E 34122cos30++tan 30tan 6022v v S S d dR R v v +︒=⋅+⋅︒︒2d S =-点睛:带电粒子在组合场中的运动问题,首先要运用动力学方法分析清楚粒子的运动情况,再选择合适方法处理.对于匀变速曲线运动,常常运用运动的分解法,将其分解为两个直线的合成,由牛顿第二定律和运动学公式结合求解;对于磁场中圆周运动,要正确画出轨迹,由几何知识求解半径.4.如图所示,在0y >区域存在方向垂直xoy 平面向里、大小为B 的匀强磁场.坐标原点处有一电子发射源,单位时间发射n 个速率均为v 的电子,这些电子均匀分布于xoy 平面y 轴两侧角度各为60°的范围内.在x 轴的正下方放置平行于y 轴、足够长的金属板M 和N(极板厚度不计),两板分别位于 1.2x D =和2x D =处,N 板接地,两板间通过导线连接有电动势U 在20.25mm m mv U U U e ⎛⎫= ⎪⎝⎭范围内可调节的电源E 和灵敏电流计G .沿y轴正方向入射的电子,恰好能从2x D =处进入极板间.整个装置处于真空中,不计重力,忽略电子间的相互作用. (1)求电子的比荷;(2)求电子在磁场中飞行的时间与发射角度θ(速度方向与y 轴的角度)的关系; (3)通过计算,定性画出流过灵敏电流计G 的电流i 和电动势U 的关系曲线.【答案】(1)v BD (2)(1802)180Dt vθπ±= (3)见解析 【解析】 【详解】(1)根据洛伦兹力提供向心力:2v evB m r=根据其中题意可知半径为:r =D联立可得:e v m BD= (2)粒子的运动周期为:2mT eBπ=根据几何关系可知,当粒子从y 轴的右侧射入时,对应的圆心角为:2απθ=- 对应的时间为:()()22r D s t v v vπθπθ--=== 当粒子从y 轴的左侧射入时,对应的圆心角为:2απθ=+ 对应的时间为:()()22r D s t v v vπθπθ++=== (3)设进入M N 、极板电子所对应的最大发射角为m a ,则有2cos 1/2m D a D =.53m a =左侧电子单位时间内能打到M 极板的电子数为:535360120L n n n z == 对右侧电子:5360θ≤≤均能达到M 板上,053θ≤<以θ角射出恰好不能到达N 板.则有:2212(1cos )sin 0.82U eD mv D θθ⨯-= 电压为:211(1cos )(1cos )55m mv U U e θθ=+=+最大值为:max 25m U U =最小值为:min 0.32m U U = 当25m U U ≥,右侧所有电子均到达M 板,饱和电流为: 531113()1202120i ne ne =+=当0.32m U U <右侧角度小于53电子均不能到达M 板,此时到达极板M 的电子数为2n. 灵敏电流计G 的电流i 和电动势U 的关系曲线为:5.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为26qB Lm;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A发生弹性碰撞,A 的电量保持不变,P 、A 均可视为质点.(1)若A 从ed 边离开磁场,求k 的最大值;(2)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间.【答案】(1)1(2)57k =或13k = ;A 球在磁场中运动的最长时间32m qB π【解析】 【详解】(1)令P 初速度qBLv m=,设P 、A 碰后的速度分别为v P 和v A , 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222kmv kmv mv =+ 可得:A 21k qBL v k m=⋅+,可知k 值越大,v A 越大; 设A 在磁场中运动轨迹半径为R , 由牛顿第二定律:2A A mv qvB R= 可得:A mv R qB =,可知v A 越大,R 越大;即21kR L k =+,k 值越大,R 越大; 如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 可得:A qBLv m=,求得k 的最大值为1k =(2)令z 点为ed 边的中点,分类讨论如下:(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有()222 1.52L R L R ⎛⎫=+- ⎪⎝⎭解得:56L R=可得:57k=(II)由图可知A球能从z点离开磁场要满足2LR≥,则A球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z点离开.