苏科版八年级上《第1章全等三角形》单元测试(四)含答案解析
第一章 全等三角形数学八年级上册-单元测试卷-苏科版(含答案)

第一章全等三角形数学八年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、如图,点D、E分别在AC、AB上,已知AB=AC,添加下列条件,不能说明的是()A. B. C. D.2、下列命题中正确的命题有()个①两个全等的三角形一定关于某直线对称;②等腰三角形的高、中线、角平分线互相重合;③等腰三角形的对称轴是顶角的平分线④顶角和底边对应相等的两个等腰三角形全等;A. B. C. D.3、已知△ABC≌△DEF,BC= EF=6m,△A BC的面积为18㎡,则EF边上的高的长是( ).A.3mB.4mC.5mD.6m4、如图,已知AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE与CF交于点D,则下列结论中错误的是()A.△ABE≌△ACFB.△BDF≌△CDEC.点D是BE的中点D.点D 在∠BAC的平分线上5、如图,已知∠ABC=∠DCB,若再增加下列条件中的某一个,仍不能判定△ABC≌△DCB,则这个条件是()A.∠A=∠DB.AC=DBC.AB=DCD.∠ACB=∠DBC6、如图,在△ABC和△DEF中,AB=DE,AB∥DE,添加下列条件仍无法证明△ABC≌△DEF 的是()A.AC∥DFB.∠A=∠DC.AC=DFD.BE=CF7、如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.3对B.4对C.2对D.5对8、在平面直角坐标系中,点为,连接并把线段绕原点逆时针旋转90°,所得到的对应点的坐标为()A. B. C. D.9、如图,已知点D在AC上,点B在AE上,△ABC≌△DBE,且∠BDA=∠A,若∠A:∠C=5:3,则∠DBC=()A.30°B.25°C.20°D.15°10、已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P的运动时间为秒,当的值为_____秒时,△ABP和△DCE全等.( )A.1B.1或3C.1或7D.3或711、如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A.①和②B.③C.②D.①12、如图,用尺规作图作∠BAC的平分线AD,第一步是以A为圆心,任意长为半径画弧,分别交AB,AC于点E,F;第二步是分别以E,F为圆心,以大于EF长为半径画弧,两圆弧交于D点,连接AD,AD即为所求作,请说明△AFD≌△AED的依据是()A. SSSB. SASC. ASAD. AAS13、如图,若,且AB=8,AE=3,则EC的长为()A.2B.3C.5D.2.514、如图,AB=AC,D,E分别是AB,AC上的点,下列条件不能判断△ABE≌△ACD 的是()A.∠B=∠CB. BE=CDC. AD=AED. BD=CE15、如图,在等边中,点、分别为、边上一点,连接、交于点,若,则的度数是()A.30°B.40°C.50°D.60°二、填空题(共10题,共计30分)16、如图,,,,则________.17、如图,如果图中的两个三角形全等,根据图中所标数据,可以推理得到∠α=________.18、如图,在中,AD平分,按如下步骤作图:第一步,分别以点A、D为圆心,以大于的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若,,,求BD的长是________.19、在平面直角坐标系中,已知点A,B的坐标分别是,,若在x轴下方有一点P,使以O,A,P为顶点的三角形与全等,则满足条件的P点的坐标是________.20、如图,锐角△ABC中,D,E分别是AB,AC边上的点,△ADC≌△ADC',△AEB≌△AEB',且C'D∥EB'∥BC,记BE,CD交于点F,若∠BAC=x°,则∠BFC的大小是________°.(用含x的式子表示)21、如图,已知是等边△内一点,是线段延长线上一点,且,=120°,那么________.22、如图,△ABC≌△DCB,∠DBC=40°,则∠AEB=________度.23、如图,△ABC角平分线AE、CF交于点P,BD是△ABC的高,点H在AC上,AF=AH,下列结论:①∠APC=90°+ ABC;②PH平分∠APC;③若BC>AB,连接BP,则∠DBP=∠BAC﹣∠BCA;④若PH∥BD,则△ABC为等腰三角形,其中正确的结论有________(填序号).24、若A(2,0),B(0,4),C(2,4),D为坐标平面内一点,且△ABC与△ACD全等,则D点坐标为________.25、在△ABC和△中,若∠A=∠,AB= ,请你补充一个条件________,使得△ABC ≌△.三、解答题(共5题,共计25分)26、如图,已知AB=AD,且AC平分∠BAD,求证:BC=DC27、如图,△ACF≌△DBE,∠E=∠F,若AD=11,BC=7,求线段AB的长.28、如图,在矩形ABCD中,点E、F分别是边AB、CD的中点.求证:DE=BF.29、四边形中,对角线,交于点,,点是上一点,且,.求证:.30、如图,在中,点E是的中点,连接并延长,交的延长线于点F.求证:.参考答案一、单选题(共15题,共计45分)1、D2、A3、D4、C5、B6、C7、A8、D10、C11、B12、A13、C14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、29、30、。
第一章 全等三角形数学八年级上册-单元测试卷-苏科版(含答案)

第一章全等三角形数学八年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、如图,已知,则不一定使△ABD≌△ACD的条件是()A. B. C. D.2、如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cmB.6cmC.8cmD.9cm3、如图,在菱形ABCD中,对角线AC,BD相交于点O,且AC≠BD,则图中全等三角形有()A.4对B.6对C.8对D.10对4、如图,能得到△ABC≌△A'B'C'的条件是()A.∠A=∠A',∠B=∠B',∠C=∠C'B.AB=A'B',BC=B'C',∠C=∠C' C.AB=A'B',AC=A'C',∠B=∠B' D.∠A=∠A',∠B=∠B',BC=B'C'5、下列说法:①全等图形的面积相等;②全等图形的周长相等;③面积相等的两三角形全等;④所有正方形都全等.其中正确的结论的个数是()A.1个B.2个C.3个D.4个6、如图,已知△ABC≌△BAD,A与B,C与D分别是对应顶点,若AB=3cm,BC=2cm,AC =4cm,则AD的长为()A.2cmB.3cmC.4cmD.不能确定7、下列判断:①有两边及其中一边上的高对应相等的两个三角形全等;②有两边及第三边上的高对应相等的两个三角形全等;③三角形有6个边、角元素中,有5个元素分别对应相等的两个三角形全等;④一边及其他两边上的高对应相等的两个三角形全等,其中成立的是()A.①②④B.③C.都不对D.全对8、如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB 上,联结EF、CF,那么下列结论中一定成立的个数是()①∠DCF= ∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.A.1个B.2个C.3个D.4个9、尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP,由作法得△OCP≌△ODP的根据是()A.SASB.ASAC.AASD.SSS10、如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF。
初中数学八年级数学上册 第1章 全等三角形检测题 考试卷及解析苏科版

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:要测量河两岸相对的两点的距离,先在的垂线上取两点,使,再作出的垂线,使在一条直线上(如图所示),可以说明△≌△,得,因此测得的长就是的长,判定△≌△最恰当的理由是()A.边角边B.角边角C.边边边 D.边边角试题2:如图所示,两个全等的等边三角形的边长为1 m,一个微型机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动,行走2 012 m停下,则这个微型机器人停在()A.点A处B.点B处C.点C处 D.点E处评卷人得分试题3:如图,已知AB∥CD,AD∥BC,AC与BD交于点O,AE⊥BD于点E,CF⊥BD于点F,那么图中全等的三角形有( )A.5对B.6对C.7对 D.8对试题4:下列命题中正确的是()A.全等三角形的高相等B.全等三角形的中线相等C.全等三角形的角平分线相等D.全等三角形对应角的平分线相等试题5:如图所示,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCDB.△BGC≌△AFCC.△DCG≌△ECFD.△ADB≌△CEA如图所示,分别表示△ABC的三边长,则下面与△一定全等的三角形是()试题7:已知:如图所示,B、C、D三点在同一条直线上,AC=CD,∠B= ∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2 C.△ABC≌△CED D.∠1=∠2试题8:如图所示,两条笔直的公路、相交于点O, C村的村民在公路的旁边建三个加工厂A、B、D,已知AB=BC=CD=DA=5 km,村庄C到公路的距离为4 km,则C村到公路的距离是()A.3 kmB.4 kmC.5km D.6 km试题9:如图所示,在△ABC中,AB=AC,∠ABC,∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE,上述结论一定正确的是()A.①②③B.②③④C.①③⑤ D.①③④试题10:如图所示,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则下列三个结论:①AS=AR;②QP∥AR;③△BPR≌△QPS中()A.全部正确B.仅①和②正确C.仅①正确D.仅①和③正确试题11:如图,在Rt△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,则AE= cm.试题12:如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E,F,连结CE,BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是(不添加辅助线).试题13:如图所示,已知△ABC和△BDE均为等边三角形,连接AD、CE,若∠BAD=39°,那么∠BCE= 度.试题14:如图所示,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE是度.试题15:如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= .试题16:如图所示,在△ABC中,∠C=90°,AD平分∠CAB,BC=8 cm,BD=5 cm,那么D点到直线AB的距离是 cm.试题17:如图所示,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC的面积是.试题18:如图所示,在△ABC中,AB=AC,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E,F.则下列结论:①DA平分∠EDF;②AE=AF,DE=DF;③AD上的点到B,C两点的距离相等;④图中共有3对全等三角形,正确的有 .试题19:如图所示,四边形ABCD的对角线AC,BD相交于点O,△ABC≌△BAD.求证:(1)OA=OB;(2)AB∥CD.试题20:如图所示,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.试题21:如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.试题22:已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.试题23:如图所示,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD,CE相交于F.求证:AF平分∠BAC.试题24:已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE,交CE于点F,交CD于点G(如图①),求证:AE=CG;(2)直线AH垂直于直线CE,交CE的延长线于点H,交CD的延长线于点M(如图②),找出图中与BE相等的线段,并证明.试题1答案:B 解析:∵BF⊥AB,DE⊥BD,∴∠ABC=∠BDE.试题2答案:C 解析:因为两个全等的等边三角形的边长均为1 m,所以机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动一圈,即为6 m.因为2 012÷6=335……2,即行走了335圈余2 m,所以行走2 012 m停下时,这个微型机器人停在点C处.故选C.试题3答案:C 解析:由已知条件可以得出△ABO≌△CDO,△AOD≌△COB,△ADE≌△CBF,△AEO≌△CFO,△ADC≌△C BA,△B CD≌△DAB,△AEB≌△CFD,共7对,故选C.