微积分与哲学
微积分学的发展史

微积分学的发展史微积分学是数学的一个重要分支,它研究变量在某一变化过程中的变化规律,广泛应用于物理学、工程学、经济学等领域。
本文将回顾微积分学的发展历程,从其历史起源到现代应用,以便更好地理解这一重要学科。
微积分学起源于17世纪,当时科学家们开始研究物体的运动规律,例如物体的速度、加速度等。
这些研究需要数学工具来分析变化过程,于是微积分学应运而生。
微积分的最初发展由牛顿和莱布尼兹两大巨头分别独立给出,他们从不同的角度解决了微积分的基本问题。
牛顿是一位著名的物理学家,他在研究力学的过程中创立了微积分学。
他将物体的运动规律表示为数学方程,然后通过求解这些方程来获得物体的运动轨迹和性质。
这种做法为微积分学提供了重要的物理背景和实践应用,推动了微积分学的发展。
莱布尼兹是一位杰出的数学家,他在研究代数和几何的过程中独立发展出了微积分学。
他将数学中的无限小量、极限等概念引入微积分学,为微积分学提供了更为严格和系统的数学基础。
莱布尼兹的贡献为微积分学在数学领域的发展和应用打下了坚实的基础。
笛卡尔是一位杰出的哲学家和数学家,他在研究几何学的过程中提出了笛卡尔引理,为微积分学提供了重要的哲学基础。
该引理表明,几何图形可以由其元素之间的关系来确定,这种思想为微积分学中极限、导数等概念的形成提供了重要的启示。
欧拉是一位杰出的数学家和物理学家,他在研究力学和流体力学的过程中提出了欧拉公式,为微积分学在物理学领域的应用提供了重要的工具。
该公式可以用以描述物体在受力作用下的运动规律,为微积分学在物理学中的应用提供了重要的实例。
现代微积分学已经发展成为一门极其重要的学科,它在物理学、工程学、经济学等领域都有广泛的应用。
例如,在物理学中,微积分可以描述物体的运动规律、电磁场、引力场等;在工程学中,微积分可以用于优化设计、控制工程、计算机图形学等;在经济学中,微积分可以用于预测市场趋势、金融风险管理、人口模型等。
随着科学技术的发展,微积分学的应用前景将更加广阔。
微积分产生的背景

微积分的创立者是牛顿和莱布尼兹严格微积分的奠基者是柯西和威尔斯特拉斯关于微积分的故事,曾经一度迷惑着我,今天有幸弄清其中原委,以消心中疑云。
微积分的萌芽可以追溯到古代的希腊、中国和印度,酝酿于17世纪的欧洲。
1.牛顿和莱布尼兹创立了微积分1.1 牛顿的“流数术”牛顿(I.Newton,1642-1727)1642年生于英格兰伍尔索普村的一个农民家庭。
1661年牛顿进入剑桥大学三一学院,受教于巴罗。
笛卡儿的《几何学》和沃利斯的《无穷算术》,这两部著作引导牛顿走上了创立微积分之路。
牛顿于1664年秋开始研究微积分问题,在家乡躲避瘟疫期间取得了突破性进展。
1666年牛顿将其前两年的研究成果整理成一篇总结性论文—《流数简论》,这也是历史上第一篇系统的微积分文献。
在简论中,牛顿以运动学为背景提出了微积分的基本问题,发明了“正流数术”(微分);从确定面积的变化率入手通过反微分计算面积,又建立了“反流数术”;并将面积计算与求切线问题的互逆关系作为一般规律明确地揭示出来,将其作为微积分普遍算法的基础论述了“微积分基本定理”。
这样,牛顿就以正、反流数术亦即微分和积分,将自古以来求解无穷小问题的各种方法和特殊技巧有机地统一起来。
正是在这种意义下,牛顿创立了微积分。
牛顿对于发表自己的科学著作持非常谨慎的态度。
1687年,牛顿出版了他的力学巨著《自然哲学的数学原理》,这部著作中包含他的微积分学说,也是牛顿微积分学说的最早的公开表述,因此该巨著成为数学史上划时代的著作。
而他的微积分论文直到18世纪初才在朋友的再三催促下相继发表。
1.2 莱布尼茨的微积分工作莱布尼茨(W.Leibniz,1646-1716)出生于德国莱比锡一个教授家庭,青少年时期受到良好的教育。
