复数变形练习题
初中英语名词复数单选题50题

初中英语名词复数单选题50题1.There are many ____ on the table.A.bookB.booksC.bookesD.bookis答案:B。
本题考查规则名词复数变化,一般情况下在词尾加s,book 的复数是books。
A 选项是单数形式;C 和D 选项变形错误。
2.I have two ____.A.penB.pensC.penesD.penies答案:B。
pen 的复数是直接在词尾加s,变为pens。
A 选项是单数;C 和D 选项变形错误。
3.There are some ____ in the box.A.appleB.applesC.applesesD.applesis答案:B。
apple 的复数是apples。
A 选项是单数;C 和D 选项变形错误。
4.She has three ____.A.boxB.boxsC.boxesD.boxis答案:C。
以x,s,sh,ch 结尾的名词变复数加es,box 的复数是boxes。
A 选项是单数;B 和D 选项变形错误。
5.There are four ____ in the room.A.chairB.chairsC.chairesD.chairis答案:B。
chair 的复数是直接在词尾加s,变为chairs。
A 选项是单数;C 和D 选项变形错误。
6.There are many _ in the zoo.A.mousesB.miceC.mouseD.mices答案:B。
“mouse”的复数是“mice”。
A 选项“mouses”错误;C 选项是单数形式;D 选项“mices”错误。
7.We can see some _ on the farm.A.sheepsB.sheepC.sheepesD.sheepies答案:B。
“sheep”的复数形式还是“sheep”。
A 选项“sheeps”错误;C 选项“sheepes”错误;D 选项“sheepies”错误。
(讲解)名词复数,a、an,Be动词

英语中的词汇分为10种词性名词(n.) 动词(v.) 代词(pron.) 形容词(adj.) 副词(adv.)数词(num.) 冠词(art.) 介词(prep.) 连词(conj.) 感叹词(int.)一、名词名词可以分为可数名词与不可数名词,其中可数名词具有单、复数的形式;而不可数名词没有复数形式。
1. 从单数到复数,变形规则如下:1.一般情况下,直接加-s,如:book-books, bag-bags, cat-cats, bed-beds2.以s. x. sh. ch结尾,加-es,如:bus-buses, box-boxes, watch-watches3. 以字母o结尾,有生命的加-es,如:tomato-tomatoes,potato-potatoes,hero-heroes无生命的加-s,如:photo-photos4.以“辅音字母+y”结尾,变y为i, 再加-es,如:family-families(家庭), strawberry-strawberries(草莓)5.以“f或fe”结尾,变f或fe为v, 再加-es,如:knife-knives leaf-leaves 6.不规则名词复数:man-men, woman-women, policeman-policemen , mouse-micechild(孩子)-children foot-feet,. tooth-teeth7.单复同形fish-fish, sheep-sheep people-people, Chinese-Chinese, Japanese-Japanese, goose—geese2.以下词为常为不可数名词,他们的复数形式就是他们本身。
Water(水) milk(牛奶) tea(茶) rice(米饭) orange(橙汁)juice(果汁)bread(面包)液体类,肉类,一抓一大把,抽象类练习题写出下列各词的复数I _________this ___________that___________ zoo __________watch _______child _______photo ________diary _________day________ foot________ book_______ dress ______________tooth_______ sheep ______box_______ strawberry _____________thief _______ peach______ sandwich __________man______woman_______ paper_______ juice____________________water________ milk________ rice__________ tea_______________wolf________ wife________life________knife________fish________ sheep________ people________ Chinese________Japanese________ goose________二、名词单复数讲解及练习(1)可数名词的单数前什么时候用a,什么时候用an?答:以元音音标(或音素)开头的用an。
高中数学竞赛讲义第一讲《复数》练习

高中数学竞赛第一讲复数一、基础知识1.复数的运算法则:三角形式,若z 1=r 1(cos θ1+i sin θ1), z 2=r 2(cos θ2+i sin θ2),则z 1••z 2=r 1r 2[cos(θ1+θ2)+i sin(θ1+θ2)];11222(0),z r z z r ≠=[cos(θ1-θ2)+i sin(θ1-θ2)],或记为z 1z 2=r 1r 212()i e θθ+;.)(212121θθ-=i e r r z z 2.棣莫弗定理:[r (cos θ+i sin θ)]n =r n (cos nθ+i sin nθ). 3.开方:若=nw r (cos θ+i sin θ),则)2sin2(cosnk i nk r w n πθπθ+++=,k =0,1,2,…,n -1。
4.方程10(2n x n n n -=≥为自然数,且)的个根 记为:22cossin (0,1,2,,1)k k k i k n n nππε=+=-称为1的n 次单位根。
由棣莫弗定理,全部n 次单位根可表示为112111-n εεε ,,,。
关于单位根,有如下常用性质:)20111211≥=++++-n n (εεε ;任意两个单位根j i εε,的乘积仍为一个n 次单位根,且(1)的余数)除以是其中时,当n j i k n j i k j i j i j i +=≥+=⋅++,(εεεεε; (2)设m 为整数,1≠n ,则⎩⎨⎧=++++-的倍数)不是的倍数),是n m n m n mn m m (0(1121εεε(3)1+z 1+z 2+…+z n -1=0;(4)x n -1+x n -2+…+x +1=(x -z 1)(x -z 2)…(x -z n -1)=(x -z 1)(x -21z )…(x -11n z -). 特别地:1的立方根有:1,ω=-12+32i ,-ω=-12-32i(1)ω3=-ω3=1 (2)1+ω+ω2=0或1+-ω+-ω2=0 (3)ω-ω=1 (4)ω2=-ω,-ω2=ω (5)(1±i )2=±2i ,(3±4i )2=-7±24i5.代数基本定理:在复数范围内,一元n 次方程至少有一个根。
2022年山东新高考数学专项练习试题(含解析)——复数

