孟道骥《高等代数与解析几何》(第3版)(下册) 多项式矩阵 6.3 名校考研真题详解【圣才出品】

合集下载

1999-2000,2,5-8,10北京大学高等代数考研真题

1999-2000,2,5-8,10北京大学高等代数考研真题

1. 在直角坐标系中,求直线⎩⎨⎧=++=-+1202:z y x z y x l 到平面03:=++z By x π的正交投影轨迹的方程。

其中B 是常数2. 在直角坐标系中对于参数λ的不同取值,判断下面平面二次曲线的形状:0222=+++λλxy y x .对于中心型曲线,写出对称中心的坐标;对于线心型曲线,写出对称直线的方程。

3. 设数域K 上的n 级矩阵A 的),(j i 元为ji b a -(1).求A ;(2).当2≥n 时,2121,b b a a ≠≠.求齐次线性方程组0=AX 的解空间的维数和一个基。

4.(1)设数域K 上n 级矩阵,对任意正整数m ,求mC (2)用)(K M n 表示数域K 上所有n 级矩阵组成的集合,它对于矩阵的加法和数量乘法成为K 上的线性空间。

数域K 上n 级矩阵1432121321a a a a a a a a a a a a A n n n-=称为循环矩阵。

用U 表示K 上所有n 级循环矩阵组成的集合。

证明:U 是)(K M n 的一个子空间,并求U 的一个基和维数。

5.(1)设实数域R 上n 级矩阵H 的),(j i 元为11-+j i (1>n )。

在实数域上n 维线性空间n R 中,对于nR ∈βα,,令βαβαH f '=),(。

试问:f 是不是n R 上的一个内积,写出理由。

(2)设A 是n 级正定矩阵(1>n )nR ∈α,且α是非零列向量。

令αα'=A B ,求B的最大特征值以及B 的属于这个特征值的特征子空间的维数和一个基6.设A 是数域R 上n 维线性空间V 上的一个线性变换,用I 表示V 上的恒等变换,证明: n r a n k r a n k =+++-⇔=)()(23A A I A I I A2006年北京大学研究生考试高等代数与解析几何试题 本试卷满分150分 考试时间 3小时 日期:2006年1月15日下午高等代数部分(100分)1.(16分)(1) 设,A B 分别是数域K 上,s n s m ××矩阵,叙述矩阵方程AX B =有解的充要条件,并且给予证明。

考研数学三(行列式和矩阵)模拟试卷2(题后含答案及解析)

考研数学三(行列式和矩阵)模拟试卷2(题后含答案及解析)

考研数学三(行列式和矩阵)模拟试卷2(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设n维行向量α=,A=E-ααT,B=E+2αTα,则AB为( ).A.0B.-EC.ED.E+α2α正确答案:C解析:由ααT=,得AB=(E-ααT)(E+2ααT)=E,选C.知识模块:矩阵2.设A,B为n阶矩阵,则下列结论正确的是( ).A.若A,B可逆,则A+B可逆B.若A,B可逆,则AB可逆C.若A+B可逆,则A-B可逆D.若A+B可逆,则A,B都可逆正确答案:B解析:若A,B可逆,则|A|≠0,|B|≠0,又|AB|=|A||B|,所以|AB|≠0,于是AB可逆,选B.知识模块:矩阵3.设A,B为n阶对称矩阵,下列结论不正确的是( ).A.AB为对称矩阵B.设A,B可逆,则A-1+B-1为对称矩阵C.A+B为对称矩阵D.kA为对称矩阵正确答案:A解析:由(A+B)T=AT+BT=A+B,得A+B为对称矩阵;由(A-1+B)T=(A-1)T+(B)T=A-1+B-1,得A-1+B-1为对称矩阵;由(kA)T=kAT=kA,得kA为对称矩阵,选A.知识模块:矩阵4.设A,B皆为n阶矩阵,则下列结论正确的是( ).A.AB=O的充分必要条件是A=O或B=OB.AB≠O的充分必要条件是A≠O且B≠OC.AB=O且r(A)=n,则B=OD.若AB≠O,则|A|≠0或|B|≠0正确答案:C解析:取A=≠O,B=≠O,显然AB=O,故A,B都不对,取A=≠O,但|A|=0且|B|=0,故D不对;由AB=O得r(A)+r(B)≤n,因为r(A)=n,所以r(B)=0,于是B=O,所以选C.知识模块:矩阵5.n阶矩阵A经过若干次初等变换化为矩阵B,则( ).A.|A|=|B|B.|A|≠|B|C.若|A|=0则|B|=0D.若|A|>0则|B|>0正确答案:C解析:因为A经过若干次初等变换化为B,所以存在初等矩阵P1,…,Ps,Q1,…,Qt,使得B=Ps…P1AQ1…Qt,而P1,…,Ps,Q1,…,Qt都是可逆矩阵,所以r(A)=r(B),若|A|=0,即r(A)<n,则r(B)<n,即|B|=0,选C.知识模块:矩阵6.设A为m×n阶矩阵,C为n阶矩阵,B=AC,且r(A)=r,r(B)=r1,则( ).A.r>r1B.r<r1C.r≥r1D.r与r1的关系依矩阵C的情况而定正确答案:C解析:因为r1=r(B)=r(AC)≤r(A)=r,所以选C.知识模块:矩阵7.设A为m×n阶矩阵,B为n×m阶矩阵,且m>n,令r(AB)=r,则( ).A.r>mB.r=mC.r<mD.r≥m正确答案:C解析:显然AB为m阶矩阵,r(A)≤n,r(B)≤n,而r(AB)≤min{r(A),r(B)}≤n<m,所以选C.知识模块:矩阵8.设A为四阶非零矩阵,且r(A*)=1,则( ).A.r(A)=1B.r(A)=2C.r(A)=3D.r(A)=4正确答案:C解析:因为r(A*)=1,所以r(A)=4-1=3,选C.知识模块:矩阵9.设A,B都是n阶矩阵,其中B是非零矩阵,且AB=O,则( ).A.r(B)=nB.r(B)<nC.A2-B2=(A+B)(A-B)D.|A|=0正确答案:D解析:因为AB=O,所以r(A)+r(B)≤n,又因为B是非零矩阵,所以r(B)≥1,从而r(A)<n,于是|A|=0,选D.知识模块:矩阵10.设A,B分别为m阶和n阶可逆矩阵,则的逆矩阵为( ).A.B.C.D.正确答案:D解析:A,B都是可逆矩阵,因为所以,选D.知识模块:矩阵11.设则A,B的关系为( ).A.B=P1P2AB.B=P2P1AC.B=P2AP1D.B=AP2P1正确答案:D解析:P1=E12,P2=E23(2),显然A首先将第2列的两倍加到第3列,再将第1及第2列对调,所以B=AE23(2)E12=AP2P1,选D.知识模块:矩阵12.设则( ).A.B=P1AP2B.B=P2AP1C.B=P2-1AP1D.B=P1-1AP2-1正确答案:D解析:显然B==P1AP2-1,因为P1-1=P1,所以选D.知识模块:矩阵填空题13.设A=,B为三阶非零矩阵,且AB=O,则r(A)=________.正确答案:2解析:因为AB=O,所以r(A)+r(B)≤3,又因为B≠O,所以r(B)≥1,从而有r(A)≤2,显然A有两行不成比例,故r(A)≥2,于是r(A)=2.知识模块:矩阵14.P1=,则P12009P2-1=________.正确答案:解析:P1==E23,因为Eij-1=Eij,所以Eij2=E,于是P12009P2-1=P1P2-1= 知识模块:矩阵解答题解答应写出文字说明、证明过程或演算步骤。

(NEW)同济大学数学系《工程数学—线性代数》(第6版)笔记和课后习题(含考研真题)详解

(NEW)同济大学数学系《工程数学—线性代数》(第6版)笔记和课后习题(含考研真题)详解

目 录
第1章 行列式
1.1 复习笔记
1.2 课后习题详解
1.3 考研真题详解
第2章 矩阵及其运算
2.1 复习笔记
2.2 课后习题详解
2.3 考研真题详解
第3章 矩阵的初等变换与线性方程组
3.1 复习笔记
3.2 课后习题详解
3.3 考研真题详解
第4章 向量组的线性相关性4.1 复习笔记
4.2 课后习题详解
4.3 考研真题详解
第5章 相似矩阵及二次型5.1 复习笔记
5.2 课后习题详解
5.3 考研真题详解
第6章 线性空间与线性变换6.1 复习笔记
6.2 课后习题详解
6.3 考研真题详解
第1章 行列式
1.1 复习笔记
一、二阶与三阶行列式
1二阶行列式
定义 将四个数,,,按一定位置,排成二行二列的数表:
则表达式就是数表的二阶行列式,并记作
2三阶行列式
定义 设有9个数排成3行3列的数表