1672年至1676年,莱布尼茨作为梅因茨选帝侯的大使在巴黎工作。
这四年成为莱布尼茨科学生涯的最宝贵时间,微积分的创立等许多重大的成就都是在这一时期完成或奠定了基础。
微积分的发展史

微积分的发展史微积分的发展史微积分是数学中的一个重要分支,发挥着重要的作用,它具有重要的实用价值,是现代数学中一门重要的学科。
微积分在古代有着很长的历史,从古至今,在发展的过程中,受到了许多著名的数学家的不懈努力,其演变虽然有一定的规律,但是发展也呈现出复杂的趋势,下面来看看微积分的发展历史。
一:古代的微积分古代微积分的发源可以追溯到公元前三世纪古希腊哲学家斐波那契和欧几里德的古典时代,他们最早提出了微积分的相关概念,比如斐波那契提出的“变化率”的思想,欧几里德提出的“误差积分”的思想,他们发明出来的数学模型也是微积分发展的基础。
二:新罗马时代的微积分新罗马时期的微积分研究已经开始流行,公元七世纪达·索马里(d’Alembert)等科学家在此期间正式提出“积分”的概念,但他们只是把微积分引入到数学体系中,并没有真正深入的研究。
三:十七世纪的微积分在十七世纪,英国数学家派克完成了微积分的重大突破,他把斐波那契和欧几里德的相关概念作为微积分的基础,将微积分作为一个独立的学科,开始全面系统地研究微积分,由此开创了微积分的新观念,彻底改变了古代的微积分的思维模式,他的成果也在欧洲开始流行。
四:十八世纪的微积分到了十八世纪,派克的微积分在欧洲开始广泛受到关注和应用,微积分的研究开始更加深入和系统化,出现了许多在微积分领域有重大贡献的著名数学家,比如拉格朗日,瓦西里和弗拉基米尔,他们的成就使微积分的研究得到进一步的发展。
五:十九世纪的微积分到了十九世纪,微积分的研究开始发生重大变化,出现了许多在微积分领域有重大贡献的著名数学家,比如高斯,尤金和庞加莱,他们的发现把微积分推向了新的高度。
同时也有一些新的应用,使微积分的研究发生了重大变化,这个时期也是微积分发展史上的一个重要时期。
六:二十世纪的微积分到了二十世纪,微积分的研究取得了重大的进展,出现了许多在微积分领域有重大贡献的著名数学家,比如黎曼,爱因斯坦和明斯基,他们的成就使微积分的研究取得了突破性的进展,使微积分得到了全面的发展,成为现代数学中重要的学科之一。
牛顿与莱布尼兹创立微积分之解析的论文

牛顿与莱布尼兹创立微积分之解析的论文牛顿与莱布尼兹创立微积分之解析的论文摘要:文章主要探讨了牛顿和莱布尼兹所处的时代背景以及他们的哲学思想对其创立广泛地应用于自然科学的各个领域的基本数学工具———微积分的影响。
关键词:牛顿;莱布尼兹;微积分;哲学思想今天,微积分已成为基本的数学工具而被广泛地应用于自然科学的各个领域。
恩格斯说过:“在一切理论成就中,未有象十七世纪下半叶微积分的发明那样被看作人类精神的最高胜利了,如果在某个地方我们看到人类精神的纯粹的和唯一的功绩,那就正是在这里。
”[1](p.244)本文试从牛顿、莱布尼兹创立“被看作人类精神的最高胜利”的微积分的时代背景及哲学思想对其展开剖析。
一、牛顿所处的时代背景及其哲学思想“牛顿(isaa cnewton,1642-1727)1642年生于英格兰。
,1661年,入英国剑桥大学,1665年,伦敦流行鼠疫,牛顿回到乡间,终日思考各种问题,运用他的智慧和数年来获得的知识,发明了流数术(微积分)、万有引力和光的分析。
”[2](p.155) 1665年5月20日,牛顿的手稿中开始有“流数术”的记载。
《流数的介绍》和《用运动解决问题》等论文中介绍了流数(微分)和积分,以及解流数方程的方法与积分表。
wWW..1669年,牛顿在他的朋友中散发了题为《运用无穷多项方程的分析学》的小册子,在这里,牛顿不仅给出了求一个变量对于另一个变量的瞬时变化率的普遍方法,而且证明了面积可以由求变化率的逆过程得到。
