人教版高中数学必修二 导学案:第四章第一节圆的一般方程
高一数学必修二 4.1.2 圆的一般方程

知识梳理
12
【做一做2】 已知点P(x0,y0)是圆x2+y2=4上的动点,点M是OP(O
是原点)的中点,则动点M的轨迹方程是
.
答案:x2+y2=1
重难点突破
12
1.圆的标准方程和一般方程的对比 剖析:(1)由圆的标准方程(x-a)2+(y-b)2=r2(r>0),可以直接看出圆 心坐标(a,b)和半径r,圆的几何特征明显. (2)由圆的一般方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0),知道圆的 方程是一种特殊的二元二次方程,圆的代数特征明显. (3)相互转化,如图所示.
知识梳理
12
【做一做1-1】 圆x2+y2-2x+4y=0的圆心坐标是 ( ) A.(1,-2) B.(1,2) C.(-1,2) D.(-1,-2)
解析:D=-2,E=4,则圆心坐标为 - -2 ,- 4 , 即(1,-2).
22
答案:A
知识梳理
12
【做一做1-2】 圆x2+y2-6x+8y=0的半径等于 ( ) A.3 B.4 C.5 D.25
高一数学必修二教学课件
第四章 圆与方程
4.1.2 圆的一般方程
学习目标
1.正确理解圆的一般方程及其特点. 2.能进行圆的一般方程和标准方程的互化. 3.会求圆的一般方程以及简单的轨迹方程.
知识梳理
12
1.圆的一般方程 (1)方程:当 D2+E2-4F>0 时,方程 x2+y2+Dx+Ey+F=0 叫做圆的一
;当
Hale Waihona Puke D2+E2-4F<0 时,不表示任何图形.
2014-2015学年高中数学(人教版必修二)配套课件第四章 4.1 4.1.2 圆的一般方程

E D - =- ,∴D=E. 2 2 答案:A
自 测 自 评
3.若方程 x2+y2-4x+2y+5k=0 表示圆,则实数 k 的取值范围是( A.R C.(-∞,1] ) B.(-∞,1) D.[1,+∞)
栏 目 链 接
解析:由 D2+E2-4F=(-4)2+22-4×5k= 20-20k>0 得 k<1. 答案:B
栏 目 链 接
(4)方程 2x2+2y2-5x=0 化为
栏 目 链 接
思 考 应 用
2.求圆的方程常用“待定系数法”,“待定系数法” 的一般步骤是什么?
解析: (1)根据题意选择方程的形式——标准方程 或一般方程; (2)根据条件列出关于 a、b、r 或 D、E、F 的方 程组; (3)解出 a、b、r 或 D、E、F,代入标准方程或一 般方程.
(1)2x2+y2-7y+5=0; (2)x2-xy+y2+6x+7y=0; (3)x2+y2-2x-4y+10=0;
栏 目 链 接
(4)2x2+2y2-5x=0.
解析:将其化成标准式再进行判断,并给出答案. (1)∵方程 2x2+y2-7x+5=0 中 x2 与 y2 的系数不相同, ∴它不能表示圆; (2)∵方程 x2-xy+y2+6x+7y=0 中含有 xy 这样的项, ∴它不能表示圆; (3)方程 x2+y2-2x-4y+10=0 化为(x-1)2+(y-2)2=-5, ∴它不能表示圆;
2
2
栏 目 链 接
自 测 自 评
5.指出下列圆的圆心和半径: (1)x2+y2-x=0; (2)x2+y2+2ax=0(a≠0); (3)x2+y2+2ay-1=0.
1 12 2 1 1 解析:(1)x-2 +y = ,圆心2,0,半径 r= ; 4 2
高中数学 必修2:4.1 圆的方程

4.1 圆的方程一、圆的标准方程1.圆的标准方程2.圆的标准方程的推导如图,设圆的圆心坐标为(,)C a b ,半径长为r (其中a ,b ,r 都是常数,r >0).设(),M x y 为该圆上任意一点,那么圆心为C 的圆就是集合{}|P M MC r ==.由两点间的距离公式,得圆上任意一点M 的坐标(x ,y )r = ①,①式两边平方,得222()()=x a y b r -+-.3.点与圆的位置关系圆C :222()(0())x a y b r r -+-=>,其圆心为,()C a b ,半径为r ,点00(,)P x y ,设||d PC ==.二、圆的一般方程1.圆的一般方程的定义当2240D E F +->时,方程220x y Dx Ey F +++=+表示一个圆,这个方程叫做圆的一般方程,其中圆心为,半径r =.2.圆的一般方程的推导把以(,)a b 为圆心,r 为半径的圆的标准方程222()()x a y b r -+-=展开,并整理得22222220x y ax by a b r +--++-=.取2222,2,D a E b F a b r =-=-=+-,得:220x y Dx Ey F +++=+ ①.把①的左边配方,并把常数项移到右边,得22224()()224D E D E F x y +-+++=. 当且仅当时,方程表示圆,且圆心为,半径长为; 当2240D E F +-=时,方程只有实数解,22D E x y =-=-,所以它表示一个点; 当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.3.点与圆的位置关系点00)(,P x y 与圆22220(40)x y Dx Ey F D E F ++=+->++的位置关系是: P 在圆内⇔,P 在圆上⇔, P 在圆外⇔.三、待定系数法求圆的一般方程 求圆的方程常用“待定系数法”,用“待定系数法”求圆的方程的大致步骤是:①根据题意,选择标准方程或一般方程;②根据条件列出关于a b r 、、或D E F 、、的方程组;③解出a b r 、、或D E F 、、,代入标准方程或一般方程.四、轨迹和轨迹方程1.轨迹和轨迹方程的定义平面上一动点M ,按照一定规则运动,形成的曲线叫做动点M 的轨迹.在坐标系中,这个轨迹可用一个方程表示,这个方程就是轨迹方程.2.求轨迹方程的五个步骤①建系:建立适当的坐标系,用(,)x y 表示曲线上任意一点M 的坐标;②设点:写出适合条件P 的点M 的集合){}(|P M p M =;③列式 :用坐标(,)x y 表示条件()p M ,列出方程(,)0F x y =;④化简:化方程(,)0F x y =为最简形式;⑤査漏、剔假:证明化简后的方程的解为坐标的点都是曲线上的点.1.求圆的标准方程求圆的标准方程的常用方法包括几何法和待定系数法.(1)由圆的几何性质易得圆心坐标和半径长时,用几何法可以简化运算.对于几何法,常用到圆的以下几何性质:①圆中任意弦的垂直平分线必过圆心;②圆内的任意两条弦的垂直平分线的交点一定是圆心.(2)由于圆的标准方程中含有三个参数a ,b ,r ,运用待定系数法时,必须具备三个独立的条件才能确定圆的方程.这三个参数反映了圆的几何性质,其中圆心(a ,b )是圆的定位条件,半径r 是圆的定形条件.【例1】写出下列各圆的标准方程.(1)圆心在原点,半径长为2;(2)圆心是直线10x y +-=与230x y -+=的交点,半径长为14. 【解析】(1)∵圆心在原点,半径长为2,即0,0,2a b r ===,∴圆的标准方程为224x y +=.【例2】过点111,(1())A B --,,且圆心在直线20x y +-=上的圆的方程是( C )A .22()(31)4x y -++=B .22()(31)4x y ++-=C .22()(11)4x y -+-=D .22()(11)4x y +++= 【解析】解法1:设所求圆的标准方程为222()()x a y b r -+-=,由已知条件,知222222(1)(1)(1)(1)20a b r a b r a b ⎧-+--=⎪--+-=⎨⎪+-=⎩,解此方程组,得2114a b r ⎧=⎪=⎨⎪=⎩,故所求圆的标准方程为22()(11)4x y -+-=.解法2:设点C 为圆心,因为点C 在直线20x y +-=上,所以可设点C 的坐标为(),2a a -. 又因为该圆经过,A B 两点,所以||||.CA CB == 解得1a =.所以2211a -=-=.所以圆心坐标为()1,1C ,半径|2|r CA ==.故所求圆的标准方程为22()(11)4x y --+=.2.会判断点与圆的位置关系点与圆的位置关系的判断方法:(1)几何法:利用圆心到该点的距离d 与圆的半径r 比较;(2)代数法:直接利用下面的不等式判定:①22200()()x a y b r -+->,点在圆外;②22200()()x a y b r -+-=,点在圆上;③22200()()x a y b r -+-<,点在圆内.【例3】 已知点(2,0)和(x -2)2 + (y +1)2 = 3,则点与圆的位置关系是( A ) A .在圆内 B .在圆上 C .在圆外 D .不确定【解析】由于(2-2)2+(0+1)2<3,故点在圆内.【例4】已知点A (1,2)和圆C :(x-a )2+(y+a )2=2a 2,试求满足下列条件的实数a 的取值范围.(1)点A 在圆C 的内部;(2)点A 在圆C 上 (3)点A 在圆C 的外部.3.