令电场强度26qB LEm=;如图3和如图4,由几何关系有:2223322LR R L⎛⎫⎛⎫=+-⎪ ⎪⎝⎭⎝⎭解得:58LR=或2LR=可得:511k=或13k=当58LR=时,A58qBR qBLvm m==,由于2A175264mv qEL qEL⋅=>当2LR=时,A2qBR qBLvm m==,由于2A1324mv qEL qEL⋅=<此类情形取2LR=符合题意要求,即13k=综合(I)、(II)可得A球能从z点离开的k的可能值为:57k=或13k=A球在磁场中运动周期为A22R mTv qBππ==当k=13时,如图4,A球在磁场中运动的最长时间3342T mtqBπ==6.如图甲所示,在xOy竖直平面内存在竖直方向的匀强电场,在第一象限内有一与x轴相切于点(2R, 0)、半径为R的圆形区域,该区域内存在垂直于xOy面的匀强磁场,电场与磁场随时间变化如图乙、丙所示,设电场强度竖直向下为正方向,磁场垂直纸面向里为正方向,电场、磁场同步周期性变化(每个周期内正、反向时间相同).一带正电的小球A 沿y 轴方向下落,t=0时刻A 落至点03R (,),此时,另一带负电的小球B 从圆形区域的最高点22R R (,)处开始在磁场内紧靠磁场边界做匀速圆周运动.当A 球再下落R 时,B 球旋转半圈到达点20R (,);当A 球到达原点O 时,B 球又旋转半圈回到最高点;然后A 球开始做匀速运动.两球的质量均m ,电荷量大小为q ,不计空气阻力及两小球之间的作用力,重力加速度为g ,求:(1)匀强电场的场强E 的大小;(2)小球B 做匀速圆周运动的周期T 及匀强磁场的磁感应强度B 的大小; (3)电场、磁场变化第一个周期末A 、B 两球间的距离S . 【答案】(1)mg qE =(2)2m gB qRπ=3225(22)π++【解析】 【分析】 【详解】(1)小球 B 做匀速圆周运动,则重力和电场力平衡,洛伦兹力提供向心力,则有 Eq =mg ,解得 mg qE =(2)设小球 B 的运动周期为 T ,对小球 A :Eq +mg =ma , 解得 a =2g ; 由 R =a (2T )2,得 2RT g= 对 B 小球:2=BB v Bqv m R22B Rv gR Tπ== 解得2m gB qRπ=(3)由题意分析可得:电(磁)场变化周期是 B 球做圆周运动周期的 2 倍对小球 A :在原点的速度为32A R T v a T =+ , 在原点下的位移5A A y v T R == 2T 末,小球 A 的坐标为(0,-5R ) 对小球B :球 B 的线速度 v B =π2gR ; 水平位移 x B =v B T =2πR ; 竖直位移为 y B =12aT 2=2R ; 2T 末,小球B 的坐标为[(2π+2)R ,0]则 2T 末,A 、B 两球的距离为: AB =225(22)π++R .7.如图所示是研究光电效应现象的实验电路,、为两正对的圆形金属板,两板间距为,板的半径为,且.当板正中受一频率为的细束紫外线照射时,照射部位发射沿不同方向运动的光电子,形成光电流,从而引起电流表的指针偏转.已知普朗克常量h 、电子电荷量e 、电子质量m .(1)若闭合开关S ,调节滑片P 逐渐增大极板间电压,可以发现电流逐渐减小.当电压表示数为时,电流恰好为零.求:①金属板N 的极限频率;②将图示电源的正负极互换,同时逐渐增大极板间电压,发现光电流逐渐增大,当电压达到之后,电流便趋于饱和.求此电压.(2)开关S 断开,在MN 间加垂直于纸面的匀强磁场,逐渐增大磁感应强度,也能使电流为零,求磁感应强度B 至少为多大时,电流为零. 【答案】(1)①②(2)【解析】 【分析】 【详解】(1)①据题意,由光电效应方程得到:①据电场力做负功,刚好等于动能变化,有:②极限频率为:③④②当电源正负极互换后,在电场力作用下,电子飞到极板M上,且电压越大,飞到该极板上的光电子数量越多,当所有光电子飞到该极板时,电流达到饱和,此时飞得最远的光电子可以近似看出类平抛运动,则有:⑤⑥⑦⑧⑨(2)当在MN间加有匀强磁场,在磁场力作用下,光电子做匀速圆周运动,当运动半径最大的光电子的半径等于d/2,则光电子到达不了极板M,那么就可以使电流为0,则有:⑩⑾⑿8.如图所示,在平面直角坐标系xoy的一、二象限内,分别存在以虚线OM为边界的匀强电场和匀强磁场。