因为面积也是用无穷小面积的和来表示从而获得的。
所以牛顿证明了这样的和能由求变化率的逆过程得到(更精确地说,和的极限能够由反微分得到),这个事实就是我们现在所讲的微积分基本定理。
这里“,牛顿使用的是无穷小方法,把变量的无限小增量叫做“瞬”,瞬是无穷小量,是不可分量,或是微元,牛顿通过舍弃“瞬”求得变化率。
微积分产生的背景及其对世界的卓越贡献

微积分产生的背景及其对世界的卓越贡献作者:鸿鹄文章来源:本站原创更新时间:2007-10-22微积分是17世纪下半叶自然科学中最伟大的发现,它的产生开创了数学发展史的新纪元。
20世纪最杰出数学家之一:冯. 诺伊曼(1903—1957)评价微积分时说: “微积分是近代数学中最伟大的成就,对它的重要性无论做怎样的估计都不会过分。
”再看恩格斯对微积分成就的评价:恩格斯(1820-1895)说:“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发明那样被看作人类精神的最高胜利了!”两位伟人都用了“最伟大、最高胜利”这些词,足以看出微积分的产生与发展,对人类、对世界的影响与贡献之大!从15世纪初文艺复兴时期起,欧洲的工业、农业、航海事业与商贸等都得到大规模的发展,形成了一个新的经济时代。
而十六世纪的欧洲,正处在资本主义萌芽时期,生产力得到了很大的发展,生产实践的需要对自然科学提出了新的课题:迫切要求力学、天文学等基础科学的发展,而这些学科都是深深依赖于数学的,因而也推动了数学的发展。
微积分就是在这样一种背景下形成与发展起来的。
但微积分的发展历史曲折跌宕,撼人心灵。
因此它从另一个层面来看,也是培养人们正确世界观、科学方法论和对人们进行文化熏陶的极好素材。
数学这门科学之所以有其特殊的重要地位。
这不仅在于数学与自然科学、社会科学有着广泛而密切的联系,而且数学自身的发展水平也影响着人们的思维方式,影响着人文科学的进步。
数学的严密推理能培养人们去进行抽象思维、发扬理性主义的探索精神,激发人们对理想和美的追求。
在那个时代,如古希腊的文化,它能产生很难为后世超越的优美文学、极端理想化的哲学和理想化的建筑与雕塑,都是源于数学对人们思维的深刻影响。
这一历史事实告诉我们:一个时代的文化特征在很大程度上是与那个时代的数学活动密切相关的。
所以说,社会离不开数学,数学能促进社会的文明与进步。
实践证明,学习微积分对于学生的科学思维和文化素质的培养,所起的作用是极为明显,也是其它学科所不能比拟的。
恩格斯对微积分的评价

恩格斯对微积分的评价
恩格斯作为卡尔·马克思的合作者和继承者,是马克思主义哲学
和政治经济学的代表人物之一。
他对于微积分的评价,具有深刻的思
想和指导意义。
首先,恩格斯高度评价微积分在自然科学之中的地位。
他认为,
微积分是自然科学的重要工具,它是生成分析方法的基础,是所有物
理学和自然科学方法的基础。
恩格斯认为,微积分注重从部分上认识
整体,在科学研究中起着不可替代的作用。
其次,恩格斯指出,微积分的优点在于它具有高度的思辨性和逻
辑性。
微积分的发展从一开始就是一项哲学问题,它的思辨性和逻辑
性包括数学的象征性、计算性以及形式性。
这些特性既能够帮助人们
发现自然界中“不可见”的规律,又具有重要的哲学思想。
第三,恩格斯认为,微积分的使用必须具有科学的和社会的目的。
微积分作为一种数学工具,必须配合科学理论的探索和实践活动的需要。
在社会生产过程中,微积分的应用将为人们设计工业、垂直飞行
器和交通增添新的灵感和创新。
最后,恩格斯也指出,微积分的使用必须遵守正确的方法和原则。
人们必须认真研究自然科学的本质,掌握正确的科学方法,遵循更高
层次的原则。