圆的方程的判断判断二元二次方程220x y Dx Ey F ++++=是否表示圆的方法:(1)利用圆的一般方程的定义,求出224D E F +-利用其符号判断.(2)将方程配方化为()()22x a y b m -+-=的形式,根据m 的符号判断.【例5】判断下列方程是否表示圆,若是,化成标准方程.(1)x 2+y 2+2x+1=0;(2)x 2+y 2+2ay-1=0;(3)x 2+y 2+20x+121=0;(4)x 2+y 2+2ax =0.【解析】(1)原方程可化为(x+1)2+y 2=0,它表示点(-1,0),不表示圆.(2)原方程可化为x 2+(y+a )2=a 2+1,它表示圆心为(0,-a ),半径为的圆,标准方程为x 2+(y+a )2=()2 . (3)原方程可化为(x+10)2+y 2=-21<0,故方程不表示任何曲线,故不能表示圆.(4)原方程可化为(x+a )2+y 2=a 2.①当a =0时,方程表示点(0,0),不表示圆;②当a ≠0时,方程表示以(-a ,0)为圆心,半径为|a|的圆,标准方程为(x+a )2+y 2=a 2.【例6】 方程x 2+y 2+4mx-2y+5m =0表示圆的条件是( B )A .14<m <1 B .m <14或m >1 C .m <14D .m >14.用待定系数法求圆的一般方程应用待定系数法求圆的一般方程的步骤如下:【例7】已知圆经过点(4,2)和(-2,-6),且该圆与两坐标轴的四个截距之和为-2,求圆的方程.【解析】设圆的一般方程为22220(40)x y Dx Ey F D E F ++++=+->. 由圆经过点(4,2)和(-2,-6),得4220026400 ① ②D E F D E F +++=⎧⎨+--=⎩, 设圆在x 轴上的截距为x 1,x 2,则x 1,x 2是方程x 2+Dx+F =0的两个根,得x 1+x 2=-D .设圆在y 轴上的截距为y 1,y 2,则y 1,y 2是方程y 2+Ey+F =0的两个根,得y 1+y 2=-E .由已知,得-D+(-E )=-2,即D+E-2=0. ③联立①②③,解得D =-2,E =4,F =-20,故所求圆的方程为x 2+y 2-2x+4y-20=0.【例8】试判断(1,2)A ,(0,1)B ,(76)C -,,(4,3)D 四点是否在同一个圆上.5.与圆有关的轨迹问题求与圆有关的轨迹方程的常用方法:(1)直接法: 能直接根据题目提供的条件列出方程.步骤如下:(2)定义法:当动点的轨迹符合圆的定义时,可直接写出动点的轨迹方程.(3)相关点法:若动点,()P x y 随着圆上的另一动点11(),Q x y 运动而运动,且11,x y 可用,x y 表示,则可将Q 点的坐标代入已知圆的方程,即得动点P 的轨迹方程.【例9】已知点P (x ,y ),A (1,0),B (-1,1),且|PA|=|PB|. (1)求点P 的轨迹方程;(2)判断点P 的轨迹是否为圆,若是,求出圆心坐标及半径;若不是,请说明理由.【例10】已知直角ABC △的斜边为AB ,且1,0,()(,0)3A B -,求:(1)直角顶点C 的轨迹方程;(2)直角边BC 中点M 的轨迹方程.【解析】(1)解法一:设顶点,()C x y ,因为AC BC ⊥,且,,A B C 三点不共线,所以3x ≠且1x ≠-. 又1AC k y x =+, 3BC y k x =-,且·1AC BC k k =-,所以113y y x x ⋅=-+-,化简得22230x y x +--=. 因此,直角顶点C 的轨迹方程为22230(31)x y x x x +--=≠≠-且.解法二:同解法一得3x ≠且1x ≠-.由勾股定理得222||||||AC BC AB +=,即2222131))6((x y x y +++-+=,化简得22230x y x +--=.因此,直角顶点C 的轨迹方程为22230(31)x y x x x +--=≠≠-且.解法三:设AB 中点为D ,由中点坐标公式得()1,0D ,由直角三角形的性质知, 122||||CD AB ==, 由圆的定义知,动点C 的轨迹是以()1,0D 为圆心,以2为半径的圆(由于,,A B C 三点不共线,所以应除去与x 轴的交点).设,()C x y ,则直角顶点C 的轨迹方程为2214))1((3x y x x -+=≠≠-且.6.忽视圆标准方程的结构致错【例11】求圆()222230()()x y b b ++-≠=的圆心及半径.【错解】由圆的标准方程知圆心为(2,)3-,半径为b .【错因分析】在圆的标准方程2220()()()x a y b r r -=>-+中,此圆的圆心为(),a b ,半径长为r .错解中没有准确把握圆的标准方程的结构形式.【正解】由圆的标准方程知圆心为()2,3-,半径为||b .7.忽视圆的一般方程应满足的条件致错【例12】已知点()0,0O 在圆2222210x y kx ky k k +++-+=+外,求k 的取值范围.【错解】∵点()0,0O 在圆外,∴2210k k ->+,解得1 1.2k k ><-或 ∴k 的取值范围是(),1-∞-1(,)2+∞. 【错因分析】本题忽视了圆的一般方程220x y Dx Ey F +++=+表示圆的条件为2240D E F +->,【正解】∵方程表示圆,∴222()(2420)1k k k k +-+>-,即23440k k -<+,解得22.3k -<<又∵点()0,0O 在圆外,∴2210k k ->+,解得12k >或1k <-.综上所述,k 的取值范围是1()(22,3)12--,.基础训练1.圆心在y 轴上,半径为1,且过点(1,3)的圆的方程为( A )A .x 2+(y –3)2=1B .x 2+(y +3)2=1C .(x –3)2+y 2=1D .(x +3)2+y 2=12.已知圆C :(x –6)2+(y –8)2=4,O 为坐标原点,则以OC 为直径的圆的方程为( C )A .(x –3)2+(y +4)2=100B .(x +3)2+(y –4)2=100C.(x–3)2+(y–4)2=25 D.(x+3)2+(y–4)2=253.(x+1)2+(y–1)2=1的圆心在(B )A.第一象限B.第二象限C.第三象限D.第四象限4.圆心为点(3,4)且过点(0,0)的圆的方程是(C )A.x2+y2=25 B.x2+y2=5 C.(x–3)2+(y–4)2=25 D.(x+3)2+(y+4)2=255.以两点A(–3,–1)和B(5,5)为直径端点的圆的方程是(A )A.(x–1)2+(y–2)2=25 B(x+1)2+(y+2)2=25 C.(x+1)2+(y+2)2=100 D.(x–1)2+(y–2)2=1006.已知圆心在点P(–2,3),并且与y轴相切,则该圆的方程是(B )A.(x–2)2+(y+3)2=4 B.(x+2)2+(y–3)2=4 C.(x–2)2+(y+3)2=9 D.(x+2)2+(y–3)2=9 7.圆x2+y2–2x+4y=0的圆心坐标为(B )A.(1,2)B.(1,–2)C.(–1,2)D.(–1,–2)8.已知圆的方程x2+y2+2ax+9=0圆心坐标为(5,0),则它的半径为(D )A.3 B C.5 D.49.圆x2+y2–4x+2y+4=0的半径和圆心坐标分别为(C )A.r=1;(–2,1)B.r=2;(–2,1)C.r=1;(2,–1)D.r=2;(2,–1)10.圆x2+y2–2x+2y=0的周长是(A )A.B.2πC D.4π11.圆心为(1,1)且过原点的圆的方程是(x–1)2+(y–1)2=2_.12.圆(x+1)2+(y–3)2=36的圆心C坐标(–1,3),半径r=___6_____.13.求圆心在直线y=–2x上,并且经过点A(0,1),与直线x+y=1相切的圆的标准方程.14.已知圆经过点A(2,4)、B(3,5)两点,且圆心C在直线2x–y–2=0上.求圆C的方程.∵圆C经过点A(2,4)、B(3,5)两点,∴点C在线段AB的垂直平分线y=–x+7,又∵圆心C在直线2x–y–2=0上,∴联立7220y xx y=-+⎧⎨--=⎩,得C(3,4).圆C的半径r=|AC|==1,∴圆C的方程是(x–3)2+(y–4)2=1.15.求过三点O(0,0),A(1,1),B(4,2)的圆的方程,并求这个圆的半径和圆心坐标.设圆的方程为:x2+y2+Dx+Ey+F=0,则2042200FD E FD E F=⎧⎪+++=⎨⎪+++=⎩,解得D=–4,E=3,F=0,∴圆的方程为x2+y2–8x+6y=0,化为(x–4)2+(y+3)2=25,可得:圆心是(4,–3)、半径r=5.16.求过三点A(–1,0),B(1,–2),C(1,0)的圆的方程.17.已知方程x2+y2–2x+t2=0表示一个圆.(1)求t的取值范围;(2)求该圆的半径r最大时圆的方程.(1)由圆的一般方程,得4–4t2>0,∴–1<t<1;(2)r=t=0时,r最大为1.∴圆的方程:(x–1)2+y2=1.能力18.如图,在直角坐标系xOy中,坐标轴将边长为4的正方形ABCD分割成四个小正方形,若大圆为正方形ABCD的外接圆,四个小圆分别为四个小正方形的内切圆,则图中某个圆的方程是( B )A.x2+y2–x+2y+1=0 B.x2+y2+2x–2y+1=0 C.x2+y2–2x+y–1=0 D.x2+y2–2x+2y–1=019.