试题4答案:D 解析:因为全等三角形对应边上的高、对应边上的中线、对应角的平分线相等,A、B、C项没有“对应”,所以错误,而D项有“对应”,D是正确的.故选D.试题5答案:D 解析:因为△ABC和△CDE都是等边三角形,所以BC=AC,CE=CD,∠BCA=∠ECD=60°,所以∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,所以在△BCD和△ACE中,所以△BCD≌△ACE(SAS),故A成立.因为△BCD≌△ACE,所以∠DBC=∠CAE.因为∠BCA=∠ECD=60°,所以∠ACD=60°.在△BGC和△AFC中,所以△BGC≌△AFC,故B成立.因为△BCD≌△ACE,所以∠CDB=∠CEA,在△DCG和△ECF中,所以△DCG≌△ECF,故C成立.故选D.试题6答案:B 解析:A.与三角形有两边相等,而夹角不一定相等,二者不一定全等;B.与三角形有两边及其夹角相等,二者全等;C.与三角形有两边相等,但夹角不相等,二者不全等;D.与三角形有两角相等,但边不对应相等,二者不全等.故选B.试题7答案:D 解析:因为B、C、D三点在同一条直线上,且AC⊥CD,所以∠1+∠2=90°. 因为∠B=90°,所以∠1+∠A=90°,所以∠A=∠2. 故B选项正确.在△ABC和△CED中,所以△ABC≌△CED,故C选项正确.因为∠2+∠D=90°,所以∠A+∠D=90°,故A选项正确.因为AC⊥CD,所以∠ACD=90°,∠1+∠2=90°,故D选项错误.故选D.试题8答案:B 解析:如图所示,连接AC,作CF⊥,CE⊥.因为AB=BC=CD=DA=5 km,所以△ABC≌△ADC,所以∠CAE=∠CAF,所以CE=CF=4 km.故选B.试题9答案:D 解析:因为 AB=AC,所以∠ABC=∠ACB.因为BD平分∠ABC,CE平分∠ACB,所以∠ABD=∠CBD=∠ACE=∠BCE.所以①△BCD≌△CBE(ASA);由①可得CE=BD,所以③△BDA≌△CEA(SAS);由①可得BE=CD,又∠EOB=∠DOC,所以④△BOE≌△COD(AAS).故选D.试题10答案:B 解析:因为PR=PS,PR⊥AB于R,PS⊥AC于S,AP=AP,所以△ARP≌△ASP(HL),所以AS=AR,∠RAP=∠SAP.因为 AQ=PQ,所以∠QPA=∠SAP,所以∠RAP=∠QPA,所以QP∥AR.而在△BPR和△QPS中,只满足∠BRP=∠QSP=90°和PR=PS,找不到第3个条件,所以无法得出△BPR≌△QPS.故本题仅①和②正确.故选B.试题11答案:3 解析:由条件易判定△ABC≌△FCE,所以AC=EF=5 cm,则AE=AC-CE=EF-BC=5-2=3(cm).试题12答案:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等)解析:因为BD=CD,∠FDB=∠EDC,DF=DE,所以△BDF≌△CDE. 熟练掌握全等三角形的判定方法是解题的关键.(以第一种为例,添加其他条件的请同学们自行证明)试题13答案:39 解析:因为△ABC和△BDE均为等边三角形,所以AB=BC,∠ABC =∠EBD=60°,BE=BD.因为∠ABD=∠ABC +∠DBC,∠EBC=∠EBD +∠DBC,所以∠ABD=∠CBE,所以△ABD≌△CBE,所以∠BCE=∠BAD =39°.试题14答案:60 解析:因为△ABC是等边三角形,所以∠ABD=∠C,AB=BC.因为 BD=CE,所以△ABD≌△BCE,所以∠BAD=∠CBE.因为∠ABE+∠EBC=60°,所以∠ABE+∠BAD=60°,所以∠APE=∠ABE+∠BAD=60°.试题15答案:55°解析:在△ABD与△ACE中,因为∠1+∠CAD=∠CAE +∠CAD,所以∠1=∠CAE.又因为AB=AC,AD=AE,所以△ABD ≌△ACE(SAS).所以∠2=∠ABD.因为∠3=∠1+∠ABD=∠1+∠2,∠1=25°,∠2=30°,所以∠3=55°.3 解析:由∠C=90°,AD平分∠CAB,作DE⊥AB于E,所以D点到直线AB的距离就是DE的长.由角平分线的性质可知D E=DC,又BC=8 cm,BD=5 cm,所以DE=DC=3 cm.所以D点到直线AB的距离是3 cm.试题17答案:31.5 解析:作OE⊥AC,OF⊥AB,垂足分别为E、F,连接OA,因为OB,OC分别平分∠ABC和∠ACB,OD⊥BC,所以OD=OE=OF.所以=×OD×BC+×OE×AC+×OF×AB=×OD×(BC+AC+AB)=×3×21=31.5.①②③④解析:∵在△ABC中,AB=AC,AD是△ABC的角平分线,已知DE⊥AB,DF⊥AC,可证△ADE≌△ADF(AAS),故有∠EDA=∠FDA,AE=AF,DE=DF,①②正确;AD是△ABC的角平分线,在AD上可任意设一点M,可证△BDM≌△CDM,∴BM=CM,∴AD上的点到B,C两点的距离相等,③正确;根据图形的对称性可知,图中共有3对全等三角形,④正确.故填①②③④.试题19答案:分析:(1)要证OA=OB,由等角对等边知需证∠CAB=∠DBA,由已知△ABC≌△BAD即可证得.(2)要证AB∥CD,根据平行线的性质需证∠CAB=∠ACD,由已知和(1)可证得∠OCD=∠ODC,又因为∠AOB=∠COD,所以可证得∠CAB=∠ACD,即AB ∥CD获证.证明:(1)因为△ABC≌△BAD,所以∠CAB=∠DBA,所以 OA=OB.(2)因为△ABC≌△BAD,所以AC=BD.又因为 OA=OB,所以AC-OA=BD-OB,即OC=OD,所以∠OCD=∠ODC.因为∠AOB=∠COD,∠CAB=,∠ACD=,所以∠CAB=∠ACD,所以AB∥CD.试题20答案:分析:由△ABC≌△ADE,可得∠DAE=∠BAC=(∠EAB-∠CAD),根据三角形外角性质可得∠DFB=∠FAB+∠B.因为∠FAB=∠FAC+∠CAB,即可求得∠DFB的度数;根据三角形外角性质可得∠DGB=∠DFB -∠D,即可得∠DGB的度数.解:因为△ABC≌△ADE,所以∠DAE=∠BAC=(∠EAB-∠CAD)=.所以∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°,∠DGB=∠DFB-∠D=90°-25°=65°.试题21答案:分析:首先根据角之间的关系推出∠EAC=∠BAF.再根据边角边定理,证明△EAC≌△BAF.最后根据全等三角形的性质定理,得知EC=BF.根据角的转换可求出EC⊥BF.证明:(1)因为AE⊥AB,AF⊥AC,所以∠EAB=90°=∠FAC,所以∠EAB+∠BAC=∠FAC+∠BAC.又因为∠EAC=∠EAB+∠BAC,∠BAF=∠FAC+∠BAC.所以∠EAC=∠BAF.在△EAC与△BAF中,所以△EAC≌△BAF.所以 EC=BF.(2)因为∠AEB+∠ABE=90°,又由△EAC≌△BAF可知∠AEC=∠ABF,所以∠CEB+∠ABF+∠EBA=90°,即∠MEB+∠EBM=90°,即∠EMB=90°,所以 EC⊥BF.试题22答案:分析:要证BC=ED,需证△AB C≌△AED.证明:因为∠1=∠2,所以∠1+∠BAD=∠2+∠BAD,即∠BAC=∠EAD.又因为AB=AE,∠B=∠E,所以△ABC≌△AED,所以BC=ED.点拨:已知一边一角对应相等证两三角形全等时,思路有三种:(1)证对应角的另一边对应相等,“凑”SAS;(2)证对应边的对角对应相等,“凑”AAS;(3)证对应边的另一邻角对应相等,“凑”ASA.试题23答案:证明:因为BD⊥AC,CE⊥AB,所以∠AEC=∠ADB=90°.在△ACE与△ABD中,所以△ACE≌△ABD(AAS),所以AE=AD.在Rt△AEF与Rt△ADF中,所以Rt△AEF≌Rt△ADF(HL),所以∠EAF=∠DAF,所以AF平分∠BAC.试题24答案:⑴证明:设∠ACE=∠1,因为直线BF垂直于CE,交CE于点F,所以∠CFB=90°,所以∠ECB+∠CBF=90°.又因为∠1+∠ECB=90°,所以∠1=∠CBF.因为AC=BC, ∠ACB=90°,所以∠A=∠CBA=45°.又因为点D是AB的中点,所以∠DCB=45°.因为∠1=∠CBF,∠DCB=∠A,AC=BC,所以△CAE≌△BCG,所以AE=CG.(2)解:CM=BE.证明如下:因为∠ACB=90°,所以∠ACH +∠BCF=90°.因为CH⊥AM,即∠CHA=90°,所以∠ACH +∠CAH=90°,所以∠BCF=∠CAH.因为CD为等腰直角三角形斜边上的中线,所以CD=AD.所以∠ACD=45°.在△CAM与△BCE中,CA=BC,∠CAH =∠BCF, ∠ACM =∠CBE,所以△CAM ≌△BCE,所以CM=BE.。
苏科版八年级上册数学第1章《全等三角形》单元测试卷(基础卷)(含解析)

第1章 全等三角形(基础卷)一、选择题(每小题3分,共18分)1.如图,,若,则∠B 的度数是( )A .80°B .70°C .65°D .60°2.如图,△ABD ≌△CDB ,若AB ∥CD ,则AB 的对应边是( )A .DB B .BC C .CD D .AD(第2题图)(第3题 图)3.如图,沿直角边所在的直线向右平移得到,下列结论错误的是( )A .B .C .D .4.如图,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E .BD 与CE 交于O ,连接AO ,则图中共有全等的三角形的对数为( )A .1对B .2对C .3对D .4对(第4题 图) (第5题 图)5.如图,已知,为的中点.若,,,则 A .B .C .D .6.如图,已知长方形ABCD 的边长AB=20cm ,BC=16cm ,点E 在边AB 上,AE=6cm ,如果点P 从点B 出发在线段BC 上以2cm/s 的速度向点C 向运动,同时,点Q 在线段CD 上从点C 到点D 运动.则当ABC DEF △≌△80,30A F ∠=︒∠=︒Rt ABC BC DEF ABC ≌DEF 90DEF ∠=︒BE EC =D A∠=∠//AB CF E DF 12AB cm =7CF cm = 4.5FE cm =(B D =)5cm 6cm 7cm 4.5cm(第7题图)已知图中的两个三角形全等,则∠1=①;②;③15.如图,在中,已知AD 是到AB 的最短距离是_________.12∠=∠BE CF =CAN ABC A ∠运动,到达点C 停止,同时,点Q 从点C 出发,以vcm /s 的速度沿CD 边向点D 运动,到达点D 停止,规定其中一个动点停止运动时,另一个动点也随之停止运动.当v 为______时,△ABP 与△PCQ 全等.三、解答题(共62分)17.(6分)如图,DE ⊥AB ,CF ⊥AB ,垂足分别是点E 、F ,DE=CF ,AE=BF ,求证:AC ∥BD .18.(8分)已知:,且,,,,,求:的度数及DE 的长.19.(8分)如图,已知AB =CB ,BE =BF ,点A ,B ,C 在同一条直线上,∠1=∠2.(1)证明:△ABE ≌△CBF ;(2)若∠FBE =40°,∠C =45°,求∠E的度数.DEF MNP ≌EF NP =F P ∠=∠48D ∠=︒52E ∠=︒12MN =cm P ∠20.(10分)如图,在△ABC 中,已知:点D 是BC 中点,连接AD 并延长到点E ,连接BE.(1)请你添加一个条件使△ACD ≌△EBD ,并给出证明.(2)若,,求边上的中线的取值范围.21.(10分)如图,与的顶点A ,F ,C ,D 共线,与交于点G ,与相交于点,,,.(1)求证:;(2)若,求线段的长.5AB =3AC =BC AD Rt ABC Rt DEF △AB EF BC DEH 90B E ∠=∠=︒AF CD =AB DE =Rt ABC Rt DEF ≌1GF =HC22.(10分)求证:全等三角形的对应角平分线相等.(1)在图②中,作出相应的角平分线,保留作图痕迹;(2)根据题意,写出已知、求证,并加以证明。
苏科版八年级数学上册第一章 全等三角形单元检测卷(含答案)