只有这样,才能发挥微积分在自然科学中的作用,为人
类社会创造更大的财富。
总之,恩格斯对微积分的评价是全面的、科学的和深刻的。
他强
调微积分在自然科学中的重要作用,并提出了使用微积分的必要条件。
这对于当代的科学研究和教学都有很大的指导意义。
同时,恩格斯也
为后人留下了培养科学精神和传承科学文明的宝贵遗产。
自然哲学的数学原理定义

自然哲学的数学原理定义自然哲学是研究自然界现象和规律的学科,而数学是一门研究数量、结构、变化以及空间等概念的学科。
自然哲学和数学之间存在着密切的联系,数学被广泛应用于自然哲学的研究中,帮助我们理解自然现象背后的数学原理。
本文将探讨自然哲学中的数学原理定义。
数学在自然哲学中的应用自然哲学通过观察、实验和理论推导来研究自然界中的现象和规律。
数学在自然哲学中扮演着重要的角色,它可以帮助我们描述和预测自然现象。
例如,在物理学中,数学常常被用来描述物体的运动、力的作用等,通过数学模型我们可以预测物体的行为。
在生物学中,数学可以用来描述生物种群的增长、遗传规律等。
数学原理在自然哲学中的定义数学原理在自然哲学中扮演着至关重要的角色,它们帮助我们理解自然界中的现象和规律。
以下是一些自然哲学中常见的数学原理定义:1.微积分原理:微积分是数学中的一个重要分支,它用来研究变化过程。
在自然哲学中,微积分被广泛应用于描述物体运动的速度、加速度等。
微积分原理帮助我们理解运动物体背后的数学规律。
2.概率论原理:概率论是数学中研究随机现象的学科。
在自然哲学中,概率论被用来描述不确定性现象,比如量子力学中的粒子行为等。
概率论原理让我们能够从统计角度理解自然界中的随机现象。
3.几何学原理:几何学是研究点、线、面等几何图形的数学分支。
在自然哲学中,几何学被用来描述空间的形状和结构,比如天体运动的轨迹等。
几何学原理帮助我们理解自然界中的空间关系。
4.线性代数原理:线性代数是研究向量、矩阵等线性空间的数学分支。
在自然哲学中,线性代数被广泛应用于描述复杂系统的行为,比如气候模型等。
线性代数原理让我们能够从线性关系的角度理解自然现象。
结语自然哲学的数学原理定义是我们理解自然界现象的重要工具,数学帮助我们建立模型、进行预测,并揭示自然界背后的数学规律。
通过对数学原理的深入理解,我们可以更好地探索自然的奥秘,推动自然哲学领域的发展。
以上就是关于自然哲学的数学原理定义的内容,希望对您有所启发和帮助。
线性微分方程的数学思想和哲学意义

线性微分方程的数学思想和哲学意义在现代科学中,微分方程的应用范围非常广泛,从生物学到物理学、从金融到经济学,微分方程在各个领域都扮演着重要的角色。
而在微分方程中,线性微分方程尤其重要,因为它们可以被用来解决各种现实世界中的实际问题。
线性微分方程的定义很简单:它们是形如 $y' + p(x)y = q(x)$ 的微分方程,其中 $p(x)$ 和 $q(x)$ 是已知函数,$y$ 是未知函数。
线性微分方程由于其特殊的性质而容易处理,这些性质促进了微分方程在物理、工程、经济、金融、生物医学和其他学科中的应用。
线性微分方程的一个基本特点是它们可以被用来描述线性系统的演化。
线性系统是指,如果输入 $\Phi(t)$ 和 $\Psi(t)$ 分别引起输出 $\Phi'(t)$ 和 $\Psi'(t)$,那么这个系统是线性的,如果$\Phi(t)$ 导致 $\Phi'(t)$ ,$\Psi(t)$ 导致 $\Psi'(t)$ 和 $\Phi(t) +\Psi(t)$ 导致 $\Phi'(t) + \Psi'(t)$,那么则称之为线性系统。
线性系统有很多重要的实际应用,例如,电路可以被抽象成为线性系统,其中电流和电压分别对应系统中的输入和输出。
辐射热传递,地震波传播、物理摆动和弹性振动等现象都可以用线性系统来描述。