若方程a2x2+(a+2)y2+2ax+a=0表示圆,则a的值为( C )A.a=1或a=–2 B.a=2或a=–1 C.a=–1 D.a=220.若方程x2+y2–4x+2y+5k=0表示圆,则实数k的取值范围是( A )A.(–∞,1)B.(–∞,1] C.[1,+∞)D.R21.圆(x–1)2+(y–2)2=1关于直线x–y–2=0对称的圆的方程为( A )A.(x–4)2+(y+1)2=1 B.(x+4)2+(y+1)2=1 C.(x+2)2+(y+4)2=1 D.(x–2)2+(y+1)2=122.由方程x2+y2+x+(m–1)y+12m2=0所确定的圆中,最大面积是( B )A B.34πC.3πD.不存在23.若圆x2+y2–4x+2y+m+6=0与y轴的两交点A,B位于原点的同侧,则实数m的取值范围是( C ) A.m<–1 B.m>–6 C.–6<m<–5 D.m<–524.已知圆的方程为x2+y2–2x+6y+8=0,那么通过圆心的一条直线方程是( C )A.2x–y–1=0 B.2x–y+1=0 C.2x+y+1=0 D.2x+y–1=025.已知三点A(1,3),B(4,2),C(1,–7),则△ABC外接圆的圆心到原点的距离为( D )A.10 B.C.5 D26.由方程x2+y2–4tx–2ty+5t2–4=0(t为参数)所表示的一组圆的圆心轨迹是( D )A.一个定点B.一个椭圆C.一条抛物线D.一条直线27.已知点A(–3,0),B(–1,–2),若圆(x–2)2+y2=r2(r>0)上恰有两点M,N,使得△MAB和△NAB的面积均为4,则r的取值范围是).28.已知圆C:(x–3)2+(y–4)2=1和两点A(–m,0),B(m,0)(m>0),若圆C上存在点P使得∠APB=90°,则m的最大值为_____6_____.29.已知函数f(x)=13x2–43x+1的图象与坐标轴的交点均在圆M上,则圆M的标准方程为(x–2)2+(y+1)2=5.30.已知动点A在圆P:x2+y2=1上运动,点Q为定点B(–3,4)与点A距离的中点,则点Q的轨迹方程为x2+y2+3x–4y+6=0_.31.已知点A,B的坐标分别为(–1,0),(1,0).直线AM,BM相交于点M,且它们的斜率之和是2,则点M的轨迹方程为x2–xy–1=0(x≠±1).32.如图,直角△OAB中,OA═4,斜边AB上的高为OC,M为OA的中点,过B点且垂直于y轴的直线交直线MC于点N,则点N的轨迹方程为y2=8x,(x≠0)_.33.已知直线l1:mx–y=0,l2:x+my–m–2=0.当m在实数范围内变化时,l1与l2的交点P恒在一个定圆上,则定圆方程是_(x–1)2+(y–12)2=54_.34.已知函数y=x2–4x+3与x轴交于M、N两点,与y轴交于点P,圆心为C的圆恰好经过M、N、P三点.(1)求圆C的方程;(2)若圆C与直线x–y+n=0交于A、B两点,且线段|AB|=4,求n的值.(1)由题意与坐标轴交点为M (3,0),N (1,0),P (0,3),设圆的方程为:(x –a )2+(y –b )2=r 2代入点,得222222222(3)(0)(1)(0)(0)(3)a b r a b ra b r ⎧-+-=⎪-+-=⎨⎪-+-=⎩,解得a =2,b =2,r(x –2)2+(y –2)2=5. (2)由题意|AB |=4:设圆心到直线距离为d ,则222()2ABr d =+,即:1d ==,解得n =35.已知线段AB 的端点B 的坐标为(1,3),端点A 在圆C :(x +1)2+y 2=4上运动,求线段AB 的中点M 的轨迹.36.已知圆C 过A (1,4)、B (3,2)两点,且圆心在直线y =0上.(1)求圆C 的方程;(2)判断点P (2,4)与圆C 的位置关系.(1)∵圆心在直线y =0上,∴设圆心坐标为C (a ,0),则|AC |=|BC |=,即(a –1)2+16=(a –3)2+4,解得a =–1,即圆心为(–1,0),半径r =|AC== 则圆的标准方程为(x +1)2+y 2=20;(2)∵|PC5===>r ,∴点P (2,4)在圆C 外. 37.已知曲线C 的方程:x 2+y 2–4x +2y +5m =0(1)当m 为何值时,此方程表示圆?(2)若m =0,是否存在过点P (0,2)的直线l 与曲线C 交于A ,B 两点,且|PA |=|AB |,若存在,求出直线l 的方程;若不存在,说明理由.1)方程:x 2+y 2–4x +2y +5m =0可化为(x –2)2+(y +1)2=5–5m ∵方程表示圆,∴5–5m >0,即m <1;(2)设A (a ,b ),则B (2a ,2b –2),代入圆的方程,可得a 2+b 2–4a +2b =0,且4a 2+(2b –2)2–8a +2(2b –2)=0,∴a =0,或a =2413,∵直线l 过点P (0,2),∴直线l 的方程为x =0或5x +12y –24=0. 38.求圆x 2+y 2–2x –6y +9=0关于直线2x +y +5=0对称的圆的方程.39.已知圆过点A (–2,4),半径为5,并且以M (–1,3)为中点的弦长为设所求的圆的方程是(x –a )2+(y –b )2=25,根据题设知(a +2)2+(b –4)2=25,再由弦长公式得:(a +1)2+(b –3)2+12=25,联立解得21a b =⎧⎨=⎩或10a b =⎧⎨=⎩所以圆的方程为:(x –2)2+(y –1)2=25或(x –1)2+y 2=25. 40.圆(x +1)2+y 2=2的圆心到直线y =x +3的距离为( C )A .1B .2CD .41.圆x 2+y 2–2x –8y +13=0的圆心到直线ax +y –1=0的距离为1,则a =( A )A .–43B .–34CD .242.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为(x –1)2+y 2=1(或x 2+y 2–2x =0)_________.43.已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是(–2,–4),半径是_5_.。
吉林省舒兰市第一中学高中数学人教A版导学案 必修二 4.1 圆的方程

第四章 4.1 圆的方程 编号041【学习目标】1.把握圆的标准方程的特点,能依据所给有关圆心、半径的具体条件精确 地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简洁的实际问题.2.通过圆的标准方程的推导,培育同学利用求曲线的方程的一般步骤解决一些实际问题的力量.3.通过圆的标准方程,解决一些如圆拱桥的实际问题,说明理论既来源于实践,又服务于实践,可以适时进行辩证唯物主义思想训练.【学习重点】(1)圆的标准方程的推导步骤;(2)依据具体条件正确写出圆的标准方程. 【学问链接】(1)圆的定义;(2)直线方程的定义,直线上点的坐标与直线方程解得关系。
【基础学问】探究一:如何建立圆的标准方程呢?1.建系设点: 2.写点集: 3.列方程: 4.化简方程:探究二:圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?【例题讲解】例1: 写出下列各圆的方程:(1)圆心在原点,半径是3; (2)圆心在C(3,4),半径为5 (3)经过点P(5,1),圆心在点C(8,-3); 变式训练1: 说出下列圆的圆心和半径:(1)5)2()3(22=-+-y x ;(2)7)3()4(22=+++y x ;(3)4)2(22=+-y x例2: (1)已知两点P (4,9)和P (6, 3),求以PP 为直径的圆的方程;(2)试推断点M(6,9)、N(3,3)、Q(5,3)是在圆上,在圆内,还是在圆外?【基础学问】问题1.方程222410x y x y +-++=表示什么图形?方程222460x y x y +-++=表示什么图形?问题2.方程220x y Dx Ey F ++++=在什么条件下表示圆?新知:方程220x y Dx Ey F ++++=表示的轨迹. ⑴当2240D E F +->时,表示以(,)22D E --为圆心,22142D E F +-为半径的圆;⑵当2240D E F +-=时,方程只有实数解2D x =-,2E y =-,即只表示一个点(-2D ,-2E );(3)当2240D E F +-<时,方程没有实数解,因而它不表示任何图形小结:方程220x y Dx Ey F ++++=表示的曲线不肯定是圆只有当2240D E F +->时,它表示的曲线才是圆,形如220x y Dx Ey F ++++=的方程称为圆的一般方程思考:1.圆的一般方程的特点?2.圆的标准方程与一般方程的区分?例3:推断下列二元二次方程是否表示圆的方程?假如是,恳求出圆的圆心及半径.