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题及解析

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题及解析一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,在竖直分界线MN 的左侧有垂直纸面的匀强磁场,竖直屏与MN 之间有方向向上的匀强电场。

在O 处有两个带正电的小球A 和B ,两小球间不发生电荷转移。

若在两小球间放置一个被压缩且锁定的小型弹簧(不计弹簧长度),解锁弹簧后,两小球均获得沿水平方向的速度。

已知小球B 的质量是小球A 的1n 倍,电荷量是小球A 的2n 倍。

若测得小球A 在磁场中运动的半径为r ,小球B 击中屏的位置的竖直偏转位移也等于r 。

两小球重力均不计。

(1)将两球位置互换,解锁弹簧后,小球B 在磁场中运动,求两球在磁场中运动半径之比、时间之比;(2)若A 小球向左运动求A 、B 两小球打在屏上的位置之间的距离。

【答案】(1)2n ,21n n ;(2)123r r n n - 【解析】 【详解】(1)两小球静止反向弹开过程,系统动量守恒有A 1B mv n mv =①小球A 、B 在磁场中做圆周运动,分别有2A A A mv qv B r =,21B2B Bn mv n qv B r =②解①②式得A2Br n r = 磁场运动周期分别为A 2πmT qB=,1B 22πn m T n qB =解得运动时间之比为AA2BB122Tt nTt n==(2)如图所示,小球A经圆周运动后,在电场中做类平抛运动。

水平方向有A AL v t=③竖直方向有2A A A12y a t=④由牛顿第二定律得AqE ma=⑤解③④⑤式得2AA()2qE Lym v=⑥小球B在电场中做类平抛运动,同理有22B1B()2n qE Lyn m v=⑦由题意知By r=⑧应用几何关系得B A2y y r y∆=+-⑨解①⑥⑦⑧⑨式得123ry rn n∆=-2.空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B,一带电量为q+、质量为m的粒子,在P点以某一初速开始运动,初速方向在图中纸面内如图中P点箭头所示。

高考物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题含解析

高考物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题含解析一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,在x 轴上方有一匀强磁场,磁感应强度为B 。

x 轴下方有一匀强电场,电场强度为E 。

屏MN 与y 轴平行且相距L ,一质量为m ,电荷量为e 的电子,在y 轴上某点A 自静止释放,如果要使电子垂直打在屏MN 上,那么: (1)电子释放位置与原点O 点之间的距离s 需满足什么条件? (2)电子从出发点到垂直打在屏上需要多长时间?【答案】(1)()222s 221eL B Em n =+ (n =0,1,2,3…);(2)()212BL m t n E eBπ=++ (n =0,1,2,3…) 【解析】 【分析】 【详解】(1)在电场中电子从A →O 过程,由动能定理可得2012eEs mv =在磁场中电子偏转,洛伦兹力提供向心力,有200v qv B m r=可得mv r qB=根据题意有(2n +1)r =L所以解得()222221eL B s Em n =+ (n =0,1,2,3…)(2)电子在电场中做匀变速直线运动的时间与在磁场中做部分圆周运动的时间之和为电子运动的总时间,即)2(2214s T T t n n a ++⋅=+ 由公式 eE ma =可得eEa m=由公式20v qvB m r = 和 02r T v π=可得2mT eBπ=综上整理可得()212BL m t n E eBπ=++ (n =0,1,2,3…)2.如图所示,半径为R 的半圆形区域内存在垂直纸面向内的匀强磁场,磁感应强度大小为B,圆弧上P 点与圆心O 的连线垂直于直径MN,P 点放置一粒子源,其向纸面内各个方向均匀发射两种原子核、,的速率为v,的速率为 ,沿PO 方向发射的恰好从N 点离开磁场,忽略原子核间的相互作用及原子核的重力,取sin53°=0.8,cos53°=0.6。