线性微分方程也在经济学中扮演着重要的角色,比如经济增长和人口变化可以用线性微分方程来表达,而关于经济的微积分模型建立了经济中供需关系、价值分配、价格变化和经济增长等问题的基础理论。
线性微分方程也有着深厚的哲学意义,它们可以被引申为哲学的基本原理,如因果律和模拟论的原则。
线性微分方程的解释通常意味着在一个连续的时间点上,对一个系统的某种输入的更改,会导致系统输出的局部改变。
因为微分方程的解是通过对它进行积分得到的,所以它们的解通常可以被表示为无穷级数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微积分与哲学 灌水乐园 发表在 科学探索 华声论坛 http://bbs.voc.com.cn/forum-148-1.html
数学可以作为自然科学的理想工具,在于这种工具可以较方便定量的处理自然界的问题。其中一些自然界的问题,常量数学是处理不了的,非用微积分不可。可是为什么常量数学不行,微积分就可以呢?多数人是回答不了的,就连数学家也不能很好的回答!许多学习微积分的初学者,不能理解微积分的方法。这是有原因的,因为他们的哲学基础薄弱,即使学过却也不理解。微积分不在于领悟极限的δ定义,微积分的出现本来就比极限δ定义至少早了150年呢!学习者其实应该反思,微积分比常量数学高明多少;什么样的方法研究自然界是有效的;对人的意识和自然界应该有什么样的态度!
一、数学不是单纯的数字游戏!是有应用价值的,体现在各类数学模型上。常量数学固然在17世纪以前发挥了一定作用,不过对于变量数学就不行了。因为常量数学的研究方法,过于侧重人的意识,不能很好的深入自然领域,而且是一种宏观(整体)上的方法。与自然界的联系是不紧密的,二者的关系比较松散(粗糙);或者可以说没有抓住客观事物的本质,所以要处理许多的自然科学提出的问题是不可能的。
二、常量数学与自然界的辩证关系 常量数学——初等几何中没有定义“点”、“线”、“面”。同时按照运动观点有:点动成线,线运动成面、面动成体。用不可分量的集合论就是说:线是点的集合,面是线的集合等。而且不定义的“点”、“线”、“面”是经过抽象的,认为不具备自然属性,只有几何特性;然而自然界所有的“点”、“线”、“面”都是客观存在的,均具有自然属性。
在《数学哲学的自然原理》中提过: 定理I:一切物体总占据着空间且不受影响,并能进行空间交换。 定理II:空间总能容纳物体且不受影响,并允许容纳物进行空间交换。
这两个定理是对绝对空间来说的,不是指相对空间;其实在爱因斯坦的理论准确一些,后面也是要说的。
提这两个定理是要指出,自然界确实找不到没有体积(不占据空间的)点、线、面。于是,初等几何和自然界就必然存在着矛盾。例如平面直角坐标系内的任意曲线(函数、方程)作为自然界的客观实体,元素(点的轨迹——集合)是实实在在的物质,是有长度的!可是有长度的点还是点吗?当然不是至少也会是线段,存在却不可度量!可见自然界的“点”不在人的意识定义范围之内(不可度量性)。这是算术与自然界的矛盾。
这样就不能以(算术的度量尺度+初等几何)来描述了,因为无法描述非要描述呢话(点是没有长度的长度)!这是一个典型的罗素驳论:点是长度为0的长度或者点不是长度!到底是什么?这仅仅是表面现象,根本上还是说明了一种辩证关系:自然界是独立的,意识只是人脑的反映。
所谓罗素悖论,起源于19世纪的第三次数学危机,是关于数学基础的讨论(数学的基础是什么?)!简单的例子就是理发师悖论:某村有一位手艺高超的理发师,他只给村上一切不给自己刮脸的人刮脸,试问?理发师给不给自己刮脸?
如果他不给自己刮脸,他是个不给自己刮脸的人,他应当给自己刮脸;如果他给自己刮脸,他就是给自己刮脸的人,照他的要求又不能给自己刮脸。到底该不该自己刮脸呢?
