2018年余姚市中考数学试题(可编辑)
浙江省2018年中考数学总复习 第五章 基本图形(二)课后练习28 图形的相似 第1课时 相似形作业

课后练习28 图形的相似第1课时 相似形A 组1.(2016·杭州)如图,已知直线a ∥b ∥c ,直线m 交直线a ,b ,c 于点A ,B ,C ,直线n 交直线a ,b ,c 于点D ,E ,F ,若AB BC =12,则DE EF=( ) A.13 B.12 C.23D .1第1题图2.如图,Rt △ABC 中,∠A =90°,AD ⊥BC 于点D ,若BD ∶CD =3∶2,则tan B =( )A.32B.23C.62D.63第2题图3.如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,则下列结论:①BC =2DE ;②△ADE ∽△ABC ;③AD AE =AB AC;④△ADE 与△ABC 的面积比为1∶4,其中正确的有( )A .4个B .3个C .2个D .1个第3题图4.(2016·河北)如图,△ABC 中,∠A =78°,AB =4,AC =6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )第4题图5.(2016·包头)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE的数量关系正确的是( ) A.CE=3DE B.CE=2DE C.CE=3DE D.CE=2DE第5题图6.(2016·毕节)在△ABC中,D为AB边上一点,且∠BCD=∠A.已知BC=22,AB=3,则BD=.第6题图7.(2015·连云港)如图,在△ABC中,∠BAC=60°,∠ABC=90°,直线l1∥l2∥l3,l1与l2之间距离是1,l2与l3之间距离是2,且l1,l2,l3分别经过点A,B,C,则边AC的长为.第7题图8.(2015·娄底)一块直角三角板ABC按如图放置,顶点A的坐标为(0,1),直角顶点C的坐标为(-3,0),∠B=30°,则点B的坐标为.第8题图9.(2015·湘潭)如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.第9题图10.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连结DE,F为线段DE 上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=63,AF=43,求AE的长.第10题图B 组 11.如图所示,一般书本的纸张是原纸张多次对开得到的,矩形ABCD 沿EF 对开后,再把矩形EFCD 沿MN 对开,依次类推,若各种开本的矩形都相似,那么AB AD等于( )A .0.618 B.22 C. 2 D .2第11题图12.如图,Rt △ABC 中,∠ACB =90°,∠ABC =60°,BC =2cm ,D 为BC 的中点,若动点E 以1cm/s 的速度从A 点出发,沿着A →B →A 的方向运动,设E 点的运动时间为t 秒(0≤t<6),连结DE ,当△BDE 是直角三角形时,t 的值为( )A .2B .2.5或3.5C .3.5或4.5D .2或3.5或4.5第12题图13.如图,点C ,D 在线段AB 上,△PCD 是正三角形.(1)当AC ,CD ,DB 满足怎样的关系时,△ACP ∽△PDB ;(2)当△ACP ∽△PDB 时,求∠APB 的度数.第13题图C组14.(2016·武汉)在△ABC中,P为边AB上一点.(1)如图1,若∠ACP=∠B,求证:AC2=AP·AB;(2)若M为CP的中点,AC=2,①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.第14题图参考答案课后练习28图形的相似第1课时相似形A组1.B 2.D 3.A 4.C 5.B 6.83 7.2321 8.(-3-3,33)9.(1)∵∠C =90°,△ACD 沿AD 折叠,∴∠C =∠AED =90°,∴∠DEB =∠C =90°,∵∠B =∠B ,∴△BDE ∽△BAC ; (2)由勾股定理得,AB =10,由折叠的性质知,AE =AC =6,DE =CD ,∠AED =∠C =90°,∴BE =AB -AE =10-6=4,在Rt △BDE 中,由勾股定理得,DE 2+BE 2=BD 2,即CD 2+42=(8-CD )2,解得:CD =3,在Rt △ACD 中,由勾股定理得AC 2+CD 2=AD 2,即32+62=AD 2,解得:AD =3 5.10.(1)略. (2)∵▱ABCD ,∴CD =AB =8.由(1)知△ADF ∽△DEC ,∴AD DE =AF CD ,∴DE =AD ·CD AF =63×843=12.在Rt △ADE 中,由勾股定理得:AE =DE 2-AD 2=122-(63)2=6. B 组11.B 12.D13.(1)当CD 2=AC ·DB 时,△ACP ∽△PDB .∵△PCD 是等边三角形,∴∠PCD =∠PDC =60°.∴∠ACP =∠PDB =120°.若CD 2=AC ·DB ,则根据相似三角形的判定定理,得△ACP ∽△PDB .(2)当△ACP ∽△PDB 时,∠APC =∠PBD ,∵∠PDB =120°,∴∠DPB +∠DBP =60°.∴∠APC +∠BPD =60°.∴∠APB =∠CPD +∠APC +∠BPD =120°.C 组14.(1)∵∠ACP =∠B ,∠BAC =∠CAP ,∴△ACP ∽△ABC ,∴AC ∶AB =AP ∶AC ,∴AC 2=AP ·AB ;(2)①如图,作CQ ∥BM 交AB 延长线于Q ,则∠PBM =∠AQC ,设BP =x ,则PQ =2x ,∵∠AQC =∠PBM =∠ACP ,∠PAC =∠CAQ ,∴△APC ∽△ACQ ,∴AC 2=AP ·AQ ,得:22=(3-x )(3+x ),∴x =5,即BP =5;第14题图②如图,作CQ⊥AB于点Q,作CP0=CP交AB于点P0,∵AC=2,∠A=60°,∠ABC=45°,∴AQ=1,CQ=BQ=3,设AP0=x,则P0Q=PQ=1-x,BP=3-1+x,∵∠BPM=∠CP0A,∠BMP=∠CAP0,∴△AP0C∽△MPB,∴AP0MP=P0CBP,∴MP·P0C=12P0C2=(3)2+(1-x)22=AP0·BP=x(3-1+x),解得x=7- 3.∴BP=3-1+7-3=7-1.本文档仅供文库使用。
【真题】18年山东省中考数学试卷含答案(word版)

【真题】2018年山东省中考数学试卷含答案(Word版)秘密★启用前试卷类型:A 二〇一八年东营市初中学业水平考试数学试题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;本试题共6页.2.数学试题答题卡共8页.答题前,考生务必将自己的姓名、准考证号、座号等填写在试题和答题卡上,考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,都必须用2B铅笔把答题卡上对应题目的答案标号【ABCD】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅱ卷按要求用碳素笔答在答题卡的相应位置上. 第Ⅰ卷一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.?1的倒数是511 D.55224A.?5B.5C.?2.下列运算正确的是22A.??x?y???x?2xy?y B. a?a?a ?a3?a6 D.?x2y4 3.下列图形中,根据AB∥CD,能得到∠1=∠2的是A1 2 B1 ABABAB1 2 1 DCCDC2 2 DDCA B C D 4.在平面直角坐标系中,若点P在第二象限,则m的取值范围是A.m<?1 B.m>2C.?1<m<2 D.m>?1 5.为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是捐款数额人数10 2 20 4 30 5 50 3 100 1 A.众数是100B.中位数是30 C.极差是20D.平均数是30 1 6.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.于会场布置需要,购买时以一束为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为A.19B.18C.16 D.15C16元20元?元FBAED 7.如图,在四边形ABCD 中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是A. AD=BC B. CD=BF C. ∠A=∠C D. ∠F=∠CDF 8.如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是34??22A.31??B.32 C.D.31?? 29.如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB 于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为() 10.如图,点E在△DBC的边DB上,点A在△DBC 内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD?CE;②∠ABD+∠ECB=45°;③BD ⊥CE;④BE2?2(AD2?AB2)?CD2.其中正确的是 2 A. ①②③④B. ②④ C. ①②③ABDD. ①③④BCEAEFADCBC 第Ⅱ卷二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11.东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为元.12. 分解因式:x3?4xy2=.13. 有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是. 14.如图,B,C,以OC ,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为. 15.如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于1EF的长为半径画弧,两弧交于点P,2作射线CP 交AB于点D,若BD=3,AC=10,则△ACD的面积是.A AOyD3 CxBPEFCB8 (第14题图) (第15题图) (第16题图) 16.已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为.17.在平面直角坐标系内有两点A、B,其坐标为A,B,点M为x轴上的 3 一个动点,若要使MB?MA的值最大,则点M的坐标为.18.如图,在平面直角坐标系中,点A…和B1,…分别在直线y?A2,A3,B2,B3,1,1x?b5 和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果点A1,那么点A2018的纵坐标是.OA1B1A2yA3… B2B3x(第18题图) 三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(本题满分7分,第⑴题4分,第⑵题3分) 计算:2?3?(2?1)?3tan30?(?1) 解不等式组:0o20181?()?1;2?x?3>0,并判断-1,2这两个数是否为该不等式组的解. ??3?3x.? 20. 2018年东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:图书种类名人传记科普图书小说其他频数175 b 110 65 频率 a c d4 科普图书名人传记126°小说其他(第求该校九年级共捐书多少本;20题图) 统计表中的a=,b=,c=,d=;若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本;该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率. 21.(本题满分8分) 小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.求两人的速度.22.(本题满分8分)如图,CD是⊙O的切线,点C在直径AB的延长线上.求证:∠CAD=∠BDC;若BD=2AD,AC=3,求CD的长.3 23.(本题满分9分) 关于错误!未找到引用源。
浙江省余姚中学2018届高三选考科目模拟卷(一)数学+Word版含答案

2018届高三数学测试卷(一)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