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题及解析

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题及解析一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,圆心为O、半径为R的圆形磁场区域中存在垂直纸面向外的匀强磁场,以圆心O为坐标原点建立坐标系,在y=-3R 处有一垂直y轴的固定绝缘挡板,一质量为m、带电量为+q的粒子,与x轴成 60°角从M点(-R,0)以初速度v0斜向上射入磁场区域,经磁场偏转后由N点离开磁场(N点未画出)恰好垂直打在挡板上,粒子与挡板碰撞后原速率弹回,再次进入磁场,最后离开磁场.不计粒子的重力,求:(1)磁感应强度B的大小;(2)N点的坐标;(3)粒子从M点进入磁场到最终离开磁场区域运动的总时间.【答案】(1)0mvqR (2)31(,)2R R- (3)(5)Rvπ+【解析】(1)设粒子在磁场中运动半径为r,根据题设条件画出粒子的运动轨迹:由几何关系可以得到:r R=由洛伦兹力等于向心力:2vqv B mr=,得到:0mvBqR=.(2)由图几何关系可以得到:3sin60x R R==o,1cos602y R Ro=-=-N点坐标为:31,22R R⎛⎫-⎪ ⎪⎝⎭.(3)粒子在磁场中运动的周期2mTqBπ=,由几何知识得到粒子在磁场在中运动的圆心角共为180o ,粒子在磁场中运动时间:12Tt =,粒子在磁场外的运动,由匀速直线运动可以得到:从出磁场到再次进磁场的时间为:202s t v =,其中132s R R ==,粒子从M 点进入磁场到最终离开磁场区域运动的总时间12t t t =+ 解得:()05R t v π+=.2.空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B ,一带电量为q +、质量为m 的粒子,在P 点以某一初速开始运动,初速方向在图中纸面内如图中P 点箭头所示。

该粒子运动到图中Q 点时的速度方向与P 点时速度方向垂直,如图中Q 点箭头所示。

已知P 、Q 间的距离为l 。

【物理】高考必备物理带电粒子在无边界匀强磁场中运动技巧全解及练习题(含答案)

【物理】高考必备物理带电粒子在无边界匀强磁场中运动技巧全解及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外。

点P (3L,0)处有一粒子源,向各个方向发射速率不同、质量为m 、电荷量为-q 的带电粒子。

粒子1以某速率v 1发射,先后经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L )。

不计粒子的重力。

(1)求粒子1的速率v 1和第一次从P 到Q 的时间t 1;(2)若只撤去第一象限的磁场,另在第一象限加y 轴正向的匀强电场,粒子2以某速率v 2发射,先后经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度大小E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加上沿y 轴负向的匀强电场,场强大小为 E 0,粒子3以速率 v 3 沿 y 轴正向发射,粒子将做复杂的曲线运动,求粒子3在运动过程中的最大速率 v m 。

某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,根据运动的独立性和矢量性,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动。