一、单选题1.已知是虚数单位,复数,为z的共轭复数,则()A. B. C. D.2.复数()A. B. C. D.3.设复数,其中为虚数单位,则的虚部为()A. B. C. D.4.设复数满足,则()A. 1B.C.D.5.当时,复数在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6.若复数(为虚数单位),则复数在复平面上对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.下列四个命题中是假命题的是()A. 若复数z满足,则z是虚数B. 若直线的倾斜率为,则直线的倾斜角为C. 若,,事件A,B相互独立和A,B相互互斥不能同时成立D. 若,,,为锐角,则实数m的取值范围是8.已知复数(i为虚数单位,),若,从M中任取一个元素,其模为1的概率为()A. B. C. D.9.已知复数,则()A. B. C. D.10.已知是虚数单位,则复数的虚部是()A.B.C.D.11.若z(1+i)=2i,则z=()A. -1-iB. -1+iC. 1-iD. 1+i12.设z= ,则|z|=()A. 2B.C.D. 113.设,则=()A. 0B.C. 1D.14.复数 (i为虚数单位)的共轭复数是()A. 1+iB. 1−iC. −1+iD. −1−i15.设z=-3+2i,则在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限16.设z=i(2+i),则=()A. 1+2iB. -1+2iC. 1-2iD. -1-2i17.设复数z满足,z在复平面内对应的点为(x,y),则()A. B. C. D.18.若,则z=()A. 1–iB. 1+iC. –iD. i19.在复平面内,复数的共轭复数对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限20.复平面内表示复数z=i(﹣2+i)的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限21.( )A. B. C. D.22.设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p3:若复数z1,z2满足z1z2∈R,则z1= ;p4:若复数z∈R,则∈R.其中的真命题为()A. p1,p3B. p1,p4C. p2,p3D. p2,p423.i(2+3i)=()A. 3-2iB. 3+2iC. -3-2iD. -3+2i24.设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A. ﹣5B. 5C. ﹣4+iD. ﹣4﹣i25.复数的虚部是()A. B. C. D.26.已知复数z=2+i,则=()A. B. C. 3 D. 527.设复数z满足(1+i)z=2i,则|z|=()A. B. C. D. 228.=()A. -3-iB. -3+iC. 3-iD. 3+i29.已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件30.已知复数z的模为2,则|z-i|的最大值为( )A. 1B. 2C.D. 331.下面是关于复数的四个命题:其中的真命题为()的共轭复数为的虚部为-1A.B.C.D.32.复数的共轭复数是()A.B.iC.D.33.若复数z满足,则z的共轭复数在复平面内对应的点在第()象限A.一B.二C.三D.四34.若虚数z满足,则()A.B.2C.4D.0或235.已知,则()A.B.C.D.36.复数(i为虚数单位)的共轭复数()A.B.C.D.37.已知复数满足,则复数的虚部为()A.1B.C.D.-138.已知为虚数单位,复数满足,则()A.B.C.D.39.复数,则()A.B.4C.D.40.已知复数(为虚数单位),则()A.1B.C.D.241.复数在复平面内对应点的坐标为()A.B.C.D.42.复平面内表示复数的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限43.设i为虚数单位,则()A. B. C. D.44.已知是关于x的方程()的一个根,则()A. -1B. 1C. -3D. 345.设是虚数单位,若复数满足,则复数对应的点位于复平面的()A. 第一象限B. 第二象限C. 第三象限D. 第四象限46.=()A. ﹣1B. ﹣iC. 1D. i47.已知复数,是z的共轭复数,,在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限48.设复数、在复平面内对应的点关于实轴对称,若,则()A. B. C. D.49.设i为虚数单位,则()A. B. C. D.答案解析部分一、单选题1.【答案】 D【解析】【解答】由题得,所以,故答案为:D【分析】首先由复数代数形式的运算性质整理,再由共轭复数的概念即可得出答案。
人教版高中数学必修第二册第二单元《复数》测试卷(答案解析)(1)

一、选择题1.满足条件34z i i -=+的复数z 在复平面上对应点的轨迹是( ) A .一条直线B .两条直线C .圆D .椭圆2.设a R ∈,则复数22121a aiz a-+=+所对应点组成的图形为( ) A .单位圆B .单位圆除去点()1,0±C .单位圆除去点()1,0D .单位圆除去点()1,0-3.“1x >”是“复数2(1)()z x x x i x R =-+-∈在复平面内对应的点在第一象限”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知方程()()2440x i x ai a R ++++=∈有实根b ,且z a bi =+,则复数z 等于( ) A .22i - B .22i + C .22i -+ D .22i -- 5.若复数z 满足232,z z i +=-其中i 为虚数单位,则z=A .1+2iB .1-2iC .12i -+D .12i --6.已知z 是纯虚数,21z i+-是实数,那么z 等于 ( ). A .2i B .i C .-i D .-2i 7.复数z 满足23z z i +=-,则z =( )A .1i +B .1i -C .3i +D .3i -8.设313iz i+=-,则232020z z z z ++++=( )A .1B .0C .1i --D .1i +9.已知复数Z 满足()13Z i i +=+,则Z 的共轭复数为( ) A .2i +B .2i -C .2i -+D .2i --10.欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由著名数学家欧拉发明的,他将指数函数定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式,若将2i e π表示的复数记为z ,则(12)z i +的值为( ) A .2i -+B .2i --C .2i +D .2i -11.复数51i i-的虚部是( )A .12B .2i C .12-D .2i -12.对于给定的复数0z ,若满足042z i z z -+-=的复数z 对应的点的轨迹是椭圆,则01z -的取值范围是( )A.)2 B.)1 C.)2-D.)1-二、填空题13.设z 为复数,且1z =,当23413z z z z ++++取得最小值时,则此时复数z =______.14.若23i -是方程()220,x px q p q R ++=∈的一个根,则p q +=______.15.若1i -是关于x 的方程20x px q ++=的一个根(其中i 为虚数单位,,p q R ∈),则p q +=__________.16.化简2012221i ⎛⎫+= ⎪+⎝⎭________.点集{||1|1,}D z z z C =++=∈,则||z 的最小值_____和最大值________.17.若复数z 满足111,arg 23z z z z π--⎛⎫== ⎪⎝⎭,则z 的代数形式是z =_____________. 18.已知a 为实数,i 为虚数单位,若复数2(1)(1)z a a i =-++为纯虚数,则20001a i i+=+______. 19.若实数,m n 满足20212(4)(2)i mi n i ⋅+=+,且z m ni =+,则||z =_____.20.若复数z 满足2z i z i -++=,则1z i --的取值范围是________三、解答题21.已知复数1z 、2z满足1||1z =、2||1z =,且12||4z z -=,求12z z 与12||z z +的值.22.实数m 取什么值时,复数22(56)(215)z m m m m i =+++-- (1)与复数212i -相等(2) 与复数1216i +互为共轭复数 (3)对应的点在x 轴上方.23.已知z 为复数,2z i +为实数,且(12)i z -为纯虚数,其中i 是虚数单位. (1)求复数z ;(2)若复数z 满足1z ω-=,求ω的最小值. 24.已知复数1z 满足:111z i z =++. (1)求1z ;(2)若复数()()22111z a a z a R =-+-∈,且2z 是纯虚数,求a 的值.25.已知1(3)(?4)z x y y x i =++-,2(42)(53)(,)z y x x y i x y R =--+∈,设12z z z =-,且132z i =+,求复数1z ,2z .26.