参考公式:球的表面积公式24πS R = 球的体积公式 343πV R =其中R 表示球的半径 柱体的体积公式 V =Sh其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式 V =13Sh 其中S 表示锥体的底面积,h 表示锥体的高台体的体积公式()1213V h S S =+其中S 1, S 2分别表示台体的上、下底面积,h 表示台体的高第Ⅰ卷 (选择题部分 共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合{}A=|2x x x R ≤∈,,{}2B=|y y x x R =-∈,,则A B ⋂=( ▲ )A .{}|02x x ≤≤ B.{}|2x x ≤ C.{}|20x x -≤≤ D .∅ 2.已知i 是虚数单位,则11i ii i++=+( ▲ )A .1322i -+ B .1322i - C .3122i + D .3122i - 3.已知m 为一条直线,βα,为两个不同的平面,则下列说法正确的是( ▲ ) A.若ββαα//,//,//m m 则 B.若,m αβα⊥⊥,则m β⊥ C.若ββαα⊥⊥m m 则,,// D. 若ββαα⊥⊥m m 则,//, 4. “2=a ”是“直线012=-+y ax 与(1)20x a y +-+=互相平行”的( ▲ )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中一定正确的是 ( ▲ )A .)()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数 C. |)(|)(x g x f 是奇函数 D. |)()(|x g x f 是奇函数6.为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ▲ ) A .向右平移5π12个长度单位 B .向左平移5π12个长度单位C .向右平移5π6个长度单位D .向左平移5π6个长度单位7.某几何体的三视图如图所示,则此几何体的体积为( ▲ ) A .23B .1C .43D .838.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是( ▲ )A .48 B. 60 C. 72 D.1209.已知点1F 是抛物线C :22x py =的焦点,点2F 为抛物线C 的对称轴与其准线的交点,过2F 作抛物线C 的切线,切点为A ,若点A 恰好在以1F ,2F 为焦点的双曲线上,则双曲线的离心率为( ▲ )A B 1C 1D 10.如图,已知平面αβ⊥,l αβ= ,A 、B 是直线l 上的两点,C 、D 是平面β内的两点,且DA l ⊥,CB l ⊥,3AD =,6AB =,6CB =.P 是平面α上的一动点,且直线PD ,PC 与平面α所成角相等,则二面角P BC D --的余弦值的最小值是( ▲ )A B C . 12 D .1第Ⅱ卷(非选择题 共110分)二、填空题: 本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一”.这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一”.就是说:圆堡瑽(圆柱体)的体积为112V =⨯(底面圆的周长的平方⨯高),则由此可推得圆周率π的取值为 ▲ .12.若2(23)nx x --的展开式中所有项的系数之和为256,则n =___▲____,含2x 项的系数是 _ ▲_____(用数字作答).13.若随机变量ξ的分布列如表所示:则E ξ= ▲ ,(21)D ξ-= ▲ .14.在ABC ∆中,内角C B A ,,所对的边分别为c b a ,,,若13)cos cos (cos 2==+a B c C b A ,ABC ∆的面积为33, 则=A ____▲____ ,=+c b ___▲_____.15.已知不等式|2|x x a ++≤的解集不是空集,则实数a 的取值范围是▲ ;若不等式22|1||31||1||1|||a a x x x x a +--+-+++≥对任意实数a 恒成立,则实数x 的取值范围是 ▲ .16.如图,在平面四边形ABCD 中,||3,||4AC BD ==,则()()AB DC BC AD +∙+=▲ .17.已知实数1,2a b ≥,且22,a a b b -=-由22b a M a b=+的最大值是 ▲ . 三、解答题:本大题共5个题,共74分,解答应写出文字说明、证明过程或演算步骤. 18.(本题满分14分)已知函数)6cos(sin sin )(2π-+=x x x x f .(Ⅰ)求函数f (x )的最小正周期; (Ⅱ)求)(x f 在⎥⎦⎤⎢⎣⎡2,0π上的最大值和最小值.QPABC19.(本题满分15分)如图,已知平面QBC 与直线PA 均垂直于Rt ABC ∆所在平面,且PA AB AC ==. (Ⅰ)求证:PA //平面QBC ;(Ⅱ)若PQ QBC ⊥平面,求CQ 与平面PBC 所成角的正弦值.20. (本题满分15分)已知函数2()(0)1xe f x a x ax =≥-+. (Ⅰ)当0a =时,试求曲线()y f x =在点(0,(0))f 处的切线; (Ⅱ)试讨论函数()f x 的单调区间.21.(本题满分15分)已知直线22y x =-与抛物线22(0)x py p =>交于 12,M M 两点,直线2py =与y 轴交于点F .且直线 2py =恰好平分12M FM ∠. (Ⅰ)求p 的值;(Ⅱ)设A 是直线2py =上一点,直线2AM 交抛物线于另一点3M ,直线13M M 交直线2py =于点B ,求OA ·OB的值.22. (本题满分15分){}2*112n 11=1=,.n 2n n n n n a a a a n N n ++++∈+已知数列满足,(Ⅰ)证明:22n n a ≥≥当时,*()n N ∈; (Ⅱ)证明:1121111=21223(1)2n n n a a a a n n ++++-⋅⋅⋅+ (*n N ∈);(Ⅲ)证明:1,n a e <为自然常数.2018届高三数学测试参考答案一、选择题:本大题共10小题,每小题4分,共40分。
2018年江西省中考数学模拟试卷

2018年江西省中考数学模拟试卷(A卷)一、选择题(每小题3分,共18分)1.下列选项中,可以用来说明命题“两个锐角的和是锐角”是假命题的反例的是()A.∠A=30°,∠B=40°B.∠A=30°,∠B=110°C.∠A=30°,∠B=70°D.∠A=30°,∠B=90°2.下列各数中是有理数的是()A.B.4πC.sin45°D.3.关于函数y=2x,下列结论中正确的是()A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>04.如图,在正方形网格中有△ABC,△ABC绕O点按逆时针旋转90°后的图案应该是()A.B.C.D.5.如图,有一个正方体纸巾盒,它的平面展开图是()A.B.C.D.6.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是()A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同二、填空题(本大题共有6小题,每小题3分,共18分)7.把不等式组的解集表示在数轴上,如图所示,那么这个不等式组的解集是.8.已知y是x的一次函数,下表给出了部分对应值,则m的值是.9.关于x的一元二次方程﹣x2+(2k+1)x+2﹣k2=0有实数根,则k的取值范围是.10.如图,Rt△ABC中,∠C=90°,AC=6,BC=8.则△ABC的内切圆半径r=.11.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,那么折痕AB的长为cm.12.已知,点P是反比例函数y=图象在第一象限上的一个动点,⊙P的半径为1,当⊙P与坐标轴相交时,点P的横坐标x的取值范围是.三、解答题(本大题共有6小题,共30分)13.先化简:(1+)÷,再选择一个恰当的x的值代入求值.14.解不等式组:.15.已知:线段m、n,(1)用尺规作出一个等腰三角形,使它的底等于m,腰等于n(保留作图痕迹,不写作法、不证明);(2)用至少4块所作三角形,拼成一个轴对称多边形(画出示意图即可).16.甲、乙、丙、丁四人参加某校招聘教师考试,考试后甲、乙两人去询问成绩.请你根据下面回答对甲、乙两人回答的内容进行分析.(1)列举出这四人的名次排列所有可能出现的不同情况.(2)求甲排在第一名的概率?17.某工厂用A、B、C三台机器加工生产一种产品.对2015年第一季度的生产情况进行统计,图1是三台机器的产量统计图.图2是三台机器产量的比例分布图.(图中有部分信息未给出)(1)利用图1信息,写出B机器的产量,并估计A机器的产量;(2)综合图1和图2信息,求C机器的产量.四、解答题(本大题共有4小题,共32分)18.一次函数y=kx+b的图象与x、y轴分别交于点A(2,0),B(0,4).(1)求该函数的解析式;(2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PC+PD 的最小值,并求取得最小值时P点的坐标.19.如图,一种某小区的两幢10层住宅楼间的距离为AC=30m,由地面向上依次为第1层、第2层、…、第10层,每层高度为3m.假设某一时刻甲楼在乙楼侧面的影长EC=h,太阳光线与水平线的夹角为α.(1)用含α的式子表示h(不必指出α的取值范围);(2)当α=30°时,甲楼楼顶B点的影子落在乙楼的第几层?若α每小时增加15°,从此时起几小时后甲楼的影子刚好不影响乙楼采光?20.如图1,O为圆柱形木块底面的圆心,过底面的一条弦AD,沿母线AB剖开,得剖面矩形ABCD,AD=24cm,AB=25cm.若的长为底面周长的,如图2所示.(1)求⊙O的半径;(2)求这个圆柱形木块的表面积.(结果可保留π和根号)21.已知:如图,在△ABC中,D为AB边上一点,∠A=36°,AC=BC,AC2=AB•AD.(1)试说明:△ADC和△BDC都是等腰三角形;(2)若AB=1,求AC的值;(3)请你构造一个等腰梯形,使得该梯形连同它的两条对角线得到8个等腰三角形.(标明各角的度数)五、解答题(本大题共有1小题,共10分)22.根据如图所示的程序计算.(1)计算x=1时,y值是多少?(2)是否存在输出值y恰好等于输入值x的2倍?如果存在,请求出x的值;如果不存在,请说明理由.(3)是否存在这样的x的值,输入计算后始终在内循环计算而输不出y的值?如果存在,请求出x的值;如果不存在,请说明理由.六、解答题(本大题共有1小题,共12分)23.已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.(1)求点C的坐标;(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;(3)若抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作y轴的平行线,交抛物线于点M.问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为,对称轴公式为x=﹣.2018年江西省中考数学模拟试卷(A卷)参考答案与试题解析一、选择题(每小题3分,共18分)1.下列选项中,可以用来说明命题“两个锐角的和是锐角”是假命题的反例的是()A.∠A=30°,∠B=40°B.∠A=30°,∠B=110°C.∠A=30°,∠B=70°D.∠A=30°,∠B=90°【考点】命题与定理.【分析】判断“两个锐角的和是锐角”什么情况下不成立,即找出两个锐角的和>90°即可.【解答】解:例如:若∠A=30°,∠B=70°,则∠A+∠B>90°.故选C2.下列各数中是有理数的是()A.B.4πC.sin45°D.【考点】特殊角的三角函数值.【分析】要想解决此题,首先明确有理数的分类,其次牢记特殊角的三角函数值.【解答】解:A、==3,是无理数;B、4π是无理数;C、sin45°=是无理数;D、==2,是有理数;故选D.3.关于函数y=2x,下列结论中正确的是()A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>0【考点】正比例函数的性质.【分析】根据正比例函数的性质对各小题进行逐一判断即可.【解答】解:A、函数图象经过点(2,4),错误;B、函数图象经过第一、三象限,错误;C、y随x的增大而增大,正确;D、当x>0时,才有y>0,错误;故选C.4.如图,在正方形网格中有△ABC,△ABC绕O点按逆时针旋转90°后的图案应该是()A.B.C.D.【考点】生活中的旋转现象.【分析】根据△ABC绕着点O逆时针旋转90°,得出各对应点的位置判断即可;【解答】解:根据旋转的性质和旋转的方向得:△ABC绕O点按逆时针旋转90°后的图案是A,故选A.5.如图,有一个正方体纸巾盒,它的平面展开图是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:观察图形可知,一个正方体纸巾盒,它的平面展开图是.故选:B.6.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是()A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同【考点】平移的性质;简单组合体的三视图.【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【解答】解:A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选:B.二、填空题(本大题共有6小题,每小题3分,共18分)7.把不等式组的解集表示在数轴上,如图所示,那么这个不等式组的解集是x >1.【考点】在数轴上表示不等式的解集.【分析】数轴的某一段上面,表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集.【解答】解:由图示可看出,从﹣2出发向右画出的线且﹣2处是实心圆,表示x≥﹣2;从1出发向右画出的线且1处是空心圆,表示x>1,不等式组的解集是指它们的公共部分.所以这个不等式组的解集是x>1.故答案是:x>1.8.已知y是x的一次函数,下表给出了部分对应值,则m的值是﹣7.【考点】待定系数法求一次函数解析式.【分析】一次函数的一般形式为y=kx+b,根据待定系数法即可求解.【解答】解:设该一次函数的解析式为y=kx+b.由题意得,解得,故m的值是﹣7.9.关于x的一元二次方程﹣x2+(2k+1)x+2﹣k2=0有实数根,则k的取值范围是k≥.【考点】根的判别式.【分析】由于已知方程有实数根,则△≥0,由此可以建立关于k的不等式,解不等式就可以求出k的取值范围.【解答】解:由题意知△=(2k+1)2+4(2﹣k2)=4k+9≥0,∴k≥.10.如图,Rt△ABC中,∠C=90°,AC=6,BC=8.则△ABC的内切圆半径r=2.【考点】三角形的内切圆与内心.【分析】设AB、BC、AC与⊙O的切点分别为D、E、F;易证得四边形OECF是正方形;那么根据切线长定理可得:CE=CF=(AC+BC﹣AB),由此可求出r的长.【解答】解:如图,在Rt△ABC,∠C=90°,AC=6,BC=8;根据勾股定理AB==10;四边形OECF中,OE=OF,∠OEC=∠OFC=∠C=90°;∴四边形OECF是正方形;由切线长定理,得:AD=AF,BD=BE,CE=CF;∴CE=CF=(AC+BC﹣AB);即:r=(6+8﹣10)=2.11.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,那么折痕AB的长为2cm.【考点】翻折变换(折叠问题).【分析】在图中构建直角三角形,先根据勾股定理得AD的长,再根据垂径定理得AB的长.【解答】解:作OD⊥AB于D,连接OA.根据题意得:OD=OA=1cm,再根据勾股定理得:AD=cm,根据垂径定理得:AB=2cm.故答案为:2.12.已知,点P是反比例函数y=图象在第一象限上的一个动点,⊙P的半径为1,当⊙P与坐标轴相交时,点P的横坐标x的取值范围是x>4或0<x<1.【考点】反比例函数图象上点的坐标特征;直线与圆的位置关系.【分析】首先画出比例函数y=图象,观察点P在第一象限变化的情况,因为⊙P的半径为1,所以当0<x<1时,⊙P与y轴相交,当x>2时,⊙P与x轴相交,据此求出答案.【解答】解:如图,当⊙P与坐标轴相交时,若与y轴相交时,根据函数图象得:0<x<1;若与x轴相交时,根据函数图象得:x>4.故答案为:0<x<1或x>4.三、解答题(本大题共有6小题,共30分)13.