⑴224441290x y x y +-++=; ⑵2244412110x y x y +-++=例4 :已知线段AB 的端点B 的坐标是(4,3),端点A 在圆上()2214x y ++=运动,求线段AB 的中点M 的轨迹方程.【达标检测】1.圆(x +1)2+(y -2)2=4的圆心、半径是 ( D )A .(1,-2),4B .(1,-2),2C .(-1,2),4D .(-1,2),22.过点A(4,1)的圆C 与直线10x y --=相切于点B(2,1),则圆C 的方程为2)3(22=+-y x 3.一个等腰三角形底边上的高等于5,底边两端点的坐标是(-4,0)和(4,0),求它的外接圆的方程.4.圆2)1()1(22=++-y x 的周长是( C ) A.π2 B.π2 C.2π2 D.π45.点P(5,2m )与圆2422=+y x 的位置关系是( A ) A.在圆外 B.在圆内 C.在圆上 D.不确定6.已知圆C与圆1)1(22=+-y x 关于直线x y -=对称,则圆C的方程为( C ) A1)1(22=++y x B.122=+y x C.1)1(22=++y x D.1)1(22=-+y x 7.已知圆C 的圆心是直线x-y+1=0与x 轴的交点,且圆C 与直线x+y+3=0相切,求圆C 的方程.2)1(22=++y x8.已知圆心在x的圆O 位于y 轴左侧,且与直线x+y=0相切,求圆O 的方程.2)2(22=++y x9.方程x 2+y 2-2(m +3)x +2(1-4m 2)y +16m 4+9=0表示圆,则实数m 的取值范围是( A )A.-71<m <1 B.-1<m <71 C.m <-71或m >1 D.m <-1或m >7110.方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)表示的曲线关于直线x +y =0对称,则有( A ) A.D +E =0 B.D +F =0 C.E +F =0 D.D +E +F =0 11.经过三点A (0,0)、B (1,0)、C (2,1)的圆的方程为( D ) A.x 2+y 2+x -3y -2=0 B. x 2+y 2+3x +y -2=0 C. x 2+y 2+x +3y =0 D. x 2+y 2-x -3y =0 12.方程220x y x y k +-++=表示一个圆,则实数k 的取值范围是21<k .13.过点A (-2,0),圆心在(3,-2)的圆的一般方程为0164622=-+-+y x y x . 14.等腰三角形的顶点是A(4,2),底边一个端点是B(3,5),求另一个端点的轨迹方程,并说明它的轨迹是什么.轨迹方程是)5,3(0104822≠≠=+--+x x y x y x 轨迹是以A 为圆心10为半径的圆但除去两点【问题与收获】。
人教版高中数学必修二 4.2.2圆与圆的位置关系4.2.3直线与圆的方程的应用 学案+课时训练

人教版高中数学必修二第4章圆与方程4.2 直线、圆的位置关系4.2.2圆与圆的位置关系4.2.3直线与圆的方程的应用学案【学习目标】1.掌握圆与圆的位置关系及判定方法.(重点、易错点)2.能利用直线与圆的位置关系解决简单的实际问题.(难点)【要点梳理夯实基础】知识点1圆与圆位置关系的判定阅读教材P129至P130“练习”以上部分,完成下列问题.1.几何法:若两圆的半径分别为r1、r2,两圆的圆心距为d,则两圆的位置关系的判断方法如下:位置关系外离外切相交内切内含图示d与r1、r2的关系d>r1+r2d=r1+r2|r1-r2|<d<r1+r2d=|r1-r2|0≤d<|r1-r2| ⎭⎬⎫圆C1方程圆C2方程――→消元一元二次方程⎩⎨⎧Δ>0⇒相交Δ=0⇒内切或外切Δ<0⇒外离或内含[思考辨析学练结合]两圆x2+y2=9和x2+y2-8x+6y+9=0的位置关系是()A.外离B.相交C.内切D.外切[解析]两圆x2+y2=9和x2+y2-8x+6y+9=0的圆心分别为(0,0)和(4,-3),半径分别为3和4.所以两圆的圆心距d=42+(-3)2=5.又4-3<5<3+4,故两圆相交.[答案] B知识点2 直线与圆的方程的应用阅读教材P130“练习”以下至P132“练习”以上部分,完成下列问题.用坐标方法解决平面几何问题的“三步曲”[思考辨析学练结合]一辆卡车宽1.6米,要经过一个半径为3.6米的半圆形隧道,则这辆卡车的平顶车蓬蓬顶距地面的高度不得超过()A.1.4米B.3.5米C.3.6米D.2米[解析]建立如图所示的平面直角坐标系.如图,设蓬顶距地面高度为h,则A(0.8,h-3.6).半圆所在圆的方程为:x2+(y+3.6)2=3.62,把A(0.8,h-3.6)代入得0.82+h2=3.62,∴h=40.77≈3.5(米).[答案] B【合作探究析疑解难】考点1 圆与圆位置关系的判定[典例1] 当实数k为何值时,两圆C1:x2+y2+4x-6y+12=0,C2:x2+y2-2x-14y+k=0相交、相切、相离?[分析]求圆C1的半径r1→求圆C2的半径r2→求|C1C2|→利用|C1C2|与|r1-r2|和r1+r2的关系求k[解答]将两圆的一般方程化为标准方程,C1:(x+2)2+(y-3)2=1,C2:(x-1)2+(y-7)2=50-k.圆C1的圆心为C1(-2,3),半径r1=1;圆C2的圆心为C2(1,7),半径r2=50-k(k<50).从而|C1C2|=(-2-1)2+(3-7)2=5.当1+50-k=5,k=34时,两圆外切.当|50-k-1|=5,50-k=6,k=14时,两圆内切.当|r2-r1|<|C1C2|<r2+r1,即14<k<34时,两圆相交.当1+50-k<5或|50-k-1|>5,即0≤k<14或34<k<50时,两圆相离.1.判断两圆的位置关系或利用两圆的位置关系求参数的取值范围有以下几个步骤:(1)化成圆的标准方程,写出圆心和半径;(2)计算两圆圆心的距离d;(3)通过d,r1+r2,|r1-r2|的关系来判断两圆的位置关系或求参数的范围,必要时可借助于图形,数形结合.2.应用几何法判定两圆的位置关系或求字母参数的范围是非常简单清晰的,要理清圆心距与两圆半径的关系.1.已知圆C1:x2+y2-2ax-2y+a2-15=0,圆C2:x2+y2-4ax-2y+4a2=0(a>0).试求a为何值时,两圆C1,C2的位置关系为:(1)相切;(2)相交;(3)外离;(4)内含.[解]圆C1,C2的方程,经配方后可得C1:(x-a)2+(y-1)2=16,C2:(x-2a)2+(y-1)2=1,∴圆心C 1(a,1),C 2(2a,1),半径r 1=4,r 2=1.∴|C 1C 2|=(a -2a )2+(1-1)2=a .(1)当|C 1C 2|=r 1+r 2=5,即a =5时,两圆外切;当|C 1C 2|=r 1-r 2=3,即a =3时,两圆内切.(2)当3<|C 1C 2|<5,即3<a <5时,两圆相交.(3)当|C 1C 2|>5,即a >5时,两圆外离.(4)当|C 1C 2|<3,即a <3时,两圆内含.考点2 两圆相交有关问题[典例2] 求圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-2x -2y +1=0的公共弦所在直线被圆C 3:(x -1)2+(y -1)2=254所截得的弦长. [分析] 联立圆C 1、C 2的方程――→作差得公共弦所在的直线―→圆心C 3到公共弦的距离d ―→圆的半径r ―→弦长=2r 2-d 2[解答] 设两圆的交点坐标分别为A (x 1,y 1),B (x 2,y 2),则A ,B 的坐标是方程组⎩⎨⎧x 2+y 2=1,x 2+y 2-2x -2y +1=0的解, 两式相减得x +y -1=0.因为A ,B 两点的坐标满足 x +y -1=0,所以AB 所在直线方程为x +y -1=0,即C 1,C 2的公共弦所在直线方程为x +y -1=0,圆C 3的圆心为(1,1),其到直线AB 的距离d =12,由条件知r 2-d 2=254-12=234,所以直线AB 被圆C 3截得弦长为2×232=23.1.圆系方程一般地过圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x2.求两圆x 2+y 2-2x +10y -24=0和x 2+y 2+2x +2y -8=0的公共弦所在直线的方程及公共弦长.[解] 联立两圆的方程得方程组⎩⎨⎧ x 2+y 2-2x +10y -24=0,x 2+y 2+2x +2y -8=0,两式相减得x -2y +4=0,此为两圆公共弦所在直线的方程.法一:设两圆相交于点A ,B ,则A ,B 两点满足方程组⎩⎨⎧ x -2y +4=0,x 2+y 2+2x +2y -8=0,解得⎩⎨⎧ x =-4,y =0或⎩⎨⎧x =0,y =2.所以|AB |=(-4-0)2+(0-2)2=25,即公共弦长为2 5.法二:由x 2+y 2-2x +10y -24=0,得(x -1)2+(y +5)2=50,其圆心坐标为(1,-5),半径长r =52,圆心到直线x -2y +4=0的距离为d =|1-2×(-5)+4|1+(-2)2=3 5. 