若z C ∈,42i z z +=,sin sin i ωθθ=-(θ为实数),i 为虚数单位. (1)求复数z ; (2)求z ω-的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】因为34z i i -=+,所以5z i -=,22(1)25,x y +-= 因此复数z 在复平面上对应点的轨迹是圆,选C.2.D解析:D 【分析】根据复数222221212111a ai a az i a a a -+-==++++,得到复数z 对应点的坐标为:22212,11a a a a ⎛⎫- ⎪++⎝⎭,然后由22212,11a ax y a a -==++,利用复数的模求解. 【详解】因为复数222221212111a ai a a z i a a a-+-==++++, 所以复数z 对应点的坐标为:22212,11a a a a ⎛⎫- ⎪++⎝⎭, 即22212,11a ax y a a-==++, 所以222222212111a a x y a a ⎛⎫-⎛⎫+=+= ⎪ ⎪++⎝⎭⎝⎭, 因为22212111a x a a-==-+++, 又因为a R ∈,所以211a +≥, 所以22021a <≤+, 所以221111a-<-+≤+, 即11x -<≤,所以复数z 对应点组成的图形为单位圆除去点()1,0-. 故选:D 【点睛】本题主要考查复数的几何意义以及复数模的轨迹问题,还考查了运算求解的能力,属于中档题.3.C解析:C 【分析】根据充分必要条件的定义结合复数与复平面内点的对应关系,从而得到答案. 【详解】若复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限,则20,10x x x ⎧->⎨->⎩ 解得1x >,故“1x >”是“复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限”的充要条件. 故选C. 【点睛】本题考查了充分必要条件,考查了复数的与复平面内点的对应关系,是一道基础题.4.A解析:A 【解析】 【详解】由b 是方程()()2440x i x ai a R ++++=∈的根可得()2440b i b ai ++++=,整理可得:()()2440b a i b b ++++=,所以20440b a b b +=⎧⎨++=⎩,解得22a b =⎧⎨=-⎩,所以22z i =-,故选A .5.B解析:B 【解析】试题分析:设i z b a =+,则23i 32i z z a b +=+=-,故,则12i z =-,选B.【考点】注意共轭复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时对复数的运算与概念、复数的几何意义等进行综合考查,也是考生必定得分的题目之一.6.D解析:D 【分析】根据复数的运算,化简得到21[(2)(2)]12z b b i i +=-++-,再由复数为实数,即可求解. 【详解】设z =b i (b ∈R ,且b ≠0), 则=== [(2-b )+(2+b )i].∵∈R ,∴2+b =0,解得b =-2, ∴z =-2i. 故选D. 【点睛】本题主要考查了复数的基本运算和复数的基本概念的应用,其中熟记复数的四则运算法则和复数的基本分类是解答的关键,着重考查了推理与计算能力,属于基础题.7.A解析:A 【解析】令22()331,1z a bi z z a bi a bi a bi i a b =+∴+=++-=-=-∴==8.B解析:B 【分析】利用复数代数形式的乘除运算化简z ,再由等比数列的前n 项和公式及虚数单位i 的运算性质求解. 【详解】 3(3)(13)1013(13)(13)10i i i iz i i i i +++====--+, 20202020232020(1)(1)(11)0111z z i i i z z z zz i i---∴+++⋯+====---.故选:B . 【点睛】本题考查复数代数形式的乘除运算,考查虚数单位i 的运算性质,训练了等比数列前n 项和的求法,是基础题.9.A解析:A 【分析】根据复数的运算法则得()()()()31242112i i i Z i i i +--===-+--,即可求得其共轭复数. 【详解】由题:()13Z i i +=+,所以()()()()31242112i i i Z i i i +--===-+--, 所以Z 的共轭复数为2i +. 故选:A 【点睛】此题考查求复数的共轭复数,关键在于准确求出复数Z ,需要熟练掌握复数的运算法则,准确求解.10.A解析:A 【分析】根据欧拉公式求出2cos sin22iz e i i πππ==+=,再计算(12)z i +的值.【详解】 ∵2cossin22iz e i i πππ==+=,∴(12)(12)2z i i i i +=+=-+. 故选:A. 【点睛】此题考查复数的基本运算,关键在于根据题意求出z .11.A解析:A 【解析】 【分析】由题意首先化简所给的复数,然后确定其虚部即可. 【详解】由复数的运算法则可知:51i i -()()()1111122i i ii i +==-+-+,则复数51i i-的虚部是12.本题选择A 选项. 【点睛】本题主要考查复数的运算法则,虚部的定义等知识,意在考查学生的转化能力和计算求解能力.12.A解析:A 【分析】根据条件可得042z i -<,即复数0z 对应的点在以()0,4为圆心,2为半径的圆内部.01z -表示复数0z 对应的点到()1,0的距离,由圆的性质可得答案.【详解】因为042z i z z -+-=的复数z 对应的点的轨迹是椭圆, 所以042z i -<由复数的几何意义可知042z i -<表示复数0z 对应的点到()0,4的距离小于2. 即复数0z 对应的点在以()0,4为圆心,2为半径的圆内部.01z -表示复数0z 对应的点到()1,0的距离.如图,设()0,4C ,1,0A 221417AC =+=则0212AC z AC -<-<+,即01721172z -<-<+ 故选:A【点睛】本题考查椭圆的定义的应用,考查复数的几何意义的应用和利用圆的性质求范围,属于中档题.二、填空题13.【分析】设复数的辐角为将用表示出来再利用二倍角公式二次函数性质求最小值可得与的值即可得复数【详解】设复数的辐角为所以所以故答案为:【点睛】本题主要考查了复数的三角形形式涉及三角恒等变换及二次函数性质解析:1154-±【分析】设复数z 的辐角为θ,将23413z z z z ++++用θ表示出来,再利用二倍角公式,二次函数性质求最小值,可得cos θ与sin θ的值,即可得复数z . 【详解】设复数z 的辐角为θ,23413z z z z ++++==2cos22cos 3θθ=++ 24cos 2cos 1θθ=++ 21334cos 444θ⎛⎫=++≥ ⎪⎝⎭所以1cos 4θ=-,sin 4θ=± 所以144z=-±, 故答案为:14- 【点睛】本题主要考查了复数的三角形形式,涉及三角恒等变换及二次函数性质,属于中档题.14.38;【分析】假设另外一个根为根据是实数结合韦达定理可得结果【详解】假设另外一个根为是方程的一个根则①由可知是的共轭复数所以②把②代入①可知所以故答案为:38【点睛】本题重在考查是实数掌握复数共轭复解析:38; 【分析】假设另外一个根为z ,根据z z 是实数,结合韦达定理,可得结果. 【详解】假设另外一个根为z ,23i -是方程()220,x px q p q R ++=∈的一个根,则()232232p i z q i z ⎧-+=-⎪⎪⎨⎪-=⎪⎩① 由,p q R ∈,可知z 是23i -的共轭复数, 所以32z i =-- ② 把②代入①可知1226p q =⎧⎨=⎩所以38p q +=故答案为:38 【点睛】本题重在考查z z 是实数,掌握复数共轭复数的形式,属基础题15.0【分析】直接利用实系数一元二次方程的虚根成对原理及根与系数关系求解【详解】是关于的实系数方程的一个根是关于的实系数方程的另一个根则即故答案为:0【点睛】本题考查了一元二次方程的虚根特征和虚数的运算解析:0 【分析】直接利用实系数一元二次方程的虚根成对原理及根与系数关系求解. 【详解】1i -是关于x 的实系数方程20x px q ++=的一个根,1i ∴+是关于x 的实系数方程20x px q ++=的另一个根,则(1)(1)2p i i -=-++=,即2p =-,2(1)(1)12q i i i =-+=-=,0p q ∴+=.