先化简:(1+)÷,再选择一个恰当的x的值代入求值.【考点】分式的化简求值.【分析】先通分计算括号里面的,再将(x2﹣1)因式分解,然后将除法转化为乘法进行计算.【解答】解:原式=×=×=x+1,当x=6时,原式=6+1=7.14.解不等式组:.【考点】解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+2>0,得:x>﹣2,解不等式+1≥x,得:x≤1,∴不等式组的解集为:﹣2<x≤1.15.已知:线段m、n,(1)用尺规作出一个等腰三角形,使它的底等于m,腰等于n(保留作图痕迹,不写作法、不证明);(2)用至少4块所作三角形,拼成一个轴对称多边形(画出示意图即可).【考点】作图-轴对称变换;作图—复杂作图.【分析】(1)画一直线长为m,作三角形的底,再用圆规,以线段m的两端点为圆心,n长为半径画弧,交于点A,连接三点即是三角形.(2)本题答案不唯一,只要是根据轴对称图形的性质画的轴对称图形就可.【解答】解:16.甲、乙、丙、丁四人参加某校招聘教师考试,考试后甲、乙两人去询问成绩.请你根据下面回答对甲、乙两人回答的内容进行分析.(1)列举出这四人的名次排列所有可能出现的不同情况.(2)求甲排在第一名的概率?【考点】列表法与树状图法.【分析】(1)根据对话显然丙排在第四,乙是第二或第三,则对应的甲的名次可能有两种情况.所以共有4种情况.(2)根据概率公式,利用甲排在第一名的情况数:所有可能出现的不同情况即可.【解答】解:(1)列举:①甲、乙、丁、丙;②丁、乙、甲、丙;③甲、丁、乙、丙;④丁、甲、乙、丙;(2)甲排在第一名的概率为=.17.某工厂用A、B、C三台机器加工生产一种产品.对2015年第一季度的生产情况进行统计,图1是三台机器的产量统计图.图2是三台机器产量的比例分布图.(图中有部分信息未给出)(1)利用图1信息,写出B机器的产量,并估计A机器的产量;(2)综合图1和图2信息,求C机器的产量.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据条形统计图得到B机器的产量,并估计A机器的产量;(2)根据扇形统计图得到C机器的产量的百分比,计算即可.【解答】解:(1)由条形统计图可知,B机器的产量是150件,估计A机器的产量是210件;(2)设C机器的产量为x件,由题意得,=,解得,x=240,答:C机器的产量为240件.四、解答题(本大题共有4小题,共32分)18.一次函数y=kx+b的图象与x、y轴分别交于点A(2,0),B(0,4).(1)求该函数的解析式;(2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PC+PD 的最小值,并求取得最小值时P点的坐标.【考点】一次函数综合题.【分析】(1)将点A、B的坐标代入y=kx+b并计算得k=﹣2,b=4.求出解析式为:y=﹣2x+4;(2)设点C关于点O的对称点为C′,连接C′D交OB于P,则PC=PC′,PC+PD=PC′+PD=C′D,即PC+PD的最小值是C′D.连接CD,在Rt△DCC′中,由勾股定理求得C′D的值,由OP是△C′CD的中位线而求得点P的坐标.【解答】解:(1)将点A、B的坐标代入y=kx+b得:0=2k+b,4=b,∴k=﹣2,b=4,∴解析式为:y=﹣2x+4;(2)设点C关于点O的对称点为C′,连接C′D交OB于P′,连接P′C,则PC=PC′,∴PC+PD=PC′+PD=C′D,即PC+PD的最小值是C′D.连接CD,在Rt△DCC′中,C′D==2,即PC′+PD的最小值为2,∵OA、AB的中点分别为C、D,∴CD是△OBA的中位线,∴OP∥CD,CD=OB=2,∵C′O=OC,∴OP是△C′CD的中位线,∴OP=CD=1,∴点P的坐标为(0,1).19.如图,一种某小区的两幢10层住宅楼间的距离为AC=30m,由地面向上依次为第1层、第2层、…、第10层,每层高度为3m.假设某一时刻甲楼在乙楼侧面的影长EC=h,太阳光线与水平线的夹角为α.(1)用含α的式子表示h(不必指出α的取值范围);(2)当α=30°时,甲楼楼顶B点的影子落在乙楼的第几层?若α每小时增加15°,从此时起几小时后甲楼的影子刚好不影响乙楼采光?【考点】解直角三角形的应用;平行投影.【分析】(1)过点E作EH⊥AB于H,由题意四边形ACEH是矩形,在Rt△BEH 中,根据tan∠BEH=列出方程即可解决问题.(2)①求出h的值即可解决问题,②求出∠ACB的大小即可解决问题.【解答】解:(1)过点E作EH⊥AB于H,由题意四边形ACEH是矩形,∴EH=AC=30,AH=CE=h,∠BEH=α,∴BH=30﹣h,在Rt△BEH中,tan∠BEH=,∴30﹣h=30tanα,∴h=30﹣30tanα.(2)当α=30°时,h=30﹣30×≈12.7,∵12.7÷3=4.2,∴B点的影子落在乙楼的第五层,当B点的影子落在乙楼C处时,甲楼的影子刚好不影响乙楼采光,此时AB=AC=30,△ABC是等腰直角三角形,∴∠ACB=45°,∴=1(小时),∴从此时起1小时后甲楼的影子刚好不影响乙楼采光.20.如图1,O为圆柱形木块底面的圆心,过底面的一条弦AD,沿母线AB剖开,得剖面矩形ABCD,AD=24cm,AB=25cm.若的长为底面周长的,如图2所示.(1)求⊙O的半径;(2)求这个圆柱形木块的表面积.(结果可保留π和根号)【考点】圆柱的计算;解直角三角形.【分析】(1)根据的长为底面周长的,可将扇形的圆心角求出,再根据弦AD的长可将⊙O的半径求出;(2)圆柱形木块的表面积S=2S圆+S侧,将上下两个圆的面积和侧面的面积求出,相加即可.【解答】解:(1)如图:连接OA,OD,过O作OE⊥AD,垂足为E,∵由已知的长=圆周长,∴扇形OAmD的圆心角为360°×=240°.∠AOD=360°﹣240°=120°.∵OE⊥AD,∴∠AOE=120°=60°,AE=AD.∵AD=24cm,∴AE=12cm.在Rt△AOE中,sin∠AOE=,∴AO==(cm).即⊙O的半径为cm.(2)设圆柱的表面积为S,则S=2S圆+S侧,2S圆=2π×(8)2=384π(cm2),S侧=2π×8×25=400π(cm2),∴S=πcm2答:木块的表面积为πcm2.21.已知:如图,在△ABC中,D为AB边上一点,∠A=36°,AC=BC,AC2=AB•AD.(1)试说明:△ADC和△BDC都是等腰三角形;(2)若AB=1,求AC的值;(3)请你构造一个等腰梯形,使得该梯形连同它的两条对角线得到8个等腰三角形.(标明各角的度数)【考点】等腰梯形的性质;等腰三角形的判定与性质.【分析】(1)根据等腰三角形的判断(等角对等边),通过证明△ABC∽△CAD 得出对应角相等得出△ADC和△BDC都是等腰三角形;(2)由(1)知BD=BC=AC,及AC2=AB•AD,可以求AC的值;(3)利用36°,72°,108°角的特殊关系,设计等腰梯形,满足题意.【解答】(1)证明:∵∠A=36°,AC=BC,∴∠B=∠A=36°,∴∠ACB=180°﹣∠A﹣∠B=108°,∵AC2=AB•AD,∴AC:AB=AD:AC,∵∠A是公共角,∴△ACD∽△ABC,∴∠ACD=∠B=36°,∴AD=CD,∴∠BCD=∠ACB﹣∠ACD=72°,∴∠BDC=180°﹣∠B﹣∠BCD=72°,∴∠BCD=∠BDC,∴BC=BD,即:△ADC和△BDC都是等腰三角形;(2)解:∵△ABC∽△ACD,∴∠ACD=∠B=36°,∴∠BCD=∠A+∠ACD=72°,∠BCD=∠ACB﹣∠ACD=108°﹣36°=72°,∴∠BCD=∠BDC,∴BD=BC,∵AC=BC,∴AC=BC=BD,设AC=x,则BC=BD=x,AD=1﹣x,∵AC2=AB•AD,∴x2=1﹣x,解得:x=或x=(舍去),∴AC的值为.(3)如图.五、解答题(本大题共有1小题,共10分)22.根据如图所示的程序计算.(1)计算x=1时,y值是多少?(2)是否存在输出值y恰好等于输入值x的2倍?如果存在,请求出x的值;如果不存在,请说明理由.(3)是否存在这样的x的值,输入计算后始终在内循环计算而输不出y的值?如果存在,请求出x的值;如果不存在,请说明理由.【考点】有理数的混合运算;解一元二次方程-公式法.【分析】(1)把x=1代入程序中计算即可确定出y的值;(2)根据题意得到y=2x,由程序判断即可;(3)存在,根据程序确定出x的值,计算即可.【解答】解:(1)把x=1代入程序中得:12×2﹣4=2﹣4=﹣2<0,把x=﹣2代入程序中得:(﹣2)2×2﹣4=8﹣4=4>0,则y=4;(2)当y=2x且y>0时,有2x2﹣4=2x,解得:x=2或x=﹣1(舍去),则x=2;(3)存在,当y=x且y<0时,输入x计算后始终输不出y的值,此时x=2x2﹣4,解得:x=,由y<0,得到x=,则当x=时,输不出y的值.六、解答题(本大题共有1小题,共12分)23.已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.(1)求点C的坐标;(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;(3)若抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作y轴的平行线,交抛物线于点M.问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为,对称轴公式为x=﹣.【考点】二次函数综合题.【分析】(1)可在直角三角形BOA中,根据AB的长和∠AOB的度数,求出OA 的长.根据折叠的性质可知:OC=OA,∠COA=60°,过C作x轴的垂线,即可用三角形函数求出C点的坐标;(2)根据(1)求出的A,C点的坐标,用待定系数法即可求出抛物线的解析式;(3)根据等腰梯形的性质,如果过M,P两点分别作底的垂线ME和PQ,那么CE=PQ,可先设出此时P点的坐标,然后表示出M点的坐标,CE就是C点纵坐标与M点纵坐标的差,QD就是P点纵坐标和D点纵坐标的差.由此可得出关于P点横坐标的方程,可求出P点的横坐标,进而可求出P点的坐标.【解答】解:(1)过点C作CH⊥x轴,垂足为H∵在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2∴OB=4,OA=由折叠知,∠COB=30°,OC=OA=∴∠COH=60°,OH=,CH=3∴C点坐标为(,3);(2)∵抛物线y=ax2+bx(a≠0)经过C(,3)、A(,0)两点,∴,解得:,∴此抛物线的解析式为:y=﹣x2+2x.解法一:(3)存在.因为的顶点坐标为(,3)所以顶点坐标为点C作MP⊥x轴,垂足为N,设PN=t,因为∠BOA=30°,所以ON=t∴P(t,t)作PQ⊥CD,垂足为Q,ME⊥CD,垂足为E把t代入得:y=﹣3t2+6t∴M(t,﹣3t2+6t),E(,﹣3t2+6t)同理:Q(,t),D(,1)要使四边形CDPM为等腰梯形,只需CE=QD(这时△PQD≌△MEC)即3﹣(﹣3t2+6t)=t﹣1,解得:,t2=1(不合题意,舍去)∴P点坐标为(,)∴存在满足条件的点P,使得四边形CDPM为等腰梯形,此时P点的坐为(,);解法二:(3)存在.由(2)可得:=得顶点坐标为(,3),即点C恰好为顶点;设MP交x轴于点N,∵MP∥y轴,CH为抛物线的对称轴∴MP∥CD且CM与DP不平行∴四边形CDPM为梯形若要使四边形CDPM为等腰梯形,只需∠MCD=∠PDC由∠PDC=∠ODH=90°﹣∠DOA=60°,则∠MCD=60°又∵∠BCD=90°﹣∠OCH=60°,∴∠MCD=∠BCD,∴此时点M为抛物线与线段CB所在直线的交点设BC的解析式为y=mx+n由(2)得C(,3)、B(,2)∴解得:∴直线BC的解析式为由得,∴ON=在Rt△OPN中,tan∠PON=得∴P点坐标为(,)∴存在满足条件的点P,使得四边形CDPM为等腰梯形,此时P点的坐标为(,).。
2018年新疆中考数学试卷(含答案解析版)

2018年新疆中考数学试卷一、选择题(本大题共9小题,每小题5分,共45分.在每题列出的四个选项中,只有一项符合题目要求)1.(5分)(2018•新疆)的相反数是()A.﹣B.2 C.﹣2 D.0.52.(5分)(2018•新疆)某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高()A.10℃B.6℃C.﹣6℃D.﹣10℃3.(5分)(2018•新疆)如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.4.(5分)(2018•新疆)下列计算正确的是()A.a2•a3=a6 B.(a+b)(a﹣2b)=a2﹣2b2C.(ab3)2=a2b6 D.5a﹣2a=35.(5分)(2018•新疆)如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°6.(5分)(2018•新疆)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:班级参加人数平均数中位数方差甲55135149191乙55135151110某同学分析上表后得出如下结论:(1)甲、乙两班学生的成绩平均成绩相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);(3)甲班成绩的波动比乙班大.上述结论中,正确的是()A.①②B.②③C.①③D.①②③7.(5分)(2018•新疆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.3cm D.2cm8.(5分)(2018•新疆)某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y元,那么根据题意,下列方程组中,正确的是()A.B.C.D.9.(5分)(2018•新疆)如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.B.1 C.D.2二、填空题(本大题共6小题,每小题5分,共30分)10.(5分)(2018•新疆)点(﹣1,2)所在的象限是第象限.11.(5分)(2018•新疆)如果代数式有意义,那么实数x的取值范围是.12.(5分)(2018•新疆)如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部的面积是.13.(5分)(2018•新疆)一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是.14.(5分)(2018•新疆)某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是元.15.(5分)(2018•新疆)如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2,若y1≠y2,取y1和y2中较小值为M;若y1=y2,记M=y1=y2.