第一章全等三角形单元检测卷(总分100分时间90分钟)一、选择题(每小题3分,共30分)1.在△ABC中,∠C=∠B,与△ABC全等的三角形有一个角是100°,那么△ABC中与这个角对应的角是( )A.∠B B.∠A C.∠C D.∠B或∠C2.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )A.CB=CD B.∠BAC=∠DACC.∠BCA=∠DCA D.∠B=∠D=90°3.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )A.SSS B.SAS C.AAS D.ASA4.如图,已知AB∥DC,AD∥BC,BE=DF,则图中全等的三角形有( )A.3对B.4对C.5对D.6对5.在△ABC和△DEF中,已知AB=DE,∠A=∠D,若补充下列条件中的任意一条,就能判定△ABC≌△DEF的是( )①AC=DF②BC=EF③∠B=∠E④∠C=∠FA.①②③B.②③④C.①③④D.①②④6.在△ABC中,∠A=90°,CD平分∠ACB,DE⊥BC于点E,若AB=6,则DE+DB=( )A.4 B.5 C.6 D.77.根据下列已知条件,能唯一画出△ABC的是( )A.AB=3,BC=4,CA=8 B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=68.如图是人字型金属屋架的示意图,该屋架由BC、AC、BA、AD四段金属材料焊接而成,其中A、B、C、D四点均为焊接点,且AB=AC,D为BC的中点,假设焊接所需的四段金属已截好,并已标出BC段的中点D,那么,如果焊接工身边只有可检验直角的角尺,为了准确快速地焊接,他应该首先选取的两段金属材料和焊接点是( ) A.AD和BC,点D B.AB和AC,点AC.AC和BC,点C D.AB和AD,点A9.如图,已知OQ平分∠AOB,点P为OQ上任意一点,点N为OA上一点,点M为OB 上一点,若∠PNO+∠PMO=180°,则PM和PN的大小关系是( ) A.PM>PN B.PM<PN C.PM=PN D.不能确定10.如图,已知点C是∠AOB的平分线上一点,点P、P'分别在边OA、OB上.如果要得到OP=OP',需要添加以下条件中的某一个即可,请你写出所有可能的结果的序号为( )①∠OCP=∠OCP';②∠OPC=∠OP'C;③PC=P'C;④PP'⊥O C.A.①②B.④③C.①②④D.①④③二、填空题(每小题3分,共30分)11.如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=_______.12.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是_______.(填上你认为适当的一个条件即可)13.如图,AE=BF,AD∥BC,AD=BC,则有△ADF≌_______,且DF=_______.14.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件_______,若加条件∠B=∠C,则可用_______判定.15.把两根钢条AA、BB的中点连在一起,可以做成一个测量工件内槽宽工具(卡钳),如图,若得AB=5厘米,则槽为_______厘米.16.如图,AD=AE,BE=CD,∠1=∠2=100°,∠BAE=60°,那么∠CAE=_______.17.如图,∠A=∠E,AC⊥BE,AB=EF,BE=10.CF=4,则AC=_______.18.如图,∠C=90°,AC=10,∠BC=5,AX⊥AC,点P和点Q从A点出发,分别在线段AC和射线AX上运动,且Q点的运动速度是P点的运动速度的2倍,当点P运动到_______处,△ABC≌△APQ.19.AD是△ABC的边BC上的中线,AB=12,AC=8.则边BC的取值范围是_______;中线AD的取值范围是_______.20.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是30cm2,AB=18cm,BC=12cm,则DE=__________cm.三、解答题(共40分)21.(6分)已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB的平分线,求证:AB=D C.22.(6分)两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O为边AC和DF的交点.不重叠的两部分△AOF与△DOC是否全等?为什么?23.(6分)如图,∠DCE=90°,CD=CE,AD⊥AC,BE⊥AC,垂足分别为A、B.求证:AD+AB=BE.24.(6分)如图,是一个用6根竹条连接而成的凸六边形风筝骨架,考虑到骨架的稳定性、对称性、实用性等因素,请再加三根竹条与其顶点连接,要求:在图中分别再加三根竹条,设计出两种不同的连接方案(用直尺连接).25.(8分)已知:如图(a),在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD =50°.求证:(1)①AC=BD;②∠APB=50°.(2)如图(b),在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD= ,则AC与BD间的等量关系为_______,∠APB的大小为_______.26.(8分)如图(a)A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC,若AB=C D.(1)图(a)中有_______对全等三角形,并把它们写出来;(2)求证:BD与EF互相平分于G;(3)若将△ABF的边AF沿GA方向移动变为图(b)时,其余条件不变,第(2)题中的结论是否成立,如果成立,请予证明.参考答案1—10 BCDDC CBACC11.50°12.答案不唯一,如∠B=∠C等.13.△BCE,CE14.AB=AC,AAS15.516.40°17.618.AC的中点19.4<BC<20,2<AD<1020.221.略22.全等.23.略24.25.(1)50° (2)相等,∠APB=a.26.(1)图①中有3对全等三角形,它们是△AFB≌△DEC,△DEG≌△BFG,△AGB≌△CG D.(3)结论仍然成立.。
苏科版八年级数学上第一章全等三角形单元检测试卷含答案

八上数学第1章全等三角形单元测试(时间:90分钟满分:100分)一、选择题(每小题3分,共30分)1.下列图形中,和左图全等的图形是( )①全等三角形的周长相等;②全等三角形的对应角相等;③全等三角形的面积相等;④全等三角形的对应角平分线相等.A.4 B.3 C.2 D.13.下列条件中,能判定两个三角形全等的是( )A.有三个角对应相等B.有两条边对应相等C.有两边及一角对应相等D.有两角及一边对应相等4.如图,△ABC≌△ADE,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC的度数为( )A.40°B.45°C.35°D.25°5.在下列条件中,不能说明△ABC≌△A'B'C'的是( )A.∠A=∠A',∠C=∠C',AC=A'C'B.∠A=∠A' ,AB=A'B',BC=B'C'C.∠B=∠B',∠C=∠C' ,AB=A'B'D.AB=A'B',BC=B'C' ,AC=A'C'6.在Rt△ABC与Rt△A'B'C'中,∠C=∠C'=90°,∠A=∠B' ,AB=A'B',则下面结论正确的是( )A.AB=A'C' B.BC=B'C' C.AC=B'C' D.∠A=∠A'7.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再作出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以证明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△4BC的理由是( )A.SAS B.ASA C.SSS D.AAS8.如图,H是△ABC的高AD,BE的交点,且DH=DC,则下列结论:①BD=AD;②BC=AC;③BH=AC;④CE=CD,其中正确的有( )A.1个B.2个C.3个D.4个9.一块三角形玻璃样板不慎被张宇同学碰破,成了四片完整碎片(如图所示),聪明的他经过仔细地考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是( )A.带其中的任意两块去都可以B.带1,2或2,3去就可以了C.带1,4或3,4去就可以了D.带1,4或2,4或3,4去均可10.将两个斜边长相等的三角形纸片如图①放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE绕点C顺时针旋转15°得到△D1CE1,如图②,连接D1B,则∠E1D1B的度数为()A.10°B.20°C.7.5°D.15°二、填空题(每小题3分,共24分)11.若△ABC≌△A'B'C',AB=24,S△A'B'C'=180,则△ABC的AB边上的高是_______.12.一个三角形的三边长分别为2,5,x,另一个三角形的三边长分别为y,2,6,若这两个三角形全等,则x+y=_______.13.如图,∠ABC=∠DEF,AB=DE,要证明△ABC≌△DEF.(1)若以“SAS”为依据,还要添加的条件为_______;(2)若以“ASA”为依据,还要添加的条件为_______.14.下列说法正确的有_______个°(1)两条边对应相等的两个直角三角形全等.(2)有一锐角和斜边对应相等的两直角三角形全等.(3)-条直角边和一个锐角对应相等的两直角三角形全等.(4)面积相等的两个直角三角形全等.15.如图,在R△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP=_______时,△ABC和△PQA 全等.16.如图,△ABC的高BD,CE相交于点O.请你添加一个条件,使BD=CE.你所添加的条件是_______.(仅添加一对相等的线段或一对相等的角)17.如图,已知BE⊥AD,CF⊥AD,BE=CF,由这三个条件组合运用可以得到若干结论,请你写出三个正确结论:____________________________.三、解答题(共46分)19.(6分)如图,已知∠ACB和∠ADB都是直角,且AC=AD,P是AB上任意一点.求证:CP=DP.20.(6分)如图,AB⊥BC,DC⊥AC,垂足分别为B,C,过D点作BC的垂线交BC于F,交AC于E,AB=EC,试判断AC和ED的长度有什么关系?并说明理由.21.(6分)如图,AD是△ABC的中线,DE⊥AB于E,DF⊥AC于F,且BE=CF.求证:(1)AD是∠BAC的平分线;(2)AB=AC.22.(6分)如图,施工队在沿AC方向开山修路,为了加快施工进度,要在小山的另一边点E处同时施工,在AC上的点B处,取∠ABD=145°,BD=500 m,∠D=55°,要使A,C,E在一条直线上,那么开挖点E离点B的距离如何求得?请你设计出解决方案.23.(6分)如图,∠BAC=∠BAD,点E在AB上.(1)添加一个条件,使△ACE≌△ADE,你添加的条件是_______;(2)根据(1)中你添加的条件,请再写出另外一对全等三角形,并证明.24.(8分)数学作业本发下来了,徐波想:“我应该又是满分吧”,翻开作业本,一个大红的错号映入眼帘,徐波不解了,“我哪里做错了呢”?下面是题目和徐波的解法,亲爱的同学,你知道他哪儿错了吗?你能帮他进行正确的说明吗?如图,∠BAC是钝角,AB=AC,D,E分别在AB,AC上,且CD=BE.试说明∠ADC=∠AEB.徐波的解法:在△ACD和△ABE中,()()() AB ACBE CDBAE CAD⎧=⎪⎪=⎨⎪∠=∠⎪⎩已知已知公共角∴△ABE≌△ACD,∴∠ADC=∠AEB.25.(8分)如图,已知直线l1∥l2,线段AB在直线l1上,BC垂直于l1交l2于点C,且AB=BC,P是线段BC上异于两端点的一点,过点P的直线分别交l2、l1于点D、E(点A、E位于点B的两侧),满足BP=BE,连接AP、CE.(1)求证:△ABP≌△CBE;(2)连结AD、BD,BD与AP相交于点F.如图2.①当=2时,求证:AP⊥BD;②当=n(n>1)时,设△P AD的面积为S1,△PCE的面积为S2,求的值.参考答案1.D 2.A 3.D 4.B 5.B 6.C 7.B 8.B 9.D 10.D11.15 12.11 13.(1)BC=CF或BE=CF (2)∠A=∠D 14.3 15.5或10 16.BE=CD或∠EBC=∠DCB或∠DBC=∠BCE17.△BDE≌△CDF ,BD=CD,DE=DF,AD是△ABC的中线,BE∥FC等18.①②④或①③④19.略20.AC=ED.21.略22.略23.(1)∠ACE=∠ADE;(2)△ACB≌△ADB24.错在不能用“SSA”说明三角形全等.25.(1)证明:∵BC⊥直线l1,∴∠ABP=∠CBE,在△ABP和△CBE中∴△ABP≌△CBE(SAS);(2)①证明:延长AP交CE于点H,∵△ABP≌△CBE,∴∠P AB=∠ECB,∴∠P AB+∠AEE=∠ECB+∠AEH=90°,∴AP⊥CE,∵=2,即P为BC的中点,直线l1∥直线l2,∴△CPD∽△BPE,∴==,∴DP=PE,∴四边形BDCE是平行四边形,∴CE∥BD,∵AP⊥CE,∴AP⊥BD;②解:∵=N∴BC=n•BP,∴CP=(n﹣1)•BP,∵CD∥BE,∴△CPD∽△BPE,∴==n﹣1,即S2=(n﹣1)S,∵S△P AB=S△BCE=n•S,∴△P AE=(n+1)•S,∵==n﹣1,∴S1=(n+1)(n﹣1)•S,∴==n+1.。
2020年秋苏科版八年级数学上册第1章《全等三角形》测试卷含答案