该式称为数表所确定的三阶行列式.
二、全排列和对换
1全排列。

名校高等代数考研《830高等代数》考研真题解析库

名校高等代数考研《830高等代数》考研真题解析库

名校高等代数考研《830高等代数》考研真题解析库北大重大第一部分名校考研真题第1章多项式一、判断题1.设Q是有理数域,则P={α+βi|α,β∈Q}也是数域,其中.()[南京大学研]【答案】对查看答案【解析】首先0,1∈P,故P非空;其次令a=α1+β1i,b=α2+β2i其中α1,α2,β1,β2为有理数,故a±b=(α1+β1i)±(α2+β2i)=(α1±α2)+(β1±β2)i∈Pab=(α1+β1i)(α2+β2i)=(α1α2-β1β2)+(α1β2+α2β1)i∈P又令c=α3+β3i,d=α4+β4i,其中α3,α4,β3,β4为有理数且d≠0,即α4≠0,β4≠0,有综上所述得P为数域.2.设f(x)是数域P上的多项式,a∈P,如果a是f(x)的三阶导数f‴(x)的k 重根(k≥1)并且f(a)=0,则a是f(x)的k+3重根.()[南京大学研] 【答案】错查看答案【解析】反例是f(x)=(x-a)k+3+(x-a)2,这里f(a)=0,并且f‴(x)=(k+3)(k+2)(k+1)(x-a)k满足a是f(x)的三阶导数f‴(x)的k重根(k≥1).3.设f(x)=x4+4x-3,则f(x)在有理数域上不可约.()[南京大学研] 【答案】对查看答案【解析】令x=y+1,则f(y)=y4+4y3+6y2+8y+2,故由艾森斯坦因判别法知,它在有理数域上不可约.二、计算题1.f(x)=x3+6x2+3px+8,试确定p的值,使f(x)有重根,并求其根.[清华大学研]解:f′(x)=3(x2+4x+p).且(f(x),f′(x))≠1,则(1)当p=4时,有(f(x),f′(x))=x2+4x+4所以x+2是f(x)的三重因式,即f(x)(x+2)3,这时f(x)的三个根为-2,-2,-2.(2)若p≠4,则继续辗转相除,即当p=-5时,有(f(x),f′(x))=x-1即x-1是f(x)的二重因式,再用(x-1)2除f(x)得商式x+8.故f(x)=x3+bx2-15x+8=(x-1)2(x+8)这时f(x)的三个根为1,1,-8.2.假设f1(x)与f2(x)为次数不超过3的首项系数为1的互异多项式,且x4+x2+1整除f1(x3)+x4f2(x3),试求f1(x)与f2(x)的最大公因式.[上海交通大学研]解:设6次单位根分别为由于x6-1=(x2)3-1=(x2-1)(x4+x2+1),所以ε1,ε2,ε4,ε5是x4+x2+1的4个根.由于ε13=ε53=-1,且x4+x2+1∣f1(x3)+x4f2(x3),所以,分别将ε1,ε5代入f1(x3)+x4f2(x3)可得从而f1(-1)=f2(-1)=0即x+1是f1(x)与f2(x)的一个公因式.同理,将ε2,ε4代入f1(x3)+x4f2(x3)可得f1(1)=f2(1)=0,即x-1是f1(x)与f2(x)的一个公因式.所以(x-1)(x+1)是f1(x)与f2(x)的一个公因式.又因为f1(x),f2(x)为次数不超过3的首项系数为1的互异多项式,所以(f(x),g(x))=x2-1三、证明题1.设不可约的有理分数p/q是整系数多项式f(x)=a0x n+a1x n-1+…+a n-1x+a n的根,证明:q∣a0,p∣a n[华中科技大学研]证明:因为p/q是f(x)的根,所以(x-p/q)∣f(x),从而(qx-p)∣f(x).又因为p,q互素,所以qx-p是本原多项式[即多项式的系数没有异于±l的公因子],且f(x)=(qx-p)(b n-1x n-1+…+b0,b i∈z比较两边系数,得a0=qb n-1,a n=-pb0⇒q∣a0,p∣a n2.设f(x)和g(x)是数域P上两个一元多项式,k为给定的正整数.求证:f (x)∣g(x)的充要条件是f k(x)∣g k(x)[浙江大学研]证明:(1)先证必要性.设f(x)∣g(x),则g(x)=f(x)h(x),其中h (x)∈P(x),两边k次方得g k(x)=f k(x)h k(x),所以f k(x)∣g k(x)(2)再证充分性.设f k(x)∣g k(x)(i)若f(x)=g(x)=0,则f(x)∣g(x)(ii)若f(x),g(x)不全为0,则令d(x)=(f(x),g(x)),那么f(x)=d(x)f1(x),g(x)=d(x)g1(x),且(f1(x),g1(x))=1①所以f k(x)=d k(x)f1k(x),g k(x)=d k(x)g1k(x)因为f k(x)∣g k(x),所以存在h(x)∈P[x](x),使得g k(x)=f k(x)·h(x)所以d k(x)g1k(x)=d k(x)f1k(x)·h(x),两边消去d k(x),得g1k(x)=f1k(x)·h(x)②由②得f1(x)∣g1k(x),但(f1(x),g1(x))=1,所以f1(x)∣g1k-1(x)这样继续下去,有f1(x)∣g1(x),但(f1(x),g1(x))=1故f l(x)=c,其中c为非零常数.所以f(x)=d(x)f1(x)=cd(x)⇒f(x)∣g(x)3.设f(x),g(x)都是P[x]中的非零多项式,且g(x)=s m(x)g1(x),这里m≥1.又若(s(x),g1(x))=1,s(x)∣f(x).证明:不存在f1(x),r(x)∈P[x],且r(x)≠0,∂(r(x))<∂(s(x))使①[浙江大学研]证明:用反证法,若存在f1(x),r(x)使①式成立,则用g(x)乘①式两端,得f(x)=r(x)g1(x)+f1(x)s(x)②因为s(x)∣f(x),s(x)∣f1(x)s(x),由②式有s(x)∣r(x)g1(x).但(s(x),g1(x))=1,所以s(x)∣r(x).这与∂(r(x))<∂(s(x))矛盾.4.设f(x)是有理数域上n次[n≥2]多项式,并且它在有理数域上不可约,但知f (x)的一根的倒数也是f(x)的根.证明:f(x)每一根的倒数也是f(x)的根.[南开大学研]证明:设b是f(x)的一根,1/b也是f(x)的根.再设c是f(x)的任一根.下证1/c也是f(x)的根.令g(x)=f(x)/d,其中d为f(x)的首项系数,不难证明:g(x)与f(x)有相同的根,其中g(x)是首项系数为l的有理系数不可约多项式.设g(x)=x n+a n-1x n-1+…+a1x+a0,(a0≠0).由于b n+a n-1b n-1+…+a1b+a0=0①(1/b)n+a n-1(1/b)n-1+…+a1(1/b)+a0=0⇒a0b n+a1b n-1+…+a n-1b+1=0⇒b n+(a1/a0)b n-1+…+(a n-1/a0)b+1/ a0=0 ②由g(x)不可约及①,②两式可得1/a0=a0,a i/a0=a n-i(i=1,2,…,n-1).故a0=±1,a i=±a n-i(i=1,2,…,n-1)③由③式可知,当f(c)=0时,有f(c)=0,且g(1/c)=0,从而f(1/c)=0.5.设f(x)是复系数一元多项式,对任意整数n有f(n)都是整数.证明:f(x)的系数都是有理数.举例说明存在不是整系数的多项式,满足对任意整数n,有f (n)是整数.[浙江大学研]证明:设f(x)=g(x)+ih(x),g(x),h(x)∈R[x]由于∀n∈Z,f(n)=g(n)+ih(n)∈Z,所以h(x)=0.下证g(x)∈Q[x].事实上,令g(x)=a0+a1x+…+a m x m,a m≠0,a i∈R,i=1,2,…,m则有a0+a1+…+a m=g(1)∈Z,a0+a1·2+…+a m·2m=g(2)∈Z,⋮a0+a1(m+1)+…+a m(m+1)m=g(m+1)∈Z.记则有(a0,a1,…,a m)T=(g(1),g(2),…,g(m+1))①又显见∣T∣=m!(m-1)!…2!1!≠0,由①式得(a0,a1,…,a m)=(g(1),g(2),…,g(m+1))T-1这里T-1是有理数域上的矩阵,g(1),g(2),…,g(m+1)均为整数,所以a0,a1,…,a m∈Q.因此f(x)=g(x)∈Q[x].取f(x)=x2/2-1/2,有f(x)=(x-n)(x/2+n/2)+(n2-1)/2可见存在不是整系数的多项式f(x),对任一整数n,有f(n)=(n2-1)/2∈Z.第6章线性空间一、选择题1.下面哪一种变换是线性变换().[西北工业大学研]A.B. C.【答案】C查看答案【解析】不一定是线性变换,比如则也不是线性变换,比如给而不是惟一的.2.在n维向量空间取出两个向量组,它们的秩().[西北工业大学研] A.必相等B.可能相等亦可能不相等C.不相等【答案】B查看答案【解析】比如在中选三个向量组(I):0(Ⅱ)(Ⅲ).若选(I)(II),秩秩(II),从而否定A,若选(Ⅱ)(Ⅲ),秩(Ⅲ)=秩(Ⅱ),从而否定C,故选B.二、填空题1.若则V对于通常的加法和数乘,在复数域C上是______维的,而在实数域R上是______维的.[中国人民大学研]【答案】2;4.查看答案【解析】在复数域上令;则是线性无关的.则此即证可由线性表出.在实数域上,令若,其中,则此即在R上线性关.可由线性表出,所以在实数域R上,有三、分析计算题1.设V是复数域上n维线性空间,V 1和V2各为V的r1维和r2维子空间,试求之维数的一切可能值.[南京大学研]解:取的一组基,再取的一组基则=秩2.设U是由生成的的子空间,W是由生成的的子空间,求(1)U+W:(2)L∩W的维数与基底.[同济大学研]解:(1)令可得.所以由于为的一个极大线性无关组,因此又可得且,故为U+W的一组基.(2)令因为秩=3.所以齐次方程组①的基础解系由一个向量组成:再令,则故ζ为U∩W的一组基.3.设A是数域K上的一个m×n,矩阵,B是一个m维非零列向量.令(1)证明:W关于K n的运算构成K n的一个子空间;(2)设线性方程组AX=B的增广矩阵的秩为r.证明W的维数dimW=n-r+1:(3)对于非齐次线性方程组求W的一个基.[华东师范大学研]证明:(1)显然W≠,又因为存在t1,t2使Aα=t1B,Aβ=t2B.所以即kα+lβ∈W,此说明W是K n的子空间.(2)对线性方程组(A,B)X n+1=0,由题设,其解空间V的维数为(n+1)-r (A,B)=n-r+1.任取α∈W,存在t∈K,使所以是线性方程组(A,B)X n+1=0的解.这样,存在W到V的映射,显然,这是W形到V的一个双射.又α1,α2∈W,k∈K,存在t1,t2∈K,使Aα1=t1B,Aα2=t2B,则所以且可见W与V同构,从而有dim W=dim V=n-r+1.(3)由(2)W与如下齐次线性方程组解空间同构.该方程组的一个基础解系为:其在σ之下原像即为W的一组基.4.设V 1,V2均为有限维线性空间V的子空间,且,则和空间与另一个重合.[上海交通大学研]证明:因为所以由题设所以即当时,由得此时当时因为,所以,此时5.设V是数域K上n维线性空间,V1,…,Vs是V的s个真子空间,证明:(1)存在,使得(2)存在V中一组基,使[北京大学研]证明:(1)因V 1,…,Vs是V的真子空间,由上例,存在(2)令,同样有且显然,线性无关.令,则存在,且线性无关,如此继续下去,可得线性无关向量组(构成V的基),且有6.设V是定义域为实数集R的所有实值函数组成的集合,对于f,g∈V,a∈R,分别用下列式子定义f+g与af:则V成为实数域上的一个线性空间.设f0(x)=1,f1(x)=cosx,,f2(x)=cos2x,f3(x)=cos3x,(1)判断f0,f1,f2,f3是否线性相关,写出理由;(2)用<f,g>表示f,g生成的线性子空间,判断<f0,f1>+<f2,f3>是否为直和,写出理由.[北京大学研]解:(1)令k0f0+k1f1+k2f2+k3f3=0,分别取x=0,得解之得k0=k1=k2=k2=0,说明f0,f1,f2,f3线性无关.(2)因为<f,g>=L(f,g),所以从而又,故L(f0,f1,f2,f3)是<f0,f1>与<f2,f3>的直和.。