故答案为:0 【点睛】本题考查了一元二次方程的虚根特征和虚数的运算,考查了计算能力,属于中档题.16.13【分析】根据复数的代数形式的除法乘方运算法则计算可得根据复数的几何意义得到的轨迹即可得到的最值;【详解】解:设因为即根据复数的几何意义可知表示以为圆心为半径的圆上的点集则故答案为:;;【点睛】本解析:1- 1 3 【分析】根据复数的代数形式的除法、乘方运算法则计算可得,根据复数的几何意义得到z 的轨迹,即可得到||z 的最值; 【详解】解:2012221i ⎛⎫+ ⎪ ⎪+⎝⎭)()()201222111i i i ⎡⎤-=⎢⎥+-⎢⎥⎣⎦2012022⎛⎫=-+ ⎪ ⎪⎝⎭20120⎫=+⎪⎪⎝⎭1006222⎡⎤⎛⎫⎢⎥=- ⎪ ⎪⎢⎥⎝⎭⎣⎦()100610062514221i i i i ⨯+=-====-设(),z x yi x y R =+∈,因为{||1|1,}D z z z C =++=∈即11x yi +++=根据复数的几何意义可知{||1|1,}D z z z C =+=∈表示以(1,-为圆心,1为半径的圆上的点集,则max13z ==,min 11z ==,故答案为:1-;1;3. 【点睛】本题考查了复数代数形式的乘除运算,也考查了复数模的求法与几何意义,是中档题.17.【分析】先写出的三角形式再进行化简整理即可【详解】设则∴∴解得故答案为:【点睛】本题考查复数三角形式的定义属基础题解析:1+【分析】先写出1z z-的三角形式,再进行化简整理即可. 【详解】设01z z z -=,则001,arg 23z z π==,∴011cos sin 23344z i ππ⎛⎫+=+ ⎪⎝⎭=,∴1144z z -=+,解得13z i =+.故答案为:13i +. 【点睛】本题考查复数三角形式的定义,属基础题.18.【分析】利用纯虚数的定义复数的运算法则即可求出【详解】解:为纯虚数且解得故答案为:【点睛】本题考查了复数的运算法则纯虚数的定义考查了推理能力与计算能力属于基础题 解析:1i -【分析】利用纯虚数的定义、复数的运算法则即可求出.【详解】解:2(1)(1)z a a i =-++为纯虚数,210a ∴-=,且10a +≠,解得1a =20001112(1)111(1)(1)i i i i i i i ++-∴===-+++-. 故答案为:1i -.【点睛】本题考查了复数的运算法则、纯虚数的定义,考查了推理能力与计算能力,属于基础题. 19.【分析】先通过复数代数形式的四则运算法则对等式进行运算再利用复数相等求出最后由复数的模的计算公式求出【详解】因为所以已知等式可变形为即解得【点睛】本题主要考查复数代数形式的四则运算法则复数相等的概念【分析】先通过复数代数形式的四则运算法则对等式进行运算,再利用复数相等求出,m n ,最后由复数的模的计算公式求出z .【详解】因为2021i i =,所以已知等式可变形为2(4)44i mi n ni +=+-,即2444m i n ni -+=+-,2444m n n ⎧-=-⎨=⎩ 解得31m n =⎧⎨=⎩ ,3i z =+z ∴=.【点睛】本题主要考查复数代数形式的四则运算法则,复数相等的概念以及复数的模的计算公式的应用.20.【解析】分析:由复数的几何意义解得点的轨迹为以为端点的线段表示线段上的点到的距离根据数形结合思想结合点到直线距离公式可得结果详解:因为复数满足在复平面内设复数对应的点为则到的距离之和为所以点的轨迹为解析:【解析】分析:由复数的几何意义解得点z 的轨迹为以()()0,1,0,1-为端点的线段,1z i --表示线段上的点到()1,1的距离,根据数形结合思想,结合点到直线距离公式可得结果. 详解:因为复数z 满足2z i z i -++=,在复平面内设复数z 对应的点为(),z x y ,则(),z x y 到()()0,1,0,1-的距离之和为2,所以点z 的轨迹为以()()0,1,0,1-为端点的线段,1z i --表示线段上的点到()1,1的距离, 可得最小距离是()0,1与()1,1的距离,等于1;最大距离是()0,1-与()1,1的距离,等于5;即1z i --的取值范围是1,5⎡⎤⎣⎦,故答案为1,5⎡⎤⎣⎦.点睛:本题考查复数的模,复数的几何意义,是基础题. 复数的模的几何意义是复平面内两点间的距离,所以若z x yi =+,则z a bi -+表示点(),x y 与点(),a b 的距离,z a bi r -+=表示以(),a b 为圆心,以r 为半径的圆.三、解答题21.12473z i z +=±,12||4z z +=. 【分析】设复数1z 、2z 在复平面上对应的点为1Z 、2Z ,从模长入手,可以得到2221212||||z z z z +=-,进而得到以1OZ 、2OZ 为邻边的平行四边形是矩形.【详解】设复数1z 、2z 在复平面上对应的点为1Z 、2Z ,由于222(71)(71)4++-=,故2221212||||z z z z +=-,故以1OZ 、2OZ 为邻边的平行四边形是矩形,从而12OZ OZ ⊥,则1212||||4z z z z +=-=,()()212717147717171z z ++==±=±--+. 【点睛】本题的易错点在12771z z =-,原因是12,z z 可以交换位置,所以这个取正负值均可. 22.(1)m =-1(2)m =1(3)m<-3或m>5.【解析】解:(1)根据复数相等的充要条件得22562{21512m m m m ++=--=-解得m =-1. (2)根据共轭复数的定义得225612{21516m m m m ++=--=-解得m =1. (3)根据复数z 的对应点在x 轴的上方可得m 2-2m -15>0,解得m<-3或m>5.23.(1)=42z i -(2)1【详解】试题分析:(1)求复数z 时采用待定系数法,首先=(,)z a bi a b R +∈设,代入已知条件得到关于,a b 的方程,从而解得,a b ,得到复数z (2)采用待定系数法得到复数ω实虚部的关系式,进而结合两点间距离公式得到ω的最小值试题(1)=(,)z a bi a b R +∈设,则2(2)z i a b i +=++,因为2z i +为实数,所以有20b +=①(12)(12)()2(2)i z i a bi a b b a i -=-+=++-,因为(12)i z -为纯虚数,所以20,20a b b a +=-≠,②由①②解得4,2a b ==-.故=42z i -.(2)因为=42z i -,则42z i =+,设(,)x yi x y R ω=+∈,因为1z ω-=,即22(4)(2)1x y -+-=又ωω的最小值即为原点到圆22(4)(2)1x y -+-=上的点距离的最小值,因为原点到点(4,2)=r=1,原点在圆外,所以ω的最小值即为1.考点:1.待定系数法;2.复数运算及相关概念;3.数形结合法24.(1)1z i =-;(2)1a =-.【分析】(1)设1,(,)z a bi a b R =+∈,将已知条件化简后可得1z ;(2)将2z 化简整理,令实部为0,可得a 的值.【详解】(1)设1,(,)z a bi a b R =+∈,1(1)(1)i a bi a b i =+++=+++,100,,11b a b a +=⎧=⎧⎪∴∴⎨=-=+⎩∴1z i =-.(2)由(1)得221(1)(),z a a i a =---∈R由2z 是纯虚数得:21010a a ⎧-=⎨-≠⎩, 1a ∴=-.【点睛】本题主要考查复数的有关概念及四则运算等基本知识.考查概念识记、运算化简能力,属于基础题.25.1z =59,i -287.z i =--【分析】明确复数1z ,2z 的实部与虚部,结合加减法的运算规则,即可求出复数z ,从而用,x y 表示出z ,接下来根据复数相等的充要条件列出关于,x y 的方程组求解,即可得出1z ,2z .【详解】∵12z z z =- ()()()()344253x y y x i y x x y i =++---++ ()()342x y y x ⎡⎤=+--⎣⎦ ()()453y x x y i ⎡⎤+-++⎣⎦ ()()534x y x y i =-++. ∴()()534z x y x y i =--+.又∵132z i =+∴531342x y x y -=⎧⎨+=-⎩∴21x y =⎧⎨=-⎩∴()()1321142z i =⨯-+--⨯ 59,i =-∴()()24122523187.z i i ⎡⎤⎡⎤=⨯--⨯-⨯+⨯-=--⎣⎦⎣⎦【点睛】本题主要考查复数代数形式的加减运算、共轭复数的定义以及复数相等的充要条件,属于中档题.复数相等的性质是:若两复数相等则它们的实部与虚部分别对应相等.26.(1)1i 2z =+;(2)[]0,2. 【分析】(1)设(),z a bi b a =+∈R ,根据复数相等,得出关于实数a 、b 的方程组,解出这两个未知数,即可得出复数z 的值;(2)利用复数的模长公式以及辅助角公式得出z ω-=,利用正弦函数的值域可求出z ω-的取值范围.【详解】 (1)设(),z a bi b a =+∈R ,则z a bi =-,()()42a bi a bi i ++-=∴,即62a bi i +=,所以621a b ⎧=⎪⎨=⎪⎩212a b ⎧=⎪⎪⎨⎪=⎪⎩,122z i ∴=+; (2)()11sin cos sin cos 222z i i i ωθθθθ⎛⎫⎛⎫ ⎪ ⎪ ⎪=⎝⎭⎝-=+⎭---+=== 1sin 16πθ⎛⎫ ≤⎝--⎪⎭≤,022sin 46πθ≤--⎛⎫ ⎪⎝⎭≤∴, 02z ω∴≤-≤,故z ω-的取值范围是[]0,2.【点睛】本题考查复数的求解,同时也考查了复数模长的计算,涉及复数相等以及辅助角公式的应用,考查计算能力,属于中等题.。