八年级上册第1章《全等三角形》测试卷满分120分姓名:___________班级:___________学号:___________成绩:___________一.选择题(共10小题,满分30分,每小题3分)1.下列图形是全等图形的是()A.B.C.D.2.如果两个图形全等,那么这两个图形必定是()A.形状大小均相同B.形状相同,但大小不同C.大小相同,但形状不同D.形状大小均不相同3.下列说法正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形是指面积相等的两个三角形C.两个等边三角形是全等三角形D.全等三角形是指两个能完全重合的三角形4.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第_____块去,这利用了三角形全等中的_____原理()A.1;SAS B.2;ASA C.3;ASA D.4;SAS5.如图,△ABC≌△A'B'C,∠BCB'=30°,则∠ACA'的度数为()A.30°B.45°C.60°D.15°6.如图,点B、F、C、E在一条直线上,AB∥ED,AB=DE,要使△ABC≌△DEF,需要添加下列选项中的一个条件是()A.BF=EC B.AC=DF C.∠B=∠E D.BF=FC7.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE8.如图,BP平分∠ABC,D为BP上一点,E,F分别在BA,BC上,且满足DE=DF,若∠BED=140°,则∠BFD的度数是()A.40°B.50°C.60°D.70°9.在平面直角坐标系xOy中,点A(﹣3,0),B(2,0),C(﹣1,2),E(4,2),如果△ABC与△EFB全等,那么点F的坐标可以是()A.(6,0)B.(4,0)C.(4,﹣2)D.(4,﹣3)10.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个二.填空题(共7小题,满分28分,每小题4分)11.两个三角形全等的判定方法有,,,(用字母表示).12.如图,如果图中的两个三角形全等,根据图中所标数据,可以推理得到∠α=°.13.如图,A、B两点分别位于一个池塘的两端,点C是AD的中点,也是BE 的中点,若DE=20米,则AB=.14.如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2=.15.已知:如图,AE⊥BC,DF⊥BC,垂足分别为E,F,AE=DF,AB=DC,则△≌△(HL).16.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE =DF,连结BF,CE.下列说法:①△ABD和△ACD面积相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;⑤CE=AE.其中正确的有.(把你认为正确的序号都填上)17.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE =2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA 向终点A运动,设点P的运动时间为t秒,当t的值为秒时,△ABP 和△DCE全等.三.解答题(共8小题,满分62分)18.(6分)如图,△ACF≌△ADE,AD=12,AE=5,求DF的长.19.(6分)如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,求图中实线所围成的图形的面积S.20.(7分)如图,点B、F、C、E在同一直线上,且BF=CE,∠B=∠E,AC,DF相交于点O,且OF=OC,求证:(1)△ABC≌△DEF;(2)OA=OD.21.(8分)如图,△ABC中,D是BC延长线上一点,满足CD=AB,过点C 作CE∥AB且CE=BC,连接DE并延长,分别交AC、AB于点F、G.(1)求证:△ABC≌△DCE;(2)若∠B=50°,∠D=22°,求∠AFG的度数.22.(8分)如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),且AD=CE,其他条件不变,AB 与AC仍垂直吗?若是请给出证明;若不是,请说明理由.23.(9分)如图,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE交于点H,连CH.(1)求证:△ACD≌△BCE;(2)求证:CH平分∠AHE;(3)求∠CHE的度数.(用含α的式子表示)24.(9分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠F AE的度数;(3)求证:CD=2BF+DE.25.(9分)如图,在△ABC中,AB=AC=3,∠B=∠C=50°,点D在边BC 上运动(点D不与点B,C重合),连接AD,作∠ADE=50°,DE交边AC 于点E.(1)当∠BDA=100°时,∠EDC=°,∠DEC=°.(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请求出∠BDA的度数;若不可以,请说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、两个图形相似,错误;B、两个图形全等,正确;C、两个图形相似,错误;D、两个图形不全等,错误;故选:B.2.解:能够完全重合的两个图形叫做全等形,所以如果两个图形全等,那么这两个图形必定是形状大小均相同.故选:A.3.解:A、全等三角形是指形状相同、大小相等的两个三角形,故本选项错误;B、全等三角形的面积相等,但是面积相等的两个三角形不一定全等,故本选项错误;C、边长相等的两个等边三角形是全等三角形,故本选项错误;D、全等三角形是指两个能完全重合的三角形,故本选项正确.故选:D.4.解:由图可知,带第2块去,符合“角边角”,可以配一块与原来大小一样的三角形玻璃.故选:B.5.解:∵△ABC≌△A′B′C,∴∠ACB=∠A′CB′,∴∠ACB﹣∠A′CB=∠A′CB′﹣∠A′CB,∴∠ACA′=∠BCB′=30°,故选:A.6.解:∵AB∥ED,AB=DE,∴∠B=∠E,∴当BF=EC时,可得BC=EF,可利用“SAS”判断△ABC≌△DEF.故选:A.7.解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.8.解:作DG⊥AB于G,DH⊥BC于H,∵D是∠ABC平分线上一点,DG⊥AB,DH⊥BC,∴DH=DG,在Rt△DEG和Rt△DFH中,,∴Rt△DEG≌Rt△DFH(HL),∴∠DEG=∠DFH,又∠DEG+∠BED=180°,∴∠BFD+∠BED=180°,∴∠BFD的度数=180°﹣140°=40°,故选:A.9.解:如图所示:△ABC与△EFB全等,点F的坐标可以是:(4,﹣3).故选:D.10.解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选:C.二.填空题(共7小题,满分28分,每小题4分)11.解:全等三角形的判定定理有SAS,ASA,AAS,SSS.故答案为:SAS,ASA,AAS,SSS.12.解:∵图中的两个三角形全等,∴∠α=68°.故答案为68.13.解:∵点C是AD的中点,也是BE的中点,∴AC=DC,BC=EC,∵在△ACB和△DCE中,,∴△ACB≌△DCE(SAS),∴DE=AB,∵DE=20米,∴AB=20米,故答案为:20米.14.解:如图所示:由题意可得:∠1=∠3,则∠1+∠2=∠2+∠3=45°.故答案为:45°.15.证明:∵在△ABE和△DCF中,AE⊥BC,DF⊥BC,AE=DF,AB=DC,符合直角三角形全等条件HL,所以△ABE≌△DCF,故填:ABE;DCF.16.解:∵BD=CD,点A到BD、CD的距离相等,∴△ABD和△ACD面积相等,故①正确;∵AD为△ABC的中线,∴BD=CD,∠BAD和∠CAD不一定相等,故②错误;在△BDF和△CDE中,∴△BDF≌△CDE,故③正确;∴∠F=∠DEC,∴BF∥CE,故④正确;∵△BDF≌△CDE,∴CE=BF,故⑤错误,故答案为:①③④.17.解:设点P的运动时间为t秒,则BP=2t,当点P在线段BC上时,∵四边形ABCD为长方形,∴AB=CD,∠B=∠DCE=90°,此时有△ABP≌△DCE,∴BP=CE,即2t=2,解得t=1;当点P在线段AD上时,∵AB=4,AD=6,∴BC=6,CD=4,∴AP=BC+CD+DA=6+4+6=16,∴AP=16﹣2t,此时有△ABP≌△CDE,∴AP=CE,即16﹣2t=2,解得t=7;综上可知当t为1秒或7秒时,△ABP和△CDE全等.故答案为:1或7.三.解答题(共8小题,满分62分)18.解:∵△ACF≌△ADE,AD=12,AE=5,∴AC=AD=12,AE=AF=5,∴DF=12﹣5=7.19.解:∵∠EAF+∠BAG=90°,∠EAF+∠AEF=90°,∴∠BAG=∠AEF,∵在△AEF和△BAG中,,∴△AEF≌△BAG,(AAS)同理△BCG≌△CDH,∴AF=BG,AG=EF,GC=DH,BG=CH,∵梯形DEFH的面积=(EF+DH)•FH=80,S△AEF=S△ABG=AF•AE=9,S△BCG=S△CDH=CH•DH=6,∴图中实线所围成的图形的面积S=80﹣2×9﹣2×6=50.20.证明:(1)∵BF=CE,∴BF+FC=CE+FC,即BC=EF,∵OF=OC,∴∠OCF=∠OFC,在△ABC与△DEF中,∴△ABC≌△DEF(ASA);(2)∵△ABC≌△DEF,∴AC=DF,∵OF=OC,∴AC﹣OC=DF﹣OF,即OA=OD.21.(1)证明:∵CE∥AB,∴∠B=∠DCE,在△ABC与△DCE中,,∴△ABC≌△DCE(SAS);(2)解:∵△ABC≌△DCE,∠B=50°,∠D=22°,∴∠ECD=∠B=50°,∠A=∠D=22°,∵CE∥AB,∴∠ACE=∠A=22°,∵∠CED=180°﹣∠D﹣∠ECD=180°﹣22°﹣50°=108°,∴∠AFG=∠DFC=∠CED﹣∠ACE=108°﹣22°=86°.22.(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,在Rt△ABD和Rt△ACE中,∵,∴Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠EAC.∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°,∴∠BAD+∠CAE=90°.∠BAC=180°﹣(∠BAD+∠CAE)=90°.∴AB⊥AC.(2)AB⊥AC.理由如下:同(1)一样可证得Rt△ABD≌Rt△ACE.∴∠DAB=∠ECA,∠DBA=∠EAC,∵∠CAE+∠ECA=90°,∴∠CAE+∠BAD=90°,即∠BAC=90°,∴AB⊥AC.23.(1)证明:∵∠ACB=∠DCE=α,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS);(2)证明:过点C作CM⊥AD于M,CN⊥BE于N,∵△ACD≌△BCE,∴∠CAM=∠CBN,在△ACM和△BCN中,,∴△ACM≌△BCN(AAS),∴CM=CN,∴CH平分∠AHE;(3)∵△ACD≌△BCE,∴∠CAD=∠CBE,∵∠AMC=∠AMC,∴∠AHB=∠ACB=α,∴∠AHE=180°﹣α,∴∠CHE=∠AHE=90°﹣α.24.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CF A=90°,∴∠CAF=45°,∴∠F AE=∠F AC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.25.解:(1)∵∠BDA=100°,∠ADE=50°,∴∠ED=180°﹣100°﹣50°=30°,∵∠C=50°,∴∠DEC=180°﹣50°﹣30°=100°,故答案为:30,100;(2)当DC=3时,△ABD≌△DCE,理由如下:∵AB=3,DC=3,∴AB=DC,∵∠B=50°,∠ADE=50°,∴∠B=∠ADE,∵∠ADB+∠ADE+∠EDC=180°∠DEC+∠C+∠EDC=180°,∴∠ADB=∠DEC,在△ABD和△DCE中,∴△ABD≌△DCE;(3)可以,理由如下:∵∠B=∠C=50°,∠B+∠C+∠BAC=180°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣50°=80°,分三种情况讨论:①当DA=DE时,∠DAE=∠DEA,∵∠ADE=50°,∠ADE+∠DAE+∠DEA=180°,∴∠DAE=(180°﹣50°)÷2=65°,∴∠BAD=∠BAC﹣∠DAE=80°﹣65°=15°,∵∠B+∠BAD+∠BDA=180°,∴∠BDA=180°﹣∠B﹣∠BAD=180°﹣50°﹣15°=115°②当AD=AE时,∠AED=∠ADE=50°∵∠ADE+∠AED+∠DAE=180°∴∠DAE=180°﹣∠AED﹣∠ADE=180°﹣50°﹣50°=80°,又∵∠BAC=80°,∴∠DAE=∠BAE,∴点D与点B重合,不合题意.③当EA=ED时,∠DAE=∠ADE=50°,∴∠BAD=∠BAC﹣∠DAE=80°﹣50°=30°,∵∠B+∠BAD+∠BDA=180°,∴∠BDA=180°﹣∠B﹣∠BAD=180°﹣50°﹣30°=100°,综上所述,当∠BDA的度数为115°或100°时,△ADE是等腰三角形.。
八年级数学上册苏科版第一章全等三角形单元检测卷易含解析
