数列排列组合项式定理概率统计知识点总结
35:排列组合和二项式定理高三复习数学知识点总结(全)

排列、组合与二项式定理1.两个计数原理(1)分类计数定理(加法原理):如果完成一件事,有n 类方式,在第1类方式中有1m 种不同的方法,在第2类方式中有2m 种不同的方法,......,在第n 类方式中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法.(2)分步计数定理(乘法原理):如果完成一件事,需要完成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,......,做第n 步有n m 种不同的方法,那么完成这件事共有n m m m N ⨯⨯⨯= 21种不同的方法.(3)两个计数原理的区别分类计数原理与分步计数原理的区别关键在于看事件能否完成,事件完成了就是分类,分类后要将种数相加;事件必须要连续若干步才能完成的则是分步,分步后要将种数相乘.2.排列(1)排列的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(2)排列数的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n A 表示.(3)排列数公式:)1()2)(1()!(!+---=-=m n n n n m n n A m n .特别地:①(全排列).123)2)(1(!⋅⋅--== n n n n A n n ②.1!0=3.组合(1)组合的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.(2)组合数的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号m n C 表示.(3)组合数公式:()()()()121!!!!m m n n m m n n n n m A n C A m m n m ---+===- .特别地:01n C =.(4)组合数的性质:①m n n m n C C -=;②11-++=m n m n m n C C C ;③11--=kn k n nC kC .4.解决排列与组合问题的常用方法通法:先特殊后一般(有限制条件问题),先组合后排列(分组问题),先分类后分步(综合问题).例:某校开设9门课程供学生选修,其中A 、B 、C 三门由于上课时问相同,至多选一门,学校规定,每位同学选修4门,共有多少种不同的选修方案?答:.75461336=+C C C (1)特殊元素、位置优先安排法:对问题中的特殊元素或位置优先考虑排列,然后排列其他一般元素或位置.例4-1:0、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有几个?答:.3013131224=+C C C A (2)限制条件排除法:先求出不考虑限制条件的个数,然后减去不符合条件的个数.也适用于解决“至多”“至少”的排列组合问题.例4-2:从7名男同学和5名女同学中选出5人,若至少有2名女同学当选,问有多少种情况?答:.596)(471557512=+-C C C C(3)相邻问题“捆绑法”:将必须相邻的元素“捆绑”在一起,当作一个元素进行排列,待整个问题排好之后再考虑它们内部的排列数,它主要用于解决相邻问题.例4-3:5个男生3个女生排成一列,要求女生排一起,共有几种排法?答:6363A A =4320(4)不相邻问题“插空法”:先把无位置要求的元素进行排列,再把规定不相邻的元素插入已排列好的元素形成的“空档”中(注意两端).例4-4:5个男生3个女生排成一列,要求女生不相邻且不可排两头,共有几种排法?答:5354A A (5)元素相同“隔板法”:若把n 个不加区分的相同元素分成m 组,可通过n 个相同元素排成一排,在元素之间插入1-m 块隔板来完成分组,共11--+m m n C 种方法.例4-5:10张参观公园的门票分给5个班,每班至少1张,有几种选法?答:.49C (6)元素不多“列举法”:即把符合条件的一一列举出来.例4-6:将数字1、2、3、4填入标号为1、2、3、4的四个方格内,每个方格填一个,则每个方格的标号与所填的数字均不相同的填法种数有种。
高考数学一轮复习排列组合和概率必考知识点归纳

《高考数学一轮复习排列组合和概率必考知识点归纳》
摘要:排列组合问题依据是分类相加分步相乘有序排列无序组合,二项式系数与展开式某项系数易混r+项二项式系数,二项式系数项项或两项;展开式系数项法要用不等式组确定r
排列组合问题依据是分类相加分步相乘有序排列无序组合
排列组合问题规律是相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排排法;至多至少问题接法
二项式系数与展开式某项系数易混r+项二项式系数
二项式系数项与展开式系数项易混
二项式系数项项或两项;展开式系数项法要用不等式组确定r
你掌握了三种常见概率公式吗?(①等可能事件概率公式;②斥事件有发生概率公式;③相独立事件发生概率公式
)
二项式展开式通项公式、次独立重复试验事件发生k次概率易记混
通项公式它是r+项而不是r项;
事件发生k次概率
其k03…且0
分布列答题你能把步骤写全吗?