复数经典试题(含答案) 百度文库

一、复数选择题1.复数()1z i i =⋅+在复平面上对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限2.复数3(23)i +(其中i 为虚数单位)的虚部为( )A .9iB .46i -C .9D .46-3.设复数(,)z a bi a R b R =+∈∈,它在复平面内对应的点位于虚轴的正半轴上,且有1z =,则a b +=( )A .-1B .0C .1D .24.i 是虚数单位,复数1i+=-( )A .i -B .iC i -D i5.已知复数z 满足()311z i i +=-,则复数z 对应的点在( )上 A .直线12y x =-B .直线12y x =C .直线12x =-D .直线12y6.已知复数512z i=+,则z =( )A .1B C D .57.满足313i z i ⋅=-的复数z 的共扼复数是( ) A .3i -B .3i --C .3i +D .3i -+8.已知复数()211i z i-=+,则z =( )A .1i --B .1i -+C .1i +D .1i -9.在复平面内,复数z 对应的点是()1,1-,则1zz =+( ) A .1i -+ B .1i +C .1i --D .1i -10.复数12iz i=+(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限11.复数11z =,2z 由向量1OZ 绕原点O 逆时针方向旋转3π而得到.则21arg()2z z -的值为( ) A .6π B .3π C .23π D .43π 12.已知2021(2)i z i -=,则复平面内与z 对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限13.设a +∈R ,复数()()()242121i i z ai ++=-,若1z =,则a =( )A .10B .9C .8D .714.已知i 是虚数单位,设复数22ia bi i-+=+,其中,a b ∈R ,则+a b 的值为( ) A .75B .75-C .15D .15-15.设复数满足(12)i z i +=,则||z =( )A .15B C D .5二、多选题16.i 是虚数单位,下列说法中正确的有( ) A .若复数z 满足0z z ⋅=,则0z =B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数()z a ai a R =+∈,则z 可能是纯虚数D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限 17.若复数351iz i-=-,则( )A .z =B .z 的实部与虚部之差为3C .4z i =+D .z 在复平面内对应的点位于第四象限 18.已知复数(),z x yi x y R =+∈,则( ) A .20zB .z 的虚部是yiC .若12z i =+,则1x =,2y =D .z =19.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( ) A .第一象限B .第二象限C .第三象限D .第四象限20.已知复数1z =-+(i 为虚数单位),z 为z 的共轭复数,若复数zw z=,则下列结论正确的有( )A .w 在复平面内对应的点位于第二象限B .1w =C .w 的实部为12-D .w 21.若复数z 满足(1i)3i z +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( )A .|z |=B .z 的实部是2C .z 的虚部是1D .复数z 在复平面内对应的点在第一象限22.下列关于复数的说法,其中正确的是( ) A .复数(),z a bi a b R =+∈是实数的充要条件是0b = B .复数(),z a bi a b R =+∈是纯虚数的充要条件是0b ≠ C .若1z ,2z 互为共轭复数,则12z z 是实数D .若1z ,2z 互为共轭复数,则在复平面内它们所对应的点关于y 轴对称 23.已知复数122,2z i z i =-=则( ) A .2z 是纯虚数 B .12z z -对应的点位于第二象限C .123z z +=D .12z z =24.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( )A .||z =B .复数z 的共轭复数为z =﹣1﹣iC .复平面内表示复数z 的点位于第二象限D .复数z 是方程x 2+2x +2=0的一个根25.已知复数12ω=-,其中i 是虚数单位,则下列结论正确的是( )A .1ω=B .2ω的虚部为C .31ω=-D .1ω在复平面内对应的点在第四象限26.已知复数()(()()211z m m m i m R =-+-∈,则下列说法正确的是( )A .若0m =,则共轭复数1z =-B .若复数2z =,则mC .若复数z 为纯虚数,则1m =±D .若0m =,则2420z z ++=27.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是( )A .z 的虚部为1-B .||z =C .2z 为纯虚数D .z 的共轭复数为1i --28.以下命题正确的是( )A .0a =是z a bi =+为纯虚数的必要不充分条件B .满足210x +=的x 有且仅有iC .“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件D .已知()f x =()1878f x x '=29.(多选)()()321i i +-+表示( ) A .点()3,2与点()1,1之间的距离 B .点()3,2与点()1,1--之间的距离 C .点()2,1到原点的距离D .坐标为()2,1--的向量的模30.设复数z 满足12z i =--,i 为虚数单位,则下列命题正确的是( )A .|z |=B .复数z 在复平面内对应的点在第四象限C .z 的共轭复数为12i -+D .复数z 在复平面内对应的点在直线2y x =-上【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.B 【分析】先利用复数的乘法化简复数z ,再利用复数的几何意义求解. 【详解】 因为复数,所以在复数z 复平面上对应的点位于第二象限 故选:B 解析:B 【分析】先利用复数的乘法化简复数z ,再利用复数的几何意义求解. 【详解】因为复数()11z i i i =⋅+=-+,所以在复数z 复平面上对应的点位于第二象限 故选:B2.C 【分析】应用复数相乘的运算法则计算即可. 【详解】 解:所以的虚部为9. 故选:C.解析:C 【分析】应用复数相乘的运算法则计算即可. 【详解】解:()()()32351223469i i i i +=-++=-+ 所以()323i +的虚部为9. 故选:C.3.C 【分析】根据复数的几何意义得. 【详解】∵它在复平面内对应的点位于虚轴的正半轴上,∴,又,∴, ∴. 故选:C .解析:C 【分析】根据复数的几何意义得,a b . 【详解】∵z 它在复平面内对应的点位于虚轴的正半轴上,∴0a =,又1z =,∴1b =, ∴1a b +=. 故选:C .4.B 【分析】由复数除法运算直接计算即可. 【详解】 . 故选:B.解析:B 【分析】由复数除法运算直接计算即可. 【详解】()21ii i +==-. 故选:B.5.C 【分析】利用复数的乘法和除法运算求得复数z 的标准形式,得到对应点的坐标,然后验证即可.解:因为,所以复数对应的点是,所以在直线上. 故选:C. 【点睛】本题考查复数的乘方和除法运解析:C 【分析】利用复数的乘法和除法运算求得复数z 的标准形式,得到对应点的坐标,然后验证即可. 【详解】解:因为33111(1)1(1)2(1)2i i z i i z i i --+=-⇔===-+-,所以复数z 对应的点是1,02⎛⎫- ⎪⎝⎭,所以在直线12x =-上. 故选:C. 【点睛】本题考查复数的乘方和除法运算,复数的坐标表示,属基础题.注意:()()()()()3211i 12121i i i i i +=++=-+=-.6.C【分析】根据模的运算可得选项. 