最新高等代数全国考研试题精选打印版.doc(PDF版)

最新高等代数全国考研试题精选打印版.doc(PDF版)

《高等代数》试题库一、选择题1.在F[x]里能整除任意多项式的多项式是()。

A.零多项式B.零次多项式C.本原多项式D.不可约多项式2.设g(x)=x+1是f(x)=x-k x+4kx+x-4的一个因式,则k=()。

6242A.1B.2C.3D.43.以下命题不正确的是()。

A.若f(x)|g(x),则f(x)|g(x);B.集合F={a+bi|a,b∈Q}是数域;C.若(f(x),f'(x))=1,则f(x)没有重因式;D.设p(x)是f'(x)的k-1重因式,则p(x)是f(x)的k重因式4.整系数多项式f(x)在Z不可约是f(x)在Q上不可约的( )条件。

A.充分B.充分必要C.必要D.既不充分也不必要5.下列对于多项式的结论不正确的是()。

A.如果f(x)g(x),g(x)f(x),那么f(x)=g(x)B.如果f(x)g(x),f(x)h(x),那么f(x)(g(x)±h(x))C.如果f(x)g(x),那么∀h(x)∈F[x],有f(x)g(x)h(x)D.如果f(x)g(x),g(x)h(x),那么f(x)h(x)6.对于“命题甲:将n(>1)级行列式D的主对角线上元素反号,则行列式变为-D;命题乙:对换行列式中两行的位置,则行列式反号”有( )。

A.甲成立,乙不成立;B.甲不成立,乙成立;C.甲,乙均成立;D.甲,乙均不成立7.下面论述中,错误的是( )。

A.奇数次实系数多项式必有实根;B.代数基本定理适用于复数域;C.任一数域包含Q;D.在P[x]中,f(x)g(x)=f(x)h(x)⇒g(x)=h(x)A 11 A 12 ... A 1n A21...An1 A22...An2 .........A2n...Ann8.设D=aij ,Aij为aij的代数余子式,则=( )。

A.DB.-DC.D/D.(-1)n D49.行列式31-250a 中,元素a 的代数余子式是()。

考研数学一-向量代数和空间解析几何_真题(含答案与解析)-交互

考研数学一-向量代数和空间解析几何_真题(含答案与解析)-交互

考研数学一-向量代数和空间解析几何(总分110, 做题时间90分钟)二、选择题1.设a,b为非零向量,且a⊥b,则必有SSS_SINGLE_SELA (A) |a+b|=|a|+|b|.B (B) |a-b|=|a|-|b|.C (C) |a+b|=|a-b|.D (D) a+b=a-b.该题您未回答:х该问题分值: 2答案:C[分析] 由“非零向量a,b满足|a+b|=|a|+|b|的充要条件是a与b方向相同”可知,(A)不对.由“非零向量a,b满足|a-b|=|a|-|b|的充要条件是a与b方向相反”可知,(B)也不对.对于(C):非零向量a、b垂直时,以a,b为两邻的平行四边形是矩形,而矩阵的对角线长度相等,故必有|a+b|="a-b|,即(C)正确.至于(D),显然不对.综上分析,应选(C).2.直线与平面6x+15y-10z+31=0的夹角ψ为SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 2答案:A[分析] 直线方向向量为故选(A).3.下列曲面中,不是旋转曲面的是SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 2答案:C[分析] (A)是绕x轴旋转而成;(B)是绕y旋转而成;(D)是绕z轴旋转而成.(A),(B),(D)都应排除,故应选(C).4.下列直线对,不共面的是SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 2答案:A[分析] 对于(A):两条直线分别过点M1(-1,0,0)与M2(1,0,2),方向向量分别为对三个向量,由于所以(A)中二直线不共面,故应选(A).5.若单位向量a,b,c满足a+b+c=0,则a·b+b·c+c·a=SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 2答案:A[分析] 由,从而.故选(A).6.已知平面∏:x+2y-z+1=0,曲面z=xy上点P处的法线与平面∏垂直,则点P的坐标为SSS_SINGLE_SELA (A) (1,2,2).B (B) (2,1,2).C (C) (-1,-2,2).D (D) (-2,-1,2).该题您未回答:х该问题分值: 2答案:B[分析] z=xy的法向量n={y,x,-1},法线与平面H垂直,从而与平面∏的法向量{1,2,-1}平行,故有,即点P的坐标为(2,1,2).故应选(B).7.设曲面z2-xy=8(z>0)上某点的切平面平行于已知平面x-y+2z-1=0,则该点的坐标为SSS_SINGLE_SELA (A) (-2,2,2).B (B) (1,-4,2).C (C) (2,-2,2).D (D) (4,-1,2).该题您未回答:х该问题分值: 2答案:C[分析] 记F(x,y,z)=z2-xy-8,曲面在任意点的法向量n={F'x ,F'y,F'z}:{-y,-x,2x}.已知平面的法向量n1={1,-1,2},令n∥n1,即,得x=z=t,y=-t,代入曲面方程F=0,得,因为z=t>0,舍去负值,得切点坐标为(2,-2,2),故应选(C).8.设曲线在点(1,3,4)处的法平面为∏,则原点到∏的距离为SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 2答案:B[分析一] 因在点(1,3,4)处解得dx=4dz,,即,故曲线在点(1,3,4)法平面的法向量,法平面∏的方程为12(x-1)-4(y-3)+3(z-4)=0,即12x-4y+3z-12=0,于是原点到∏的距离故应选(B).[分析二] 曲线在点(1,3,4)处法平面的法向量下同[分析一].9.设非零向量a与b不平行,c=(a×b)×a,则SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 2答案:B[分析] 如下图所示.因,故应选(B).评注若a⊥b,则(a×b)×a=λb,=0.10.过点M(1,-1,1)与平面x=y+2z=1平行且与相交的的直线方程为SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 2答案:A[分析一]于是[分析二] 过B的直线方程为L:过A与L垂直的平面方程为∏:6(x-3)+6(y-4)+7(z-2)=0,即6x+6y+7z-56=0。

名校高等代数历年考研试题(1-3章)

