七年级数学上册3.4整式的加减3.4.2合并同类项课件2(新版)华东师大版
七年级数学上册 第三章 整式及其加减 4 整式的加减(二)课件

=(4y-4y)+(-4+2)+(-2x-2x)
=-2-4x.
当x=- 1
2
时,原式=-2-4×
1 2
= -2+2=0.
(2)原式=6m2+4n2-12m2+3n2
=(6m2-12m2)+(4n2+3n2)=-6m2+7n2.
当m=-2,n=1时,原式=-6×(-2)2+7×12=-24+7=-17.
A.A>B C.A=B
B.A<B D.不能确定
答案 A A-B=(5x2-3x+4)-(3x2-3x-2)=5x2-3x+4-3x2+3x+2=2x2+6>0,所以 A>B.
2021/12/10
第十四页,共四十二页。
3.甲对乙说:“有一个游戏,规则是任想一个数,把这个数乘2,结果加上8, 再除以2,最后减去所想的数,此时(cǐ shí)我就能知道运算结果.”请你解释甲为
22
2024年新人教版七年级数学上册 4.2 第1课时 合并同类项(课件)

情境导入
同学们,在我们的生活中处处都有分类的现象,你能将下面的垃圾归
到相应的垃圾桶里吗?
旧书包、废电池、苹果核、塑料瓶、废弃棉签、
坚果壳、过期药品、西瓜皮
可回收物:旧书包、塑料瓶
有害垃圾:废电池、废弃棉签、过期药品
厨余垃圾:苹果核、西瓜皮
其他垃圾:坚果壳
你还能举出生活中分类的例子吗?在数学中也有分类的问题吗?
知识点2:合并同类项(重点)
1.定义:把多项式中的同类项合并成一项,叫作合并同类项.
2.法则:合并同类项后,所得项的系数是合并前各同类项的系数
的和,字母连同它的指数不变.
3.步骤: (1)找:准确找出同类项.
注:不是同类项的不能合并, 没有同类项的项不能遗漏.
(2)交换:运用加法交换律和结合律,交换各项的顺序,将同类项
4.请同学们观察多项式72a-120a,3m2+2m2,3xy2-4xy2. 并思考:
(1)这些多项式的项有什么共同特点? 每个多项式的各项都含有相同的字母,并且相同字 母的指数也相同
(2)在多项式中,符合什么特征的项可以合并?合并前后的系数 有什么关系?字母和字母的指数有什么变化? 当多项式中的项是同类项时,可以合并.合并后的系数 是合并前各项系数的和,字母和字母的指数不变
写在一起,交换时注意连同各项的符号一起交换.
(3)合并:利用法则合并同类项.
知识点3:合并同类项的应用(难点)
合并同类项用来解决生活中的实际问题,通过分析实际问题列出代 数式,合并同类项后解决问题.
【题型一】同类项的概念
例1:在多项式-x2+8x-5+2x2+6x+2中,-x2和_2_x_2___是
(2)由题意易得 a=12,b=-1.6a2b-3ab2-5a2b+4ab2=a2b+ab2. 将 a=12,b=-1 代入,得原式=212×(-1)+12×(-1)2=14.
华东师大版数学七年级上册整式.3升幂排列与降幂排列课件

当堂练习
1.多项式-x+x3+1-x2按x的升幂排列正确的是( )
A. x2-x+x3+1 B. 1-x2+x+x3
C. 1-x-x2+x3
D. x3-x2+1-x
2.多项式-3x2+6x3-1-x按字母x的降幂排列的是( )
A. 1-x-3x2+6x3
B. 6x3-x-3x2+1
• 6x3-3x2-x+1
问题 类比降幂排列定义,你知道什么是升幂排列吗? 升幂排列就是一个多项式按照某个字母的指数从小到大的顺序进行排列.
升幂排列——
1 3 x 5 x2 2 x3
典例精析
例1 把多项式
2r14r按3 rr的2 升幂排列.
3
解:按r的升幂排列为:
12rr2 4r3. 3
例2 把多项式a3+b2-3a2b-3ab3重新排列: (1)按a的升幂排列; (2)按a的降幂排列.
解:(1)按a的升幂排列为: b2-3ab3-3a2b+a3;
(2)按a的降幂排列为: a3-3a2b-3ab3+b2.
此时不考虑b的 指数
思考 你能将这个多项式按b的升(或降)幂排列吗?
总结归纳
1.重新排列多项式时,每一项一定要连同它的正负号一起移动 ; 2.含有两个或两个以上字母的多项式,常常按照其中某一个字母的升幂排列或降幂排列.
第3章 整式的加减 3.3 整 式
3.升幂排列与降幂排列
学习目标
1.能说出什么是升幂排列和降幂排列;(重点) 2.会把一个多项式按某一字母作升幂或降幂排列. (重点)
导入新课
视察与思考 问题 运用加法交换律,任意交换多项式x2+x+1中各项的位置,可以得到哪些不 同的排列方式?在众多排列方式中,你认为哪几种比较有规律?
24.3 去括号和添括号课件 2024-2025-华东师大版(2024)数学七年级上册