①当x>2时,M=y2;②当x<0时,M随x 的增大而增大;③使得M大于4的x的值不存在;④若M=2,则x=1.上述结论正确的是(填写所有正确结论的序号).三、解答题(一)(本大题共4小题,共30分)16.(6分)(2018•新疆)计算:﹣2sin45°+()﹣1﹣|2﹣|.17.(8分)(2018•新疆)先化简,再求值:(+1)÷,其中x是方程x2+3x=0的根.18.(8分)(2018•新疆)已知反比例函数y=的图象与一次函数y=kx+m的图象交于点(2,1).(1)分别求出这两个函数的解析式;(2)判断P(﹣1,﹣5)是否在一次函数y=kx+m的图象上,并说明原因.19.(8分)(2018•新疆)如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接FB,DF.判断四边形EBFD的形状,并说明理由.四、解答题(二)(本大题共4小题,共45分)20.(10分)(2018•新疆)如图,在数学活动课上,小丽为了测量校园内旗杆AB的高度,站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.已知旗杆与教学楼的距离BD=9m,请你帮她求出旗杆的高度(结果保留根号).21.(10分)(2018•新疆)杨老师为了了解所教班级学生课后复习的具体情况,对本班部分学生进行了一个月的跟踪调查,然后将调查结果分成四类:A:优秀;B:良好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中,杨老师一共调查了名学生,其中C类女生有名,D类男生有名;(2)补全上面的条形统计图和扇形统计图;(3)在此次调查中,小平属于D类.为了进步,她请杨老师从被调查的A类学生中随机选取一位同学,和她进行“一帮一”的课后互助学习.请求出所选的同学恰好是一位女同学的概率.22.(12分)(2018•新疆)如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO交⊙O于点D,与PB的延长线交于点E.(1)求证:PB是⊙O的切线;(2)若OC=3,AC=4,求sinE的值.23.(13分)(2018•新疆)如图,在平面直角坐标系中,抛物线y=x2﹣x﹣4与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从A点出发,在线段AB上以每秒2个单位长度的速度向B点运动,同时,点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,当其中一个点到达终点时,另一个点也停止运动.设运动时间为t秒,求运动时间t为多少秒时,△PBQ的面积S最大,并求出其最大面积;(3)在(2)的条件下,当△PBQ面积最大时,在BC下方的抛物线上是否存在点M,使△BMC的面积是△PBQ面积的1.6倍?若存在,求点M的坐标;若不存在,请说明理由.2018年新疆中考数学试卷参考答案与试题解析一、选择题(本大题共9小题,每小题5分,共45分.在每题列出的四个选项中,只有一项符合题目要求)1.(5分)(2018•新疆)的相反数是()A.﹣B.2 C.﹣2 D.0.5【考点】14:相反数.【专题】11 :计算题.【分析】只有符号不同的两个数互为相反数.【解答】解:的相反数是﹣.故选:A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.(5分)(2018•新疆)某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高()A.10℃B.6℃C.﹣6℃D.﹣10℃【考点】1A:有理数的减法.【专题】511:实数.【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:2﹣(﹣8)=2+8=10(℃).故选:A.【点评】本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.3.(5分)(2018•新疆)如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】1 :常规题型.【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【解答】解:从左边看竖直叠放2个正方形.故选:C.【点评】此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.4.(5分)(2018•新疆)下列计算正确的是()A.a2•a3=a6 B.(a+b)(a﹣2b)=a2﹣2b2C.(ab3)2=a2b6 D.5a﹣2a=3【考点】4B:多项式乘多项式;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的乘法法则:底数不变,指数相加;多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn;积的乘方:等于把积的每一个因式分别乘方再把所得的幂相乘;合并同类项:只把系数相加,字母部分完全不变,一个个计算筛选,即可得到答案.【解答】解:A、a2•a3=a 2+3=a5,故此选项错误;B、(a+b)(a﹣2b)=a•a﹣a•2b+b•a﹣b•2b=a2﹣2ab+ab﹣2b2=a2﹣ab﹣2b2.故此选项错误;C、(ab3)2=a2•(b3)2=a2b6,故此选项正确;D、5a﹣2a=(5﹣2)a=3a,故此选项错误.故选:C.【点评】本题主要考查多项式乘以多项式,同底数幂的乘法,积的乘方,合并同类项的法则,注意正确把握每一种运算的法则,不要混淆.5.(5分)(2018•新疆)如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°【考点】JA:平行线的性质.【专题】551:线段、角、相交线与平行线.【分析】先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.【解答】解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选:B.【点评】此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.6.(5分)(2018•新疆)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:班级参加人数平均数中位数方差甲55135149191乙55135151110某同学分析上表后得出如下结论:(1)甲、乙两班学生的成绩平均成绩相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);(3)甲班成绩的波动比乙班大.上述结论中,正确的是()A.①②B.②③C.①③D.①②③【考点】W7:方差;W1:算术平均数.【专题】542:统计的应用.【分析】两条平均数、中位数、方差的定义即可判断;【解答】解:由表格可知,甲、乙两班学生的成绩平均成绩相同;根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;根据方差可知,甲班成绩的波动比乙班大.故(1)(2)(3)正确,故选:D.【点评】本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.(5分)(2018•新疆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.3cm D.2cm【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【专题】1 :常规题型;558:平移、旋转与对称.【分析】根据翻折的性质可得∠B=∠AB1E=90°,AB=AB1,然后求出四边形ABEB1是正方形,再根据正方形的性质可得BE=AB,然后根据CE=BC﹣BE,代入数据进行计算即可得解.【解答】解:∵沿AE对折点B落在边AD上的点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1是正方形,∴BE=AB=6cm,∴CE=BC﹣BE=8﹣6=2cm.故选:D.【点评】本题考查了矩形的性质,正方形的判定与性质,翻折变换的性质,判断出四边形ABEB1是正方形是解题的关键.8.(5分)(2018•新疆)某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y元,那么根据题意,下列方程组中,正确的是()A.B.C.D.【考点】99:由实际问题抽象出二元一次方程组.【专题】1 :常规题型.【分析】等量关系为:一本练习本和一支水笔的单价合计为3元;20本练习本的总价+10支水笔的总价=36,把相关数值代入即可.【解答】解:设练习本每本为x元,水笔每支为y元,根据单价的等量关系可得方程为x+y=3,根据总价36得到的方程为20x+10y=36,所以可列方程为:,故选:B.【点评】此题主要考查了由实际问题抽象出二元一次方程组,得到单价和总价的2个等量关系是解决本题的关键.9.(5分)(2018•新疆)如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.B.1 C.D.2【考点】PA:轴对称﹣最短路线问题;L8:菱形的性质.【专题】46 :几何变换.【分析】先作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.然后证明四边形ABNM′为平行四边形,即可求出MP+NP=M′N=AB=1.【解答】解:如图,作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N的长.∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,又∵N是BC边上的中点,∴AM′∥BN,AM′=BN,∴四边形ABNM′是平行四边形,∴M′N=AB=1,∴MP+NP=M′N=1,即MP+NP的最小值为1,故选:B.【点评】本题考查的是轴对称﹣最短路线问题及菱形的性质,熟知两点之间线段最短的知识是解答此题的关键.二、填空题(本大题共6小题,每小题5分,共30分)10.(5分)(2018•新疆)点(﹣1,2)所在的象限是第二象限.【考点】D1:点的坐标.【专题】1 :常规题型.【分析】根据各象限内点的坐标特征解答.【解答】解:点(﹣1,2)所在的象限是第二象限.故答案为:二.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).11.(5分)(2018•新疆)如果代数式有意义,那么实数x的取值范围是x ≥1.【考点】72:二次根式有意义的条件.【专题】1 :常规题型.【分析】直接利用二次根式的定义分析得出答案.【解答】解:∵代数式有意义,∴实数x的取值范围是:x≥1.故答案为:x≥1.【点评】此题主要考查了二次根式的定义,正确把握定义是解题关键.12.(5分)(2018•新疆)如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部的面积是.【考点】MA:三角形的外接圆与外心;KK:等边三角形的性质;MO:扇形面积的计算.【专题】55C:与圆有关的计算.【分析】根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算即可.【解答】解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是=π,故答案为:【点评】本题主要考查扇形面积的计算和圆周角定理,根据等边三角形性质和圆周角定理求得圆心角度数是解题的关键.13.(5分)(2018•新疆)一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是.【考点】X6:列表法与树状图法.【专题】1 :常规题型.【分析】根据概率的计算公式.颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出各自的概率即可.【解答】解:用A和a分别表示第一个有盖茶杯的杯盖和茶杯;用B和b分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:Aa、Ab、Ba、Bb.所以颜色搭配正确的概率是.故答案为:.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.(5分)(2018•新疆)某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是4元.【考点】B7:分式方程的应用.【专题】34 :方程思想;522:分式方程及应用.【分析】设该商店第一次购进铅笔的单价为x元/支,则第二次购进铅笔的单价为x元/支,根据单价=总价÷数量结合第二次购进数量比第一次少了30支,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设该商店第一次购进铅笔的单价为x元/支,则第二次购进铅笔的单价为x元/支,根据题意得:﹣=30,解得:x=4,经检验,x=4是原方程的解,且符合题意.答:该商店第一次购进铅笔的单价为4元/支.故答案为:4.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.15.(5分)(2018•新疆)如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2,若y1≠y2,取y1和y2中较小值为M;若y1=y2,记M=y1=y2.①当x>2时,M=y2;②当x<0时,M随x 的增大而增大;③使得M大于4的x的值不存在;④若M=2,则x=1.上述结论正确的是②③(填写所有正确结论的序号).【考点】H3:二次函数的性质;F5:一次函数的性质.【专题】533:一次函数及其应用;535:二次函数图象及其性质.【分析】①观察函数图象,可知:当x>2时,抛物线y1=﹣x2+4x在直线y2=2x 的下方,进而可得出当x>2时,M=y1,结论①错误;②观察函数图象,可知:当x<0时,抛物线y1=﹣x2+4x在直线y2=2x的下方,进而可得出当x<0时,M=y1,再利用二次函数的性质可得出M随x的增大而增大,结论②正确;③利用配方法可找出抛物线y1=﹣x2+4x的最大值,由此可得出:使得M大于4的x的值不存在,结论③正确;④利用一次函数图象上点的坐标特征及二次函数图象上点的坐标特征求出当M=2时的x值,由此可得出:若M=2,则x=1或2+,结论④错误.此题得解.