设公共弦长为2l ,由勾股定理得r 2=d 2+l 2,即50=(35)2+l 2,解得l =5,故公共弦长2l =2 5.考点3 直线与圆的方程的应用探究1 设村庄外围所在曲线的方程可用(x -2)2+(y +3)2=4表示,村外一小路方程可用x-y+2=0表示,你能求出从村庄外围到小路的最短距离吗?[分析]从村庄外围到小路的最短距离为圆心(2,-3)到直线x-y+2=0的距离减去圆的半径2,即|2+3+2|12+(-1)2-2=722-2.探究2已知台风中心从A地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A的正东40千米处,请建立适当的坐标系,用坐标法求B城市处于危险区内的时间.[分析]如图,以A为原点,以AB所在直线为x轴建立平面直角坐标系.射线AC为∠xAy的平分线,则台风中心在射线AC上移动.则点B到AC的距离为202千米,则射线AC被以B为圆心,以30千米为半径的圆截得的弦长为2302-(202)2=20(千米).所以B城市处于危险区内的时间为t=2020=1(小时).[典例3] 为了适应市场需要,某地准备建一个圆形生猪储备基地(如图4-2-1),它的附近有一条公路,从基地中心O处向东走1 km是储备基地的边界上的点A,接着向东再走7 km到达公路上的点B;从基地中心O向正北走8 km 到达公路的另一点C.现准备在储备基地的边界上选一点D,修建一条由D通往公路BC的专用线DE,求DE的最短距离.图4-2-1[分析]建立适当坐标系,求出圆O的方程和直线BC的方程,再利用直线与圆的位置关系求解.[解答]以O为坐标原点,过OB,OC的直线分别为x轴和y轴,建立平面直角坐标系,则圆O的方程为x2+y2=1,因为点B(8,0),C(0,8),所以直线BC的方程为x8+y8=1,即x+y=8.当点D选在与直线BC平行的直线(距BC较近的一条)与圆的切点处时,DE为最短距离.此时DE长的最小值为|0+0-8|2-1=(42-1) km.[方法总结]解决关于直线与圆方程实际应用问题的步骤[跟踪练习]3.一艘轮船沿直线返回港口的途中,接到气象台的台风预报,台风中心位于轮船正西70 km处,受影响的范围是半径为30 km的圆形区域,已知港口位于台风中心正北40 km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?[解] 以台风中心为坐标原点,以东西方向为x轴建立直角坐标系(如图),其中取10 km为单位长度,则受台风影响的圆形区域所对应的圆的方程为x2+y2=9,港口所对应的点的坐标为(0,4),轮船的初始位置所对应的点的坐标为(7,0),则轮船航线所在直线l的方程为x7+y4=1,即4x+7y-28=0.圆心(0,0)到航线4x+7y-28=0的距离d=|-28|42+72=2865,而半径r=3,∴d>r,∴直线与圆外离,所以轮船不会受到台风的影响.【学习检测巩固提高】1.已知圆C1:(x+1)2+(y-3)2=25,圆C2与圆C1关于点(2,1)对称,则圆C2的方程是()A.(x-3)2+(y-5)2=25 B.(x-5)2+(y+1)2=25C.(x-1)2+(y-4)2=25 D.(x-3)2+(y+2)2=25[解析]设⊙C2上任一点P(x,y),它关于(2,1)的对称点(4-x,2-y)在⊙C1上,∴(x-5)2+(y+1)2=25.[答案] B2.一辆卡车宽1.6 m,要经过一个半圆形隧道(半径为3.6 m),则这辆卡车的平顶车篷篷顶距地面高度不得超过()A.1.4 m B.3.5 m C.3.6 m D.2.0 m [解析]圆半径OA=3.6,卡车宽1.6,所以AB=0.8,所以弦心距OB= 3.62-0.82≈3.5(m).[答案] B3.圆x2+y2+6x-7=0和圆x2+y2+6y-27=0的位置关系是__相交__.[解析]圆x2+y2+6x-7=0的圆心为O1(-3,0),半径r1=4,圆x2+y2+6y-27=0的圆心为O 2(0,-3),半径为r 2=6,∴|O 1O 2|=(-3-0)2+(0+3)2=32,∴r 2-r 1<|O 1O 2|<r 1+r 2,故两圆相交.4.已知实数x 、y 满足x 2+y 2=1,则y +2x +1的取值范围为__ [34,+∞) __. [解析] 如右图所示,设P (x ,y )是圆x 2+y 2=1上的点,则y +2x +1表示过P (x ,y )和Q (-1,-2)两点的直线PQ 的斜率,过点Q 作圆的两条切线QA ,QB ,由图可知QB ⊥x 轴,k QB 不存在,且k QP ≥k QA .设切线QA 的斜率为k ,则它的方程为y +2=k (x +1),由圆心到QA 的距离为1,得|k -2|k 2+1=1,解得k =34.所以y +2x +1的取值范围是[34,+∞). 5.求以圆C 1:x 2+y 2-12x -2y -13=0和圆C 2:x 2+y 2+12x +16y -25=0的公共弦为直径的圆C 的方程.[解析] 解法一:联立两圆方程⎩⎨⎧ x 2+y 2-12x -2y -13=0x 2+y 2+12x +16y -25=0, 相减得公共弦所在直线方程为4x +3y -2=0.再由⎩⎨⎧4x +3y -2=0x 2+y 2-12x -2y -13=0, 联立得两圆交点坐标(-1,2)、(5,-6).∵所求圆以公共弦为直径,∴圆心C 是公共弦的中点(2,-2),半径为12(5+1)2+(-6-2)2=5. ∴圆C 的方程为(x -2)2+(y +2)2=25.解法二:由解法一可知公共弦所在直线方程为4x +3y -2=0.设所求圆的方程为x 2+y 2-12x -2y -13+λ(x 2+y 2+12x +16y -25)=0(λ为参数).可求得圆心C (-12λ-122(1+λ),-16λ-22(1+λ)). ∵圆心C 在公共弦所在直线上,∴4·-(12λ-12)2(1+λ)+3·-(16λ-2)2(1+λ)-2=0, 解得λ=12.∴圆C 的方程为x 2+y 2-4x +4y -17=0.人教版高中数学必修二第4章 圆与方程4.2 直线、圆的位置关系4.2.2圆与圆的位置关系课时检测一、选择题1.圆x 2+y 2-2x -5=0和圆x 2+y 2+2x -4y -4=0的交点为A 、B ,则线段AB 的垂直平分线方程为( )A .x +y -1=0B .2x -y +1=0C .x -2y +1=0D .x -y +1=0[解析] 解法一:线段AB 的中垂线即两圆的连心线所在直线l ,由圆心C 1(1,0),C 2(-1,2),得l 方程为x +y -1=0.解法二:直线AB 的方程为:4x -4y +1=0,因此线段AB 的垂直平分线斜率为-1,过圆心(1,0),方程为y =-(x -1),故选A .[答案] A2.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系为( )A .外离B .相交C .外切D .内切[解析] 圆O 1的圆心坐标为(1,0),半径长r 1=1;圆O 2的圆心坐标为(0,2), 半径长r 2=2;1=r 2-r 1<|O 1O 2|=5<r 1+r 2=3,即两圆相交.[答案] B3.若圆(x -a )2+(y -b )2=b 2+1始终平分圆(x +1)2+(y +1)2=4的周长,则a 、b应满足的关系式是()A.a2-2a-2b-3=0 B.a2+2a+2b+5=0C.a2+2b2+2a+2b+1=0 D.3a2+2b2+2a+2b+1=0[解析]利用公共弦始终经过圆(x+1)2+(y+1)2=4的圆心即可求得.两圆的公共弦所在直线方程为:(2a+2)x+(2b+2)y-a2-1=0,它过圆心(-1,-1),代入得a2+2a+2b+5=0.[答案] B4.已知半径为1的动圆与圆(x-5)2+(y+7)2=16相外切,则动圆圆心的轨迹方程是()A.(x-5)2+(y+7)2=25 B.(x-5)2+(y+7)2=9C.(x-5)2+(y+7)2=15 D.(x+5)2+(y-7)2=25[解析]设动圆圆心为P(x,y),则(x-5)2+(y+7)2=4+1,∴(x-5)2+(y+7)2=25.[答案] A5.两圆x2+y2=16与(x-4)2+(y+3)2=r2(r>0)在交点处的切线互相垂直,则r =()A.5B.4C.3D.2 2 [解析]设一个交点P(x0,y0),则x20+y20=16,(x0-4)2+(y0+3)2=r2,∴r2=41-8x0+6y0,∵两切线互相垂直,∴y0x0·y0+3x0-4=-1,∴3y0-4x0=-16.∴r2=41+2(3y0-4x0)=9,∴r=3.[答案] C6.半径长为6的圆与y轴相切,且与圆(x-3)2+y2=1内切,则此圆的方程为()A.(x-6)2+(y-4)2=6 B.(x-6)2+(y±4)2=6C.(x-6)2+(y-4)2=36 D.(x-6)2+(y±4)2=36[解析]半径长为6的圆与x轴相切,设圆心坐标为(a,b),则a=6,再由b2+32=5可以解得b=±4,故所求圆的方程为(x-6)2+(y±4)2=36.7.