如何对总体分布进行估计?(用样估计总体是研究统计问题基思想方法般地样容量越这种估计就越精确要能画出频率分布表和频率分布直方图;理频率分布直方图矩形面积几何义
)
你还记得般正态总体如何化标准正态总体吗?(对任正态总体说取值x概率其表示标准正态总体取值概率)
.。
排列、组合、二项式定理讲解

排列、组合、二项式定理1.掌握分类计数原理与分步计数原理、并能用它分析和解决一些简单的应用问题.2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.3.理解组合的意义,掌握组合数计算公式和组合数性质,并能用它们解决一些简单的应用问题.4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.排列与组合高考重点考察学生理解问题、综合运用分类计数原理和分步计数原理分析问题和解决问题的能力及分类讨论思想.它是高中数学中从内容到方法都比较独特的一个组成部分,是进一步学习概率论的基础知识.由于这部分内容概念性强,抽象性强,思维方法新颖,同时解题过程中极易犯“重复”或“遗漏”的错误,而且结果数目较大,无法一一检验,因此学生要学好本节有一定的难度.解决该问题的关键是学习时要注意加深对概念的理解,掌握知识的内在联系和区别,严谨而周密地去思考分析问题.二项式定理是进一步学习概率论和数理统计的基础知识,高考重点考查展开式及通项,难度与课本内容相当.另外利用二项式定理及二项式系数的性质解决一些较简单而有趣的小题,在高考中也时有出现.第1课时 两个计数原理1.分类计数原理(也称加法原理):做一件事情,完成它可以有n 类办法,在第一类办法中有m 1种不同的方法,在第二类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事共有N = 种不同的方法.2.分步计数原理(也称乘法原理):做一件事情,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做n 步有m n 种不同的方法,那么完成这件事共有N = 种不同的方法.3.解题方法:枚举法、插空法、隔板法.例1. 高三(1)、(2)、(3)班分别有学生48,50,52人(1) 从中选1人当学生代表的方法有多少种?(2) 从每班选1人组成演讲队的方法有多少种?(3) 从这150名学生中选4人参加学代会有多少种方法?(4) 从这150名学生中选4人参加数理化四个课外活动小组,共有多少种方法?解:(1)48+50+52=150种 (2)48×50×52=124800种 (3)4150C (4)4150A 变式训练1:在直角坐标x -o -y 平面上,平行直线x=n ,(n=0,1,2,3,4,5),y=n ,(n=0,1,2,3,4,5),组成的图形中,矩形共有( )A 、25个B 、36个C 、100个D 、225个解:在垂直于x 轴的6条直线中任意取2条,在垂直于y 轴的6条直线中任意取2条,这样的4 条直线相交便得到一个矩形,所以根据分步记数原理知道:得到的矩形共有22515152626=⨯=⋅C C 个, 故选D 。
高中组合知识点归纳总结

高中组合知识点归纳总结在高中数学学科中,组合是一个重要的内容领域,涵盖了排列、组合和二项式定理等知识点。
本文将对高中组合知识点进行归纳总结,帮助同学们更好地掌握这一部分内容。
一、排列1. 定义:排列是指从一组元素中选取若干个元素按特定的顺序排列的方式。
根据排列的特征,可以分为有放回排列和无放回排列。
2. 有放回排列:从n个元素中选取r个元素进行排列,每个元素都可以重复选取。
计算公式为P(n,r) = n^r。
3. 无放回排列:从n个元素中选取r个元素进行排列,每个元素只能选取一次。