去掉,括号里的各项都改变正负号.
典例精析
例1 去括号: (1) a + (b - c); (3) a + (-b + c);
(2) a - (b - c); (4) a - (-b - c).
解:(1) a + (b - c) = a + b - c. (2) a - (b - c) = a - b + c. (3) a + (-b + c) = a - b + c. (4) a - (-b - c) = a + b + c.
2. 所添括号前面是“-”号,括到括号里的各项都 改变正负号.
添括号与去括号的过程正好相反,添括号是否正确, 可以用去括号法则检验!
做一做
在括号内填入适当的项: (1) x2 - x + 1 = x2 - ( x - 1 ); (2) 2x2 - 3x - 1 = 2x2 + ( -3x - 1 ); (3) (a - b) - (c - d) = a - ( b + c - d ).
第二章 整式及其加减
2.4 整式的加减
3 去括号和添括号
华师版七年级(上)
教学目标
1. 掌握去括号、添括号的法则. 2. 能利用去(添)括号法则进行简单的计算. 重点:去(添括号)法则. 难点:利用去(添括号)进行简单的计算.
导入新课
问题 周三下午,校图书馆内起初有 a 位同学. 后来又 有一些同学前来阅读,第一批来了 b 位同学,第二批 又来了 c 位同学,则图书馆内共有 (a + b + c) 位同学.
2022秋七年级数学上册第3章整式及其加减3.4整式的加减第2课时去括号课件新版北师大版

【点拨】由题意得,当每条棱上的小球数为m时,正方体 上的所有小球数为12m-8×2=12m-16. 而12(m-1)=12m-12≠12m-16,4m+8(m-2)=12m -16,12(m-2)+8=12m-16, 所以A选项表达错误,符合题意; B,C,D选项表达正确,不符合题意.
【答案】C
16.先化简,再求值: (1)12x-2x-13y2+-32x+13y2,其中 x=-2,y=23;
B.2n+9 D.6n+3
【点拨】另外两个奇数分别为2n+3和2n+5, 故所求和为(2n+1)+(2n+3)+(2n+5) =2n+1+2n+3+2n+5=6n+9.
【答案】C
*15.(2020·达州)如图,正方体的每条棱上放置相同数目的 小球,设每条棱上的小球数为m,下列代数式表示正 方体上小球总数,则表达错误的是( ) A.12(m-1) B.4m+8(m-2) C.12(m-2)+8 D.12m-16
13.一个长方形的周长为一边长为( C )
A.5a+b
B.4a+2b
C.a+b
D.a+2b
*14.(2021·大连第九中学月考)三个连续的奇数,最小的一 个 是 2n + 1(n 为 自 然 数 ) , 则 这 三 个 连 续 奇 数 的 和 为
() A.6n+6 C.6n+9
21.已知有理数a,b,c,d在数轴上对应点的位置如图所示.
化简:|a-b|+3|c-a|-|b-c|+|a+d|. 【思路点拨】先判断绝对值符号内各个式子的正负,再用 绝对值的性质化简.各个式子的正负可用特殊值法验证, 如a+d,当a=-1,d=-2时,a+d=-1-2=-3<0.
【点拨】除了用数轴判断式子的正负外,还可以用特殊 值法判断,一般利用此法验证判断的结果是否正确.
人教版(2024)数学七年级上册 第四章 整式的加减 整理与复习 课件(共22张PPT)