【详解】 . 故选:C.解析:C 【分析】根据模的运算可得选项. 【详解】512z i ====+故选:C.7.A 【分析】根据,利用复数的除法运算化简复数,再利用共扼复数的概念求解. 【详解】 因为, 所以,复数的共扼复数是,解析:A 【分析】根据313i z i ⋅=-,利用复数的除法运算化简复数,再利用共扼复数的概念求解. 【详解】因为313i z i ⋅=-, 所以()13133iz i i i i-==-=+-, 复数z 的共扼复数是3z i =-, 故选:A8.B 【分析】根据复数的除法运算法则求出复数,然后根据共轭复数的概念即可得解. 【详解】 由题意可得,则. 故答案为:B解析:B 【分析】根据复数的除法运算法则求出复数z ,然后根据共轭复数的概念即可得解. 【详解】由题意可得()()()()()212111111i i i z i i i ii i ---===--=--++-,则1z i =-+.故答案为:B9.A 【分析】由得出,再由复数的四则运算求解即可. 【详解】 由题意得,则. 故选:A解析:A 【分析】由()1,1-得出1i z =-+,再由复数的四则运算求解即可. 【详解】由题意得1i z =-+,则1i 1i i 111i 1i i i 1z z -----+==⋅==-++-. 故选:A10.A对复数进行分母实数化,根据复数的几何意义可得结果. 【详解】 由,知在复平面内对应的点位于第一象限, 故选:A. 【点睛】本题主要考查了复数除法的运算以及复数的几何意义,属于基础题解析:A 【分析】对复数z 进行分母实数化,根据复数的几何意义可得结果. 【详解】 由()()()122112121255i i i z i i i i -===+++-, 知在复平面内对应的点21,55⎛⎫⎪⎝⎭位于第一象限, 故选:A. 【点睛】本题主要考查了复数除法的运算以及复数的几何意义,属于基础题.11.C 【分析】写出复数的三角形式,绕原点逆时针方向旋转得到复数的三角形式,从而求得的三角形式得解. 【详解】 ,,所以复数在第二象限,设幅角为, 故选:C 【点睛】在复平面内运用复数的三解析:C 【分析】写出复数11z =的三角形式1cos 0sin 0z i =+,绕原点O 逆时针方向旋转3π得到复数2z 的三角形式,从而求得212z z -的三角形式得解. 【详解】11z =,1cos 0sin 0z i ∴=+,121(cossin )332Z i O OZ ππ=+=2111()222z z --∴=+所以复数在第二象限,设幅角为θ,tan θ=23πθ∴=故选:C 【点睛】在复平面内运用复数的三角形式是求得幅角的关键.12.C 【分析】由复数的乘方与除法运算求得,得后可得其对应点的坐标,得出结论. 【详解】 由题意,,∴,对应点,在第三象限. 故选:C .解析:C 【分析】由复数的乘方与除法运算求得z ,得z 后可得其对应点的坐标,得出结论. 【详解】 由题意2021(2)i z i i -==,(2)12122(2)(2)555i i i i z i i i i +-+====-+--+, ∴1255z i =--,对应点12(,)55--,在第三象限.故选:C .13.D 【分析】根据复数的模的性质求模,然后可解得. 【详解】 解:,解得. 故选:D . 【点睛】本题考查复数的模,掌握模的性质是解题关键.设复数,则, 模的性质:,,.解析:D 【分析】根据复数的模的性质求模,然后可解得a . 【详解】解:()()()()24242422221212501111i i i i aai ai++++====+--,解得7a =. 故选:D . 【点睛】本题考查复数的模,掌握模的性质是解题关键.设复数(,)z a bi a b R=+∈,则z =模的性质:1212z z z z =,(*)nnz z n N =∈,1122z z z z =. 14.D 【分析】先化简,求出的值即得解. 【详解】 , 所以. 故选:D解析:D 【分析】 先化简345ia bi -+=,求出,ab 的值即得解. 【详解】22(2)342(2)(2)5i i ia bi i i i ---+===++-,所以341,,555a b a b ==-∴+=-. 故选:D15.B 【分析】利用复数除法运算求得,再求得. 【详解】依题意,所以.故选:B解析:B【分析】利用复数除法运算求得z ,再求得z .【详解】 依题意()()()12221121212555i i i i z i i i i -+====+++-,所以z == 故选:B二、多选题16.AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题解析:AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.【详解】A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0a b ,即0z =;A 正确;B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;D 选项,设(),z a bi a b R =+∈,则()2222234z a bi a abi b i =+=+-=+, 所以22324a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--,所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.17.AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】解:,,z 的实部为4,虚部为,则相差5,z 对应的坐标为,故z 在复平面内对应的点位于第四象限,所以AD 正解析:AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】 解:()()()()351358241112i i i i z i i i i -+--====---+,z ∴==z 的实部为4,虚部为1-,则相差5,z 对应的坐标为()41-,,故z 在复平面内对应的点位于第四象限,所以AD 正确, 故选:AD.18.CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取,则,A 选项错误;对于B 选项,复数的虚部为,B 选项错误;解析:CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取z i ,则210z =-<,A 选项错误;对于B 选项,复数z 的虚部为y ,B 选项错误;对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;对于D 选项,z =D 选项正确.故选:CD.【点睛】本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题.19.BD【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】设复数,则,所以,则,解得或,因此或,所以对应的点为或,因此复解析:BD【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.【详解】设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.20.ABC【分析】对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解.【详解】对选项由题得.所以复数对应的点为,在第二象限,所以选项正确解析:ABC【分析】对选项,A 求出1=2w -+,再判断得解;对选项B ,求出1w =再判断得解;对选项,C 复数w 的实部为12-,判断得解;对选项D ,w 判断得解. 【详解】对选项,A 由题得1,z =-1=2w ∴===-.所以复数w 对应的点为1(2-,在第二象限,所以选项A 正确;对选项B ,因为1w ==,所以选项B 正确; 对选项,C 复数w 的实部为12-,所以选项C 正确;对选项D ,w 的虚部为2,所以选项D 错误. 故选:ABC【点睛】 本题主要考查复数的运算和共轭复数,考查复数的模的计算,考查复数的几何意义,考查复数的实部和虚部的概念,意在考查学生对这些知识的理解掌握水平.21.ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数,根据共轭复数概念得到,即可判断.【详解】,,,故选项正确,的实部是,故选项正确,的虚部是,故选项错误,复解析:ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数z ,根据共轭复数概念得到z ,即可判断.