第一章全等三角形单元检测卷总分:150分难度:易一、单选题(每题3分,共24分)1.如图,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形和△ABC 全等的图是()A .甲和乙B .乙和丙C .只有乙D .只有丙2.直尺和圆规作图(简称尺规作图)是数学定理运用的一个重要内容如图所示,作图中能得出∠A ′O ′B ′=∠AOB 的依据是运用了我们学习的全等三角形判定()A .角角边B .边角边C .角边角D .边边边3.如图,已知MB ND =,MBA NDC ∠=∠,添加下列条件仍不能判定ABM CDN ≌的是()A .M N ∠=∠B .AM CN =C .AB CD =D .//AM CN4.如图,AC ⊥CB ,DB ⊥CB ,垂足分别为C ,B ,AC DB =,则可以直接判定△ACB ≌△DBC 的根据是()A .HLB .SASC .AASD .ASA5.如图,ABC ADE △≌△,若80B ∠=︒,30C ∠=︒,则E ∠的度数为()A .80°B .35°C .70°D .30°6.如图,在方格纸中,以AB 为一边作ABP △,使之与ABC 全等,从1P ,2P ,3P,4P 四个点中找出符合条件的点P ,则点P 有()A .1个B .2个C .3个D .4个7.如图,ABC ADE △≌△,点D 在边BC 上,则下列结论中一定成立的是()A.AC DE==B.AB BD∠=∠C.ABD ADB∠=∠D.EDC AED8.如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2cm,BE=0.5cm,则DE的长为()A.0.5cm B.1cm C.1.5cm D.2cm二、填空题(每题3分,共30分)9.以下说法中,正确的是(填写序号)__________.①周长相等的两个三角形全等;②有两边及一角分别相等的两个三角形全等;③两个全等三角形的面积相等;④面积相等的两个三角形全等.10.如图,已知AB∥CF,E为DF的中点,若AB=13cm,CF=7cm,则BD=(_________)cm.11.如图,在ABC 中,D 、E 分别是AC ,AB 上的点,若△ADE ≌△BDE ≌△BDC ,则DBC ∠的度数为______.12.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________13.如图,AD ⊥AB ,AE ⊥AC ,AD =AB ,AE =AC ,则判定△ADC ≌△ABE 的根据是____.14.如图,已知∠1=∠2、AD =AB ,若再增加一个条件不一定能使结论ADE ABC ≅ 成立,则这个条件是_____.15.一个三角形的三条边长分别为5,7,x ,另一个三角形的三条边长分别为y ,5,3,若这两个三角形全等,则x y +=_______.16.如图,ABC 的面积为210cm ,AP 垂直B ∠的平分线BP 于点P ,则PBC 的面积为______.17.如图,ABC 中,点D 、点E 分别在边AB 、BC 上,连结AE 、DE ,若ADE BDE ≌,::2:3:4AC AB BC =,且ABC 的周长比AEC 的周长大6.则AEC 的周长为______18.如图所示,AD 是△ABC 中BC 边上的中线,若AB =2,AC =6,则AD 的取值范围是__________三、解答题(共96分)19.(本题10分)如图所示,A 、D 、B 、E 四点在同一条直线上,若AD BE =,A EDF ∠=∠,180E CBE ∠+∠=︒,求证:AC DF =.20.(本题0分)如图,AC DC =,AB DE =,CB CE =.求证:12∠=∠.21.(本题10分)如图,点C 在线段BD 上,且AB BD ⊥,DE BD ⊥,AC CE ⊥,BC DE =,求证:(1)ABC CDE △≌△.(2)BD AB DE =+.22.(本题10分)如图,已知点B 、E 、C 、F 在一直线上,AB DF =,AC DE =,A D∠=∠(1)求证://AC DE ;(2)若10BF =,2EC =,求BC 的长.23.(本题10分)按要求画图,并解答问题(1)如图,取BC 边的中点D ,画射线AD ;(2)分别过点B 、C 画BE ⊥AD 于点E ,CF ⊥AD 于点F ;(3)BE 和CF 的位置关系是;通过度量猜想BE 和CF 的数量关系是.24.(本题10分)明明同学用10块高度都是3cm 的相同长方体小木块垒了两堵与地面垂直的木墙,木墙上面刚好可以放进一个等腰直角三角形(AC=BC ∠ACB=90°)点C 在DE 上,点A 和点B 分别与木墙的顶端重合,求两堵木墙之间的距离.25.(本题10分)已知:如图,点A 、B 、C 、D 在一条直线上,//,,EA FB EA FB AB CD ==.(1)求证:ACE BDF V V ≌;(2)若40,80A D ∠=∠=︒,求E ∠的度数.26.(本题12分)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,若AD=a,DE=b,(1)如图1,求BE的长,写出求解过程;(用含a,b的式子表示)(2)如图2,点D在△ABC内部时,直接写出BE的长___.(用含a,b的式子表示)27.(本题12分)已知:如图,AB平分∠CBD,∠DBC=60°,∠C=∠D.(1)若AC⊥BC,求∠BAE的度数;(2)请探究∠DAE与∠C的数量关系,写出你的探究结论,并加以证明;(3)如图,过点D作DG∥BC交CE于点F,当∠EFG=2∠DAE时,求∠BAD的度数.参考答案与试题解析1.B【详解】解:如图:图甲不符合三角形全等的判定定理,即图甲和ABC ∆不全等;在ABC ∆和DFE ∆中,5850C E BC EF a B F ⎧∠=∠=⎪==⎨⎪∠=∠=⎩,,,∴()ABC DFE ASA ∆≅∆,图乙符合ASA 定理,即图乙和ABC ∆全等;在ABC ∆和WQK ∆中,7250A W B Q BC KQ a ⎧∠=∠=⎪∠=∠=⎨⎪==⎩,,,∴()ABC WQK AAS ∆≅∆,图丙符合AAS 定理,即图丙和ABC ∆全等.甲、乙、丙三个三角形中和ABC ∆全等的图形是:乙或丙.故选:B .2.D【详解】解:由作图可知,OD =OC =OD ′=OC ′,CD =C ′D ′.在△COD 和△C ′O ′D ′中,OD O D OC O C CD C D '''''=⎧'⎪=⎨⎪=⎩,∴△COD ≌△C ′O ′D ′(SSS ),∴∠AOB =∠A ′O ′B ′,故选:D .3.B【详解】A 、若M N ∠=∠,可用“角边角”证明ABM CDN ≌,故A 不符合题意;B 、若AM CN =,是“边边角”不能证明ABM CDN ≌,故B 符合题意;C 、若AB CD =,可用“边角边”证明ABM CDN ≌,故C 不符合题意;D 、若//AM CN ,可得BAM DCN ∠=∠,则可用“角角边”证明ABM CDN ≌,故D 不符合题意;故选:B .4.B【详解】∵AC ⊥CB ,DB ⊥CB,∴∠ACB=∠DBC=90°,,CB=BC,∵AC DB∴△ACB≌△DBC(SAS),故选B.5.D【详解】解:∵△ABC≌△ADE,∠C=30°,∴∠E=∠C=30°,故选:D.6.C【详解】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P 的位置可以是P1,P3,P4三个,故选:C.7.C【详解】△≌△,解:∵ABC ADE∴AB=AD,BC=DE,AC=AE,∠B=∠ADE,∠C=∠E,∴∠ABD=∠ADB,故A、B、D都是错误的,C选项正确;故选C.8.C【分析】【详解】解:∵BE ⊥CE ,AD ⊥CE ,∴∠ADC =∠CEB ,∵∠ACB =90°,即∠ACD +∠BCE =90°,∠ACD +∠CAD =90°,∴∠CAD =∠BCE ,在△ACD 和△CBE 中,ADC CEB CAD BCE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE (AAS ),∴AD =CE =2,CD =BE =0.5,∴DE =CE ﹣CD =2﹣0.5=1.5(cm ).故选:C .9.③【详解】解:周长相等的两个三角形不一定全等,如一个三角形的三边长为3,6,8,另一个三角形的边长为4,5,8,故①错误;有两边及一角分别相等的两个三角形不一定全等,如两个直角三角形有一个直角对应相等,一个直角三角形的两条直角边与另一个直角三角形一条直角边和斜边相等,则这个两个三角形不全等,故②错误;两个全等三角形的面积相等,故③正确;面积相等的两个三角形不一定全等,如两个三角形的同底等高,而这两个三角形不一定全等,故④错误;故答案为:③.10.6【详解】∵AB ∥CF ,∴∠ADE=∠CFE ,∵∠AED=∠CEF ,E 为DF 的中点,在△ADE 和△CFE 中,ADE CFE DE EF AED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE ≌△CFE (ASA ),∴AD=CF=7cm ,∵AB=13cm ,∴BD=13-7=6cm .故答案为:6.11.30°【分析】根据ADE ≌BDE ,可得∠A=∠DBE ,∠DEA=∠DEB=90°,又因为BDE ≌△BDC ,可得∠DBE=∠DBC ,∠DEB=∠C=90°,故∠A=∠DBE=∠DBC ,所以可求出∠DBC 的度数.【详解】解:∵ADE ≌BDE∴∠A=∠DBE ,∠DEA=∠DEB∵∠DEA+∠DEB=180°∴∠DEA=∠DEB=90°∵BDE≌△BDC∴∠DBE=∠DBC,∠DEB=∠C=90°∴∠A=∠DBE=∠DBC∴∠DBC=90°÷3=30°故答案为:30°.12.135°【详解】∵AC=BE,BC=DE,∠ACB=∠BED=90°,∴△ABC≌△BDE(SAS),∴∠1=∠DBE,∵∠DBE+∠3=90°,∴∠1+∠3=90°,∵∠2=12×90°=45°,∴∠1+∠2+∠3=90°+45°=135°.故答案是:135°.13.SAS【详解】∵AD ⊥AB ,AE ⊥AC ,∴∠DAB =∠EAC =90°,∴∠DAB +∠BAC =∠EAC +∠BAC ,即:∠DAC =∠BAE ,在△ADC 和△ABE 中,AD =AB ,∠DAC =∠BAE ,AE =AC ,∴△ADC ≌△ABE (SAS ),故填:SAS .14.DE =BC【分析】根据题目中的条件可以得到,DAE BAC AD AB ∠=∠=,再增加条件DE BC =则ADE ABC ≅ 不一定成立,从而可以解答本题.【详解】增加的条件为DE BC=理由:∵12∠=∠∴12BAE BAE∠+∠=∠+∠∴DAE BAC∠=∠∵,AD AB DE BC==∴ADE ABC ≅ 不一定成立故答案为:DE BC =.15.10【详解】∵两个三角形全等,一个三角形的三条边长分别为5,7,x ,另一个三角形的三条边长分别为y ,5,3,∴x =3,y =7,∴x +y =10,故答案为:10.16.5cm 2【分析】延长AP 交BC 于点E ,利用ASA 证出△APB ≌△EPB ,从而得出AP=EP ,S △APB =S △EPB =12S △ABE ,然后根据三角形中线的性质可得S △APC =S △EPC =12S △ACE ,从而求出结论.【详解】解:延长AP 交BC 于点E .∵AP 垂直B ∠的平分线BP 于点P ,∴∠APB=∠EPB=90°,∠ABP=∠EBP在△APB 和△EPB 中APB EPB BP BP ABP EBP ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△APB ≌△EPB∴AP=EP ,S △APB =S △EPB =12S △ABE ∴S △APC =S △EPC =12S △ACE ∴S △PBC =S △EPB +S △EPC =12S △ABE +12S △ACE =12(S △ABE +S △ACE )=12S △ABC =5cm 2故答案为:5cm 2.17.12【分析】设AC =4a ,AB =6a ,BC =8a ,根据全等三角形的性质得到AD =BD ,AE =BE ,再设AE =BE =x ,则EC =8a -x ,由题意得方程18a -12a =6,即可求解.【详解】解:∵AC :AB :BC =2:3:4,∴设AC =4a ,AB =6a ,BC =8a ,∵△ADE ≌△BDE ,∴AD =BD ,AE =BE ,再设AE =BE =x ,则EC =8a -x ,△ABC 的周长=AC +AB +BC =4a +6a +8a =18a ,△AEC 的周长=AC +AE +EC =4a +x +8a -x =12a ,由题意得:18a -12a =6,解得:a =1,∴△AEC 的周长为12,故答案为:12.18.2<AD <4【分析】此题要倍长中线,再连接,构造全等三角形.根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】解:延长AD 到E ,使AD =DE ,连接BE,∵AD 是△ABC 的中线,∴BD =CD ,在△ADC 与△EDB 中,BD CD ADC BDE AD DE =⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△EDB (SAS ),∴EB =AC ,根据三角形的三边关系定理:6-2<AE <6+2,∴2<AD <4,故AD 的取值范围为2<AD <4.19.证明见解析【分析】根据∠E +∠CBE =180°,∠ABC +∠CBE =180°,可得∠E =∠ABC ,利用ASA 证明△ABC ≌△DEF ,可得AC DF =,进而可得结论.【详解】∵AD BE=∴++AD BD BE BD =,即AB ED=∵∠E +∠CBE =180°,∠ABC +∠CBE =180°,∴∠E =∠ABC ,在△ABC 和△DEF 中,ABC E AB DE A EDF ∠∠⎧⎪⎨⎪∠∠⎩===,∴△ABC ≌△DEF (ASA ),∴AC DF =.20.证明见解析【分析】由题意可证ABC ≌DEC ,可得A D ∠=∠,再根据三角形内角和即可得12∠=∠.【详解】证明:如图,在ABC 和DEC 中,AC DC AB DE CB CE =⎧⎪=⎨⎪=⎩,∴ABC ≌DEC ()SSS ,A D ∴∠=∠,1180AFE A ∠+∠+∠=o ,2180DFC D ∠+∠+∠=o ,AFE DFC ∠=∠,∴12∠=∠.21.(1)见解析;(2)见解析【分析】(1)先根据同角的余角相等得出∠A=∠DCE ,再根据AAS 证明全等即可;(2)由(1)中得全等得:AB=CD ,由线段的和:BD=BC+CD ,等量代换可得结论.【详解】证明:(1)∵AB ⊥BD ,DE ⊥BD ,∴∠B=∠D=90°,∠ACB+∠A=90°,∵AC ⊥CE ,∴∠ACB+∠DCE=90°,∴∠A=∠DCE ,在△ABC 和△CDE中,B D A DCE BC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△CDE (AAS );(2)∵△ABC ≌△CDE ,∴AB=CD ,∵BC+CD=BD ,BC=DE ,∴AB+DE=BD .22.