第一章 多项式例 1.1(华南理工大学, 2006年) 设 ( ) ( ) x g x f , 是数域F 上的多项式. 证明:( ) ( ) x g x f | 当且仅当对于任意的大于1的自然数n 有, ( ) ( ). | xg x f n n 证明 必要性显然成立,下证充分性. 设 ( ) g x 在数域F 上的不可约分解为( ) ( ) ( ) ( ) 12 12 k lllk g x cp x p x p x =××× ,其中 ( ) ,1,2,..., il i p x i k = 是互不相同的不可约多项式.若有 ( ) ( ) | nnf xg x ,则( ) ( ) ( ) ( ) 12 12 ,0,1,2,...,.k nf nf nfn k i i f x dp x p x p x f l i k =×××££= 其中d 是某个常数,因此有( ) ( ) x g x f | .例 1.2(大连理工大学,2007 年)设 ( ) ( ) ( ) x hx g x f , , 是实系数多项式,如果 ( ) ( ) ( ) x xhx xg x f 22 2 + = ,则 ( ) ( ) ( ) . 0 = = = x h x g x f 证明 由 ( ) ( ) ( ) ( ) 222 f x x g x h x =+ ,可知 ( ) 2 | x f x ,易推得 ( ) | x f x . 于是有 ( ) ( ) 2221 f x x f x= ,代入方程并在两边约去 x 有 () ( ) ( ) x h x g x xf 2 2 21 + = (*)于是有 ( ) ( ) ( ) 22 | x g x h x + ,若多项式 ( ) g x 或 ( ) h x 中的常数项不为零的话,都可 以推出( ) ( )( )x h x g x 2 2 | + 于是有( ) ( ) ( ) () ( )x h x g x x h x g 21 2 1 2 2 2 + = + 代入(*)式并约去 x 有( ) ( ) () ( )x h x g x x f 21 2 1 21 + = 这样又回到原来的方程,所不同的是 ( ) ( ) ( ) 111 ,, f x g x h x 比 ( ) ( ) ( ) ,, f x g x h x 的次数要小 1. 于是经过有限次后必可以使得方程的左边为零次多项式,即为某个常 数c ,使得( ) () ( )x h x g x c k k 22 + = 比较两边的次数易得 0 = c ,并代入方程有( ) () 0 22 = + x h x g k k 于是( ) () 0 = = x h x g k k 那么 ( ) ( ) ( ) ,, f x g x h x 都是某个多项式乘以数0. 由此可推得( ) ( ) ( ) 0 = = = x h x g xf . 例 1.3(大连理工大学,2007年)证明多项式 1 | 1 - - n d x x 的充分必要条件是n d | .证明 充分性显然,下证必要性.若 d r r dq n < < + = 0 ,,则 ( ) ( )11 1 1 - + - = - + - = - r dq r r r n n x x x x x x x 由于 1 - dq x 可被 1 - d x 整除, 而 1 - r x 不能被 1 - d x 整除, 于是 1 - n x 不能被 1 - dx 整除.由其逆否命题可知必要性成立.例 1.4 (北京科技大学,2004年)求一个三次多项式 ( ) x f ,使得 ( ) 1 + x f 能 被( ) 21 - x 整除,而 ( ) 1 - x f 能被( ) 21 + x 整除.解 由题知 ( ) 'f x 能被( ) 1 x - 和( ) 1 x + 整除,又由 ( ) f x 是一个三次多项式, 那么 ( ) 'f x 是一个二次多项式,于是可设( ) ( )( ) aax x x a x f - = - + = 2 ' 1 1 积分易得( ) 33a f x x axb =-+ (其中a, b 为常数) 由题设可知 ( ) 1 f x =- ,易解得3 2 0a b ì = ïí ï = î 那么显然有( ) xx x f 2 3 2 1 3 - = .例 1.5(兰州大学,2004)设 () f x 和 () g x 是数域F 上的两个不完全为零的多 项式,令{ [ ]}()()()()(),() I u x f x v x g x u x v x F x =+Î 证明:(1) I 关于多项式的加法和乘法封闭,并且对任意的 () h x I Î 和任意的 [ ] (), k x F x Î 有 ()() h x k x I Î .(2) I 中存在次数最小的首项系数为 1 的多项式 () d x , 并且()((),()) d x f x g x = .证明 (1) 容易证明,略.(2) 考虑{ [ ] 0 (()()()())(),() I u x f x v x g x u x v x F x =¶+Î 且 } ()()()()0 u x f x v x g x +¹ 则 0 I 是非负整数的一个子集,由最小数原理, 0 I 中存在最小数,也就是说,I 中存在次数最小的首项系数为1的多项式:11 ()()()()()d x u x f x v x g x =+ 设 () h x 是 I 中任意多项式,且 ()()()() h x d x q x r x =+ ,其中 ()0 r x = 或者(()) r x ¶< (()) d x ¶ .若 (()) r x ¶< (()) d x ¶ , 则 ()()()() r x h x d x q x =- .由(1)可知 () r x I Î , 与 () d x 是I 中次数最小的多项式矛盾. 故 ()0 r x = ,所以 ()() d x h x .显然 (),() f x g x I Î ,所以 ()() d x f x , ()() d x g x .如果 ()() p x f x , ()() p x g x ,则11 ()()()()()p x u x f x v x g x +即 ()() p x d x ,所以 ()((),()) d x f x g x = .例 1.6(上海交通大学,2004)假设 1 () f x 与 2 () f x 为次数不超过 3 的首项系数为1的互异多项式,若 42343 12 1()() x x f x x f x +++ ,试求 1 () f x 与 2 () f x 的最大公因式.解 由于42 1x x ++ = 22222 (1)(1)(1) x x x x x x +-=++-+ 设它的4个根分别为 1212 ,,, w w e e 其中1212 13131313 ,,, 2222i i i i w w e e -+--+- ==== 由于 4234312 1()() x x f x x f x +++ ,就有 343 12 ()() f x x f x + = 42 (1) x x ++ () g x . 于是有下面的方程组112 122 (1)(1)0 (1)(1)0 f f f f w w += ì í+= î 与 112 122 (1)(1)0 (1)(1)0f f f f e e ---= ì í ---= î 分别解这两个方程组得,12 (1)(1)0 f f == , 12 (1)(1)0f f -=-= 于是有,11 (1)(),(1)() x f x x f x +- , 22 (1)(),(1)() x f x x f x +- .进而有 1 (1)(1)() x x f x +- , 2 (1)(1)() x x f x +- .而 1 () f x , 2 ,() f x 是互异的次数不超过 3 的首系数为 1 的多项式,所以 2 12 ((),())1 f x f x x =- .例 1.7 (浙江大学,2006 年)设 P 为数域, ( ) [] i i f f x p x =Î , ( ) [],1,2 i i g g x p x i =Î= .证明:( )( ) ( )2 1 2 1 2 1 2 1 2 2 1 1 , , , , , g g f g g f f f g f g f = 证明 设 ( )( ), , , , 2 2 2 1 1 1 g f d g f d = = 有( ) ( ) ( ) ( ) ( ) ( ) ( )( )12121212 12121212 1212 1121122 ,,, ,,, , , ,,. f f f g g f g g f f f g g f g g f d g d f g d f g f g = = = = 例 1.8 (哈尔滨工业大学, 2005年) 设 ( ) ( ) x g x f , 都是实数R 上的多项式,R a Î (1) 证明: ( ) ( ) ( ) ( ) ( ) ( ).| a g f x g f a g x g - - (2) 问 ( )( ) a f x f a x - - 33 | 是否成立,为什么?解 (1) 令 ( ), y g x = 考虑多项式( ) ( ) ( ) ( ) a g f y f y h- = 由 ( ) ( ) ( ) ( ) ( ) ( ) 0= - = a g f a g f a g h 可知 ( ) ( ) ( )y h a g y | - 即( ) ( ) ( ) ( ) ( ) ( ) a g f x g f a g x g - - | .(2) 令 3 b a R =Î ,注意用到(1)的结论,将(1)中a 的换成这里的b ,将(1)的( ) g x 换成这里的 3 x ,可得( ) ( ) 33 | x a f x f a -- .例 1.9(上海大学,2005)设22 1231 1(1)()()()() n n n n n nn x x f x xf x x f x x f x - - éù --++++ ëûL ( 2 n ³ )求证: 1() i x f x - (1,2,,1) i n =- L . 证明 由题设易知1222 1231 1()()()()n n n n n n n n x x x f x xf x x f x x f x --- - ++++++++ L L 这里令e 是n 次本原单位根,那么22 1231 22222 1231 11212 1231 (1)(1)(1)(1)0(1)(1)()(1)()(1)0(1)(1)()(1)()(1)0n n n n n n n n n f f f f f f f f f f f f e e e e e e e e e - - - - ---- - ì ++++= ï ++++= ï íï ï ++++= î L L L LL于是关于 1231 (1),(1),(1),,(1) n f f f f - L 的齐次线性方程组的系数行列式为22 22222112121 1()() 0 1()()n n n n n n ee e e e e e e e - - ---- ¹ L L MMMML .故齐次线性方程组只有零解,于是 121 (1)(1)(1)0 n f f f - ==== L ,所以 1()i x f x - (1,2,,1) i n =- L .例 1.10(哈尔滨工业大学,2006 年)已知 ( ) ( ) x g x f , 是数域 P 上两个次数大 于零的多项式,且存在 ( ) ( ) 11 ,[], u x v x p x Î 使得 ( ) ( ) ( ) ( ) 1 1 1 = + x g x v x f x u ,问是否存 在 ( ) ( ) ,[] u x v x p x Î ,使得 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) x f x v x g x u x g x v x f x u ¶ < ¶ ¶ < ¶ = + , , 1 . 如果存在,这样是唯一的吗?说明理由.解 由于 ( ) ( ) ( ) 11 ()1 u x f x v x g x += ,若 ( ) 1 u x 的次数大于 ( ) g x 的次数,则由 带余除法得( ) ( ) ( ) ( ) 1 u x g x q x u x =+ , ( ) ( ) ( ) ( )u x g x ¶<¶ 代入上式得( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1f xg x q x u x g x v x ++= 即( ) ( ) ( ) ( ) ( ) () ( ) 1 1 = + + x v x q x f x g x u x f 令 ( ) ( ) ( ) ( ) 1 v x f x q x v x =+ ,则有( ) ( ) ( ) ( )x f x v ¶ > ¶ 否则由比较次数可知上式将不可能成立.关于唯一性的证明,可以假设 ( ) 2 u x , ( ) 2 v x 也满足条件,那么有( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1122 1f x u xg x v x f x u x g x v x +=+= 易得( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1221 f x u x u x g x v x v x -=- 由 ( ) f x 与 ( ) g x 互素,可知 ( ) ( ) ( ) ( ) 12 | g x u x u x - .