已知M 是圆C :(x -1)2+y 2=1上的点,N 是圆C ′:(x -4)2+(y -4)2=82上的点,则|MN |的最小值为( )A .4B .42-1C .22-2D .2[解析] ∵|CC ′|=5<R -r =7,∴圆C 内含于圆C ′,则|MN |的最小值为R -|CC ′|-r =2.[答案] D8.过圆x 2+y 2=4外一点M (4,-1)引圆的两条切线,则经过两切点的直线方程为( )A .4x -y -4=0B .4x +y -4=0C .4x +y +4=0D .4x -y +4=0[解析] 以线段OM 为直径的圆的方程为x 2+y 2-4x +y =0,经过两切点的直线就是两圆的公共弦所在的直线,将两圆的方程相减得4x -y -4=0,这就是经过两切点的直线方程.[答案] A9.已知两圆相交于两点A (1,3),B (m ,-1),两圆圆心都在直线x -y +c =0上,则m +c 的值是( )A .-1B .2C .3D .0 [解析] 两点A ,B 关于直线x -y +c =0对称,k AB =-4m -1=-1. ∴m =5,线段AB 的中点(3,1)在直线x -y +c =0上,∴c =-2,∴m +c =3.[答案] C10.已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离[解析] 由题知圆M :x 2+(y -a )2=a 2,圆心(0,a )到直线x +y =0的距离d =a 2,所以2a 2-a 22=22,解得a =2.圆M 、圆N 的圆心距|MN |=2,两圆半径之差为1、半径之和为3,故两圆相交.二、填空题11.若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦长为23,则a=.[解析]两个圆的方程作差,可以得到公共弦的直线方程为y=1a,圆心(0,0)到直线y=1a的距离d=|1a|,于是由(232)2+|1a|2=22,解得a=1.[答案] 112.圆C1:(x-m)2+(y+2)2=9与圆C2:(x+1)2+(y-m)2=4外切,则m的值为________.[解析]C1(m,-2),r1=3,C2(-1,m),r2=2,由题意得|C1C2|=5,即(m+1)2+(m+2)2=25,解得m=2或m=-5.[答案]2或-513.若点A(a,b)在圆x2+y2=4上,则圆(x-a)2+y2=1与圆x2+(y-b)2=1的位置关系是.[解析]∵点A(a,b)在圆x2+y2=4上,∴a2+b2=4.又圆x2+(y-b)2=1的圆心C1(0,b),半径r1=1,圆(x-a)2+y2=1的圆心C2(a,0),半径r2=1,则d=|C1C2|=a2+b2=4=2,∴d=r1+r2.∴两圆外切.[答案]外切14.与直线x+y-2=0和圆x2+y2-12x-12y+54=0都相切的半径最小的圆的标准方程是.[解析]已知圆的标准方程为(x-6)2+(y-6)2=18,则过圆心(6,6)且与直线x+y -2=0垂直的方程为x-y=0.方程x-y=0分别与直线x+y-2=0和已知圆联立得交点坐标分别为(1,1)和(3,3)或(-3,-3).由题意知所求圆在已知直线和已知圆之间,故所求圆的圆心为(2,2),半径为2,即圆的标准方程为(x-2)2+(y-2)2=2.[答案](x-2)2+(y-2)2=215.判断下列两圆的位置关系.(1)C1:x2+y2-2x-3=0,C2:x2+y2-4x+2y+3=0;(2)C1:x2+y2-2y=0,C2:x2+y2-23x-6=0;(3)C1:x2+y2-4x-6y+9=0,C2:x2+y2+12x+6y-19=0;(4)C1:x2+y2+2x-2y-2=0,C2:x2+y2-4x-6y-3=0. [解析](1)∵C1:(x-1)2+y2=4,C2:(x-2)2+(y+1)2=2.∴圆C1的圆心坐标为(1,0),半径r1=2,圆C2的圆心坐标为(2,-1),半径r2=2,d=|C1C2|=(2-1)2+(-1)2= 2.∵r1+r2=2+2,r1-r2=2-2,∴r1-r2<d<r1+r2,两圆相交.(2)∵C1:x2+(y-1)2=1,C2:(x-3)2+y2=9,∴圆C1的圆心坐标为(0,1),r1=1,圆C2的圆心坐标为(3,0),r2=3,d=|C1C2|=3+1=2.∵r2-r1=2,∴d=r2-r1,两圆内切.(3)∵C1:(x-2)2+(y-3)2=4,C2:(x+6)2+(y+3)2=64.∴圆C1的圆心坐标为(2,3),半径r1=2,圆C2的圆心坐标为(-6,-3),半径r2=8,∴|C1C2|=(2+6)2+(3+3)2=10=r1+r2,∴两圆外切.(4)C1:(x+1)2+(y-1)2=4,C2:(x-2)2+(y-3)2=16,∴圆C1的圆心坐标为(-1,1),半径r1=2,圆C2的圆心坐标为(2,3),半径r2=4,∴|C1C2|=(2+1)2+(3-1)2=13.∵|r1-r2|<|C1C2|<r1+r2,∴两圆相交.16.求经过两圆x 2+y 2+6x -4=0和x 2+y 2+6y -28=0的交点且圆心在直线x -y -4=0上的圆的方程.[解] 法一:解方程组⎩⎨⎧x 2+y 2+6x -4=0,x 2+y 2+6y -28=0, 得两圆的交点A (-1,3),B (-6,-2).设所求圆的圆心为(a ,b ),因为圆心在直线x -y -4=0上,故b =a -4. 则有(a +1)2+(a -4-3)2 =(a +6)2+(a -4+2)2,解得a =12,故圆心为⎝ ⎛⎭⎪⎫12,-72, 半径为⎝ ⎛⎭⎪⎫12+12+⎝ ⎛⎭⎪⎫-72-32=892. 故圆的方程为⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y +722=892,即x 2+y 2-x +7y -32=0. 法二:∵圆x 2+y 2+6y -28=0的圆心(0,-3)不在直线x -y -4=0上,故可设所求圆的方程为x 2+y 2+6x -4+λ(x 2+y 2+6y -28)=0(λ≠-1),其圆心为⎝ ⎛⎭⎪⎫-31+λ,-3λ1+λ,代入x -y -4=0,求得λ=-7. 故所求圆的方程为x 2+y 2-x +7y -32=0.17.已知圆M :x 2+y 2-2mx -2ny +m 2-1=0与圆N :x 2+y 2+2x +2y -2=0交于A 、B 两点,且这两点平分圆N 的圆周,求圆心M 的轨迹方程.[解析] 两圆方程相减,得公共弦AB 所在的直线方程为2(m +1)x +2(n +1)y -m 2-1=0,由于A 、B 两点平分圆N 的圆周,所以A 、B 为圆N 直径的两个端点,即直线AB 过圆N 的圆心N ,而N (-1,-1),所以-2(m +1)-2(n +1)-m 2-1=0,即m 2+2m +2n +5=0,即(m +1)2=-2(n +2)(n ≤-2),由于圆M 的圆心M (m ,n ),从而可知圆心M 的轨迹方程为(x +1)2=-2(y +2)(y ≤-2).18.已知圆O :x 2+y 2=1和定点A (2,1),由圆O 外一点P (a ,b )向圆O 引切线PQ ,切点为Q ,|PQ |=|P A |成立,如图.(1)求a,b间的关系;(2)求|PQ|的最小值.[解析](1)连接OQ,OP,则△OQP为直角三角形,又|PQ|=|P A|,所以|OP|2=|OQ|2+|PQ|2=1+|P A|2,所以a2+b2=1+(a-2)2+(b-1)2,故2a+b-3=0.(2)由(1)知,P在直线l:2x+y-3=0上,所以|PQ|min=|P A|min,为A到直线l的距离,所以|PQ|min=|2×2+1-3|22+12=255.人教版高中数学必修二第4章圆与方程4.2 直线、圆的位置关系4.2.3直线与圆的方程的应用课时检测一、选择题1.已知实数x、y满足x2+y2-2x+4y-20=0,则x2+y2的最小值是() A.30-105B.5-5C.5D.25[解析]x2+y2为圆上一点到原点的距离.圆心到原点的距离d=5,半径为5,所以最小值为(5-5)2=30-10 5.[答案] A2.圆x2+y2-2x-5=0和圆x2+y2+2x-4y-4=0的交点为A、B,则线段AB 的垂直平分线方程为()A.x+y-1=0 B.2x-y+1=0 C.x-2y+1=0 D.x-y+1=0[解析]所求直线即两圆圆心(1,0)、(-1,2)连线所在直线,故由y-02-0=x-1-1-1,得x+y-1=0.[答案] A3.方程y=-4-x2对应的曲线是()[解析]由方程y=-4-x2得x2+y2=4(y≤0),它表示的图形是圆x2+y2=4在x轴上和以下的部分.[答案] A4.y=|x|的图象和圆x2+y2=4所围成的较小的面积是()A.π4B.3π4C.3π2D.π[解析]数形结合,所求面积是圆x2+y2=4面积的1 4.[答案] D5.方程1-x2=x+k有惟一解,则实数k的范围是()A.k=-2B.k∈(-2,2)C.k∈[-1,1)D.k=2或-1≤k<1[解析]由题意知,直线y=x+k与半圆x2+y2=1(y≥0只有一个交点.