本题中可将带电粒子的运动等效为沿x 轴负方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动。

请尝试用该思路求解粒子3的最大速率v m 。

【答案】(1)123qBL v m =,14π3m t qB =;(2)289qLB E m =,2219qLBv m=;(3)2200m 3E E v v B B ⎛⎫=+ ⎪⎝⎭【解析】 【分析】 【详解】(1)粒子1在第一、二、三象限做圆周运动,轨迹如图:设半径为1r ,由几何知识得()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭可得123L r =由向心力公式,根据牛顿第二定律2111v qv B m r =可得123qBLv m =设粒子做圆周运动的周期为1T1112r T v π=由几何知识可知60θ︒=粒子第一次从P 到Q 的时间112433m t T qBπ==(2)粒子2在二、三象限的运动与粒子1完全相同,粒子2在第一象限做类斜抛运动,并且垂直经E 过y 轴,可以逆向思考,由牛顿第二定律得qEa m=x 轴方向1233L v t = y 轴方向212122r L at -=可得289qLB E m=根据()22212v v at =+可得22219qLBv m=(3)根据提示,可将粒子的初速度分解,如图:根据平衡条件40qv B qE =可得4E v B=根据运动的合成,可知22543v v v =+ 粒子的运动可视为水平向左的速率为4v 的匀速直线运动和初速度为5v 的逆时针的圆周运动的合运动,所以粒子的最大速率为m 45v v v =+可得2200m 3E E v v B B ⎛⎫=+ ⎪⎝⎭2.如图所示,两个边长均为l 的正方形区域ABCD 和EFGH 内有竖直向上的匀强电场,DH上方有足够长的竖直向下的匀强电场.一带正电的粒子,质量为m,电荷量为q,以速度v从B点沿BC方向射入匀强电场,已知三个区域内的场强大小相等,且,今在CDHE区域内加上合适的垂直纸面向里的匀强磁场,粒子经过该磁场后恰能从DH的中点竖直向上射入电场,粒子的重力不计,求:(1)所加磁场的宽度DH;(2)所加磁场的磁感应强度大小;(3)粒子从B点射入到从EFGH区域电场射出所经历的总时间.【答案】(1) (2) (3)【解析】(1)粒子在ABCD区域电场中做类平抛运动,射出该电场时沿电场方向偏转距离为d由Eq=ma得a=由l=vt得t=故d=at2=l粒子射出ABCD区域电场时沿场强方向速度为v y=at=v速度偏向角为tanθ==1解得θ=粒子从DH 中点竖直向上射入电场,由几何关系知得得(2)射入磁场的速度大小为v ′=v由洛伦兹力提供向心力qv ′B =m解得B =(3)粒子在左侧电场中偏转的运动时间t 1= 粒子在磁场中向上偏转运动时间t 2=T其中T =在上方电场中运动减速到零的时间为t 3= 粒子运动轨迹如图所示,根据对称性可知粒子运动总时间为t =2(t 1+t 2+t 3) 得或t =点睛:本题考查了粒子在电场与磁场中的运动,粒子运动过程复杂,分析清楚粒子运动过程、作出粒子运动轨迹是解题的前提,作出粒子运动轨迹后,应用类平抛运动规律与牛顿第二定律可以解题,解题时注意几何知识的应用.3.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为2L()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.(1)求粒子到达O 点时速度的大小;(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23能打到MN 板上,求所加磁感应强度的大小;(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E Lφ=,若从AB 圆弧面收集到的某粒子经O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v mϕ=2)12m B L q ϕ=3)060α∴= ;22m L q ϕ【解析】 【分析】 【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m=222mL mt L qE q ϕ==22x Eq qEL q v t m m m ϕ===若速度与x 轴方向的夹角为α角 cos xv v α=1cos 2α=060α∴=4.如图所示,地面某处有一粒子发射器A ,发射器尺寸忽略不计,可以竖直向上发射速度介于v 0~2v 0的电子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题 一、带电粒子在无边界匀强磁场中运动1专项训练 1.如图所示,在竖直分界线MN的左侧有垂直纸面的匀强磁场,竖直屏与MN之间有方向向上的匀强电场。在O处有两个带正电的小球A和B,两小球间不发生电荷转移。若在两小球间放置一个被压缩且锁定的小型弹簧(不计弹簧长度),解锁弹簧后,两小球均获得沿水平方向的速度。已知小球B的质量是小球A的1n倍,电荷量是小球A的2n倍。若测得小球A在磁场中运动的半径为r,小球B击中屏的位置的竖直偏转位移也等于r。两小球重力均不计。 (1)将两球位置互换,解锁弹簧后,小球B在磁场中运动,求两球在磁场中运动半径之比、