又由 ( ) ( ) ( ) ( ) ( ) 12 u x u x g x ¶-<¶ ,可得 ( ) ( ) 12 0 u x u x -= ,即 ( ) ( ) 12 u x u x = ,这时有( ) ( ) 12 v x v x = .例 1.11(华南理工大学,2005年)证明:如果 ( ) ( )( ) 1 , = x g x f ,那么 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x f x f x g x g x +++= 证明 由已知条件有 ( ) ( ) ( ) ( ) ,1 f x f x g x += , ( ) ( ) ( ) ( ) ,1 g x f x g x += ,由多 项式互素的性质可得( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x += 于是有( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x f x g x ++= ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x f x g x +++= 综合上述两个等式以及多项式互素的性质有( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1 f x g x f x g x f x g x f x g x +++= .例 1.12(苏州大学,2005)设 () f x 是一个整系数多项式,证明:如果存在 一个偶数m 和一个奇数n ,使得 () f m 和 () f n 都是奇数,则 () f x 没有整数根.证明 (反证法) 假设 () f x 有整数根k ,则 ()()() f x x k g x =- ,因为x k - 是 本原多项式,故 () g x 是整系数多项式. 又由于()()() f m m k g m =- , ()()() f n n k g n =- .且 () f m 和 () f n 都是奇数,那么m k - ,n k - 都是奇数,与m 是偶数且n 是 奇数矛盾,所以 () f x 没有整数根.例1.13 (四川大学, 2004年) (1) 设多项式 ( ) ( )( ) ( ) ( ) 1 1 2 2 1 + - - × × × - - = n x x x x f , 其中n 为非负整数. 证明: ( ) x f 在有理数域上一定不可约.(2) 在有理数域上求多项式 ( ) 36 12 11 2 2 3 4 + - - + = x x x x x g 的标准分解式.(1) 证明 假设 ( ) f x 在有理数域上可约, 故 ( ) f x 可分解为两个整系数多项式 的积, 即存在两个整系数多项式 ( ) ( ) , h x k x 使得( ) ( ) ( )f x h x k x = 注意到 ( ) 1,1,2,,21 f i i n ==×××- ,于是( ) ( ) 1,1,2,,21h i k i i n ==×××- 令 ( ) ( ) ( ) l x h x k x =- ,由 ( ) h x 与 ( ) k x 的次数小于21 n - 知 ( ) l x 的次数也小于 21 n - ,但是 ( ) l x 有21 n - 个不同的根为 1,2,,21 x n =×××- ,那么有 ( ) 0 l x º ,于是 ( ) ( ) h x k x = ,推得( ) ( ) ( ) 2f x k x =³ 但是 ( ) 00 f = ,矛盾. 于是 ( ) f x 在有理数域上不可约.(2) 注意到 ( ) ( ) 230 g g =-= ,由综合除法可得( ) ( ) ( )2223 g x x x =-+ 上式为 ( ) g x 在有理数域上的标准分解式.例 1.14(上海大学,2005)设 1 ()2n nf x x x + =+- (1) n ³ ,求 () f x 在有理数域上的不可约因式并说明理由. 解11 ()2(1)(1)n n n nf x x x x x ++ =+-=-+- 112 12 (1)(1)(1)(1) (1)(2222)(1)()n n n n n n n x x x x x x x x x x x x g x --- -- =-++++-+++ =-+++++ =- L L L 对 () g x , 令 2 p = , 用Eisenstein 判别法容易证明 () g x 在有理数域上不可约, 因此 () f x 在有理数域的不可约因式是: 1 x - 及 12 2222 n n n x x x x -- +++++ L .例 1.15(大连理工大学,2004)设R Q 分别表示实数域和有理数域,(),()[] f x g x Q x Î . 证明:(1) 若在 [] R x 中有 ()() g x f x ,则在 [] Q x 中也有 ()() g x f x .(2) () f x 与 () g x 在 [] Q x 中互素,当且仅当 () f x 与 () g x 在 [] R x 中互素.(3) 设 () f x 是 [] Q x 中不可约多项式,则 () f x 的根都是单根.证明 (1)(反证)假设在 [] Q x 中 () g x 不能整除 () f x ,作带余除法有()()()(),(),()[]f x q xg x r x q x r x Q x =+Î 且 (()) r x ¶< (()) g x ¶ .以上带余除法的结果在 [] R x 中也成立,所以在 [] R x 中 () g x 不能整除 () f x , 与在 [] R x 中有 ()() g x f x 矛盾. 因此,结论成立.(2) 如果 () f x 与 () g x 在 [] Q x 中互素,那么存在 (),()[] u x v x Q x Î ,使得()()()()1 f x u x g x v x += .以上等式在 [] R x 中也成立,所以 () f x 与 () g x 在 [] R x 中互素.如果 () f x 与() g x 在 [] Q x 中不互素,那么 () f x 与 () g x 在 [] Q x 存在非零次公因式.即()[] d x Q x Î , (())1,d x ¶³ 1 ()()() f x d x f x = , 1 ()()() g x d x g x = ,11 (),()[]f xg x Q x Î 以上两个等式在 [] R x 中也成立. 因此, () f x 与 () g x 在 [] R x 中不互素. (3) () f x 是 [] Q x 中的不可约多项式 , 则 ' ((),())1 f x f x = , 否则 ' ((),())()1, f x f x d x =¹ 则 () f x 有重因式, 与 () f x 不可约矛盾. 于是 () f x 没有重 因式,所以 () f x 的根都是单根.例 1.16(南京理工大学,2005年)设 p 是奇素数,试证 1 + + px x p 在有理数 域上不可约.证明 令 1 x y =- ,代入 ( ) 1 p f x x px =++ 有( ) ( ) ( ) ( ) ( ) 1111 pg y f x f y y p y ==-=-+-+ .考查多项式 ( ) ( ) ( ) 1! h y p g y =- ,注意到 p 是一个奇素数,那么 ( ) h y 的常数项为 ! p - ,于是对于素数 p 有, |! p p - ,而 2p 不整除 ! p - ,对于 ( ) h y 的首项,显然有 ( ) |1! p p - .对于其他的项,利用二项式定理对( ) ( ) 1!1 pp y -- 展开可知 p 能整除除了首项和 常数项之外的所有项系数. 又 ( ) 1 p y - 中关于 y 的一次项的系数也为 p 的倍数, 于是 p 整除 ( ) h y 的除了首项和常数项之外的所有系数. 利用Eisenstein 判别法可 知 ( ) h y 在有理数域上不可约,即 ( ) g y 在有理数域上不可约,也即 ( ) f x 有理数 域上不可约.例 1.17(陕西师范大学, 2006年) 11 ()()(),()()(), f x af x bg x g x cf x dg x =+=+ 且0 a bc d¹ ,证明: 11 ((),())((),()) f x g x f x g x= . 证明 令 111 ()((),()) d x f x g x = , ()((),()) d x f x g x = .由1 ()()() f x af x bg x =+ (*) 1 ()()()g x cf x dg x =+ (**)于是 1 ()() d x f x , 1 ()() d x g x . 那么 1 ()() d x d x .由式(*)与式(**)可以看成是关于 (),() f x g x 的线性方程组,解得,( ) ( )11 11 1()()() 1()()() g x ag x cf x ad bc f x df x bg x ad bc=- - =- - 于是 11 ()() d x f x , 11 ()() d x g x . 那么 1 ()() d x d x . 显然 1 ()() d x d x .于是11 ((),())((),()) f x g x f x g x = .例 1.18(华南理工大学,2006年)设 ( ) 1 2 34 + + + + = x x x x x f .(1) 将 ( ) x f 在实数域上分解因式.(2) 证明: ( ) x f 在有理数域上不可约. 由此证明 ( ) 5/ 2 cos p 不是有理数. (1) 解 不妨设 2 2 5, i e pa b a == , 于是 ,,, a a b b 是1的四个非实数的 5次方根. 显然有( ) ( )( )( )( )( ) ( ) ( ) ( )2222 11 24 2cos 12cos 1 55 f x x x x x x x x x x x x x a ab b a a b b p p =---- =-++-++ æöæö =-+-+ ç÷ç÷èøèø上式为 ( ) f x 在实数域上的因式分解. (2) 证明 令 1 x y =+ ,代入 ( ) f x .有( ) ( )1 g y f y =+ ( ) ( ) 5432 11 11510105y y y y y y +- =+- =++++ 对素数5 用Eisenstein 判别法可得 ( ) g y 是有理数域上不可约的多项式, 于是 有 ( ) f x 在有理数域上不可约 . 若 ( ) cos 2/5 p 是有理数 , 由 ( ) ( ) 2 cos 4/52cos 2/51 p p =- 可知 ( ) cos 4/5 p 也是有理数.于是由(1)的结论可知( ) 22 24 2cos 12cos 1 55 f x x x x x p p æöæö=-+-+ ç÷ç÷ èøèø.上式为 ( ) f x 在有理数域上的分解,这将导致 ( ) f x 在有理数域上可约,矛盾. 故结论成立.例 1.19(华东师范大学,2005 年)试在有理数域、实数域及复数域上将 ( ) 1 7 8 9 + + × × × + + + = x x x x x f 分解为不可约因式的乘积(结果用根式表示),并简 述理由.解 由( ) ( ) 1011 x f x x -=- ( )( )( )( )1 1 1 1 23 4 2 3 4 + - + - + + + + + - = x x x x x x x x x x 可知它在有理数域上的不可约分解为( ) ( )( )( )432432 111 f x x x x x x x x x x =+++++-+-+ (这里设 ( ) 432 1 1 g x x x x x =++++ ,并取 1 x y =+ 代入,并对素数 5用 Eisenstein 判别法可知 ( ) 1 1 g y + 在有理数域上不可约. 同理设 ( ) 432 2 1 g x x x x x =-+-+ ,并取 1 x y =- 代入,可知 ( ) 2 1 g y - 在有理数域上不可约.)设 243 55551212 ,,, i iii eee e pp ppa ab b ==== ,显然 1 的五次方根为 1122 1,,,, a a a a ;‐1的五次方根为 1122 1,,,, b b b b - . 于是在实数域上 ( ) f x 可分解为( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2222 11221122 11111f x x x x x x x x x x a a a a b b b b =+-++-++-++-++ 显然在复数域上 ( ) f x 可分解为( ) ( )( )( )( )( )( )( )( )( ) 112211221 f x x x x x x x x x x a a a a b b b b =+-------- .