【解答】解:①当x>2时,抛物线y1=﹣x2+4x在直线y2=2x的下方,∴当x>2时,M=y1,结论①错误;②当x<0时,抛物线y1=﹣x2+4x在直线y2=2x的下方,∴当x<0时,M=y1,∴M随x的增大而增大,结论②正确;③∵y1=﹣x2+4x=﹣(x﹣2)2+4,∴M的最大值为4,∴使得M大于4的x的值不存在,结论③正确;④当M=y1=2时,有﹣x2+4x=2,解得:x1=2﹣(舍去),x2=2+;当M=y2=2时,有2x=2,解得:x=1.∴若M=2,则x=1或2+,结论④错误.综上所述:正确的结论有②③.故答案为:②③.【点评】本题考查了一次函数的性质、二次函数的性质、一次函数图象上点的坐标特征以及二次函数图象上点的坐标特征,逐一分析四条结论的正误是解题的关键.三、解答题(一)(本大题共4小题,共30分)16.(6分)(2018•新疆)计算:﹣2sin45°+()﹣1﹣|2﹣|.【考点】2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质、负指数幂的性质进而化简得出答案.【解答】解:原式=4﹣2×+3﹣(2﹣)=4﹣+3﹣2+=5.【点评】此题主要考查了实数运算,正确化简各数是解题关键.17.(8分)(2018•新疆)先化简,再求值:(+1)÷,其中x是方程x2+3x=0的根.【考点】6D:分式的化简求值;A3:一元二次方程的解.【专题】11 :计算题.【分析】根据分式的加法和除法可以化简题目中的式子,然后根据x2+3x=0可以求得x的值,注意代入的x的值必须使得原分式有意义.【解答】解:(+1)÷===x+1,由x2+3x=0可得,x=0或x=﹣3,当x=0时,原来的分式无意义,∴当x=﹣3时,原式=﹣3+1=﹣2.【点评】本题考查分式的化简求值、一元二次方程的解,解答本题的关键是明确分式的化简求值的计算方法.18.(8分)(2018•新疆)已知反比例函数y=的图象与一次函数y=kx+m的图象交于点(2,1).(1)分别求出这两个函数的解析式;(2)判断P(﹣1,﹣5)是否在一次函数y=kx+m的图象上,并说明原因.【考点】G8:反比例函数与一次函数的交点问题.【专题】533:一次函数及其应用.【分析】(1)将点(2,1)代入y=,求出k的值,再将k的值和点(2,1)代入解析式y=kx+m,即可求出m的值,从而得到两个函数的解析式;(2)将x=﹣1代入(1)中所得解析式,若y=﹣5,则点P(﹣1,﹣5)在一次函数图象上,否则不在函数图象上.【解答】解:(1)∵y=经过(2,1),∴2=k.∵y=kx+m经过(2,1),∴1=2×2+m,∴m=﹣3.∴反比例函数和一次函数的解析式分别是:y=和y=2x﹣3.(2)当x=﹣1时,y=2x﹣3=2×(﹣1)﹣3=﹣5.∴点P(﹣1,﹣5)在一次函数图象上.【点评】本题考查了反比例函数与一次函数的交点问题,解题的关键是知道函数图象的交点坐标符合两个函数的解析式.19.(8分)(2018•新疆)如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接FB,DF.判断四边形EBFD的形状,并说明理由.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【专题】555:多边形与平行四边形.【分析】(1)根据SAS即可证明;(2)首先证明四边形EBFD是平行四边形,再根据对角线相等的平行四边形是菱形即可证明;【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,在△DEO和△BOF中,∴△DOE≌△BOF.(2)解:结论:四边形EBFD是菱形.理由:∵OD=OB,OE=OF,∴四边形EBFD是平行四边形,∵BD=EF,∴四边形EBFD是菱形.【点评】本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.四、解答题(二)(本大题共4小题,共45分)20.(10分)(2018•新疆)如图,在数学活动课上,小丽为了测量校园内旗杆AB的高度,站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A 的仰角为30°.已知旗杆与教学楼的距离BD=9m,请你帮她求出旗杆的高度(结果保留根号).【考点】TA:解直角三角形的应用﹣仰角俯角问题.【专题】552:三角形.【分析】根据在Rt△ACF中,tan∠ACF=,求出AD的值,再根据在Rt△BCD 中,tan∠BCD=,求出BD的值,最后根据AB=AD+BD,即可求出答案.【解答】解:在Rt△ACF中,∵tan∠ACF=,∴tan30°=,∴=,∴AF=3m,在Rt△BCD中,∵∠BCD=45°,∴BD=CD=9m,∴AB=AD+BD=3+9(m).【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.21.(10分)(2018•新疆)杨老师为了了解所教班级学生课后复习的具体情况,对本班部分学生进行了一个月的跟踪调查,然后将调查结果分成四类:A:优秀;B:良好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中,杨老师一共调查了20名学生,其中C类女生有2名,D类男生有1名;(2)补全上面的条形统计图和扇形统计图;(3)在此次调查中,小平属于D类.为了进步,她请杨老师从被调查的A类学生中随机选取一位同学,和她进行“一帮一”的课后互助学习.请求出所选的同学恰好是一位女同学的概率.【考点】X4:概率公式;VB:扇形统计图;VC:条形统计图.【专题】1 :常规题型;54:统计与概率.【分析】(1)由A类别人数及其所占百分比可得总人数,用总人数乘以C类别百分比,再减去其中男生人数可得女生人数,同理求得D类别男生人数;(2)根据(1)中所求结果可补全图形;(3)根据概率公式计算可得.【解答】解:(1)杨老师调查的学生总人数为(1+2)÷15%=20人,C类女生人数为20×25%﹣3=2人,D类男生人数为20×(1﹣15%﹣20%﹣25%)﹣1=1人,故答案为:20、2、1;(2)补全图形如下:(3)因为A类的3人中,女生有2人,所以所选的同学恰好是一位女同学的概率为.【点评】此题考查了概率公式的应用以及条形统计图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.22.(12分)(2018•新疆)如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO交⊙O于点D,与PB的延长线交于点E.(1)求证:PB是⊙O的切线;(2)若OC=3,AC=4,求sinE的值.【考点】ME:切线的判定与性质;M2:垂径定理;T7:解直角三角形.【专题】14 :证明题.【分析】(1)要证明是圆的切线,须证明过切点的半径垂直,所以连接OBB,证明OB⊥PE即可.(2)要求sinE,首先应找出直角三角形,然后利用直角三角函数求解即可.而sinE既可放在直角三角形EAP中,也可放在直角三角形EBO中,所以利用相似三角形的性质求出EP或EO的长即可解决问题【解答】(1)证明:连接OB∵PO⊥AB,∴AC=BC,∴PA=PB在△PAO和△PBO中∴△PAO和≌△PBO∴∠OBP=∠OAP=90°∴PB是⊙O的切线.(2)连接BD,则BD∥PO,且BD=2OC=6在Rt△ACO中,OC=3,AC=4∴AO=5在Rt△ACO与Rt△PAO中,∠APO=∠APO,∠PAO=∠ACO=90°∴△ACO∼△PAO=∴PO=,PA=∴PB=PA=在△EPO与△EBD中,BD∥PO∴△EPO∽△EBD∴=,解得EB=,PE=,∴sinE==【点评】本题考查了切线的判定以及相似三角形的判定和性质.能够通过作辅助线将所求的角转移到相应的直角三角形中,是解答此题的关键.23.(13分)(2018•新疆)如图,在平面直角坐标系中,抛物线y=x2﹣x﹣4与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从A点出发,在线段AB上以每秒2个单位长度的速度向B点运动,同时,点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,当其中一个点到达终点时,另一个点也停止运动.设运动时间为t秒,求运动时间t为多少秒时,△PBQ的面积S最大,并求出其最大面积;(3)在(2)的条件下,当△PBQ面积最大时,在BC下方的抛物线上是否存在点M,使△BMC的面积是△PBQ面积的1.6倍?若存在,求点M的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【专题】537:函数的综合应用.【分析】(1)代入x=0可求出点C的纵坐标,代入y=0可求出点A、B的横坐标,此题得解;(2)根据点B、C的坐标,利用待定系数法可求出直线BC的解析式,过点Q作QE∥y轴,交x轴于点E,当运动时间为t秒时,点P的坐标为(2t﹣2,0),点Q的坐标为(3﹣t,﹣t),进而可得出PB、QE的长度,利用三角形的面积公关于t的函数关系式,利用二次函数的性质即可解决最值问题;式可得出S△PBQ(3)根据(2)的结论找出点P、Q的坐标,假设存在,设点M的坐标为(m,m2﹣m﹣4),则点F的坐标为(m,m﹣4),进而可得出MF的长度,利用三角形的面积结合△BMC的面积是△PBQ面积的1.6倍,可得出关于m的一元二次方程,解之即可得出结论.【解答】解:(1)当x=0时,y=x2﹣x﹣4=﹣4,∴点C的坐标为(0,﹣4);当y=0时,有x2﹣x﹣4=0,解得:x1=﹣2,x2=3,∴点A的坐标为(﹣2,0),点B的坐标为(3,0).(2)设直线BC的解析式为y=kx+b(k≠0),将B(3,0)、C(0,﹣4)代入y=kx+b,,解得:,∴直线BC的解析式为y=x﹣4.过点Q作QE∥y轴,交x轴于点E,如图1所示,当运动时间为t秒时,点P的坐标为(2t﹣2,0),点Q的坐标为(3﹣t,﹣t),∴PB=3﹣(2t﹣2)=5﹣2t,QE=t,=PB•QE=﹣t2+2t=﹣(t﹣)2+.∴S△PBQ∵﹣<0,∴当t=时,△PBQ的面积取最大值,最大值为.(3)当△PBQ面积最大时,t=,此时点P的坐标为(,0),点Q的坐标为(,﹣1).假设存在,设点M的坐标为(m,m2﹣m﹣4),则点F的坐标为(m,m﹣4),∴MF=m﹣4﹣(m2﹣m﹣4)=﹣m2+2m,∴S=MF•OB=﹣m2+3m.△BMC∵△BMC的面积是△PBQ面积的1.6倍,∴﹣m2+3m=×1.6,即m2﹣3m+2=0,解得:m1=1,m2=2.∵0<m<3,∴在BC下方的抛物线上存在点M,使△BMC的面积是△PBQ面积的1.6倍,点M的坐标为(1,﹣4)或(2,﹣).【点评】本题考查了二次函数图象上点的坐标特征、二次函数的性质、二次(一次)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)利用二次函数图象上点的坐标特征求出点A、B、C的坐标;关于t的函数关系式;(3)利用三角形的(2)利用三角形的面积公式找出S△PBQ面积结合△BMC的面积是△PBQ面积的1.6倍,找出关于m的一元二次方程.。
2018年安徽省中考数学试卷解析版

2018年安徽中考数学试卷试卷满分:150分教材版本:人教版、沪科版一、选择题:本大题共10小题,每小题3分,共30分.1.(2018安徽,1,4分)-8的绝对值是( B)1A.-8 B.8 C.±8 D.-81.B,解析:根据绝对值的意义,-8的绝对值是8,故选B.2.(2018安徽,2,4分)2017年我省粮食总产量为695.2亿斤,其中695.2亿用科学记数法表示为( C ) A.6.952×106B.6.952×108C.6.952×101°D.695.2×1082.C,解析:695.2亿=69520000000=6.952×101°,故选C.3.(2018安徽,3,4分)下列运算正确的是( D )A.(a2)3=a5B.a4·a2=a8C.a6÷a3=a2D.(ab)3=a3b33.D,解析:4.(2018安徽,4,4分)一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为( A )4.A,解析:根据主视图的概念,该几何体的主视图是选项A中的平面图形,故选A.5.(2018安徽,5,4分) 下列分解因式正确的是( C )A.-x2+4x=-x(x+4) B.x2+xy+x=x(x+y)C.x(x-y)+y(y-x)=(x-y)2D.x2-4x+4=(x+2)(x-2)5.C,解析:选项A中,-x2+4x=-x(x-4),是错误的;选项B中,x2+xy+x=x(x+y+1),是错误的;选项C中,x(x-y)+y(y-x)=x(x-y)-y(x-y)=(x-y)2,是正确的;选项D中,x2-4x+4=(x-2)2,是错误的.故选C.6.(2018安徽,6,4分)据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%,假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则( B )A .b =(1+22.1%×2)aB .b =(1+22.1%)2aC .b =(1+22.1%)2aD .b =22.1%×2a6.B ,解析:2016年有效发明专利分别为a 万件,2017年我省有效发明专利数比2016年增长22.1%,所以2017年有效发明专利为(1+22.1%)a 万件,2018年我省有效发明专利数比2017年增长22.1%,可得2018年有效发明专利为(1+22.1%)2a 万件,即b =(1+22.1%)2a ,故选B .7.(2018安徽,7,4分)若关于x 的一元二次方程x (x +1)+ax =0有两个相等的实数根,则实数a 的值为( A )A .-1B .1C .-2或2D .-3或17.A ,解析:原方程整理为x 2+(a +1)x =0,△=(a +1)2-4×1×0=(a +1)2,由一元二次方程有两个相等的实数根,得△=0,即(a +1)2=0,解得a 1=a 2=-1.选A .8.(2018安徽,8,4分)为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲、乙两组数据,如下表:关于以上数据,说法正确的是( D )A .甲、乙的众数相同B .甲、乙的中位数相同C .甲的平均数小于乙的平均数D .甲的方差小于乙的方差8.D ,解析:由表中数据知,甲的众数是7,乙的众数是8,选项A 错误;甲的中位数是7,乙的中位数是4,选项B 错误;68776251=++++⨯=)(甲x ,58843251=++++⨯=)(甲x ,选项C 错误;s 甲2=])68()66()62[(51222-++-+-⨯ =4.4,s 乙2=])58()53()52[(51222-++-+-⨯ =6.4,选项D 正确.9.