结合图形易得-1≤k<1或k= 2.[答案] D6.点P是直线2x+y+10=0上的动点,直线P A、PB分别与圆x2+y2=4相切于A、B两点,则四边形P AOB(O为坐标原点)的面积的最小值等于()A .24B .16C .8D .4[解析] ∵四边形P AOB 的面积S =2×12|P A |×|OA |=2OP 2-OA 2=2OP 2-4,∴当直线OP 垂直直线2x +y +10=0时,其面积S 最小.[答案] C7.已知圆C 的方程是x 2+y 2+4x -2y -4=0,则x 2+y 2的最大值为( )A .9B .14C .14-65D .14+6 5[解析] 圆C 的标准方程为(x +2)2+(y -1)2=9,圆心为C (-2,1),半径为3.|OC |=5,圆上一点(x ,y )到原点的距离的最大值为3+5,x 2+y 2表示圆上的一点(x ,y )到原点的距离的平方,最大值为(3+5)2=14+6 5.[答案] D8.对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线l 1:ax +3y +6=0,l 2:2x +(a +1)y +6=0与圆C :x 2+y 2+2x =b 2-1(b >0)的位置关系是“平行相交”,则实数b 的取值范围为( )A .(2,322)B .(0,322)C .(0,2)D .(2,322)∪(322,+∞)[解析] 圆C 的标准方程为(x +1)2+y 2=b 2.由两直线平行,可得a (a +1)-6=0,解得a =2或a =-3.当a =2时,直线l 1与l 2重合,舍去;当a =-3时,l 1:x -y -2=0,l 2:x -y +3=0.由l 1与圆C 相切,得b =|-1-2|2=322,由l 2与圆C 相切,得b =|-1+3|2= 2.当l 1、l 2与圆C 都外离时,b < 2.所以,当l 1、l 2与圆C “平行相交”时,b 满足⎩⎨⎧ b ≥2b ≠2,b ≠322,故实数b 的取值范围是(2,322)∪(322,+∞).[答案] D9.已知圆的方程为x2+y2-6x-8y=0.设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.106B.206C.306D.40 6 [解析]圆心坐标是(3,4),半径是5,圆心到点(3,5)的距离为1,根据题意最短弦BD和最长弦(即圆的直径)AC垂直,故最短弦的长为252-12=46,所以四边形ABCD的面积为12×AC×BD=12×10×46=20 6.[答案] B10.在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y-4=0相切,则圆C面积的最小值为()A.4π5B.3π4C.(6-25)πD.5π4[解析]原点O到直线2x+y-4=0的距离为d,则d=45,点C到直线2x+y-4=0的距离是圆的半径r,由题知C是AB的中点,又以斜边为直径的圆过直角顶点,则在直角△AOB中,圆C过原点O,即|OC|=r,所以2r≥d,所以r最小为25,面积最小为4π5,故选A.[答案] A二、填空题11.已知两圆x2+y2=10和(x-1)2+(y-3)2=20相交于A、B两点,则直线AB 的方程是________.[解析] 过两圆交点的直线就是两圆公共弦所在直线,因此该直线方程为:x2+y2-10-[(x-1)2+(y-3)2-20]=0,即x+3y=0.[答案]x+3y=012.已知M={(x,y)|y=9-x2,y≠0},N={(x,y)|y=x+b},若M∩N≠∅,则实数b的取值范围是.[解析] 数形结合法,注意y =9-x 2,y ≠0等价于x 2+y 2=9(y >0),它表示的图形是圆x 2+y 2=9在x 轴之上的部分(如图所示).结合图形不难求得,当-3<b ≤32时,直线y =x +b 与半圆x 2+y 2=9(y >0)有公共点.[答案] (-3,32]13.某公司有A 、B 两个景点,位于一条小路(直道)的同侧,分别距小路 2 km 和2 2 km ,且A 、B 景点间相距2 km ,今欲在该小路上设一观景点,使两景点在同时进入视线时有最佳观赏和拍摄效果,则观景点应设于 .[解析] 所选观景点应使对两景点的视角最大.由平面几何知识,该点应是过A 、B 两点的圆与小路所在的直线相切时的切点,以小路所在直线为x 轴,过B 点与x 轴垂直的直线为y 轴上建立直角坐标系.由题意,得A (2,2)、B (0,22),设圆的方程为(x -a )2+(y -b )2=b 2.由A 、B 在圆上,得⎩⎨⎧ a =0b =2,或⎩⎨⎧a =42b =52,由实际意义知⎩⎨⎧ a =0b =2.∴圆的方程为x 2+(y -2)2=2,切点为(0,0),∴观景点应设在B 景点在小路的投影处.[答案] B 景点在小路的投影处14.设集合A ={(x ,y )|(x -4)2+y 2=1},B ={(x ,y )|(x -t )2+(y -at +2)2=1},若存在实数t ,使得A ∩B ≠∅,则实数a 的取值范围是 .[解析] 首先集合A 、B 实际上是圆上的点的集合,即A 、B 表示两个圆,A ∩B ≠∅说明这两个圆相交或相切(有公共点),由于两圆半径都是1,因此两圆圆心距不大于半径之和2,即(t -4)2+(at -2)2≤2,整理成关于t 的不等式:(a 2+1)t 2-4(a +2)t +16≤0,据题意此不等式有实解,因此其判别式不小于零,即Δ=16(a +2)2-4(a 2+1)×16≥0,解得0≤a ≤43. [答案] [0,43]三、解答题15.为了适应市场需要,某地准备建一个圆形生猪储备基地(如右图),它的附近有一条公路,从基地中心O 处向东走1 km 是储备基地的边界上的点A ,接着向东再走7 km 到达公路上的点B ;从基地中心O 向正北走8 km 到达公路的另一点C .现准备在储备基地的边界上选一点D ,修建一条由D 通往公路BC 的专用线DE ,求DE 的最短距离.[解析] 以O 为坐标原点,过OB 、OC 的直线分别为x 轴和y 轴,建立平面直角坐标系,则圆O 的方程为x 2+y 2=1,因为点B (8,0)、C (0,8),所以直线BC 的方程为x 8+y 8=1,即x +y =8.当点D 选在与直线BC 平行的直线(距BC 较近的一条)与圆相切所成切点处时,DE 为最短距离,此时DE 的最小值为|0+0-8|2-1=(42-1)km. 16.某圆拱桥的示意图如图所示,该圆拱的跨度AB 是36 m ,拱高OP 是6 m ,在建造时,每隔3 m 需用一个支柱支撑,求支柱A 2P 2的长.(精确到0.01 m)[解析] 如图,以线段AB 所在的直线为x 轴,线段AB 的中点O 为坐标原点建立平面直角坐标系,那么点A 、B 、P 的坐标分别为(-18,0)、(18,0)、(0,6).设圆拱所在的圆的方程是x 2+y 2+Dx +Ey +F =0.因为A 、B 、P 在此圆上,故有⎩⎨⎧ 182-18D +F =0182+18D +F =062+6E +F =0,解得⎩⎨⎧ D =0E =48F =-324.故圆拱所在的圆的方程是x 2+y 2+48y -324=0.将点P 2的横坐标x =6代入上式,解得y =-24+12 6.答:支柱A 2P 2的长约为126-24 m.17.如图,已知一艘海监船O 上配有雷达,其监测范围是半径为25 km 的圆形区域,一艘外籍轮船从位于海监船正东40 km 的A 处出发,径直驶向位于海监船正北30 km的B处岛屿,速度为28 km/h.问:这艘外籍轮船能否被海监船监测到?若能,持续时间多长?(要求用坐标法)[解析]如图,以O为原点,东西方向为x轴建立直角坐标系,则A(40,0),B(0,30),圆O方程x2+y2=252.直线AB方程:x40+y30=1,即3x+4y-120=0.设O到AB距离为d,则d=|-120|5=24<25,所以外籍轮船能被海监船监测到.设监测时间为t,则t=2252-24228=12(h)答:外籍轮船能被海监船监测到,时间是0.5 h.18.已知隧道的截面是半径为4.0 m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7 m、高为3 m的货车能不能驶入这个隧道?假设货车的最大宽度为a m,那么要正常驶入该隧道,货车的限高为多少?[解析]以某一截面半圆的圆心为坐标原点,半圆的直径AB所在的直线为x轴,建立如图所示的平面直角坐标系,那么半圆的方程为:x2+y2=16(y≥0).将x=2.7代入,得y=16-2.72=8.71<3,所以,在离中心线2.7 m处,隧道的高度低于货车的高度,因此,货车不能驶入这个隧道.将x=a代入x2+y2=16(y≥0)得y=16-a2.所以,货车要正常驶入这个隧道,最大高度(即限高)为16-a2m.。
高中数学第4章圆的方程4.1.2圆的一般方程课件新人教A版必修2

示,又因为 A、B、C 为三角形的三个顶点,所以 A、B、 C 三点不共线.即点 B、C 不能重合且 B、C 不能为圆 A 的一直径的两个端点.