(1)见解析;(2)BC 长为6【分析】(1)证明ABC DFE △≌△,得到ACB DEF ∠=∠,即可证明//AC DE ;(2)根据ABC DFE △≌△,进而证明EB CF =,求出EB ,进而求出BC .【详解】解:(1)在ABC 和DFE △中,AB DF A D AC DE =⎧⎪∠=∠⎨⎪=⎩,∴()ABC DFE SAS ≌△△,∴ACB DEF ∠=∠,∴//AC DE ;(2)∵ABC DFE △≌△,∴BC FE =,∴BC EC FE EC -=-,即EB CF =,∴10242EB CF -===,∴426BC BE CE =+=+=.23.(1)详见解析;(2)详见解析;(3)BE ∥CF ,BE =CF .【分析】(1)根据中点的定义和射线的概念作图即可;(2)根据垂线的概念作图即可得;(3)根据平行线的判定以及全等三角形的判定与性质进行解答即可得.【详解】解:(1)如图所示,射线AD 即为所求;(2)如图所示BE 、CF 即为所求;(3)由测量知BE ∥CF 且BE =CF ,∵BE ⊥AD 、CF ⊥AD ,∴∠BED =∠CFD =90°,∴BE ∥CF ,又∵∠BDE =∠CDF ,BD =CD ,∴△BDE ≌△CDF (AAS ),∴BE =CF ,故答案为:BE ∥CF ,BE =CF .24.两堵木墙之间的距离为30cm .【分析】根据题意可得AC=BC ,∠ACB=90°,AD ⊥DE ,BE ⊥DE ,进而得到∠ADC=∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC ,再证明△ADC ≌△CEB 即可,利用全等三角形的性质进行解答.【详解】解:由题意得:AC=BC ,∠ACB=90°,AD ⊥DE ,BE ⊥DE ,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC ,在△ADC 和△CEB 中,ADC CEB DAC BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS );由题意得:AD=EC=9cm ,DC=BE=21cm ,∴DE=DC+CE=30(cm ),答:两堵木墙之间的距离为30cm .25.(1)见解析;(2)60°【分析】(1)首先利用平行线的性质得出,∠A =∠FBD ,根据AB =CD 即可得出AC =BD ,进而得出△EAC ≌△FBD 即可;(2)根据全等三角形的性质和三角形内角和解答即可.【详解】证明:(1)∵EA ∥FB ,∴∠A =∠FBD ,∵AB =CD ,∴AB +BC =CD +BC ,即AC =BD ,在△EAC 与△FBD 中,,EA FB A FBD AC BD =⎧⎪∠=∠⎨⎪=⎩∴△EAC ≌△FBD (SAS )(2)∵△EAC ≌△FBD ,∴∠ECA =∠D =80°,∵∠A =40°,∴∠E =180°-40°-80°=60°,答:∠E 的度数为60°.26.(1)BE=a+b;(2)BE=a-b.【分析】(1)先证明△BCE ≌△CDA,则CE=AD=a,BE=CD=CE+ED 即可算出答案.(2)先证明△BCE ≌△CDA,则CE=AD=a,BE=CD=CE-ED 即可算出答案.【详解】(1)由题意得:∠EBC +∠BCE=90°,∠BCE+∠DCA=90°,∴∠EBC=∠DCA,在△BCE 和△CDA中===90EBC DCA BEC CDA AC BC ∠∠⎧⎪∠∠︒⎨⎪=⎩∴△BCE ≌△CDA(AAS),∴CE=AD=a,BE=CD=CE+ED=a+b.(2)由题意得:∠EBC +∠BCE=90°,∠BCE+∠DCA=90°,∴∠EBC=∠DCA,在△BCE 和△CDA 中===90EBC DCA BEC CDA AC BC ∠∠⎧⎪∠∠︒⎨⎪=⎩∴△BCE ≌△CDA(AAS),∴CE=AD=a,BE=CD=CE-ED=a-b.27.(1)∠BAE ==120°;(2)结论:∠DAE =2∠C—120°.证明见解析;(3)∠BAD =66°.【分析】(1)根据角平分线的性质得到∠CBD =60°,由于∠BAE 是△ABC 的外角,则可以得到答案.(2)根据三角形内角和性质和四边形内角和,进行计算即可得到答案.(3)根据对顶角的性质可得∠EFG =∠DFA ,根据平行线的性质得2∠DAE +∠C =180°,再根据角平分线的性质即可得到答案.【详解】解:∵AC ⊥BC∴∠BCA =90°,∵AB平分∠CBD,∴∠ABC=12∠CBD,∠CBD=60°,∴∠ABC=30°,∵∠BAE是△ABC的外角,∴∠BAE=∠BCA+∠ABC=120°.结论:∠DAE=2∠C—120°.证明:∵∠DAE+∠DAC=180°,∴∠DAC=180°—∠DAE,∵∠DAC+∠DBC+∠C+∠D=360°,∴180—∠DAE+∠DBC+∠C+∠D=360°,∵∠DBC=60°,∠C=∠D,∴2∠C—∠DAE=120°,∴∠DAE=2∠C—120°.解:∵∠EFG和∠DFA是对顶角,∴∠EFG=∠DFA,∵∠EFG=2∠DAE,∴∠DFA=2∠DAE,∵DG∥BC,∴∠DFA+∠C=180°,∴2∠DAE+∠C=180°,∵∠DAE=2∠C—120°,∴∠DAE=48°,∴∠DAC=132°,∵AB平分∠CBD,∴∠DBA=∠CBA,∵∠C=∠D,∴∠BAD=∠BAC,∴∠BAD=12∠DAC=66°。
第一章 全等三角形数学八年级上册-单元测试卷-苏科版(含答案)
第一章全等三角形数学八年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、如图,△ABC≌△FED,则下列结论错误的是()A.EC=BDB.EF∥ABC.DF=BDD.AC∥FD2、在△ABC和△DEF中,∠A=50°,∠B=70°,AB=3cm,∠D=50°,∠E=70°,EF=3cm.则△ABC与△DEF()A.一定全等B.不一定全等C.一定不全等D.不确定3、如图是由四个全等的直角三角形与一个小正方形拼成的大正方形.若小正方形边长为,大正方形边长为,则一个直角三角形的面积等于()A. B. C. D.4、下列说法错误的是()A.关于某直线对称的两个图形一定能完全重合B.全等的两个三角形一定关于某直线对称C.轴对称图形的对称轴至少有一条D.线段是轴对称图形5、如图,点、在线段的同侧,连接、、、,已知,老师要求同学们补充一个条件使.以下是四个同学补充的条件,其中错误的是A. B. C. D.6、已知,如图,B、C、E三点在同一条直线上,AC=CD,∠B=∠E=90°,AB=CE,则错误的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CEDD.∠1=∠27、根据下列条件,只能画出唯一的△ABC的是()A.AB=3 BC=4B.AB=4 BC=3 ∠A=30°C.∠A=60°∠B=45°AB=4D.∠C=60°AB=58、如图,在正方形中,点E,F分别在和上,过点A作,的延长线交于点G,,若,则的度数为()A.15°B.20°C.25°D.30°9、由四个全等的直角三角形和一个小正方形组成的大正方形如图所示.过点作的垂线交小正方形对角线的延长线于点,连结,延长交于点.若,则的值为()A. B. C. D.10、如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是()作法:①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E:②分别以D,E为画心,大于DE的长为半径画弧,两弧在∠AOB内交于一点c:③画射线OC,射线OC就是∠AOB的角平分线A.ASAB.SASC.SSSD.AAS11、如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的()A.CB=CDB.∠ BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90 012、如图,O为▱ABCD两对角线的交点,图中全等的三角形有()A.1对B.2对C.3对D.4对13、已知:如图在,中,,,,点C,D,E三点在同一条直线上,连接,.以下四个结论:①;②;③;④,其中结论正确的个数是().A.1B.2C.3D.414、如图,AC和BD相交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC还需()A.AB=DCB.OB=OCC.∠C=∠DD.∠AOB=∠DOC15、如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.∠C=∠DB.∠CAB=∠DBAC.AC=BDD.BC=AD二、填空题(共10题,共计30分)16、如图,在等边三角形 ABC 中,点 D,E 分别在边 BC,AC 上,且 BD=CE,AD 与 BE 相交于点 P,则∠APE 的度数为________.17、如图,已知AD平分,,则此图中全等三角形有________ 对.18、如图,∠1=∠2,BC=EC,请补充一个条件:________能使用“AAS”方法判定△ABC ≌△DEC.19、一个三角形的三条边长分别为,,x,另一个三角形的三条边长分别为y,,,若这两个三角形全等,则________.20、如果两个图形全等,那么它们的面积________.21、如图,在平行四边形ABCD中,E为BC边上一点,且AB=AE,若AE平分∠DAB,∠EAC=25°,则∠AED的度数是________度.22、在中,,点在边上,.若,则的长为________.23、如图,在△ABC和△BAD中,BC=AD,请你再补充一个条件,使△ABC≌△BAD.你补充的条件是________(只填一个).24、如图,∠ABC=∠DCB,请补充一个条件:________,使△ABC≌△DCB.25、如图,已知边长为6的菱形ABCD中,∠ABC=60°,点E,F分别为AB,AD边上的动点,满足,连接EF交AC于点G,CE、CF分别交BD于点M,N,给出下列结论:①△CEF是等边三角形;②∠DFC=∠EGC;③若BE=3,则BM=MN=DN;④;⑤△ECF面积的最小值为.其中所有正确结论的序号是________三、解答题(共5题,共计25分)26、如图,已知AB=AD,且AC平分∠BAD,求证:BC=DC27、如图,在中,点,分别是、边上的点,,,与相交于点,求证:是等腰三角形.28、如图,已知,,求证:.29、如图,点D在BC上,∠1=∠2,AE=AC,下面有三个条件:①AB=AD;②BC=DE;③∠E=∠C,请你从所给条件①②③中选一个条件,使△ABC≌△ADE,并说明理由.30、如图,AB=AC,AD=AE,。
苏科版八年级上册第1章《全等三角形》单元测试卷
苏科版八年级上册第1章《全等三角形》单元测试卷满分100分班级_________姓名_________学号_________成绩_________一.选择题(共10小题,满分30分,每小题3分)1.下列四个图形中,属于全等图形的是()A.③和④B.②和③C.①和③D.①②2.下列说法正确的是()A.全等三角形是指形状相同的三角形B.全等三角形是指面积相等的两个三角形C.全等三角形的周长和面积相等D.所有等边三角形是全等三角形3.如图,小明书上的三角形被墨迹遮挡了一部分,但他很快想办法在作业本画了一样的三角形,那么这两个三角形完全一样的依据是()A.AAS B.ASA C.SSS D.SAS4.如图,△ABC≌△CDA,∠B=65°,则∠ADC的度数为()A.85°B.65°C.30°D.45°5.如图,已知∠ACB=∠DBC,添加以下条件,不能判定△ABC≌△DCB的是()A.∠ABC=∠DCB B.∠ABD=∠DCA C.AC=DB D.AB=DC6.如图,△ABC≌△CDE,则线段AC和线段CE的关系是()A.既不相等也不互相垂直B.相等但不互相垂直C.互相垂直但不相等D.相等且互相垂直7.若△ABC≌△DEF,AB=2,AC=4,且△DEF的周长为奇数,则EF的值为()A.3B.4C.1或3D.3或58.已知:如图,在△ABC中,∠C=63°,AD是BC边上的高,AD=BD,点E在AC上,BE交AD于点F,BF=AC,则∠AFB的度数为()A.27°B.37°C.63°D.117°9.如图,在△ABC中,AB=AC,BD=CD,点E,F是AD上的任意两点.若BC=8,AD =6,则图中阴影部分的面积为()A.12B.20C.24D.4810.如图,AB,CD相交于点O,OA=OC,∠A=∠C,下列结论:(1)△AOD≌△COB;(2)AD=CB;(3)AB=CD.其中正确的个数为()A.0个B.1个C.2个D.3个二.填空题(共7小题,满分21分,每小题3分)11.图中的全等图形共有对.12.将△ABC缩小为△DEF,则△ABC和△DEF(填“全等”或“不全等”)13.如图,如果图中的两个三角形全等,根据图中所标数据,可以推理得到∠α=°.14.如图,把两根钢条AB,CD的中点连在一起做成卡钳,可测量工件内槽的宽,已知AC 的长度是6cm,则工件内槽的宽BD是cm.15.如图,△ABC≌△ADE,如果AB=5cm,BC=7cm,AC=6cm,那么DE的长是.16.如图,已知:∠A=∠D,∠1=∠2,下列条件中:①∠E=∠B;②EF=BC;③AB =EF;④AF=CD.能使△ABC≌△DEF的有.(填序号)17.如图,∠A=∠B=90°,AB=60,E,F分别为线段AB和射线BD上的一点,若点E 从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为3:7,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为.三.解答题(共7小题,满分49分)18.(6分)如图,已知点B,E在线段CF上,CE=BF,∠C=∠F,∠ABC=∠DEF.