计算公式为A(n,r) = n! / (n-r)!。
二、组合1. 定义:组合是指从一组元素中选取若干个元素按照无序排列的方式。
根据组合的特征,可以分为有放回组合和无放回组合。
2. 有放回组合:从n个元素中选取r个元素进行组合,每个元素都可以重复选取。
计算公式为C(n,r) = (n+r-1)! / (r!(n-1)!。
3. 无放回组合:从n个元素中选取r个元素进行组合,每个元素只能选取一次。
计算公式为C(n,r) = n! / (r!(n-r)!)。
三、二项式定理1. 定义:二项式定理是数学中的一个重要定理,描述了二次幂的展开式中的系数。
具体公式为(a+b)^n = C(n,0)a^n*b^0 + C(n,1)a^(n-1)*b^1 + ... + C(n,n)a^0*b^n。
2. 应用:二项式定理在代数、概率和组合等领域都有广泛的应用。
例如,在计算二次幂的展开式时,可以根据二项式定理快速求解。
四、题型归纳在高中数学考试中,组合相关的题目主要有以下几种类型:1. 求排列、组合的个数:题目给出了元素个数和排列或组合的条件,要求计算可能的个数。
2. 求排列、组合的具体情况:题目给出了元素个数和排列或组合的条件,需要求出具体的排列或组合情况。
3. 求满足条件的概率:题目给出了元素个数和排列或组合的条件,需要求出满足条件的概率。
高考数学知识点总结:排列组合和概率

高考数学知识点总结:排列组合和概率.解排列组合标题的依据是:分类相加,分步相乘,有序排列,无序组合。
解排列组合标题的纪律是:相邻标题捆绑法;不邻标题插空法;多排标题单排法;定位标题优先法;定序标题倍缩法;多元标题分类法;有序分派标题法;选取标题先排后排法;至多至少标题间接法。
.二项式系数与展开式某一项的系数易混,第r+1项的二项式系数为。
二项式系数最大项与展开式中系数最大项易混。
二项式系数最大项为中间一项或两项;展开式中系数最大项的求法要用解不等式组来确定r.
.你掌握了三种常见的概率公式吗?(①等可能事件的概率公式;②互斥事件有一个产生的概率公式;③相互独立事件同时产生的概率公式。
)
.二项式展开式的通项公式、n次独立重复试验中事件A 产生k次的概率易记混。
通项公式:它是第r+1项而不是第r项;
事件A产生k次的概率:。
此中k=0,1,2,3,…,n,且0
.求漫衍列的解答题你能把步骤写全吗?
怎样对总体漫衍举行预计?(用样本预计总体,是研究统计标题的一个基本思想要领,一般地,样本容量越大,这种预
计就越准确,要求能画出频率漫衍表和频率漫衍直方图;理解频率漫衍直方图矩形面积的几多意义。
)
.你还记得一般正态总体怎样化为标准正态总体吗?(对任一正态总体来说,取值小于x的概率,此中表示标准正态总体取值小于的概率)。
高中数学知识点归纳排列组合与二项式定理

高中数学知识点归纳排列组合与二项式定理在高中数学中,排列组合是一种重要的概念与工具,它涉及到对对象的选取和排列的方式。
而在排列组合的基础上,我们还能引出二项式定理,进一步探讨多项式的展开与计算。
本文将对这些数学知识点进行归纳总结和讨论。
一、排列组合的基本概念1.1 排列排列是从给定的一组对象中,按照一定的顺序选择若干个对象进行排列。
假设有n个不同的对象,要从中选择r个对象进行排列,可以得到的排列数记为P(n,r)。
P(n,r) = n!/(n-r)!1.2 组合组合是指从给定的一组对象中,无视其顺序,选择若干个对象。
同样假设有n个不同的对象,要从中选择r个对象进行组合,可以得到的组合数记为C(n,r)。
C(n,r) = n!/(r!(n-r)!)1.3 重复排列与重复组合当给定的一组对象中存在重复的元素时,我们可以计算可能的重复排列与重复组合。