【详解】(1i)3i z +=+,()()()()3134221112i i i i z i i i i +-+-∴====-++-,z ∴==,故选项A 正确,z 的实部是2,故选项B 正确,z 的虚部是1-,故选项C 错误, 复数2z i =+在复平面内对应的点为()2,1,在第一象限,故选项D 正确.故选:ABD .【点睛】本题主要考查的是复数代数形式的乘除运算,考查了复数的代数表示及几何意义,是基础题.22.AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于:复数是实数的充要条件是,显然成立,故正确;对于:若复数是纯虚数则且,故错误;对于:若,互为共轭复数解析:AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于A :复数(),z a bi a b R =+∈是实数的充要条件是0b =,显然成立,故A 正确;对于B :若复数(),z a bi a b R =+∈是纯虚数则0a =且0b ≠,故B 错误;对于C :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所以()()2122222z a bi a bi a b b z i a =+-=-=+是实数,故C 正确; 对于D :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所对应的坐标分别为(),a b ,(),a b -,这两点关于x 轴对称,故D 错误;故选:AC【点睛】本题主要考查复数的有关概念的判断,利用充分条件和必要条件的定义是解决本题的关键,属于基础题.23.AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,对应的解析:AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;对于C 选项,122+=+z z i ,则12z z +==,故C 错;对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z ==D 正确. 故选:AD【点睛】本题考查复数的相关概念及复数的计算,较简单.24.ABCD【分析】利用复数的除法运算求出,再根据复数的模长公式求出,可知正确;根据共轭复数的概念求出,可知正确;根据复数的几何意义可知正确;将代入方程成立,可知正确.【详解】因为(1﹣i )z =解析:ABCD【分析】利用复数的除法运算求出1z i =-+,再根据复数的模长公式求出||z ,可知A 正确;根据共轭复数的概念求出z ,可知B 正确;根据复数的几何意义可知C 正确;将z 代入方程成立,可知D 正确.【详解】因为(1﹣i )z =2i ,所以21i z i =-2(1)221(1)(1)2i i i i i i +-+===-+-+,所以||z ==A 正确; 所以1i z =--,故B 正确;由1z i =-+知,复数z 对应的点为(1,1)-,它在第二象限,故C 正确;因为2(1)2(1)2i i -++-++22220i i =--++=,所以D 正确.故选:ABCD.【点睛】本题考查了复数的除法运算,考查了复数的模长公式,考查了复数的几何意义,属于基础题. 25.AB【分析】求得、的虚部、、对应点所在的象限,由此判断正确选项.【详解】依题意,所以A 选项正确;,虚部为,所以B 选项正确;,所以C 选项错误;,对应点为,在第三象限,故D 选项错误.故选解析:AB【分析】 求得ω、2ω的虚部、3ω、1ω对应点所在的象限,由此判断正确选项. 【详解】依题意1ω==,所以A 选项正确;2211312442ω⎛⎫=-+=-=- ⎪ ⎪⎝⎭,虚部为,所以B 选项正确;22321111222ωωω⎛⎫⎛⎫⎛⎫=⋅=--⋅-+=-+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以C 选项错误;22111122212ω---====-⎛⎫-+ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,对应点为1,2⎛- ⎝⎭,在第三象限,故D 选项错误.故选:AB【点睛】本小题主要考查复数的概念和运算,考查复数对应点所在象限,属于基础题.26.BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,时,,则,故A 错误;对于B ,若复数,则满足,解得,故B 正确;对于C ,若复数z 为纯虚数,则满足,解得,解析:BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,0m =时,1z =-,则1z =-,故A 错误;对于B ,若复数2z =,则满足(()21210m m m ⎧-=⎪⎨-=⎪⎩,解得m ,故B 正确; 对于C ,若复数z为纯虚数,则满足(()21010m m m ⎧-=⎪⎨--≠⎪⎩,解得1m =-,故C 错误; 对于D ,若0m =,则1z =-+,()()221420412z z ++=+--+=+,故D 正确.故选:BD.【点睛】 本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题.27.ABC【分析】首先利用复数代数形式的乘除运算化简后得:,然后分别按照四个选项的要求逐一求解判断即可.【详解】因为,对于A :的虚部为,正确;对于B :模长,正确;对于C :因为,故为纯虚数,解析:ABC【分析】首先利用复数代数形式的乘除运算化简z 后得:1z i =-,然后分别按照四个选项的要求逐一求解判断即可.【详解】 因为()()()2122211i 1i 12i i z i i --====-++-, 对于A :z 的虚部为1-,正确;对于B :模长z =对于C :因为22(1)2z i i =-=-,故2z 为纯虚数,正确;对于D :z 的共轭复数为1i +,错误.故选:ABC .【点睛】本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,侧重考查对基础知识的理解和掌握,属于常考题.28.AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式解析:AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程210x +=可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式可判断D 选项的正误.综合可得出结论.【详解】对于A 选项,若复数z a bi =+为纯虚数,则0a =且0b ≠,所以,0a =是z a bi =+为纯虚数的必要不充分条件,A 选项正确;对于B 选项,解方程210x +=得x i =±,B 选项错误;对于C 选项,当(),x a b ∈时,若()0f x '>,则函数()f x 在区间(),a b 内单调递增, 即“在区间(),a b 内()0f x '>”⇒“()f x 在区间(),a b 内单调递增”.反之,取()3f x x =,()23f x x '=,当()1,1x ∈-时,()0f x '≥, 此时,函数()y f x =在区间()1,1-上单调递增,即“在区间(),a b 内()0f x '>”⇐/“()f x 在区间(),a b 内单调递增”.所以,“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件.C 选项正确;对于D 选项,()11172488f x x x ++===,()1878f x x -'∴=,D 选项错误. 故选:AC.【点睛】 本题考查命题真假的判断,涉及充分条件与必要条件的判断、实系数方程的根以及导数的计算,考查推理能力与计算能力,属于中等题.29.ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于,也等于,即可判断选项C,D【详解】由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A 说法正确,B解析:ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于2i +,也等于2i --,即可判断选项C,D【详解】由复数的几何意义,知复数32i +,1i +分别对应复平面内的点()3,2与点()1,1,所以()()321i i +-+表示点()3,2与点()1,1之间的距离,故A 说法正确,B 说法错误;()()3212i i i +-+=+,2i +可表示点()2,1到原点的距离,故C 说法正确;()()()()3211322i i i i i +-+=+-+=--,2i --可表示表示点()2,1--到原点的距离,即坐标为()2,1--的向量的模,故D 说法正确,故选:ACD【点睛】本题考查复数的几何意义,考查复数的模30.AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】,A 正确;复数z 在复平面内对应的点的坐标为,在第三象限,B 不正确;z 的共轭复数为,C 正确;复数z 在复平面内对解析:AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】||z ==A 正确;复数z 在复平面内对应的点的坐标为(1,2)--,在第三象限,B 不正确;z 的共轭复数为12i -+,C 正确;复数z 在复平面内对应的点(1,2)--不在直线2y x =-上,D 不正确.故选:AC【点睛】本小题主要考查复数的有关知识,属于基础题.。