第二章 行列式例 2.1(兰州大学,2004年) 计算下列行列式的值121 121 121 1231 n n n n n n n n xa a a a a x a a a D a a x a a a a a a x- - - - = L L L M M M M M L 解 将 n D 的第2列到第 1 n +列加到第1列,且提取公因子有 121 21 21 1231 1 1 ()1 1 n n n n nn i n n i n a a a a xa a a D x a a x a a a a a x- - - = - =+ å L L L M M M M M L 121 12121213212 1 00()000 0 n n ni i n n na a a a x a x a a a x a a a a a a a x a - = -- - =+-- ---- å L LL M M M M M L 11()() nni i i i x a x a = = =+- å Õ .例 2.2(中山大学,2009年) 计算n 阶行列式22 111122 2222 22 111122 1...1... ..................1... 1... n n n nn n nn n n n n nn n n nx x x x x x x x D x x x x x x x x - - - ---- - = 解 首先考虑 1 n + 阶范德蒙行列式221 1111 1 221 2222 2 221 1111 1 221 2211... 1... .................. ... () 1... 1 (1)... n n n n n n n n n n n n n n n n n n n n n nn n n x x x x x x x x x x g x x x x x x x x x x x x xx x x-- -- -- ---- - -- -- =213111 3222 ()()...()() .()...()()...()n n n x x x x x x x x x x x x x x x x =---- ---- 从上面 1 n + 阶范德蒙行列式知,多项式 () g x 的 1 n x - 的系数为 21(1) n D D + -=- ;但从上式右端看, 1 n x - 的系数为12 1 (...).()n ji i j nx x x xx £<£ -+++- Õ 二者应相等,故 12 1 (...).() n n ji i j nD x x x xx £<£ =+++- Õ .例 2.3(北京交通大学,2004年)计算n 阶行列式111 23 222341222123 111 122111...11... 1... ............1 (1)... nn n n n n n n n n n nn n C C C C C C D C C C C C C + --- -- --- +- =.解 从最后一行起将每一行减去前面一行便可将行列式降一阶, 再对降一阶的行列式做同样的处理,不断这样下去可得 1 D = .例 2.4(大连理工大学,2005年) n 阶行列式21...11 13 (11) (1)1...11n =+ .解 答案是 1 1!(1) ni n i= + å . 这是因为原式 21...1111...11 13 (1102)...11 (1)1...1101...11n n ==++ 将上述行列式的第二行到 1 n + 行分别减去第一行,可得原式 11...11 11...00 (1)...n- =- 然后依次将第二列乘以1,第三列乘以 1 2 ,........,第 1 n + 列乘以 1n都加到第一列可得1 11 11...1 (11)2 101...00 !(1) ............... 00...0 ni n n i n= ++++ =+ å .例 2.5(南开大学,2003年) 计算下列行列式的值1112121 1212222 1122 ... ... ............... n n n n n n n n n na b c a b c a b c a b c a b c a b c D a b c a b c a b c +++ +++ =+++ 解法 1 将 n D 按第一行拆成两个n 阶行列式相加,并由于 3 n ³ ,故得1211121 12122221212222 11221122 ...... ...... .............................. n n n n n nn n n n n nn n n n n a a a b c b c b c a b c a b c a b c a b c a b c a b c D a b c a b c a b c a b c a b c a b c++++++ =+++++++ 000=+= 解法 2 将原n 阶行列式加边成一个 1 n + 阶行列式11112121 21212222 112 100...0 ... ... ............... ... n nn n nnn n n n n x a b c a b c a b c D x a b c a b c a b c x a b c a b c a b c+++ =+++ +++由于 3 n ³ ,故对上面的 1 n + 阶行列式按第一行展开可知,其每个元素的余子式 都是一个至少有两列元素对应成比例的n 阶行列式,从而都等于零. 因此 0 D = .例 2.6(浙江大学,2004年) 计算n 阶行列式... ... .................. ... ... ... n b b b b a b b b a b D b b a b b b a b b b a b b b b=解 ......() ......0 .................................... ......0 ......0 ......0 n b b b b a b b b b a b b b b b a b b b b a b D b b a b b b b a b b b a b b b b a b b b abbbb a b b b b -+ + == + + + 11 ... ... .................. (1)() ... ... ...n n b b b b b b b b a b a b D b b a b b b a b b b a bbbb+ - =--+(3) 1121 (1)()(1)()n n n n n a b D b a b + +- - =--+-- 注意到 222 D b a=- 递推可得(3) 1 2(1)()((1)) n n n n D a b a n b + - =--+- .例 2.7(复旦大学,2005年) 设 12 ...,0,1,2,... k k kk n s x x x k =+++= , 计算 1 n + 阶行列式11 121122 121 ...1 ... .................. ... n nn n n n n nnn n s s s s s s xD s s s xs s s x- - -- -- = 解 根据 k s 的定义、行列式的乘法以及范德蒙行列式知,所给的 1 n + 阶行列 式D可表示成两个 1 n + 阶行列式相乘111112 221111 112 12 11...11 1...0 ...1...0 ................................ 1...0 ... 00 (01)n n nn n n n n n n n n nnnn n x x x x x x x x D x x x x x x x x x x - - ---- - = 2 11 ()(())nj ji i i j nx x xx =£<£ =-- ÕÕ 211 ()() ni ij i i j nx x xx =£<£ =-- ÕÕ .例 2.8(华东师范大学,2008年) 计算n 阶行列式1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 32 1 L L M M M M M L L L n n n n n n D n- - - - - = ∙ 解 将第2列,第 3列,…,第n 列都加到第 1 列上11 11 01 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 32 2 ) 1 ( L L M M M M M L LL nn nn n n n n D n - - - - - + =111 1 1 1 1 1 11 11 1 1 11 2) 1 ( LL M M MM L L n n n n n n - - - - + = 1111 1 1 1 1 11 11 1 1 1 1 2) 1 ( LL M M MM L L - - - - - - - + = n n n n n111 10 0 0 0 0 00 0 0 2) 1 ( L L M M M ML L - - - - + = n n n n n 2)1 ,2 , 2 , 1 ( ) ( ) 1 ( ) 1 ( 2) 1 ( - - - - × - - + =n n n n n n L t 21 2)2 )( 1 ( ) ( ) 1 ( )1 (2 ) 1 ( - - - - - × - - + = n n n n n n n 2)1 ( )1 ( 1 2)1 ( + ×- = - - n n n n n 1) 2 )]( 1 ( 2 [ - - - = = n x n x 例 2.9(大连理工大学, 2004年) 计算n 阶行列式1 1 1 12 1 2 1 1 12 1 1 1 1 L M M M M M L L nn n D n - - - =解 将第2行,第 3行,…,第n 行都加到第 1 行上1 1 1 12 1 2 1 1 11 1 1 1 1 L M M M M M L L n n D n - - =0 01 0 1 0 0 0 1 1 1 1 1 L M M M M M L L nn - - =1 2) 1 ( )1 ,2 , , 1 , ( 1 ) 1 ( ) 1 ( ) 1 ( ) 1 ( - - - - - - = - - = n n n n n n n n L t .例 2.10(北京航空航天大学, 2004年) 计算下列行列式的值.12 12 12... .................. n n n n a a a a a a D a a a l l l+ + =+ 解 将行列式的所有列加到第一列, 并提取公因子 12 (...) n a a a l ++++ 可得1212 1212 1 1212...... ......().............................. n n nn n i i n n a a a a a a a a a a a a a a a a a a a l l l l l l l= ++ ++ =+ ++ å 然后将第 2 列到第n 列依次减去第一列乘以 12 ,,..., n a a a 得到一个下三角的行列式, 易得12 12 1112... ...()............... n nn n i i n a a a a a a a a a a l l ll l- = + + =+ + å 例 2.11(上海交通大学,2004年)求下面多项式的所有根23 2 3 23 2 3 3 2 3 2 22 23 2 2 2 2 3 ) ( nn n n nnna x a a a a a a a a x a a a a a a a a x a a a a x x f - - - - - - - - - - - - - - - - - - - = L MM M M L L L 解 将第一列的 2 a - 倍,3 a - 倍,L , n a - 倍分别加到第 2 列,第3列, L ,第n 列2323 221 3333 100100 ()010(2)010 0101n n n nnx a a a x a a a a a f x a x a a a - ------- -- =-=-- -- L L L L L L M M M M M M M M LL第2列的 2 a 倍,第 3列的 3 a倍,L ,第n 列的 n a 倍都加到第一列 22223 13 0100 ()(2)0010 001n n n x a a a a a f x x - ------ =- L L L L M M M M L1222 (2)(3)n n x x a a - =---- L 所以, 2 x = 是 () f x 的 1 n - 重根, 222 3 n a a +++ L 是 () f x的单根. 例 2.12 (北京交通大学,2005年)计算 1 n + 阶行列式11111 (1)(2)...()(1)(2)...()............... 12... 111 (1)n n n nn n n n n x x x x n x x x x n D x x x x n ---- + +++ +++ = +++ 解 注意到依次把第一行和第 1 n + 行交换次序,第2行和第n 行交换次序, ...,可得2 1 1111111...1 12... (1) ............... (1)(2)...()(1)(2)...