试说明:△ABC≌△DEF.解:因为CE=BF(已知)所以CE﹣=BF﹣BE()即=在△ABC和△DEF中,所以△ABC≌△DEF().19.(6分)如图所示,O是线段AC、BD的交点,并且AC=BD,AB=CD.小明认为证明图中的△AOB和△DOC全等,他说连接BC或AD就可以了,请你用一种方法试一试看.20.(6分)王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE 上,点A和B分别与木墙的顶端重合,求两堵木墙之间的距离.21.(6分)如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P从A点出发沿A ﹣C路径向终点C运动;点Q从B点出发沿B﹣C﹣A路径向终点A运动.点P和Q分别以每秒1cm和3cm的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.则点P运动时间为多少时,△PEC 与△QFC全等?22.(8分)如图,点C在BE上,AB⊥BE,DE⊥BE,且AB=BE,BC=DE,AC交BD于F.(1)求证:△ABC≌△BED;(2)求∠BFC的度数.23.(8分)如图,已知△ABC≌△DBE,点D在AC上,BC与DE交于点P,若AD=DC =2.4,BC=4.1.(1)若∠ABE=162°,∠DBC=30°,求∠CBE的度数;(2)求△DCP与△BPE的周长和.24.(9分)如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC 的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:①、②可以完全重合,因此全等的图形是①、②.故选:D.2.解:A、全等三角形不仅仅形状相同而且大小相同,错;B、全等三角形不仅仅面积相等而且要边、角完全相同,错;C、全等则重合,重合则周长与面积分别相等,则C正确.D、完全相同的等边三角形才是全等三角形,错.故选:C.3.解:由图可知,三角形两角及夹边可以作出,所以,依据是ASA.故选:B.4.解:∵△ABC≌△CDA,∴∠ADC=∠B=65°,故选:B.5.解:A、∵在△ABC和△DCB中∴△ABC≌△DCB(ASA),故本选项不符合题意;B、∵∠ABD=∠DCA,∠DBC=∠ACB,∴∠ABD+∠DBC=∠ACD+∠ACB,即∠ABC=∠DCB,∵在△ABC和△DCB中∴△ABC≌△DCB(ASA),故本选项不符合题意;C、∵在△ABC和△DCB中∴△ABC≌△DCB(SAS),故本选项不符合题意;D、根据∠ACB=∠DBC,BC=BC,AB=DC不能推出△ABC≌△DCB,故本选项符合题意;故选:D.6.解:∵△ABC≌△CDE,∴AC=CE,∠A=∠BCD,∠B=∠D,∠ACB=∠E,∴∠ACB+∠BCD=∠ACB+∠A,当∠B=∠D≠90°时,∠ACB+∠BCD=∠ACB+∠A≠90°,则∠ACE≠90°,即AC和CE不互相垂直,故选:B.7.解:∵△ABC≌△DEF,AB=2,AC=4,∴DE=AB=2,DF=AC=4,∵△DEF的周长为奇数,∴EF的长为奇数,D、当EF=3或5时,符合EF的长为奇数和三角形的三边关系定理,故本选项正确;A、当EF=3时,由选项D知,此选项错误;B、当EF=4时,不符合EF为奇数,故本选项错误;C、当EF=1或3时,其中1无法构成三角形,故本选项错误;故选:D.8.解:∵AD是BC边上的高,AD=BD,∴∠BAD=∠ABD=45°,∴∠CAD=180°﹣∠C﹣∠BAD﹣∠ABD=180°﹣63°﹣45°﹣45°=27°,在Rt△ACD和Rt△BFD中,,∴Rt△ACD≌Rt△BFD(HL),∴∠FBD=∠CAD=27°,∴∠AFB=∠FBD+∠BDF=27°+90°=117°,故选:D.9.解:∵AB=AC,BD=CD,AD=AD,∴△ADC≌△ADB(SSS),∴S△ADC=S△ADB,BD=BC,∵BC=8,∴BD=4,∵S△BEF=S△CEF,AD=6,∴S阴影=S△ADB=.故选:A.10.解:∵OA=OC,∠A=∠C,而∠AOD=∠BOC,∴△AOD≌△COB(ASA),所以(1)正确;∴AD=BC,OD=OB,所以(2)正确;∵OA+OB=OC+OD,∴AB=CD,所以(3)正确.故选:D.二.填空题(共7小题,满分21分,每小题3分)11.解:(2)和(7)是全等形;(3)和(8)是全等形;共2对,故答案为:2.12.解:∵△ABC缩小为△DEF,∴△ABC与△DEF大小不等,不能重合,∴△ABC和△DEF不全等.故答案为:不全等.13.解:∵图中的两个三角形全等,∴∠α=68°.故答案为68.14.解:∵把两根钢条AB,CD的中点连在一起做成卡钳,∴AO=BO,CO=DO,在△BOD和△AOC中,∴△BOD≌△AOC(SAS),∴BD=AC=6cm,故答案为:6.15.解:∵△ABC≌△ADE,BC=7,∴DE=BC=7(cm),故答案为:7cm.16.解:①∠E=∠B,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,∴①错误;②EF=BC,符合全等三角形的判定定理,可以用AAS证明△ABC≌△DEF,∴②正确;③AB=EF,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,∴③错误;④∵AF=CD,∴AF+FC=CD+FC,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴④正确;故答案为:②④.17.解:设BE=3t,则BF=7t,因为∠A=∠B=90°,使△AEG与△BEF全等,可分两种情况:情况一:当BE=AG,BF=AE时,∵BF=AE,AB=60,解得:t=6,∴AG=BE=3t=3×6=18;情况二:当BE=AE,BF=AG时,∵BE=AE,AB=60,∴3t=60﹣3t,解得:t=10,∴AG=BF=7t=7×10=70,综上所述,AG=18或AG=70.故答案为:18或70.三.解答题(共7小题,满分49分)18.解:因为CE=BF(已知),所以CE﹣BE=BF﹣BE(等式的性质),即BC=EF,在△ABC和△DEF中,所以△ABC≌△DEF(ASA).故答案为:BE;等式的性质;BC=EF;ASA.19.证明:连接BC,在△ABC和△DCB中,,∴△ABC≌△DCB(SSS),又在△AOB和△DOC中,∴△AOB≌△DOC(AAS).20.解:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);由题意得:AD=EC=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.21.解:设运动时间为t秒时,△PEC≌△QFC,∵△PEC≌△QFC,∴斜边CP=CQ,有2种情况:①P在AC上,Q在BC上,CP=6﹣t,CQ=8﹣3t,∴6﹣t=8﹣3t,∴t=1;②P、Q都在AC上,此时P、Q重合,∴CP=6﹣t=3t﹣8,∴t=3.5;答:点P运动1或3.5时,△PEC与△QFC全等.22.(1)证明:∵AB⊥BE,DE⊥BE,∴∠ABC=∠BED=90°,在△ABC和△BED中,∴△ABC≌△BED(SAS);(2)解:∵△ABC≌△BED,∴∠DBE=∠CAB,∵∠ABC=90°,∴∠CAB+∠ACB=90°.∴∠DBE+∠ACB=90°.∴在△BFC中,∠BFC=90°.23.解:(1)∵∠ABE=162°,∠DBC=30°,∴∠ABD+∠CBE=132°,∵△ABC≌△DBE,∴∠ABC=∠DBE,∴∠ABD=∠CBE=132°÷2=66°,即∠CBE的度数为66°;(2)∵△ABC≌△DBE,∴DE=AD+DC=4.8,BE=BC=4.1,△DCP和△BPE的周长和=DC+DP+BP+BP+PE+BE=DC+DE+BC+BE=15.4.24.解:(1)①当点P在BC上时,如图①﹣1,若△APC的面积等于△ABC面积的一半;则CP=BC=cm,此时,点P移动的距离为AC+CP=12+=,移动的时间为:÷3=秒,②当点P在BA上时,如图①﹣2若△APC的面积等于△ABC面积的一半;则PD=BC,即点P为BA中点,此时,点P移动的距离为AC+CB+BP=12+9+=cm,移动的时间为:÷3=秒,故答案为:或;(2)△APQ≌△DEF,即,对应顶点为A与D,P与E,Q与F;①当点P在AC上,如图②﹣1所示:此时,AP=4,AQ=5,∴点Q移动的速度为5÷(4÷3)=cm/s,②当点P在AB上,如图②﹣2所示:此时,AP=4,AQ=5,即,点P移动的距离为9+12+15﹣4=32cm,点Q移动的距离为9+12+15﹣5=31cm,∴点Q移动的速度为31÷(32÷3)=cm/s,综上所述,两点运动过程中的某一时刻,恰好△APQ≌△DEF,点Q的运动速为cm/s 或cm/s.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏科新版八年级数学上册《第1章全等三角形》2016年单元测试卷(2)一、选择题(在每小题所给出的四个选项中恰有一项是符合题目要求的)1.下列条件中,不能判定△ABC≌△A′B′C′的是()A.AB=A′B′,∠A=∠A′,AC=A′C′B.AB=A′B′,∠A=∠A′,∠B=∠B′C.AB=A′B′,∠A=∠A′,∠C=∠C′D.∠A=∠A′,∠B=∠B′,∠C=∠C′2.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS3.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F4.如图,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论①AS=AR;②QP∥AR;③△BPR≌△QSP中()A.全部正确 B.仅①和②正确 C.仅①正确 D.仅①和③正确5.如图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断不正确的是()A.△ABD≌△CBD B.△ABC是等边三角形C.△AOB≌△COB D.△AOD≌△COD6.下列命题中,不正确的是()A.各有一个角为95°,且底边相等的两个等腰三角形全等B.各有一个角为40°,且底边相等的两个等腰三角形全等C.各有一个角为40°,且其所对的直角边相等的两个直角三角形全等D.各有一个角为40°,且有斜边相等的两个直角三角形全等二、填空题(不需写出解答过程,请把答案直接填写在相应位的置上)7.如图,在直角三角形ABC中,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC和AC的垂线AX上移动,则当AP= 时,才能使△ABC和△APQ全等.8.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AB+AC=2AE中正确的是.9.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,∠1=30°,则∠2的度数为.10.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是(请将所有正确结论的序号都填上).三、解答题(请在答题的指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)11.已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.12.如图,△ABC为等边三角形,D为边BA延长线上一点,连接CD,以CD为一边作等边三角形CDE,连接AE.(1)求证:△CBD≌△CAE.(2)判断AE与BC的位置关系,并说明理由.13.如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于P.(1)求证:△ABE≌△CAD;(2)求∠PBQ的度数.14.如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB 的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.当一个点停止运动时时,另一个点也随之停止运动.设运动时间为t.(1)用含有t的代数式表示CP.(2)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?《第1章全等三角形》参考答案与试题解析一、选择题(在每小题所给出的四个选项中恰有一项是符合题目要求的)1.下列条件中,不能判定△ABC≌△A′B′C′的是()A.AB=A′B′,∠A=∠A′,AC=A′C′B.AB=A′B′,∠A=∠A′,∠B=∠B′C.AB=A′B′,∠A=∠A′,∠C=∠C′D.∠A=∠A′,∠B=∠B′,∠C=∠C′【考点】全等三角形的判定.【分析】根据三角形全等的判定方法,SSS、SAS、ASA、AAS,逐一检验.【解答】解:A、符合SAS判定定理,故本选项错误;B、符合ASA判定定理,故本选项错误;C、符合AAS判定定理,故本选项错误;D、没有AAA判定定理,故本选项正确.故选D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS【考点】全等三角形的应用.【分析】在△ADC和△ABC中,由于AC为公共边,AB=AD,BC=DC,利用SSS定理可判定△ADC≌△ABC,进而得到∠DAC=∠BAC,即∠QAE=∠PAE.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:D.