计算公式如下:重复排列:P(n1,n2,...,nk) = n!/(n1!n2!...nk!)重复组合:C(n+r-1,r) = (n+r-1)!/(r!(n-1)!)二、排列组合的应用2.1 生日问题生日问题是指在一个房间里,至少有两个人生日相同的概率有多大。
利用排列组合的思想可以很方便地解决这个问题。
在一个房间里,有n 个人,假设有365天可以选作生日。
我们可以计算至少有两个人生日相同的概率,即为1减去没有人生日相同的概率。
P(at least two people have the same birthday) = 1 - P(no two people have the same birthday)= 1 - C(365,n)/365^n2.2 二项式定理与展开二项式定理是代数中的重要定理之一,它描述了两个数之和的幂展开后的表达式。
假设有实数a和b以及正整数n,根据二项式定理可以将(a+b)^n展开为:(a+b)^n = C(n,0)a^n*b^0 + C(n,1)a^(n-1)*b^1 + C(n,2)a^(n-2)*b^2 + ... + C(n,n-1)a^1*b^(n-1) + C(n,n)a^0*b^n2.3 二项式系数与组合恒等式二项式系数指的是二项式展开中各项的系数。
高中数学排列组合笔记梳理
高中数学排列组合笔记梳理
最近两年排列组合和概率统计的内容在高考中愈发重要,所以打算先更新这一部分的笔记
一、排列数和组合数
这是解决排列组合问题的基础,除了知道定义外,还需要了解它们的性质以及一些使用方法。
排列组合数的一些性质在二项式定理的相关题目中经常会用到,所以理科的同学也要多留意一下(接下来的一两期会更新二项式相关内容)
二、排列组合问题的常见题型
1.捆绑法和插空法
一种“先解决整体再解决局部”的办法,用到乘法规则,是排列组合的经典题型之一。
2.隔板法
在名额分配、不定方程正整数解等题型中都会用到,关键要学会从问题中抽出隔板模型。
3.使用集合元素个数公式来帮助求解
这类题目也可以用分类法求解,不过画图会让问题更直观,不容易缺失情况
4.圆排列问题
只需要一个小小的策略就可以转化成直线排列啦
5.几何相关的排列组合问题
主要考察正方体、四面体等立体图形的相关性质,只要见过这类题型,了解套路,就不怕没有思路。
二项式定理与排列组合的知识点总结
二项式定理与排列组合的知识点总结二项式定理是高中数学中的一个重要定理,它与排列组合有着密切的联系。
本文将对二项式定理和排列组合的知识点进行总结,希望能够为读者提供清晰明了的概念和理解。
一、排列组合的基本概念排列组合是数学中研究对象的一种组织方式。
排列是指将一组元素按照一定顺序进行布置,而组合是指从一组元素中取出若干元素组成一个集合。
1. 排列排列是指从一组元素中有序地选取若干个元素进行布置。
主要分为两种类型:有放回排列和无放回排列。
有放回排列是指在选择完元素后将其放回原处,元素可以被多次选取。
而无放回排列是指在选择完元素后不放回,下次选择时不能再选取。
2. 组合组合是指从一组元素中无序地选择若干个元素进行组合。
同样地,组合也可以分为有放回组合和无放回组合两种类型。
二、二项式定理的概念和公式二项式定理是代数学中的一个重要定理,用于展开二项式的幂。
它表述了如下公式:(a + b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + ... + C(n,n-1)ab^(n-1) + C(n,n)b^n其中,a,b是实数或者变量,n为非负整数。
C(n, k)表示从n个元素中取出k个元素的组合数,也称为二项系数。
具体计算公式如下:C(n, k) = n! / (k!(n-k)!)三、二项式定理与排列组合的关系二项式定理中的二项系数C(n, k)正是组合数的计算公式,说明了二项式展开式中各项系数的求解方法。