() nn n n n n n n n nx x x x n D x x x x n x x x x n + ---- +++ =-+++ +++ 21 (1)(()()) n i j n x j x i £<£ =-+-+ Õ 21 (1)()n i j nj i £<£ =-- Õ 第三章 线 性 方 程 组例 3.1(清华大学,2006 年)设 12 ,,, s a a a L 是一组线性无关的向量,则122311 ,,,, s s s a a a a a a a a - ++++ L 是否线性无关? 证明之.证明 若 112223111()()()()0 s s s s s k k k k a a a a a a a a -- ++++++++= L 将上式展开并利用 12 ,,, s a a a L 的线性无关,可得关于 121 ,,, s s k k k k - L 的线性方程 组为1 2 1 100...10 110...00 ... 011...0... ...............0 00...110 s s k k k k - æö æöæö ç÷ ç÷ç÷ ç÷ ç÷ç÷ ç÷ ç÷ç÷= ç÷ ç÷ç÷ ç÷ ç÷ç÷ ç÷ç÷ ç÷ èøèø èø 令其系数矩阵为 A ,显然有 1 1(1) s A + =+- .当 S 为偶数时 , 0 A = , 则方程组有非零解 , 这是122311 ,,,, s s s a a a a a a a a - ++++ L 线性相关.当 S 为奇数时 , 0 A ¹ , 则方程组仅有零解 , 这是122311 ,,,, s s s a a a a a a a a - ++++ L 线性无关.例3.2 (北京科技大学, 2005年) 设 0 h 是线性方程组的一个解, 而 12 th h h L , , , 是它的导出方程组的一个基础解系, 1021010 ,,..., t t g h g h h g h h + ==+=+ .证明:线性方程组的任一解g , 都可表成 112211 ... t t g m g m g m g ++ =+++ , 其中 121 (1)t m m m + +++= . 证明 设 0211 ... t t g h m h m h + =+++ ,令 121 1... t m m m - =--- , 即 121 ...1 t m m m - +++= ,则由于 1021010 ,,..., t t g h g h h g h h + ==+=+ ,1210211 (...)... t t tg m m m h m h m h ++ =++++++ 1021010 ()...() t t m h m h h m h h + =+++++ 112211... t t m g m g m g ++ =+++ 例 3.3(哈尔滨工业大学,2005 年)设 12 ,,, r a a a L 是一组线性无关的向量,1,1,2,..., ri ij j j k i r b a = == å ,证明: 12 ,,, r b b b L 线性相关的充要条件是矩阵11121 21222 12... ... ............ ... r r r r rr k k k k k k K k k k æöç÷ ç÷ = ç÷ ç÷ èø不可逆.证明 12 ,,, r b b b L 线性无关Û 10 ri i b = = å 仅有零解Û 10 rij i j j k x a = = å 仅有零解Û(由 12 ,,, r a a a L 线性无关性仅有零解)方程组 ' 0 K X = 仅有零解Û ' K 可逆Û矩阵 11121 21222 12... ... ............ ... r r r r rr k k k kk k K k k k æöç÷ ç÷ = ç÷ ç÷ èø是可逆的.例 3.4(上海大学,2005 年)设b 是非齐次线性方程组AX b = 的一个解,12 ,,, n r a a a - L 是其导出组的一个基础解系,证明:(1) 12 ,,,, n r a a a b - L 线性无关.(2) 12 ,,,, n r b a b a b a b - +++ L 线性无关.证明 (1) 假定 12 ,,,, n r a a a b - L 线性相关,而 12 ,,, n r a a a - L 线性无关,那么b 可由 12 ,,, n r a a a - L 线性表出,则b 是导出组的一个解与b 是AX b = 的一个解矛 盾.(2)令( ) ( ) ( ) 1122 0n r n r x x x x b a b a b a b -- +++++++= L 于是( ) 112212 0n r n r n r x x x x x x x a a a b --- ++++++++= L L 由 12 ,,,, n r a a a b - L 线性无关,则12 0n r x x x - ==== L 且12 0 n r x x x x - ++++= L ,于是 12 0 n r x x x x - ===== L ,故(2)成立.例 3.5(东北大学, 2003年) 设 1 2 ... r A a aa æö ç÷ ç÷ = ç÷ ç÷ èø是一个r n ´ 阶矩阵() r n < 且秩为r ,已知:b 是 0 AX = 的非零解,讨论 12 ,,, r a a a L 与b 的线性相关性.证明 由于对矩阵A , 有 () r A r = , 记 12 ,,, r U a a a =<> L . 显然有 12 ,,, ra a a L 为空间U 的一组基,由于b 是方程组 0 AX = 的一个非零解,所以有 T b 与12 ,,, r a a a L 相正交,于是有 U b ^^ Î ,对于 12 ,,, r a a a L 与 T b 的线性组合1122 0T r r l l l l a a a b ++++= L 两边同时与 T b 做内积,注意到 T U b ^ ,可得(,)0T T l b b = 由于 0 T b ¹ ,可得 0 l = ,于是1122 0r r l l l a a a +++= L 由 12 ,,, r a a a L 的线性无关性可得0(1,2,...,)i l i r == 即 12 ,,,, r a a a b L 的线性无关.例 3.6(浙江大学,2004 年) 令 12 ,,, s a a a L 是 n R 中s 个线性无关的向量, 证明:存在含n 个未知量的齐次线性方程组,使得 12 ,,, s a a a L 是它的一个基础解 系.证明 以列向量 12 ,,, s a a a L 的转置为行构成矩阵A1 2 TT T s A a a a æö ç÷ ç÷= ç÷ ç÷ ç÷ èøM 考虑以A 为系数矩阵的齐次线性方程组AX = 它的基础解系由 n s - 个 n 维列向量组成,设基础解系为 12 ,,, n s b b b - L 以12 ,,, T T T n s b b b - L 为行构成矩阵B ,则以B 为系数矩阵的齐次线性方程组 0 BX = 满足要求.因为 12 ,,, n s b b b - L 是 0 AX = 的解,则 0,1,,;1,, T j i s j n s a b ===- L L .它同 时说明,作为 n 维向量, 12 ,,, s a a a L 是齐次线性方程组 0 BX = 的解,而() r B n s =- .故 12 ,,, s a a a L 是 0 BX = 的一个基础解系.例 3.7(西安交通大学,2005年)讨论 , a b 为何值时,如下方程组有唯一解?无解?无穷多解? 当有无穷多解时,求出它的通解.1234 234 234 1234 0 221 (3)2 321 x x x x x x x x a x x b x x x ax +++= ì ï ++= ï í-+--= ï ï +++=- î解 将增广矩阵进行初等行变换化为行阶梯形矩阵,有1111011110 0122101221 01320132 321101231 A a b a b a a æöæö ç÷ç÷ ç÷ç÷ =® ç÷ç÷ ------ ç÷ç÷ ---- èøèø11110 01221 00101 00010 a b a æöç÷ ç÷ ® ç÷ -+ ç÷- èø.(1)当 1 a ¹ 时方程组有唯一解. (2)当 1 a = 且 1 b ¹- 时方程组无解. (3)当 1 a = 且 1 b =- 时方程组有无穷多解. 解方程组1234 234 0 221 x x x x x x x+++= ì í++= î 方程组的特解为 0 1 1 0 0 a - æöç÷ç÷ = ç÷ ç÷ èø,导出组的基础解系为 12 11 22 , 10 00 h h æöæö ç÷ç÷ -- ç÷ç÷ == ç÷ç÷ ç÷ç÷ èøèø, 于是通解为 01122 k k a a h h =++ .例 3.8(东南大学,2005年) 问:参数 , a b 取何值时,线性方程组1234 1234 234 1234 1 32 223 54(3)3 x x x x x x x x a x x xx x a x x b +++= ì ï+++= ï í++= ï ï ++++= î有解?当线性方程组有解时,求出其通解.解 将增广矩阵做初等行变换可化为10112 01223 0002 0000 a b a --- æöç÷ç÷ç÷ - ç÷èø. 显然若要方程组有解,必须有 0 a = 且 2 b = , 这时增广矩阵变为10112 01223 0002 0000 a b a --- æöç÷ç÷ ç÷- ç÷èø 方程组的一个特解为 ' (2,3,0,0) - ,基础解系为 ''(1,2,1,0),(1,2,0,1) -- ,于是通解为12 211 322 010 001 x C C - æöæöæöç÷ç÷ç÷ -- ç÷ç÷ç÷ =++ ç÷ç÷ç÷ ç÷ç÷ç÷ èøèøèø. 例 3.9(东南大学,2004年) 已知线性方程组1122 1122 1122 () 0()...0 ........................... ...()0 n n n n n na b x a x a x a x a b x a x a x a x a b x ++++= ì ï++++= ï íï ï ++++= î (*)其中 10 ni i a = ¹ å .试讨论 12 ,,, n a a a L 和b 满足什么条件时,(1)方程组仅有零解.(2)方程组有非零解,此时用基础解系表示所有解.解 由于方程组(*)的系数行列式为2 1 12 12 2 111 ............ ............... ... nin i n n n in i nn nin n i b a a a a b a a a a b a b a a b a a a a bb a a a b = = = + + + ++ =+ ++ å å å .2 2 1111 1100 1 10()()() ............ ............1 (1)0... n nnnn n i i i i i i nn a a a b a bb a b a b a ba a bb- === + =+=+=+ + ååå(1)当 0 b ¹ ,且 1()0 ni i b a = +¹ å 时,方程组(*)的系数行列式不等于零. 于是此方程组只有唯一零解.(2) 当 0 b ¹ ,且 1()0 ni i b a = += å 时,方程组(*)的系数行列式为零. 因此方程组(1)有非零解,它的基础解系为 '(1,1,...,1) ,此时方程组的一切解可表为' (1,1,...,1), k k R Î .(3) 当 0 b = 时,方程组的系数行列式为零. 此时方程组(*)有非零解,并且方 程组等价于1122 0n n a x a x a x +++= (**)由于 10 ni i a = ¹ å ,故在 12 ,,, n a a a L 中必有一个不为零,不妨设 0 ia ¹ ,则有 11 1111 ....... i i n i i i n i i i i a a a a x x x x x a a a a-+ -+ =------ 其中 111 ,...,,,..., i i n x x x x -+ 为自由未知量,因此原方程组的一个基础解系为' 1 1 (1,0,...,0,,0, 0i aah =- ..................................' 11 (0,0,...,1,,0,...,0) i i i a a h - - =-' 11 (0,0,...,0,,1,...,0) i i i a ah + + =-..................................' (0,0,...,0,,0,...,1) nn i a ah =-此时,方程组(*)的一切解可表为111111 ...() i i i i n n i X k k k k k Rh h h h --++ =+++++Î L . 例 3.10(大连理工大学,2004年)设 A 是n 阶矩阵,若 ()1 r A n =- ,且代数 余子式 11 0 A ¹ ,则齐次线性方程组 0 AX = 的通解是.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1/10
十万种考研考证电子书、题库视频学习平台
圣才电子书
www.100xuexi.com
6.3名校考研真题详解