三、数学方法怎样处理自然界的客观问题 既然数学对象是自然界的客观实体,方法上就必须保持自然界的客观性是存在的,最终能够回归到自然界,不能停留在意识之上!例如:初等几何中的点、线、面抽象后否定了物质性,是脱离客观实体的客观性(世界是物质的)的,只具备几何特性;如果以它们这种非物质形态来研究真实的自然界肯定不行,因为已经脱离了自然界。可是自然界的客观实体确实是它们组成的,不可分量的集合论就指出:线是点的集合,面是线的集合等,这种观点又承认了它们的(物质性)自然属性——这是整体上的认可。
整体上可以认可,部分当然也是可以认可的。但是部分(意识)是和自然界有矛盾的,对于部分常量数学,只承认几何性,没有认可自然性!因为它们不可度量,不在常量数学算术度量尺度体制之内。仅凭几何特性来研究自然界的客观实体——显然是脱离一定实际的。
所以需要它们能以真实的物质形态来研究自然界。因为它们的客观物质形态是逃逸出纯粹数学(其实是常量数学)的,所以要研究的问题最终必须逃逸出纯粹数学(常量数学)的体制,这样元素就实现了自然界的回归,于是整体必然也还原于自然界。逃逸就必然表现在逻辑矛盾之上,即与常量数学的思维上的逻辑矛盾!因为只有矛盾才能说明最终形态确实逃逸出了人的意识(初等几何+算术度量),反之没有矛盾就不能说回归了自然界!
四、变量数学与自然界的辩证关系 变量数学的中心其实应该是函数。初等几何否定了点、线、面的物质性,只承认几何特性,是脱离客观实体的客观性的;集合理念则指出:线是点的集合,面是线的集合等,这种观点承认了它们的自然属性——整体上的认可。而这种观点在逻辑上体现在函数身上,例如:圆是到定点的距离等于定长的点的集合,P={M|MC=r}隐函数表达式为:x^2+y^2=r^2。所以函数是对数学对象(物质性)的客观反映,在宏观(整体)上认可了自然属性;这样整体的微观部分具有的客观性也得到了认可,在研究函数的局部性质时,这种客观性就会表达出来。这也就是微积分所要反映的基本事实!
只有承认了自然界客观性的数学,才具有研究自然界的能力。常量数学否定了自然属性——脱离了一定实际,这就限制了其自身对自然界的解决能力;这也就是常量数学与变量数学本质的地方,常量与变量只是一种数学形态的外在表现。我觉得赫曼·威尔在《数学哲学与科学哲学》中问的好:为什么大自然中的事件可由观察和数学分析(微积分)的结合来预言。因为数学分析,一开始就承认了自然界的客观性!正如马克思雄辩的回答那样:“意识能够正确的反映客观事物”。
微积分离开了函数,就丢失了灵魂。笛卡尔的解析几何引入了变数,加深了函数的理念。有了函数才能真正的建立起微积分,牛顿——莱布尼兹公式深刻的反映了,自然界整体与局部的客观性的联系。
函数本身是一个自然界的微雕,通过数学分析研究函数就是在研究自然界微雕的局部性质。反过来研究自然界微雕的局部,在还原于函数又能整体上表达自然界(微分方程)。
五、微积分与自然界的辩证关系 微积分就是回归自然界的一种方法,它所有的最终形态(取极限),没有哪里是不存在矛盾的;什么贝克莱驳论、定积分0+0驳论、无穷级数芝诺的追击驳论……等。由于研究的基本都是自然界的客观实体(或规律)。所以微积分的精髓在于元素(体制外——微元)和驳论!就是要置常量数学于死地,从而回归自然的方法。也只有这样的方法才能研究自然界,可以说微积分是常量数学死亡后,浴火重生后的凤凰。
后来的极限论δ定义其实是在轻微的维护常量数学(人的意识),无穷级数也一样,有名的芝诺追击驳论(是违反客观自然规律的),但最终取极限就还原了自然真实。极限难!在于无法看透自然界与人的意识的辩证关系。一味的理解极限δ定义,次序颠倒,意而上学。从这里可以看出:微积分必定是要先于极限论建立,它的方法本质不在于建立δ定义,而在于回归自然界,极限则是其回归的常量数学逻辑表达形式(代言人)。所以极限论的出现是必然的,矛盾和驳论也是必然的!