(2018安徽,9,4分) □ABCD 中,E ,F 是对角线BD 上不同的两点,下列条件中,不能..得出四边形AECF 一定为平行四边形的是( B )A .BE =DFB .AE =CFC .AF ∥CED .∠BAE =∠DCF9.B ,解析:如图,由□ABCD 得AB =CD ,AB ∥CD ,所以∠ABE =∠CDF ,结合选项A 和D 的条件可得到△ABE ≌△CDF ,进而得到AE =CF ,AE ∥CF ,判断出四边形AECF 一定为平行四边形;结合选项C 的条件可得到△ABF ≌△CDE ,所以AF =CE ,判断出四边形AECF 一定为平行四边形;只有选项B 不能判断出四边形AECF 一定为平行四边形.10.(2018安徽,10,4分)如图,直线1l ,2l 都与直线l 垂直,垂足分别为M ,N ,MN =1.正方形ABCD的边长为2,对角线AC 在直线l 上,且点C 位于点M 处.将正方形ABCD 沿l 向右平移,直到点A 与点N 重合为止.记点C 平移的距离为x ,正方形ABCD 的边位于1l ,2l 之间部分的长度和为y ,则y 关于x 的函数图象大致为( A)A B C D10.A ,解析:由正方形ABCD 的边长为2,易求得其对角线长为2,对角线的一半是1.分三种情况:(1)当0≤x ≤1时,y =22x ,函数图象为直线的一部分(线段),且y 随x 的增大而增大;(2)当1<x ≤2时,y =22,函数图象是平行于x 轴的一条线段;(3)当2<x ≤3时,y =-22x +62,函数图象为直线的一部分(线段),且y 随x 的增大而减小.只有选项A 符合条件,故选A .二、填空题:本大题共14小题,每小题3分,共42分.不需写出解答过程,请把最后结果填在题中横线上.11.(2018安徽,11,5分)不等式128>-x 的解集是 x >10 11.x >10.,解析:去分母得x -8>2,移项、合并同类项得x >10.12.(2018安徽,12,5分)如图,菱形ABOC 的边AB ,AC 分别与⊙O 相切点D ,E ,若点D 是AB 的中点,则∠DOE =____60____°.A BCD EO12.60,解析:连接OA ,∵AB 与⊙O 相切点D ,∴OD ⊥AB ,∵点D 是AB 的中点,∴OA =BO ,∵菱形ABOC ,∴AB =BO =AO ,∴△ABO 是等边三角形,∴∠B =60°,∴∠BAC =120°,∵AC 与⊙O 相切点E ,∴OE ⊥AC ,∴∠DOE =360°-90°-90°-120°=60°.13.(2018安徽,13,5分)如图,正比例函数y =kx 与反比例函数y =x6的图象有一个交点A (2,m ),AB ⊥x 轴于点B ,平移直线y =kx ,使其经过点B ,得到直线l .则直线l 对应的函数表达式是 y =23x -313.y =23x -3.,解析:∵点A (2,m )在反比例函数y =x 6的图象上,∴m =26=3,∴点A 坐标为(2,3),∵AB ⊥x 轴于点B ,∴点B 坐标为(2,0),∵点A (2,3)在直线y =kx 上,∴3=2k ,k =23,根据题意设直线l 对应的函数表达式为y =23x +b ,∵点B (2,0)在直线l 上,∴0=2×23+b ,b =-3.∴直线l 对应的函数表达式为y =23x -3.14.(2018安徽,14,5分)矩形ABCD 中,AB =6,BC =8,点P 在矩形ABCD 的内部,点E 在边BC 上,满足△PBE ∽△DBC ,若△APD 是等腰三角形,则PE 的长为___3或65____. 14.3或65.解析:分两种情况讨论:①如图1,边AD 的垂直平分线与BD 、BC 分别交于点P 、E ,则△APD 等腰三角形,且PE ∥CD ,∴△PBE ∽△DBC .易知PE 是△DBC 的中位线,∴PE =12CD =3;②如图2,以点D 为圆心、以AD 为半径画弧交BD 于点P ,过点P 作PE ⊥BC 于点E ,则△APD 是等腰三角形.由勾股定理求得AD =22AB BC +=10,,则BP =BD -DP =10-8=2.由PE ∥CD 可知△PBE ∽△DBC ,则PE CD =BP BD ,即6PE=210,解得:PE =65.综上所述,PE 的长为3或65.三、解答题(本大题共9小题,满分90分,解答应写出文字说明、证明过程或演算步骤) 15.(2018安徽,15,15分)计算:5°-(-2)+28⨯思路分析:先根据零指数、相反数和二次根式的乘法进行计算,再进行有理数的加减. 解答过程:5°-(-2)+28⨯=1+2+4=7.16.(2018安徽,16,8分)《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何? 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每三家共取一头,恰好取完.问:城中有多少户人家?请解答上述问题.思路分析:设城中有x 户人家,根据相等关系“城中人家的户数+城中人家的户数÷3=100”建立方程求解.解答过程:设城中有x 户人家,根据题意得x +31x =100,解得x =75. 答:城中有75户人家.17.(2018安徽,17,8分)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O ,A ,B 均为网格线的交点.(1)在给定的网格中,以点O 为位似中心,将线段AB 放大为原来的2倍,得到线段A 1B 1(点A ,B 的对应点分别为A 1,B 1).画出线段A 1B 1;(2)将线段A 1B 1绕点B 1逆时针旋转90°得到线段A 2B 2.画出线段A 2B 2; (3)以A ,A 1,B 1,A 2为顶点的四边形AA 1B 1A 2的面积是________个平方单位.思路分析:(1)根据位似作图的方法画图即可;(2)根据旋转的作图方法画图即可;(3)把要求的四边形的面积转化为正方形的面积与几个三角形的面积的差,四边形AA 1B 1A 2的面积是:422142214221422166⨯⨯-⨯⨯-⨯⨯-⨯⨯-⨯=20.或者先判断四边形AA 1B 1A 2是正方形,求得边长为25,再根据正方形的面积求得2)52(=20,.解答过程:(1)(2)如下图所示:(3)20.18.(2018安徽,18,8分)观察以下等式: 第1个等式:11+02+11×02=1, 第2个等式:12+13+12×13=1, 第3个等式:13+24+13×24=1, 第4个等式:14+35+14×35=1, 第5个等式:15+46+15×46=1, ……按照以上规律,解决下列问题: (1)写出第6个等式:____________;(2)写出你猜想的第n 个等式:______________(用含n 的等式表示),并证明.思路分析:(1)分析给出5个等式发现,等式左边是三个分数的和,第1个分数的分子都是1,分母与等式的序号相同;第2个分数的分子比等式的序号小1,而分母比等式的序号大1;第3个分数正好是前两个分数的乘积,等式的右边均为1.据此可写出第6个等式.(2)根据(1)中发现的规律可写出第n 个等式,并根据分式的运算进行证明.解答过程:(1)75617561⨯++=1; (2)第n 个等式是111111+-⨯++-+n n n n n n =1. 证明:∵左边=111111+-⨯++-+n n n n n n =)1()1()1(1)1(1++=+-+-++n n n n n n n n n n =1,右边=1,∴等式成立. 19.(2018安徽,19,10分)为了测量竖直旗杆AB 的高度,某综合实践小组在地面D 处竖直放置标杆CD ,并在地面上水平放置一个平面镜E ,使得B ,E ,D 在同一水平线上,如图所示.该小组在标杆的F 处通过平面镜E 恰好观测到旗杆顶A (此时∠AEB =∠FED ),在F 处测得旗杆顶点A 的仰角为39.3°,平面镜E 的俯角为45°,FD =1.8米,问旗杆AB 的高度约有多少米?(结果保留整数) (参考数据:tan 39.3°≈0.82,tan 84.3°≈10.02)思路分析:设AB =x ,根据题意可得DF =DE =1.8,BE =AB =x ,过点F 作FG ⊥AB 于点G ,在Rt △AFG 中根据锐角三角函数关系建立方程求解.也可以先证△AEF 是直角三角形,用勾股定理求得EF ,用含x 的式子表示AE ,根据三角函数关系求解.解答过程:方法一:根据题意∠DEF =∠DFE =45°,∵∠AEB =∠FED ,∴∠AEB =∠EAB =45°,设AB =x ,∴AB =BE =x ,过点F 作FG ⊥AB 于点G ,在Rt △AFG 中,AG =x -1.8,FG =x +1.8,∵tan 39.3°=FE AE ,∴0.82=8.18.1+-x x ,解得x ≈18(米).方法二:根据题意∠DEF =∠DFE =45°,∵∠AEB =∠FED ,∴∠AEB =∠EAB =45°,∴∠FEA =90°,设AB =x ,在Rt △AFE 中,EF =1.82⨯,AE =2x ,∵tan 84.3°=FG AG ,∴10.02=28.12⨯x,解得x ≈18(米).20.(2018安徽,20,10分)如图,⊙O 为锐角△ABC 的外接圆,半径为5.(1)用尺规作图作出∠BAC 的平分线,并标出它与劣弧BC 的交点E (保留作图痕迹,不写作法); (2)若(1)中的点E 到弦BC 的距离为3,求弦CE 的长.思路分析:(1)根据角平分线的尺规作图方法画图即可;(2)连接OE 交BC 于F ,连接OC ,CE ,由圆周角定理得到等弧,再由垂径定理得到OE ⊥BC ,运用勾股定理先求CF ,后求CE .解答过程:(1)如图所示:(2)连接OE 交BC 于F ,连接OC ,CE ,由(1)得∠BAE =∠CAE ,∴»BE=»CE ,∴OE ⊥BC .在Rt △OCF 中,CF =21252222=-=-OF OC ;在Rt △ECF 中,CE =3092122=+=+EF CF .21.(2018安徽,21,12分)“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图,部分信息如下:(1)本次比赛参赛选手共有_________人,扇形统计中“69.5~79.5”这一组人数占总参赛人数的百分比为________;(2)赛前规定,成绩由高到低前60%的参赛选手获奖,某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.思路分析:(1)由频数直方图知59.5~69.5的频数是5人,而由扇形统计图知59.5~69.5占10%,所以本次比赛参赛选手有5÷10%=50人;89.5~99.5有12人,占12÷50×100%=24%,所以69.5~79.5占1-36%-10%-24%=30%;(2)由(1)的计算结果可求出59.5~79.5占40%或求出79.5~99.5占60%,故判断78分的选手不能获奖.(3)先用树状图或列表分析所有可能出现的结果,再运用概率公式求解.解答过程:(1)50;30%.(2)不能获奖.理由:由扇形统计图知59.5~69.5占10%,由(1)知69.5~79.5占30%,所以59.5~79.5占10%+30%=40%,又78<79.5,所以78分的选手不能获奖.(3)画树状图分析:一共有12种不同的结果,而出现1男1女的情况有8种,所以P (1男1女)=32128 . 22.(2018安徽,22,12分)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆,售后统计,盆景平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元; ②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为W 1,W 2(单位:元) (1)用含x 的代数式分别表示W 1,W 2;(2)当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少? 思路分析:(1)分别用含x 的代数式表示第二期培植的盆景和花卉的数量,根据利润=每盆的利润×数量可求解;(2)先根据W =W 1+W 2用含x 的代数式表示W ,并配成顶点形式,再结合抛物线的开口方向、自变量x 的取值范围和x 是正整数可求出W 的最大值.解答过程:(1)W 1=(x +50)(160-2x )=-2x 2+60x +8000;W 2=19(50-x )=-19x +950. (2)W =W 1+W 2=(-2x 2+60x +8000)+(-19x +950)=-2x 2+41x +8950=-2(x -441)2+916081.∵-2<0,∴抛物线开口向下,又0<x <50,且x 是整数,当x =10时,W 最大=-2×(10-441)2+916081=9160(元);当x =11时,W 最大=-2×(11-441)2+916081=9159(元).综上所述当x =10时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大利润是9160元.23.(2018·安徽,23,14分)如图1,Rt △ABC 中,∠ACB =90°,点D 为边AC 上一点,DE ⊥AB 于点E ,点M 为BD 中点,CM 的延长线交AB 于点F . (1)求证:CM =EM ;(2)若∠BAC =50°,求∠EMF 的大小;(3)如图2,若△DAE ≌△CEM ,点N 为CM 的中点,求证:AN ∥/EM .思路分析:(1)根据直角三角形的性质,把CM ,EM 转化为21BD ;(2)方法一:先求出∠ABC =40°,证CM =DM =BM =EM 得点B ,C ,D ,E 在以点M 为圆心,BD 为直径的⊙M 上,根据圆周角定理求得∠CME =80°即可;方法二:先求出∠ABC =40°,由四边形的内角和求得∠CDE =140°,整体求得∠DCM +∠DEM =140°,进而求得∠CME =80°即可;(3)由△DAE ≌△CEM ,得DE =CM ,AE =EM ,∠DEA =∠CME =90°,结合CM =DM =EM 证得△DME 是等边三角形,得到∠MEF =30°,设AE =a ,分别用含a 的代数式表示MN ,MF ,AE ,EF ,通过计算得到EFAEMF MN,从而得出结论. 解答过程:(1)∵∠ACB =90°,点M 为BD 中点,∴CM =21BD ,同理EM =21BD ,∴CM =EM ; (2)方法一:∵∠ACB =90°,∠BAC =50°,∴∠ABC =40°,由(1)得CM =DM =BM =EM ,∴点B ,C ,D ,E 在以点M 为圆心,BD 为直径的⊙M 上,∴∠CME =2∠ABC =80°,∴∠EMF =180°-80°=100°.方法二:∵∠ACB =90°,∠BAC =50°,∴∠ABC =40°,∵DE ⊥AB ,∴∠CDE =360°-90°-90°-40°=140°,由(1)得CM =DM =EM ,∴∠MCD =∠MDC ,∠MED =∠MDE ,∴∠DCM +∠DEM =∠MDC +∠MDE =140°,∴∠CME =360°-140°-140°=80°,∴∠EMF =180°-80°=100°.(3)∵△DAE ≌△CEM ,∴DE =CM ,AE =EM ,∠DEA =∠CME =90°,又CM =DM =EM ,∴DM =DE =EM ,∴△DME 是等边三角形,∴∠DEM =60°,∴∠MEF =30°,设AE =a ,则AE =EM =CM =a ,第 11 页 共 11 页在Rt △EMF 中,MF =33a ,EF =332,∵点N 为CM 的中点,∴MN =21CM =21a ,∴233321==a a MF MN ,23332==a a EF AE ,∴EF AE MF MN =,∴AN ∥/EM .。