时间之比; (2)若A小球向左运动求A、B两小球打在屏上的位置之间的距离。

【答案】(1)2n,21nn;(2)12

3rrnn

【解析】 【详解】 (1)两小球静止反向弹开过程,系统动量守恒有

A1Bmvnmv①

小球A、B在磁场中做圆周运动,分别有 2AAAmvqvBr,21B2B

B

nmvnqvBr②

解①②式得 A2

B

rnr

磁场运动周期分别为 A2πmTqB,

1

B

2

2πnmTnqB

解得运动时间之比为 AA2BB1

2

2

TtnTtn



(2)如图所示,小球A经圆周运动后,在电场中做类平抛运动。

水平方向有 AALvt③

竖直方向有 2AAA

1

2yat④

由牛顿第二定律得 AqEma⑤

解③④⑤式得 2AA

()2qELymv⑥

小球B在电场中做类平抛运动,同理有 22

B

1B

()2nqELynmv⑦

由题意知 Byr⑧

应用几何关系得

BA2yyry⑨

解①⑥⑦⑧⑨式得

123ryrnn

2.在磁感应强度为B的匀强磁场中,一个静止的放射性原子核发生了一次α衰变.放射出α粒子(42He )在与磁场垂直的平面内做圆周运动,其轨道半径为R.以m、q分别表示α粒子的质量和电荷量.

(1)放射性原子核用 A

ZX 表示,新核的元素符号用Y表示,写出该α衰变的核反应方

程.

(2)α粒子的圆周运动可以等效成一个环形电流,求圆周运动的周期和环形电流大小. (3)设该衰变过程释放的核能都转为为α粒子和新核的动能,新核的质量为M,求衰变

过程的质量亏损△m. 【答案】(1)放射性原子核用 AZX 表示,新核的元素符号用Y表示,则该α衰变的核反应方程为4422AAZZXYH ;(2)α粒子的圆周运动可以等效成一个环形电流,则圆

周运动的周期为 2mBq ,环形电流大小为 22Bqm ;(3)设该衰变过程释放的核能都转为为α粒子和新核的动能,新核的质量为M,则衰变过程的质量亏损△m为损 2211()()2BqR

mMc .

【解析】 (1)根据核反应中质量数与电荷数守恒可知,该α衰变的核反应方程为4422XYHeAAZZ

(2)设α粒子在磁场中做圆周运动的速度大小为v,由洛伦兹力提供向心力有2v

qvBmR

根据圆周运动的参量关系有2πRTv

得α粒子在磁场中运动的周期2πmTqB

根据电流强度定义式,可得环形电流大小为22πqqBITm

(3)由2vqvBmR,得qBRvm

设衰变后新核Y的速度大小为v′,核反应前后系统动量守恒,有Mv′–mv=0 可得mvqBRvMM

根据爱因斯坦质能方程和能量守恒定律有2221122mcMvmv

解得22()()2MmqBRmmMc



说明:若利用44AMm解答,亦可. 【名师点睛】(1)无论哪种核反应方程,都必须遵循质量数、电荷数守恒. (2)α衰变的生成物是两种带电荷量不同的“带电粒子”,反应前后系统动量守恒,因此反应后的两产物向相反方向运动,在匀强磁场中,受洛伦兹力作用将各自做匀速圆周运动,且两轨迹圆相外切,应用洛伦兹力计算公式和向心力公式即可求解运动周期,根据电流强度的定义式可求解电流大小. (3)核反应中释放的核能应利用爱因斯坦质能方程求解,在结合动量守恒定律与能量守恒定律即可解得质量亏损.