【点评】本题考查了全等三角形的应用;这种设计,用SSS判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.3.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F【考点】全等三角形的判定.【分析】根据全等三角形的判定定理,即可得出答.【解答】解:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据ASA,也可证明△ABC≌△DEF,故B正确;但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C不正确;故选:C.【点评】本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形的HL定理.4.如图,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论①AS=AR;②QP∥AR;③△BPR≌△QSP中()A.全部正确 B.仅①和②正确 C.仅①正确 D.仅①和③正确【考点】角平分线的性质;全等三角形的判定与性质.【专题】压轴题.【分析】判定线段相等的方法可以由全等三角形对应边相等得出;判定两条直线平行,可以由“同位角相等,两直线平行”或“内错角相等,两直线平行”或“同旁内角互补,两直线平行”得出;判定全等三角形可以由SSS、SAS、ASA、AAS或HL得出.【解答】解:∵PR=PS,PR⊥AB于R,PS⊥AC于S,AP=AP∴△ARP≌△ASP(HL)∴AS=AR,∠RAP=∠SAP∵AQ=PQ∴∠QPA=∠SAP∴∠RAP=∠QPA∴QP∥AR而在△BPR和△QSP中,只满足∠BRP=∠QSP=90°和PR=PS,找不到第3个条件,所以无法得出△BPR ≌△QSP故本题仅①和②正确.故选B.【点评】本题涉及到全等三角形的判定和角平分线的判定,需要结合已知条件,求出全等三角形或角平分线,从而判定三个选项的正确与否.5.如图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断不正确的是()A.△ABD≌△CBD B.△ABC是等边三角形C.△AOB≌△COB D.△AOD≌△COD【考点】轴对称的性质;全等三角形的判定;等边三角形的判定.【分析】先根据轴对称的性质得出AB=BC,AD=CD,OA=OC,BD⊥AC,再根据全等三角形的判定定理即可得出结论.【解答】解:∵主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,∴AB=BC,AD=CD,OA=OC,BD⊥AC,在△ABD与△CBD中,,∴△ABD≌△CBD,故A正确;在△AOB与△COB中,,∴△AOB≌△COB,故C正确;在△AOD与△COD中,,∴△AOD≌△COD,故D正确;△ABC是等腰三角形,故B错误.故选B.【点评】本题考查的是轴对称的性质,熟知如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线是解答此题的关键.6.下列命题中,不正确的是()A.各有一个角为95°,且底边相等的两个等腰三角形全等B.各有一个角为40°,且底边相等的两个等腰三角形全等C.各有一个角为40°,且其所对的直角边相等的两个直角三角形全等D.各有一个角为40°,且有斜边相等的两个直角三角形全等【考点】全等三角形的判定.【专题】证明题.【分析】根据全等三角形的判定定理:SAS,SSS,AAS,ASA对各个选项逐一分析即可【解答】解:A、∵各有一个角为95°,这个角只能是顶角,∴这两个等腰三角形全等,本选项正确;B、∵不知这个角是顶角还是底角,∴这两个等腰三角形不一定全等,故本选项错误;C、∵各有一个角为40°,∴此直角三角形各个角相等,再加上且其所对的直角边相等,∴两个直角三角形全等,本选项正确,D、∵各有一个角为40°,∴此直角三角形各个角相等,再加上有斜边相等,∴两个直角三角形全等,本选项正确,【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题(不需写出解答过程,请把答案直接填写在相应位的置上)7.如图,在直角三角形ABC中,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC和AC的垂线AX上移动,则当AP= 5cm或10cm 时,才能使△ABC和△APQ全等.【考点】全等三角形的判定.【分析】本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=5cm,可据此求出P点的位置;②Rt△QAP≌Rt△BCA,此时AP=AC,P、C重合.【解答】解:∵PQ=AB,∴根据三角形全等的判定方法HL可知,①当P运动到AP=BC时,△ABC≌△QPA,即AP=BC=5cm;②当P运动到与C点重合时,△QAP≌△BCA,即AP=AC=10cm.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.8.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AB+AC=2AE中正确的是①②④.【考点】全等三角形的判定与性质;角平分线的性质.【分析】由HL证明Rt△BDE≌Rt△CDF,得出对应边相等DE=DF,得出AD平分∠BAC,①②正确;由AE>AD,得出③不正确,由全等三角形的对应边相等得出BE=CF,AE=AF,得出④正确,即可得出结果.【解答】解:∵DE⊥AB于E,DF⊥AC于F,∴∠E=∠DFC=90°,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL),∴DE=DF,①正确,∴AD平分∠BAC,②正确,∵在Rt△ADE中,AE是斜边,∴AE>AD,③不正确,∵Rt△BDE≌Rt△CDF,∴BE=CF,AE=AF,∴AB+AC=AB+AF+CF=AB+AE+BE=2AE,④正确;正确的是①②④.故答案为:①②④.【点评】本题考查了全等三角形的判定与性质、角平分线的判定;证明三角形全等得出对应边相等是解决问题的关键9.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,∠1=30°,则∠2的度数为75°.【考点】平行线的性质.【专题】计算题;线段、角、相交线与平行线.【分析】由等腰直角三角形的性质求出∠ACB的度数,进而求出∠1+∠ACB的度数,再利用两直线平行内错角相等即可求出∠2的度数.【解答】解:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵∠1=30°,∴∠1+∠ACB=75°,∵a∥b,∴∠2=∠1+∠ACB=75°,故答案为:75°【点评】此题考查了平行线的性质,以及等腰直角三角形的性质,熟练掌握性质是解本题的关键.10.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是①②④(请将所有正确结论的序号都填上).【考点】全等三角形的判定与性质;线段垂直平分线的性质.【分析】根据角平分线性质即可推出①,根据勾股定理即可推出AR=AS,根据等腰三角形性质推出∠QAP=∠QPA,推出∠QPA=∠BAP,根据平行线判定推出QP∥AB即可;在Rt△BRP和Rt△QSP中,只有PR=PS.无法判断△BRP≌△QSP;连接RS,与AP交于点D,先证△ARD≌△ASD,则RD=SD,∠ADR=∠ADS=90°.【解答】解:①∵PR⊥AB,PS⊥AC,PR=PS,∴点P在∠A的平分线上,∠ARP=∠ASP=90°,∴∠SAP=∠RAP,在Rt△ARP和Rt△ASP中,由勾股定理得:AR2=AP2﹣PR2,AS2=AP2﹣PS2,∵AD=AD,PR=PS,∴AR=AS,∴①正确;②∵AQ=QP,∴∠QAP=∠QPA,∵∠QAP=∠BAP,∴∠QPA=∠BAP,∴QP∥AR,∴②正确;③在Rt△BRP和Rt△QSP中,只有PR=PS,不满足三角形全等的条件,故③错误;④如图,连接RS,与AP交于点D.在△ARD和△ASD中,,所以△ARD≌△ASD.∴RD=SD,∠ADR=∠ADS=90°.所以AP垂直平分RS,故④正确.故答案为:①②④.【点评】本题考查了等边三角形的性质和判定,全等三角形的性质和判定,平行线的性质和判定,角平分线性质的应用,熟练掌握全等三角形的判定和性质是解题的关键.三、解答题(请在答题的指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)11.(2015•无锡)已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据CE=DE得出∠ECD=∠EDC,再利用平行线的性质进行证明即可;(2)根据SAS证明△AEC与△BED全等,再利用全等三角形的性质证明即可.【解答】证明:(1)∵AB∥CD,∴∠AEC=∠ECD,∠BED=∠EDC,∵CE=DE,∴∠ECD=∠EDC,∴∠AEC=∠BED;(2)∵E是AB的中点,∴AE=BE,在△AEC和△BED中,,∴△AEC≌△BED(SAS),∴AC=BD.【点评】本题主要考查了全等三角形的判定以及全等三角形的性质,关键是根据SAS证明全等.12.(2014秋•马鞍山期末)如图,△ABC为等边三角形,D为边BA延长线上一点,连接CD,以CD 为一边作等边三角形CDE,连接AE.(1)求证:△CBD≌△CAE.(2)判断AE与BC的位置关系,并说明理由.【考点】全等三角形的判定与性质;平行线的判定;等边三角形的性质.【分析】(1)根据等边三角形各内角为60°和各边长相等的性质可证∠ECA=∠DCB,AC=BC,EC=DC,即可证明△ECA≌△DCB;(2)根据△ECA≌△DCB可得∠EAC=60°,根据内错角相等,平行线平行即可解题.【解答】证明:(1)∵△ABC、△DCE为等边三角形,∴AC=BC,EC=DC,∠ACB=∠ECD=∠DBC=60°,∵∠ACD+∠ACB=∠DCB,∠ECD+∠ACD=∠ECA,∴∠ECA=∠DCB,在△ECA和△DCB中,,∴△ECA≌△DCB(SAS);(2)∵△ECA≌△DCB,∴∠EAC=∠DBC=60°,又∵∠ACB=∠DBC=60°,∴∠EAC=∠ACB=60°,∴AE∥BC.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证△ECA≌△DCB是解题的关键.13.(2015秋•无锡校级月考)如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于P.(1)求证:△ABE≌△CAD;(2)求∠PBQ的度数.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)根据等边三角形的性质可得AB=AC,∠BAC=∠C=60°,然后利用“边角边”即可证明两三角形;(2)由SAS可得△ABE≌△CAD,进而得出对应角相等,再通过角之间的转化即可求解∠BPD的度数,进而求得结论.【解答】(1)证明:∵△ABC是等边三角形,∴AB=AC,∠BAC=∠C=60°,在△ABE与△CAD中,,∴△ABE≌△CAD(SAS);(2)由(1)知△ABE≌△CAD,∴∠ABE=∠CAD,∴∠BPQ=∠ABE+∠BAP=∠CAD+∠BAP=∠BAC=60°.∴∠PBQ=90°﹣∠BPQ=30°.【点评】本题考查了全等三角形的判定与性质,等边三角形的性质,熟练掌握这两个性质是解决问题的关键.14.(2013秋•仪征市期末)如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB 的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.当一个点停止运动时时,另一个点也随之停止运动.设运动时间为t.(1)用含有t的代数式表示CP.(2)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?【考点】全等三角形的判定;等腰三角形的性质.【专题】几何图形问题;动点型;分类讨论.【分析】(1)求出BP=3t,即可求出答案;(2)求出BP、CQ、CP,根据全等三角形的判定推出即可;(3)设当点Q的运动速度为x厘米/时,时间是t小时,能够使△BPD与△CQP全等,求出BD=5厘米,BP=3t厘米,CP=(8﹣3t)厘米,CQ=xt厘米,∠B=∠C,根据全等三角形的性质得出方程,求出方程的解即可.【解答】解:(1)∵点P在线段BC上以3厘米/秒的速度由B点向C点运动,∴BP=3t厘米,∵BC=8厘米,∴CP=(8﹣3t)厘米;(2)点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP全等,理由是:∵AB=AC=10厘米,点D为AB的中点,∴∠B=∠C,BD=5厘米,∵BP=CQ=3t厘米=3厘米,∴CP=8厘米﹣3厘米=5厘米=BD,在△DBP和△PCQ中,,∴△DBP≌△PCQ(SAS);(3)设当点Q的运动速度为x厘米/时,时间是t小时,能够使△BPD与△CQP全等,∵BD=5厘米,BP=3t厘米,CP=(8﹣3t)厘米,CQ=xt厘米,∠B=∠C,∴当BP=CQ,BD=CP或BP=CP,BD=CQ时,△BPD与△CQP全等,即①3t=xt,5=8﹣3t,解得:x=3(不合题意,舍去),②3t=8﹣3t,5=xt,解得:x=,即当点Q的运动速度为厘米/时时,能够使△BPD与△CQP全等.【点评】本题考查了全等三角形的判定和性质的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,用了分类讨论思想.。