有这样的辩证关系,于是产生了一些有趣的现象:0/0=20(导数),0+0+…..0=1/3(定积分),1/2+1/4+1/8+…..=1。导数反映了自然界点的自然属性(有长度);定积分反映了线段有面积,二重积分反映了线段有体积,二次积分后反映了平面有体积,无穷级数反映了追得上!然而这些真实的存在,却不可感知(不在初等几何之内),不可度量因为在体制(算术)之外。
六、无穷小与相对论 为什么同一条曲线,组成的元素都是点无差别的,为什么导数不同?0/0=1、0/0=2、0/0=100。首先函数代表曲线,曲线上的点都与x轴上的点一一对应(同样数目的点);可是曲线的自然长度确与x轴对应的长度是不等的,所以曲线上的点在这种关系下一般不相同。在定积分中要注意这种相对关系,这也就是产生微元有无穷小和高阶无穷小的原因!
七、微积分可以初等化的原因 微积分可以初等化,在于不可分量的集合论就指出:线是点的集合,面是线的集合等,这种观点承认了它们的自然属性——这是整体上的认可。整体上把握并且在常量数学体制之内,避免了处理体制外的数学,绕开了矛盾和驳论!另一方面微积分本就不依赖于极限,所以也是可以绕开的。具体形式我不用看也猜得出来,用函数关系!这也就是其独到之处,不置常量数学于死地,仍然回归自然的方法。逻辑上确实清楚了,少了不少负担,有利于中国的数学教育。常量数学的方法体制不死,微积分也就初等化了。但却有代价,学习者可能在局部分析上的能力有所下降。
八、中西文化的差异 西方哲学家继承了古希腊哲学理性思维的传统,注重理性思辩和热衷于构建形而上学的理论体系,这种思维方式和习惯与高等数学的思维习惯是相似的。并且西方哲学理论和哲学观点多是建立在严密的逻辑推理和论证的基础之上的,即使是上帝的存在问题他们也要向对待数学问题那样试图用严密的辩证法和逻辑来给予证明。西方哲学家的这种注重推理论证和寻求因果联系的理性主义的思维习惯一旦与面向感性世界的经验主义和实验科学相结合将极大地促进自然科学的发展。
在对于微积分的研究上,西方数学家把眼光放在最细微的地方,虽然他们没有强调这一点,然微积分确实征服了“点”、“线”、“面”。这是一种“征服文化,”所以牛顿、莱布尼兹、柯西在这种文化的熏陶下,长时间内是不会也不可能去考虑:强可导函数的。
中国传统哲学自孔子以来就培养了一种深厚的“实用理性精神”,总是同做人即人格修养联系在一起,因此有关人性论和修养论的内容最为丰富。哲学家提出任何一种学说都要说明它对做人的意义,都要满足为政治实践和道德实践服务的现实需要,这种纯功利主义的思维方式和习惯与西方哲学本身所固有的为学术而学术的思维方式和习惯是大相径庭的,与要求严密推理和论证的数学思维方式也是格格不入的。这种思维方式和习惯不利于或者说阻碍了近代自然科学在中国的兴起和发展。
强可导函数,整体上暗中回归了自然界,这种方法维护人的意识(常量数学)比极限论要强烈的多。逻辑思维上较简单没有了驳论和矛盾,有利于学生偷懒。西方的微积分方法,侧重于了数学与自然界最终的和谐与统一;中国的初等化微积分侧重于数学与人的和谐统一。西方为了研究自然界,牺牲初等数学(意识)了为代价,体现了对自然界的热爱和尊重。中国的初等化微积分,体现了以人为本的理念。
学习西方哲学,改造中国传统哲学的思维方式和习惯,养成一种与数学思维方式相似的注重严密推理和论证的思维方式和习惯,对于促进我国科学技术的发展是大有裨益的!所以我觉得即便学了初等的微积分,还是有必要重新学极限论的微积分。这不是麻烦,而是思维的转型。中学一次,大学再学一次!就怕我们的学生,觉得强可导简单,对西方微积分有抵触情绪,不愿意接受。最好是中西结合,最终的道路都是殊途同归,不可厚此薄彼。