1. 二项式系数的性质二项系数具有一些重要的性质,包括对称性、加法原理和乘法原理等。
这些性质在解决排列组合问题时具有重要的指导作用。
2. 应用举例利用二项式定理和排列组合的知识,可以解决一些实际问题。
比如,求解一组数的幂展开式中某一项的系数、计算某些特殊排列组合的总数等等。
四、应用示例在实际应用中,二项式定理与排列组合经常被用于解决一些概率、统计和计算问题。
初中数学排列组合知识点梳理
初中数学排列组合知识点梳理初中数学中的排列组合是一个重要的内容,它涉及到计数原理和概率统计等学科。
排列组合问题在生活中的应用非常广泛,如排队、选书、密码等等。
下面我将对初中数学中的排列组合知识点进行梳理。
首先,我们来了解一下排列和组合的概念。
排列是指从一组对象中按照一定的顺序、不重复地取出若干个对象的方法数。
组合是指从一组对象中按照一定的顺序、可以重复地取出若干个对象的方法数。
在排列中,我们需要了解全排列和部分排列。
全排列就是从一组对象中取出所有的对象进行排列,如$n$个人进行比赛的全排列就是$n!$。
部分排列是从一组对象中取出一部分进行排列,如从$n$个人中选取$m$个人进行比赛的部分排列就是$A_n^m$。
在组合中,我们需要了解无重复组合和有重复组合。
无重复组合是指从一组对象中按照一定的顺序取出若干个对象的方法数,对象之间没有重复。
有重复组合是指从一组对象中按照一定的顺序取出若干个对象的方法数,对象之间可以重复。
接下来,我们来了解一些排列组合的常见问题。
1. 基本的全排列问题:将$n$个不同的元素进行排列,共有多少种不同的排列方法?答案是$n!$。
2. 基本的部分排列问题:从$n$个不同的元素中选取$m$个元素进行排列,共有多少种不同的排列方法?答案是$A_n^m = \frac{n!}{(n-m)!}$。
3. 基本的组合问题:从$n$个不同的元素中选取$m$个元素进行组合,共有多少种不同的组合方法?答案是$C_n^m = \frac{n!}{m!(n-m)!}$。
4. 二项式定理:$(a+b)^n$展开后,各项系数的求法就是一个组合问题。
例如,展开$(a+b)^3$,系数依次为$1, 3, 3, 1$,这些系数分别为$C_3^0, C_3^1, C_3^2,C_3^3$。
5. 应用举例:排队问题。
如果有$n$个人排成一列,求他们可以排列的方法数。
答案是$n!$。
排列组合问题在生活中的应用非常广泛。
高考数学知识点总结:排列组合和概率
高考数学知识点总结:排列组合和概率.解陈列组分解绩的依据是:分类相加,分步相乘,有序陈列,无序组合。
解陈列组分解绩的规律是:相邻效果捆绑法;不邻效果插空法;多排效果单排法;定位效果优先法;定序效果倍缩法;多元效果分类法;有序分配效果法;选取效果先排后排法;至少至少效果直接法。
.二项式系数与展开式某一项的系数易混,第r+1项的二项式系数为。
二项式系数最大项与展开式中系数最大项易混。
二项式系数最大项为中间一项或两项;展开式中系数最大项的求法要用解不等式组来确定r.
.你掌握了三种罕见的概率公式吗?(①等能够事情的概率公式;②互斥事情有一个发作的概率公式;③相互独立事情同时发作的概率公式。
)
.二项式展开式的通项公式、n次独立重复实验中事情A 发作k次的概率易记混。
通项公式:它是第r+1项而不是第r项;
事情A发作k次的概率:。
其中k=0,1,2,3,…,n,且0
.求散布列的解答题你能把步骤写全吗?
如何对总体散布停止估量?(用样本估量总体,是研讨统计效果的一个基本思想方法,普通地,样本容量越大,这种估
量就越准确,要求能画出频率散布表和频率散布直方图;了解频率散布直方图矩形面积的几何意义。
)
.你还记得普通正态总体如何化为规范正态总体吗?(对任一正态总体来说,取值小于x的概率,其中表示规范正态总体取值小于的概率)。