因为 B、C 不能重合,所以点 C 不能为(3,5). 又因为 B、C 不能为一直径的两个端点, 所以x+2 3≠4,且y+2 5≠2, 即点 C 不能为(5,-1). 故端点 C 的轨迹方程是(x-4)2+(y-2)2=10(除去点(3,5)和(5,-1)),它的轨 迹是以点 A(4,2)为圆心, 10为半径的圆,但除去(3,5)和(5,-1)两点.
新课标导学
数学
必修② ·人教A版
第四章 圆的方程
4.1 圆的方程
4.1.2 圆的一般方程
1
自主预习学案
2
互动探究学案
3
课时作业学案
自主预习学案
一个形如x2+y2+Dx+Ey+F=0的方程,它表示的曲线一定是圆吗?若是 圆,它的圆心坐标和半径分别是什么?
1.圆的一般方程
(1)方程:当 D2+E2-4F>0 时,方程 x2+y2+Dx+Ey+F=0 叫做圆的一般方 程,其中圆心为__C_(_-__D2_,__-__E2_)_,半径为 r=__12___D_2_+__E_2_-__4_F_____.
① ②
,
又令 y=0,得 x2+Dx+F=0,
由已知得|x1-x2|=6(其中 x1、x2 是方程 x2+Dx+F=0 的两根),∴D2-4F=36
③
由①②③联立组成方程组,解得
D=-2
D=-6
E=-4 ,或E=-8 .
F=-8
F=0
∴所求圆的方程为 x2+y2-2x-4y-8=0 或 x2+y2-6x-8y=0.
高中数学必修二4.1.2圆的一般方程课件

待定系数法
例3:求过三点A(5,1),B (7,-3),C(2,-8)的圆的方程
方法三:待定系数法 解:设所求圆的方程为:
x2 y2 Dx Ey F 0(D2 E2 4F 0)
因为A(5,1),B (7,-3),C(2,8)都在圆上
52 12 5D E F 0
二、[导入新课]
1、同学们想一想,若把圆的标准方程
(xa)2 ( y b)2 r 2
展开后,会得出怎样的情势?
x2 y2 2ax 2by a2 b2 r 2 0
2、那么我们能否将以上情势写得更简单一点呢?
x 2 y 2 Dx Ey F 0
3、反过来想一想,形如上式方程的曲线就一定是圆吗?
圆的方程.
圆的标准方程的情势是怎样的?
(xa)2 ( y b)2 r 2
从中可以看出圆心和半径各是什么?
a, b r
圆的一般方程
【课前练习】
1.圆心在(-1,2),与 y 轴相切的圆的方程. (x+1)2+(y-2)2=1
2.已知圆经过P(5,1),圆心在C(8,3),求圆方程 (x-8)2+(y-3)2=13
2. 圆的一般方程与圆的标准方程的联系
一般方程
配方
标准方程(圆心,半径)
展开
3. 给出圆的一般方程,如何求圆心和半径? (用配方法求解)
小结求圆的方程
几何方法
求圆心坐标 (两条直线的交点) (常用弦的中垂线)
待定系数法
设方程为 (x a)2 ( y b)2 r2 (或x2 y2 Dx Ey F 0)
r1 2
D2 E2 4F 5
例5:已知线段AB的端点B的坐标是(4,3),端
人教版高中数学必修2(A版) 4.1.2圆的一般方程 PPT课件

过三点O、M1、M2的圆方程
方案1:待定系数法
设x y Dx Ey F 0
2 2
(或 x a y b r 2)
2 2
方案2: 数形结合: 挖几何性 质
M1(1,1)
O(0,0)
D
E
F(或a, b, r )
挖出两条直径(弦中 垂线)方程
表示
(2)当D2+E2-4F=0时, 表示
(3)当D2+E2-4F<0时, 表示
D E D2 E 2 4F 圆心( , ), 半径为 的圆 2 2 2 D E 一个点( , ) 2 2 没有意义 回到目录
2、圆的一般方程的特点
当D E 4F 0时,方程x y Dx Ey F 0
∵A(5,1),B(7,-3),C(2,-8)三点在圆上 52+12+5D+E+F=0 即: 5D+E+F=-26 ∴ 2 7 +(-3)2+7D-3E+F=0 7D-3E+F=-58 22+(-8)2+2D-8E+F=0 2D-8E+F=-68 解得:D=-4,E=6,F=-12 从而所求方程为:x2+y2-4x+6y-12=0
标题
§4.1.2圆的一般方程
§4.1.2圆的一般方程
一、问题情景 二、自主学习 三、教师点拨 四、课堂小结
本课结束
一、问题情景
我们知道:方程 x a y b r 2(r>0)表示圆心(a,b),半径为r的圆
2 2
那么方程x 2 y 2 Dx Ey F 0表示什么图形呢?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章第一节圆的一般方程
三维目标
1.掌握圆的一般方程,会将圆的一般方程和圆的标准方程相互转化;
2. 会用待定系数法求圆的一般方程;
3. 会用坐标法求点的轨迹方程;
4.体会代入消元的思想。
___________________________________________________________________________ 目标三导 学做思1
问题1.对下列方程进行配方,得到的方程表示什么?
(1)222210x y x y +-++=; (2) 05422
2=++-+y x y x ;
(3) 064222=+-++y x y x
问题2. 方程022=++++F Ey Dx y x 在什么条件下表示圆?此时圆的圆心坐标和半径是
多少?
【试试】1. 圆的一般方程: ( )
圆心坐标( , ),半径为 .
【试试】2. 若方程052422=++-+k y x y x 表示圆,则k 的取值范围是( )
A.k>1
B.k<1
C.1≥k
D.k 1≤
【学做思2】
*1.已知ABC ∆中,顶点()2,2A ,边AB 上的中线CD 所在直线的方程是0x y +=,边AC 上高BE 所在直线的方程是340x y ++=.
(1)求点B 、C 的坐标; (2)求ABC ∆的外接圆的方程.
【思考】根据这题的解法,请你总结出求圆的方程的一般步骤
2.已知线段AB 的端点B 的坐标是(4,3),端点A 在圆4)1(2
2=++y x 上运动,求线段AB 的中点M 的轨迹方程。
(学生小组讨论展示解题思路)
【小结】求轨迹方程的一般步骤
【变式】自圆422=+y x 上的点A(2,0)引此圆的弦AB ,求弦AB 的中点轨迹方程。
3. 已知方程01464)1(2222=+-+---+m m my x m y x 表示圆.
(1)求m 的取值范围;
(2)圆心的轨迹方程.
达标检测
*1. 当a 为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以C 为圆心,
为半径的圆的方程为( )
(A) 04222=+-+y x y x (B) 04222=+++y x y x
(C) 04222=-++y x y x (D) 04222=--+y x y x
2. 判断下列方程分别表示什么图形?
(1) 022=+y x (2) 064222=-+-+y x y x
3. 求圆心在x 轴上,并且过点A(-1,1)和B(1,3)的圆的方程.
4. 经过圆x2+y2=4上任一点P作x轴的垂线,垂足为Q,求线段PQ中点的轨迹方程.
5.已知点A(-1,1),B(3,3)是⊙C的一条直径的两个端点,又点M在⊙C上运动,点N(4,-2),求线段MN的中点P的轨迹方程.。