3.如图甲所示,在直角坐标系中的0≤x≤L区域内有沿y轴正方向的匀强电场,右侧有以点(2L,0)为圆心、半径为L的圆形区域,与x轴的交点分别为M、N,在xOy平面内,从电离室产生的质量为m、带电荷量为e的电子以几乎为零的初速度从P点飘入电势差为U的加速电场中,加速后经过右侧极板上的小孔Q点沿x轴正方向进入匀强电场,已知O、

Q两点之间的距离为2L,飞出电场后从M点进入圆形区域,不考虑电子所受的重力。

(1)求0≤x≤L区域内电场强度E的大小和电子从M点进入圆形区域时的速度vM; (2)若圆形区域内加一个垂直于纸面向外的匀强磁场,使电子穿出圆形区域时速度方向垂直于x轴,求所加磁场磁感应强度B的大小和电子在圆形区域内运动的时间t; (3)若在电子从M点进入磁场区域时,取t=0,在圆形区域内加如图乙所示变化的磁场(以垂直于纸面向外为正方向),最后电子从N点飞出,速度方向与进入圆形磁场时方向相同,请写出磁场变化周期T满足的关系表达式。

【答案】(1)2UEL,2MeUvm,设vM的方向与x轴的夹角为θ,θ=45°;(2)2MmvmvBeRLe,3348MRLmtveU;(3)T的表达式为22mLTnemU(n=

1,2,3,…)

【解析】 【详解】

(1)在加速电场中,从P点到Q点由动能定理得:20

1

2eUmv

可得0

2eUvm

电子从Q点到M点,做类平抛运动, x轴方向做匀速直线运动,

02LmtLveU

y轴方向做匀加速直线运动,

2

122LeEtm

由以上各式可得:2UEL

电子运动至M点时:220()M

Eevvtm

即:2MeUvm 设vM的方向与x轴的夹角为θ, 02cos2Mvv

解得:θ=45°。 (2)如图甲所示,电子从M点到A点,做匀速圆周运动,因O2M=O2A,O1M=O1A,且O2A∥MO1,所以四边形MO1AO2为菱形,即R=L

由洛伦兹力提供向心力可得:2MM

vevBmR

即2MmvmvBeRLe

3348MRLmtveU。

(3)电子在磁场中运动最简单的情景如图乙所示,在磁场变化的半个周期内,粒子的偏转角为90°,根据几何知识,在磁场变化的半个周期内,电子在x轴方向上的位移恰好等于轨道半径2R,即222RL 因电子在磁场中的运动具有周期性,如图丙所示,电子到达N点且速度符合要求的空间条件为:2(2)2nRL(n=1,2,3,…)

电子在磁场中做圆周运动的轨道半径0

M

mvReB

解得:022nemUBeL(n=1,2,3,…) 电子在磁场变化的半个周期内恰好转过14圆周,同时在MN间的运动时间是磁场变化周期的整数倍时,可使粒子到达N点且速度满足题设要求,应满足的时间条件是0

142TT

又0

0

2mTeB

则T的表达式为22mLTnemU(n=1,2,3,…)。 4.如图,圆心为O、半径为r的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B。P是圆外一点,OP=3r。一质量为m、电荷量为q(q>0)的粒子从P点在纸面内垂直于OP射出。己知粒子运动轨迹经过圆心O,不计重力。求 (1)粒子在磁场中做圆周运动的半径;

(2)粒子第一次在圆形区域内运动所用的时间。

【答案】(1)(2) 【解析】 【分析】 本题考查在匀强磁场中的匀速圆周运动及其相关的知识点,意在考查考生灵活运用相关知

相关文档
最新文档