英语名词单复数变形

单元知识点名词复数2.不规则变化(1)child→children; foot→feet; tooth→teeth; mouse→mice; man→men; woman→women注意:与man和woman构成的合成词,其复数形式也是-men和-women。
如:an Englishman,two Englishmen;a woman doctor,two women doctors但是German不是合成词,故复数形式为Germans;Bowman是姓,其复数形式是the Bowmans。
(2)单复同形,如:deer, sheep, fish, Chinese, Japanese;li,jin,yuan,如:two li,three mu,four jin但除人民币的元、角、分外,美元、英镑、法郎等都有复数形式。
如:a dollar,two dollars;a meter,two meters(3)集体名词,以单数形式出现,但实为复数。
如:people,police,cattle等本身就是复数,不能说a people,a police,a cattle,但可以说a person, a policeman,a head of cattle。
the English,the British,the French,the Chinese,the Japanese,the Swiss等名词,表示国民总称时,作复数用。
如:The Chinese are industrious and brave. 中国人民是勤劳勇敢的。
(4)以s结尾,仍为单数的名词,如:a. maths,politics,physics等学科名词,为不可数名词,是单数。
b. news是不可数名词。
c. the United States,the United Nations应视为单数。
如:The United Nations was organized in 1945.联合国是1945年组建起来的。
+Unit+4+单词变形及习题+++2024-2025学年人教版英语七年级下册+

人教版英语七年级下册第四单元单词变形及习题一、单词变形1. rule(名词,规则;规章)• 复数形式:rules• 形容词形式:ruly(有秩序的;有条不紊的)(较少用)• 动词形式(延伸):rule(统治;支配;裁定),例如:The king ruled th e country.(国王统治这个国家。
)2. arrive(动词,到达)• 名词形式:arrival,例如:The arrival of the train was delayed.(火车晚点到达。
)• 形容词形式(延伸):arrived(已到达的),常作表语,如:The guests h ave arrived.(客人们已经到了。
)3. hallway(名词,走廊;过道)• 复数形式:hallways• 近义词:corridor(走廊;通道)4. listen(动词,听;倾听)• 名词形式:listener(听者;听众)• 现在分词形式:listening,用于进行时态,如:He is listening to music.(他正在听音乐。
)5. fight(动词,打架;战斗)• 过去式和过去分词:fought,例如:They fought bravely in the war.(他们在战争中英勇战斗。
)• 名词形式:fight(打架;斗争;战斗),如:There was a fight in the s treet.(街上发生了一场斗殴。
)6. sorry(形容词,抱歉的;难过的;惋惜的)• 比较级:sorrier• 最高级:sorriest• 名词形式(延伸):sorrow(悲伤;懊悔;伤心事)7. outside(副词,在外面;向外面;在户外)•反义词:inside(在里面;在内部)• 形容词形式:outdoor(户外的;露天的),如:outdoor activities(户外活动)• 名词形式(延伸):outdoors(户外;野外)8. wear(动词,穿;戴)• 过去式:wore• 过去分词:worn• 同音词:where(在哪里)• 名词形式(延伸):wear(磨损;穿着;穿戴物),如:This jacket shows a lot of wear.(这件夹克有很多磨损的地方。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复数变形练习题
复数变形是英语中的一个重要语法知识点,它在日常交流和写作中经常被使用。
正确掌握复数变形是提高英语表达能力的关键之一。
在本篇文章中,我们将通过练习题的形式来加深对复数变形的理解和应用。
练习题一:名词的复数变形
将下列名词变为复数形式,并解释其变化规则:
1. apple
2. book
3. child
4. woman
5. city
6. bus
7. leaf
8. tooth
答案及解析:
1. apples(以辅音字母+y结尾的名词,变复数时将y变为i,再加-es)
2. books(以辅音字母+k结尾的名词,变复数时直接加 -s)
3. children(以辅音字母+y结尾的名词,变复数时先将y变为i,再
加 -en)
4. women(以元音字母+man结尾的名词,变复数时将man变为men)
5. cities(以辅音字母+y结尾的名词,变复数时将y变为i,再加-es)
6. buses(以辅音字母+s结尾的名词,变复数时直接加 -es)
7. leaves(以f或fe结尾的名词,变复数时将f或fe变为v,再加 -es)
8. teeth(属于不规则变化的名词,变复数时直接变为不规则形式)
练习题二:名词短语的复数变形
将下列名词短语变为复数形式,并解释其变化规则:
1. a cup of coffee
2. a pair of shoes
3. a bottle of water
4. a box of chocolates
5. a group of students
答案及解析:
1. cups of coffee(名词短语中只有主体名词进行复数变形,其他部
分不受影响)
2. pairs of shoes(名词短语中只有主体名词进行复数变形,其他部分不受影响)
3. bottles of water(名词短语中只有主体名词进行复数变形,其他部分不受影响)
4. boxes of chocolates(名词短语中只有主体名词进行复数变形,其他部分不受影响)
5. groups of students(名词短语中只有主体名词进行复数变形,其他部分不受影响)
练习题三:动词的复数变形
将下列动词变为第三人称复数形式,并解释其变化规则:
1. go
2. do
3. have
4. study
5. watch
答案及解析:
1. go(动词原形为go,第三人称复数形式为goes,规则形式变化)
2. do(动词原形为do,第三人称复数形式为does,规则形式变化)
3. have(动词原形为have,第三人称复数形式为has,规则形式变化)
4. study(动词原形为study,第三人称复数形式仍为study,规则形
式不变)
5. watch(动词原形为watch,第三人称复数形式仍为watch,规则
形式不变)
通过以上练习题的实践,我们加深了对复数变形的理解和应用。
同时,我们也注意到有些名词和动词的复数变形是有规律可循的,而有
些则是不规则的,这需要我们在学习和积累中去掌握。
总结:
复数变形是英语中的基础知识,正确运用复数变形可以让我们的语
言表达更加准确和流畅。
通过不断练习和积累,我们能够掌握更多的
变形规则,提高英语语言能力。
希望这篇练习题对你的学习有所帮助,祝你在英语学习的道路上越走越远!。