浙江省绍兴市2018届九年级中考复习卷(1)数学试题(pdf版)答案
2018年九年级数学中考复习卷(1)参考答案及评分建议一、选择题(4×10=40分) 1.D 2.A 3.B 4.D 5.A 6.C 7.D 8.B9.C10.D二、填空题(5×6=30分) 11.1412.b (2a +3)(2a -3) 13.12014.(35-,45) 15.1216 2 ;②21三、解答题(80分) 17.(8分)(1)图略,AC 的中点为O (2)45° 18.(8分) 解:y ,于是原方程可化为260y y +-=12y =,23y =-(舍去)当y =2时,2214x x --=,2250x x --=,1x =经检验,11x =,21x =是原方程的解. 19.(8分) 解:(1)过点E 作EF ⊥BC 于点F .在Rt △CEF 中,CE =20,EF CF =∴)22220EF +=∵EF >0,(2)过点E 作EH ⊥AB 于点H . 则HE =BF ,BH =EF .在Rt △AHE 中,∠HAE =45° ∴AH =HE 由(1)得CF =BC =25米∴25HE =+∴25103552.3AB AH BH =+=+=+(米)答:楼房AB 的高约是52.3米20.(10分)解:(1)连接OC .∵AE ⊥CD ,CF ⊥AB ,CE =CF∴∠1=∠2 ∵OA =OC∴∠2=∠3∴∠1=∠3∴OC ∥AE∴OC ⊥CD∴DE 是⊙O 的切线. (2)∵AB =6,∴132OB OC AB ===. 在Rt △OCD 中,OC =3,OD =OB +BD =6, ∴∠D =30°,∠COD =60°. 在Rt △ADE 中,AD =AB +BD =9,∴1922AE AD ==.在△OBC 中, ∵∠COD =60°,OB =OC , ∴△OBC 是等边三角形.∴BC =OB =3.2 3 ·OC B ADF E1AD BE CF1A1C解:(1)EA 1=FC证明: ∵AB =BC ,∴∠A =∠C由旋转可知,AB =BC 1,∠A =∠C 1,∠ABE =∠C 1BF , ∴△ABE ≌△C 1BF∴BE =BF ,又∵BA 1=BC ∴BA 1-BE =BC -BF 即EA 1=FC(2)四边形BC 1DA 是菱形证明:∵∠A 1=∠ABA 1=30° ∴A 1C 1∥AB 同理AC ∥BC 1∴四边形BC 1DA 是平行四边形 又∵AB =BC 1∴四边形BC 1DA 是菱形(3)过点E 作EG ⊥AB 于点G ,则AG =BG =1 在Rt △AEG 中,1cos cos30AG AE A ===°由(2)知四边形BC 1DA 是菱形, ∴AD =AB =2∴2ED AD AE =-=22.(10分) 解:(1)左平移1个单位; (2)基本函数为2y x =;朋友路径为先向右平移3个单位,再向下平移4个单位; 相应的朋友距离为5. (3)函数可化为131y x =++,朋友路径为先向左平移1个单位,再向上平移3个单位.相解:(1)()()2210105040101102100y x x x x =-+-=-++(015x <≤且x 为整数); (2)()210 5.52402.5y x =--+.∵a =-10<0,∴当x =5.5时,y 有最大值2402.5. ∵015x <≤,且x 为整数,当x =5时,50+x =55,y =2400(元),当x =6时,50+x =56,y =2400(元)∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元. (3)当y =2200时,21011021002200x x -++=,解得:11x =,210x =.∴当x =1时,50+x =51,当x =10时,50+x =60.∴当售价定为每件51或60元,每个月的利润为2200元. 当售价不低于51或60元,每个月的利润为2200元.当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元).24.(14分)(1)设第一象限内的点B (m ,n ),则1t a n 9n P O B m ==∠,得m =9n ,又点B 在函数1y x=的图象上,得1n m =,所以m =3(-3舍去),点B 为(3,13),而AB ∥x 轴,所以点A (13,13),所以18333AB =-=;(2)由条件可知所求抛物线开口向下,设点A (a ,a ),B (1a ,a ),则183AB a a =-=,所以23830a a +-=,解得3a =-或13a =当a =-3时,点A (-3,-3),B (13-,-3),因为顶点在y =x 上,所以顶点为(53-,53-),所以可设二次函数为25533y k x ⎛⎫=+- ⎪⎝⎭,点A 代入,解得34k =-,所以所求函数解析式为2355433y x ⎛⎫=-+- ⎪⎝⎭.同理,当13a =时,所求函数解析式为2355433y x ⎛⎫=--+ ⎪⎝⎭;(3)设A (a ,a ),B (1a ,a ),由条件可知抛物线的对称轴为122a x a=+ 设所求二次函数解析式为:()91225y x x a a ⎡⎤⎛⎫=--++ ⎪⎢⎥⎝⎭⎣⎦点A (a ,a )代入,解得13a =,2613a =,所以点P 到直线AB 的距离为3或613。
18年浙江省绍兴市初中数学中考试题及答案
2018年浙江省绍兴市初中数学中考试题及答案2018年绍兴市初中毕业生学业考试数学试题卷卷Ⅰ一、选择题1.如果向东走2m记为?2m,则向西走3m 可记为A.?3m B.?2m C.?3m D.?2m 2.绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017年清理河湖库塘淤泥约116000000方,数字116000000用科学记数法可以表示为A.?10 B.?10C.?10D.?10 3.有6个相同的立方体搭成的几何体如图所示,则它的主视图是9879 A.B.C.D. 4.抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是A.1115 B.C.D.63265322222245.下面是一位同学做的四道题:①(a?b)?a?b.②(?2a)??4a.③a?a?a.④a?a?a.其中做对的一道题的序号是A.①B.②C.③D.④6.如图,一个函数的图象射线BA、线段BC、射线CD组成,其中点A(?1,2),B(1,3),3412C(2,1),D(6,5),则此函数A.当x?1时,y随x的增大而增大B.当x?1时,y随x的增大而减小C.当x?1时,y随x的增大而增大D.当x?1时,y随x的增大而减小7.学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC 位置,已知AB?BD,CD?BD,垂足分别为B,D,AO?4m,AB?,CO?1m,则栏杆C端应下降的垂直距离CD 为A.B.C.D.8.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a?23?b?22?c?21?d?20.如图2第一行数字从左到右依次为0,1,0,1,序号为0?2?1?2?0?2?1?2?5,表示该生为5班学生.表示6班学生的识别图案是3210A.B.C.D.9.若抛物线y?x2?ax?b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线.已知某定弦抛物线的对称轴为直线x?1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点A.(?3,?6)B.(?3,0)C.(?3,?5) D.(?3,?1) 10.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形.现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉.若有34枚图钉可供选用,则最多可以展示绘画作品A.16张B.18张C.20张D.21张卷Ⅱ二、填空题11.因式分解:4x?y?.12.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为尺,竿子长为尺.13.如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O为圆心,22?AOB?120,从A到B只有路AB,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB.通过计算可知,这些市民其实仅仅少走了步.14.等腰三角形ABC中,顶角A为40,点P在以A为圆心,BC 长为半径的圆上,且BP?BA,则?PBC的度数为.15.过双曲线y?k(k?0)的动点A作AB?x轴于点B,P是直线AB上的点,且满足xAP?2AB,过点P作x轴的平行线交此双曲线于点C.如果?APC的面积为8,则k的值是.16.实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为xcm.现往容器内放入如图的长方体实心铁块,过顶点A的三条棱的长分别是10cm,10cm,ycm(y?15),当铁块的顶部高出水面2cm 时,x,y满足的关系式是.三、解答题17.计算:2tan60?12?(3?2)?(). 解方程:x?2x?1?0. 18.为了解某地区机动机拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2017年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:2013?1 根据统计图,回答下列问题:写出2016年机动车的拥有量,分别计算2010年~2017年在人民路路口和学校门口堵车次数的平均数. 根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.19.一辆汽车行驶时的耗油量为升/千米,如图是油箱剩余油量y关于加满油后已行驶的路程x的函数图象. 根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量. 求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程. 20.学校拓展小组研制了绘图智能机器人,顺次输入点P1,P2,P3的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式. P1(4,0),P3(6,6). 2(0,0),PP1(0,0),P3(6,6). 2(4,0),P21.如图1,窗框和窗扇用“滑块铰链”连接.图3是图2中“滑块铰链”的平面示意图,滑轨MN安装在窗框上,托悬臂DE安装在窗扇上,交点A处装有滑块,滑块可以左右滑动,支点B,C,D始终在一直线上,延长DE交MN于点F.已知AC?DE?20cm,AE?CD?10cm,BD?40cm. 窗扇完全打开,张角?CAB?85,求此时窗扇与窗框的夹角?DFB的度数. 窗扇部分打开,张角?CAB?60,求此时点A,B 之间的距离. 22.数学课上,张老师举了下面的例题:例 1 等腰三角形ABC中,?A?110,求?B的度数. 例2 等腰三角形ABC中,?A?40,求?B 的度数. 张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,?A?80,求?B的度数. 请你解答以上的变式题. 解后,小敏发现,?A的度数不同,得到?B的度数的个数也可能不同.如果在等腰三角形ABC 中,设?A?x,当?B有三个不同的度数时,请你探索x的取值范围. 23.小敏思考解决如下问题:原题:如图1,点P,Q分别在菱形ABCD的边BC,CD 上,?PAQ??B,求证:AP?AQ. 小敏进行探索,若将点P,Q的位置特殊化:把?PAQ绕点A旋转得到?EAF,使AE?BC,点E,F分别在边BC,CD上,如图2,此时她证明了AE?AF.请你证明. 受以上的启发,在原题中,添加辅助线:如图3,作AE?BC,AF?CD,垂足分别为E,F.请你继续完成原题的证明. 如果在原题中添加条件:AB?4,?B?60,如图 1.请你编制一个计算题,并直接给出答案. 24.如图,公交车行驶在笔直的公路上,这条路上有A,B,C,D 四个站点,每相邻两站之间的距离为5千米,从A站开往D站的车称为上行车,从D站开往A站的车称为下行车.第一班上行车、下行车分别从A站、D站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在A,D站同时发一班车,乘客只能到站点上、下车,上行车、下行车的速度均为30千米/小时. 问第一班上行车到B站、第一班下行车到C站分别用时多少?若第一班上行车行驶时间为t小时,第一班上行车与第一班下行车之间的距离为s千米,求s与t的函数关系式. 一乘客前往A站办事,他在B,C两站间的P处,刚好遇到上行车,BP?x千米,此时,接到通知,必须在35分钟内赶到,他可选择走到B站或走到C站乘下行车前往A站.若乘客的步行速度是5千米/小时,求x满足的条件. 浙江省2018年初中毕业生学业考试绍兴市试卷数学参考答案一、选择题1-5: CBDAC6-10: ACBBD 二、填空题11. (2x?y)(2x?y)12. 20,1513. 15 14. 30或11015. 12或 4 16. y?6x?1065120?15x(0?x?)或y?(6?x?8) 562三、解答题17.解:原式?23?23?1?3?2. x?2?22,2x1?1?2,x2?1?2. 18.解:万辆. 人民路路口的堵车次数平均数为120. 学校门口的堵车次数平均数为100. 不唯一,如:2010年~2013年,随着机动车拥有量的增加,对道路的影响加大,年堵车次数也增加;尽管2017年机动车拥有量比2016年增加,于进行了交通综合治理,人民路路口堵车次数反而降低. 19.