一、选择题
1.设方阵A≠0,但Ak=0(k是某一正整数),则A()相似于对角矩阵.[中国
人民大学研]
A.一定能
B.不一定能
C.不可能
【答案】C
【解析】由假设可设λk是A的零化多项式,则A的最小多项式为λm(1<m≤k).由于
最小多项式有重根,因此A不可能相似于对角阵.

2.n阶方阵A不能与对角阵相似的条件是().[武汉大学2000研]
A.方阵A有n个线性无关的特征向量
B.对A的每个特征值λ,矩阵λE-A的秩与λ作为特征根为重数之和为
n
C.A的最小多项式只有单根
D.A的一切零化多项式都有重根
【答案】D
【解析】当A的一切零化多项式都有重根时,那么A的最小多项式dn(λ)(也是零化
多项式之一)也有重根,所以A不能与对角阵相似.
2/10

十万种考研考证电子书、题库视频学习平台
圣才电子书
www.100xuexi.com
二、证明题

1.设A的特征多项式为,证明Ak与A相似,k是正整数.[新
疆大学2010研]
证:由若当定理知,存在可逆矩阵P,使得

这里.于是
下面证明,i=1,2,…,s.由

它们的行列式因子都是,
.于是,i=1,
2,…,s,故Ak与A相似.
3/10

十万种考研考证电子书、题库视频学习平台
圣才电子书
www.100xuexi.com
2.(1)设n阶矩阵A和B有相同的特征多项式及最小多项式,问A与B是否相似?

若是,则给予证明;若不是,则举出反例.
(2)设都只有一个特征值λ0,证明:A与B相似的充
分必要条件是,这里分
别表示A,B的属于λ0特征子空间.[武汉大学2009研]
证:(1)矩阵A与B不一定相似,例如

,
则它们的特征多项式相同,均为,最小多项式也相同,均为.显
然A与B不相似.
(2)⇒由A~B,则存在可逆矩阵P,使得.于是

因而,故
⇐设,则λ
0

的代数重数为3,几何重数为m,故A,B的若当标准形中对角线上皆为λ0,若当块的块数

为m.
当m=1时,A,B的若当标准形皆为
4/10

十万种考研考证电子书、题库视频学习平台
圣才电子书
www.100xuexi.com
故A~B.

当m=2时,A,B的若当标准形皆为

故A~B.
当m=3时,A,B的若当标准形皆为

故A~B.
综上所述,总有A~B.
3.设n维线性空间V上的线性变换A的最小多项式与特征多项式相同.求证:
,V

使得

1n2
,,,A


AA,

为V的一个基.[北京大学2007研]

证:据题设,设A的最小多项式与特征多项式同为
011-n1nnn
)(bbbd



则A的前1n个不变因子为1,1,…,1,第n个不变因子为)(nd容易知道,矩阵












1n
2n

1
0
1
0
1

0

b
b
b
b

A



的不变因子也为),(,1,,1,1nd所以存在V的一个基,,,,21n使得A在这个基下的矩
阵为A,即
AA
nn
),,,(),,,(

2121


5/10

十万种考研考证电子书、题库视频学习平台
圣才电子书
www.100xuexi.com
现在令
,
1
V



则n1n322,,,AAA,因此

1-n2
,,AA,

为V的一

个基.

4.已知矩阵

问a,b为何值时,A与B相似,并求可逆矩阵P使得P-1AP=B.[兰州大学2009研]
解:若A~B,则trA=trB,|A|=|B|,于是得方程组

解得a=1,b=5.
当a=1,b=5时,由

故A的特征值为λ1=-1,λ2=5.
解方程组(-E-A)X=0,取基础解系α1=(1,-1,0)',α2=(1,0,-1)'.
解方程组(5E-A)X=0,取基础解系α3=(1,1,1)'.
令,则,且A~B.

三、计算题
1.设2n阶方阵
6/10

十万种考研考证电子书、题库视频学习平台
圣才电子书
www.100xuexi.com

其中E是n阶单位矩阵.
(1)求A的特征多项式;
(2)求A的最小多项式;
(3)求A的若当标准形.[华中师范大学研]
解:(1)

(2)由(1)知A的最小多项式至少是2次多项式,又因为
所以,A的最小多项式
(3)由于λE-A存在n阶子式1,所以有其n阶行列式因子,从而有

又,所以
从而A的若当标准形为

相关文档
最新文档