解:汽车行驶400千米,剩余油量30升,加满油时,油量为70升. 设y?kx?b(k?0),把点(0,70),(400,30)坐标分别代入得b?70,k??,∴y???70,当y?5时,x?650,即已行驶的路程为650千米. 4?0?4?0,20.解:∵P1(4,0),P2(0,0),∴绘制线段PP12,PP12?4. ∵P1(0,0),P3(6,6),0?0?0,2(4,0),P ∴绘制抛物线,设y?ax(x?4),把点(6,6)坐标代入得a?∴y?1,211x(x?4),即y?x2?2x. 2221.解:∵AC?DE,AE?CD,∴四边形ACDE是平行四边形,∴CA//DE,∴?DFB??CAB?85. 如图,过点C作CG?AB于点G,∵?CAB?60,∴AG?20cos60?10,CG?20sin60?103,∵BD?40,CD?10,∴BC?30,在Rt?BCG中,BG?106,∴AB?AG?BG?10?106?22.解:当?A为顶角,则?B?50,当?A 为底角,若?B为顶角,则?B?20,若?B 为底角,则?B?80,∴?B?50或20或80. 分两种情况:①当90?x?180时,?A 只能为顶角,∴?B的度数只有一个. ②当0?x?90时,若?A为顶角,则?B???180?x??,?2?若?A为底角,则?B?x或?B?(180?2x),当180?x180?x?180?2x且?x且180?2x?x,即x?60时,22?B有三个不同的度数. 综上①②,当0?x?90且x?60,?B有三个不同的度数. 23.解:如图1,在菱形ABCD中,?B??C?180,?B??D,AB?AD,∵?EAF??B,∴?C??EAF?180,∴?AEC??AFC?180,∵AE?BC,∴?AEB??AEC?90,∴?AFC?90,?AFD?90,∴?AEB??AFD,∴AE?AF. 如图2,,∵?PAQ??EAF??B,∴?EAP??EAF??PAF??PAQ??PAF??FAQ ,∵AE?BC,AF?CD,∴?AEP??AFQ?90,∵AE?AF,∴?AEP??AFQ,∴AP?AQ. 不唯一,举例如下:层次1:①求?D 的度数.答案:?D?60. ②分别求?BAD,?BCD的度数.答案:?BAD??BCD?120. ③求菱形ABCD的周长.答案:16. ④分别求BC,CD,AD的长.答案:4,4,4. 层次2:①求PC?CQ的值.答案:4. ②求BP?QD 的值.答案:4. ③求?APC??AQC的值.答案:180. 层次3:①求四边形APCQ 的面积.答案:43. ②求?ABP与?AQD的面积和.答案:43. ③求四边形APCQ周长的最小值.答案:4?43. ④求PQ中点运动的路径长.答案:23. 24.解:第一班上行车到B站用时第一班下行车到C站用时51?小时. 30651?小时. 306当0?t?当1时,s?15?60t. 411?t?时,s?60t?15. 42知同时出发的一对上、下行车的位置关于BC中点对称,设乘客到达A站总时间为t分钟,当x?时,往B站用时30分钟,还需再等下行车5分钟,t?30?5?10?45,不合题意. 当x?时,只能往B站坐下行车,他离B站x千米,则离他右边最近的下行车离C站也是x 千米,这辆下行车离B站(5?x)千米. 如果能乘上右侧第一辆下行车,x5?x55?,x?,∴0?x?,53077418?t?20,75∴0?x?符合题意. 7如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,x?5,7x10?x10?,x?,530751014∴?x?,27?t?28,7777510∴?x?符合题意. 77如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,x?10,7x15?x15?,x?,5307101551?x?,35?t?37,不合题意. ∴777710∴综上,得0?x?.7当x?时,乘客需往C站乘坐下行车,离他左边最近的下行车离B站是(5?x)千米,离他右边最近的下行车离C 站也是(5?x)千米,如果乘上右侧第一辆下行车,∴x?5,不合题意. 5?x5?x?,530如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,x?5,5?x10?x?,x?4,∴4?x?5,30?t?32,530∴4?x?5符合题意. 如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,x?4,5?x15?x?,3?x?4,42?t?44,530∴3?x?4不合题意. ∴综上,得4?x?5.综上所述,0?x?10或4?x?5. 7。
浙江省余姚中学2018届高三选考科目模拟卷(二)数学试题(解析版)
2018届高三数学测试卷一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 若集合,,则=()A. B. C. D.【答案】C【解析】试题分析:化简集合故选C.考点:集合的运算.2. 已知i是虚数单位,则()A. B. C. D.【答案】D【解析】【分析】利用复数的运算法则即可化简得出结果【详解】故选【点睛】本题考查了复数代数形式的乘除运算,属于基础题。
3. 已知为一条直线,为两个不同的平面,则下列说法正确的是()A. 若B. 若则C. 若D. 若【答案】D【解析】试题分析:选项A中,若m∥α,α∥β,则m∥β或m⊂β,故A错误;选项B中,若α⊥β,m⊥α,则m∥β或m⊂β,故B错误.选项C中,若m∥α,α⊥β,则m与β平行或相交或m⊂β,故C错误;选项D中,若m⊥α,α∥β,则由直线与平面垂直的判定定理知m⊥β,故D正确;故选:D.考点:空间中直线与直线之间的位置关系.4. “”是“直线与互相平行”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】利用两条直线互相平行的条件进行判定【详解】当时,直线方程为与,可得两直线平行;若直线与互相平行,则,解得,,则“”是“直线与互相平行”的充分不必要条件,故选【点睛】本题主要考查了两直线平行的条件和性质,充分条件,必要条件的定义和判断方法,属于基础题。
5. 设函数的定义域为,且是奇函数,是偶函数,则下列结论中一定正确的是()A. 是偶函数B. 是奇函数C. 是奇函数D. 是奇函数【答案】C【解析】试题分析:由奇偶函数定义可知,,A错;,B错;同理D错;C项正确.考点:用定义判断奇偶函数.6. 为得到函数的图像,只需将函数的图像()A. 向右平移个长度单位B. 向左平移个长度单位C. 向右平移个长度单位D. 向左平移个长度单位【答案】B【解析】【分析】运用诱导公式先化简,然后根据图形的平移得到答案【详解】由图象平移的规则可知只需将函数的图象向左平移个长度单位级就可以得到函数的图象故选【点睛】本题考查了三角函数图像的平移,先运用诱导公式进行化简成同名函数,然后运用图形平移求出结果,本题较为基础。
2018年绍兴市中考数学试卷(含答案解析)-推荐
6③ D.④浙江省绍兴市2018年中考数学试卷、选择题1.如果向东走2m 记为+2m,则向西走3米可记为(D. -2m2.绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省116000000方,数字116000000用科学记数法可以表示为(C. 1.16 X 1079D. 0.116 X 10数字为2的概率是( A.A. +3mB. +2mC. -3mD.C.5.下面是一位同学做的四道题◎( a+b ) 2=a 2+b 2 ,笑(2a 2) 2=-4a 4③a 5+a 3=a 23 4 12④a •a =a 。
其中做对的一道题的序号是 A.①”i B. C.2017年清理河湖库塘淤泥约为A. 1.16 X 109B.1.16 X 108 3.有6个相同的立方体搭成的几何体如图所示,则它的主视图是(D.4.抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1, 2, 3, 4, 5, 6,则朝上一面的A.B.6.如图,一个函数的图像由射线BA,线段BC 射线CD,其中点 A (-1 , 2), B (1 , 3), C(2, 1), DD. 0.5m8.利用如图1的二维码可以进行身份识别,某校建立了一个身份识别系统,图2是某个学生的识别图案, 黑色小正方形表示 1,白色小正方形表示 0 ,将第一行数字从左到右依次记为a ,b ,c ,d ,那么可以转换为该生所在班级序号, 其序号为a X23+b X2 2+c X21+d X2 °。
如图2第一行数字从左到右依次为 0 , 1 , 0 , 1 ,序号为0X 2 3+1 X 2 2+0X 21+1 X 2 0=5 ,表示该生为5班学生,表示6班学生的识别图案是()(6, ,则此函数(A.减小 C.减小7.学校门口的栏杆如图所示, 为 B , D , A0=4 AB=1.6m, 栏杆从水平位置C0=1m 则栏杆 B.D.BD 绕0点旋转到 AC 位置,已知 C 端应下降的垂直距离 CD %(IIx v 1, y 随x 的增大而x > 1, y 随x 的增大而 AB 丄BD, CDL BD,垂足分别B. 0.3mC. 0.4m>的E9. 若抛物线y=x 2+ax+b 与x 轴两个交点间的距离为 2,称此抛物线为定弦抛物线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
余姚市2018年初中毕业数学试题
一. 选择题(每小题3分,共30分)
1.已知y=√x - 3 中,自变量x的取值范围是( )
(A)x>3 (B)x> -3 (C)x>3 (D)x>-3
2.已知α是锐角,cosα=√3 /2,则α等于( )
(A) 300 (B)450 (C)6O0 (D)900
3.一次函数y=ax+b,若a+b=1,则它的图象必经过点( )
(A) (-1,-1) (B) (-1, 1) (C) (1, -1) (D) (1, 1)
4.已知十个数据如下:63, 65, 67, 69, 66, 64,66, 64, 65, 68, 对这些数据编制频率分布
表,其中64.5---66.5这组的频率是( )
(A) 0.4 (B) 0.5 (C) 4 (D) 5
5.已知⊙o的半径为3cm,则与⊙o内切且半径为2cm的圆的圆心的轨迹是( )
(A)到点0的距离为1cm的一条直线 (B)以点0为圆心,1cm长为半径的圆
(C)到点0的距离为5cm的一条直线 (D)以点0为圆心,5cm长为半径的圆
6.不等式组的解为 ( )
(A)X<-2 (B)-2
7.粮仓顶部是圆锥形,这个圆锥的底面直径为4m,母线长为3m,为防雨需在仓顶部铺上油毡,
这块油毡面积是( )
(A)6m2 (B)6πm2 (C)12m2 (D)12πm2
8.菱形、矩形、正方形都具有的性质是( )
(A)对角线相等 (B)对角线互相垂直 (C)对角线互相平分 (D)对角线平分一组对角
9.将棱长相等的正方体按如图所示的形状摆放,从上往下依次为第一层、第二层、第三层…….
则第2018层正方体的个数为( )
(A)2018010 (B)2018000
(C )2018005 (D)2018
10.向高为10cm的容器中注水,注满为止,若注水量V(cm3)与水深h(cm)之间的关系的图象大
致如下图,则这个容器是下列四个图中的
V/cm3
10 h/cm (A) (B) (C) (D)
二. 填空题(每小题3分,共24分)
11.点P(-1, 3 )关于原点对称的点的坐标是 .
12.抛物线y= ( x – 1)2 – 7的对称轴是直线 ..
13.有一面积为60的梯形,其上底长是下底的1/3,若下底的长为x,高为y,则y与x的函数关
系式为 .
14.某种商品原价50元.因销售不畅,3月份降价10%,从4月份开始涨价,5月份的售价为64.8
元,则4、5月份两个月平均涨价率为 .
15.如图, ⊙o的割线PAB交⊙o于点A、B,PA=m,AB=5cm。PO=10cm,则⊙o的半径为 。
P
C A B O
16.若半径为6cm和5cm的两圆相交,且公共弦长为6cm.则两圆的圆心距为 .
17.掷一颗普通的正方形骰子,点数为偶数的概率为 .
18.将一张长方形的纸对折,如图所示,可得到一条折痕(图中虚线),继续对折,对折时每次折痕
与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到 条
折痕,如果对折n次,可以得到 条折痕.
三. 解答题(第19---23题各4分,第24题5分.25题6分26题7分27题8分共46分)
19.计算:( - 2)2- (1 - √2 )0
20.解方程:
21.已知, x1 , x2 是方程 3x2 +2x – 1=0的两根, 求x12 +x22 的值.
22.如图,已知D、E是等腰△ABC底边BC上两点,且BD=CE.
求证:∠ADE=∠AED
23.把一个等腰直角三角形和一个正三角形分别分割成3个三角形,使等腰直角三角形中的3
个小三角形和正三角形中的3 个小三角形分别相似请画出三角形的分割线,在小三角形的各
个角上标出度数.
21.如图,一艘轮船在海上以每小时36海里的速度向正西方向航行,上午8时,在B处测得小岛
A在北偏东300方向,之后轮船继续向正西方向航行,于上午9时到达C处,这时测得小岛A 在
北偏东600方向.如果轮船仍继续向正西方向航行,于上午11时到达D处,这时轮船与小岛A
相距多远?
第一次对折 第二次对折 第三次对折
A
B
D
E
C
正三角形
等腰直角三角形
A
D
C
B
北
北
60
0
30
0
–
=1
25.如图,AB为⊙o直径,过弦AC的点C作CF⊥AB于点D,交AE所在直线于点F.
(1) 求证:AC2=AE•AF;
(2) 当弦AC绕点A 沿顺时针旋转(C、F不与A、B、E重合)时,请画出
满足题意的其它的全部图形;
(3) 猜想每个图形是否还有(1)中的结论,并就其中的一个图形证明你的猜
想.
26.已知抛物线y=x2+bx –a2.
(1) 请你选定a、b适当的值,然后写出这条抛物线与坐标轴的三个交点,并画出过三个交点
的圆.
(2) 试讨论此抛物线与坐标轴交点分别是1个,2个,3个时,a、b的取值范围,并且求出交点
坐标.
A
F
E
D
O
C
B
27.如图:等边三角形ABC的边长为1 ,P为AB边上的一个动点(不包括A、B),过P作PQ⊥
BC于Q,过Q作QR⊥AC于R,再过R作RS⊥AB于S .设AP=x,AS=y.
(1) 求y与x之间的函数关系式,并写出自变量取值范围.
(2) 若SP=1/4,求AP的长.
(3) 若S、P重合点为T,试说明当P、S不重合时,P、S中的哪一个更接近T点?将上述操
作,即按逆时针方向,过垂足作相邻边的垂线,若操作不断进行,试依据你的结论,猜
想无论P的初始位置如何,P、S……等这些点最终将会出现怎样的趋势?(只要直接写出
结果)
A
P
S
B Q C
R