跟踪练习
1.下列式子去括号正确的是( C )
A. (m n) m n
B. 2(x y) 2x y
C. 3(a b) 3a 3b
D. 3(m n) 3m 3n
2.化简 5x (3x 2y)的结果是_2_x___2_y__.
知识点梳理
知识点6:整式的加法与减法
1.整式加减的运算法则:几个整式相加减,如果有括 号就先去括号,然后再__合__并_同__类__项___.
7.当x=2,y=-1时,单项式
1 2
xy 2
的值等于
___-_1__.
综合提升
8.化简.
(1)4a2 3ab 2a2 6ab (2)5xy 3x 2(xy 3x) 解:(1)4a2 3ab 2a2 6ab (4a2 2a2 ) (3ab 6ab) 2a2 3ab
(2)5xy 3x 2(xy 3x) 5xy 3x 2xy 6x 3xy 3x
几个常数项也是同类项.
跟踪练习
1.与单项式 10a2b 是同类项的是( D)
A.5ab
B. 4ab2
C.3a2b
D. 1 x2 y 2
2.已知 6x2 ym与 3xn y3为同类项,则m+n的值等 于__5___.
知识点梳理
知识点4:合并同类项
1.定义:把多项式中的_同__类__项__合并成一项,叫做合 并同类项. 合并同类项后,所得项的系数是合并前各同类项的系数 的__和___,字母连同它的指数__不_变___.
跟踪练习
1.下列各式是单项式的是( C )
A.2a 3
B. 5
x
C. 6mn
D. x y 3
2.单项式 3a2b 的系数是( A )
华东师大版七年级数学上册第3章第3节升幂排列与降幂排列课件
x2+x+1 x+x2+1 1+x2+x
x2+1+x x +1+x2 1+ x+x2
按字母x的 指数的大 小顺序来
排列.
思考 你认为哪几种比较有规律列
降幂排列:一个多项式按照某个字母的指数从大到小的顺 序进行排列,叫做降幂排列.
5x2 3x 2x3 1
降幂排列—— 2x3 5x2 3x 1
2.含有两个或两个以上字母的多项式,常常按照其中某一 个字母的升幂排列或降幂排列.
当堂练习
1.多项式-x+x3+1-x2按x的升幂排列正确的是( C )
A. x2-x+x3+1 B. 1-x2+x+x3
C. 1-x-x2+x3
D. x3-x2+1-x
2.多项式-3x2+6x3-1-x按字母x的降幂排列的是( C )
(1)按a的升幂排列; (2)按a的降幂排列.
此时不考虑 b的指数
解:(1)按a的升幂排列为: b2-3ab3-3a2b+a3;
(2)按a的降幂排列为: a3-3a2b-3ab3+b2.
思考 你能将这个多项式按b的升(或降)幂排列吗?
总结归纳
1.重新排列多项式时,每一项一定要连同它的正负号一起 移动 ;
4.把(3x-2y)看作一个整体,将代数式(3x-2y)2-2-(3x-2y)3+ 7(3x-2y)按(3x-2y)的升幂排列.
解:-2+7(3x-2y)+(3x-2y)2-(3x-2y)3
课堂小结
把一个多项式各项按某个字母的指数从小到大 的顺序重新 排列,叫做按这个字母的升幂排列. 把一个多项式各项按某个字母的指数从大到小的顺序重新排 列,叫做按这个字母的降幂排列.
七年级数学上册3.4整式的加减3.4.2合并同类项教学教案全国公开课一等奖百校联赛微课赛课特等奖PP
[典例] 计算3xy2+2x2y2+7x2y2
错解:原式=(3+2+7)x2y2=12x2y2
正解:原式=3xy2+(2+7)x2y2=3xy2+9x2y2
评析:此题错误在于同类项概念含糊。同类项必须 符合两个条件:(1)字母相同;(2)相同字母 指数相同。本题中只有2x2y2与7x2y2是同类项, 故只能这两项系数合并。
3.4 整式加减
合并同类项
1/13
讲解点1:合并同类项概念
把多项式中同类项合并成一项,叫做合并同类项。
学习合并同类项应该注意以下几点: (1)合并同类项时,只能把同类项合并成一项,不 是同类项不能合并;不能合并项,在每步运算中不 要遗漏。 (2)数字运算律也适合用于多项式,在多项式中, 碰到同类项,可利用加法交换律、结合律和分配律 进行合并;合并同类项依据是分配律;在使用运算 律使多项式变形时,不改变多项式值。 (3)假如两个同类项系数互为相反数,则结果为0
5/13
[典例] 求以下多项式值:(基本题型)
3x2+4x-2x2-x+x2-3x-1,其中x=-3 解:原式=(3x2-2x2+x2)+(4x-x-3x)-1
=(3-2+1)x2+(4-1-3)x-1 =2x2-1 当x=-3时,原式=2× (-3)2-1=18-1=17
评析:对于多项式求值题,假如有同类项存在,必须先合并 同类项后,再按照求代数式值规则进行求值。
11/13
思索:若a2x-1b与a5bx+y能够合并同类项,则
(xy+5)=
。
提醒:请结合上一题思绪进行解答
x=3,y=-2,所求值为-1
第2章 整式的加减(教案)华东师大版(2024)数学七年级上册
第2章 整式的加减 2.1 列代数式1.使学生认识用字母表示数的意义,并能说出一个代数式所表示的数量关系; 2.初步培养学生观察、分析及抽象思维的能力; 3.学生能熟练地根据题意列出相应的代数式; 4.能用代数式表示一些有特别含义的数.重点如何根据题意列出正确的代数式. 难点能处理表示特别意义的数的代数式.一、导入新课1.从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?2.若用s 表示路程,t 表示时间,v 表示速度,你能用s 与t 表示v 吗?3.一个正方形的边长是a 厘米,则这个正方形的周长是多少?面积是多少? (用l 表示周长,则l =4a 厘米;用S 表示面积,则S =a 2平方厘米) 二、探究新知 1.用字母表示数从这些例子,我们可以体会到,用字母表示数之后,有些数量之间的关系用含有字母的式子表示,看上去更加简明,更具有普遍意义.我们在书写含有字母的式子的时候要注意什么? ①代数式中出现的乘号,通常写作“·”或省略不写,如5×n ,常写作5·n 或5n ; ②数字与字母相乘时,数字写在字母前面,如5n ,一般不写作n5;③除法运算写成分数形式,如1500÷t 通常写作1500t (t ≠0).2.代数式代数式的定义:在前面的研究中出现的如16n ,s 5 ,2a +32 b 2,a ,b ,a +b ,ab ,a 2,(a+b)2,15,5 050,n (n +1)2 ,5x ,st 等式子,它们都是由数和字母、字母和字母用运算符号连接所形成的式子,我们称它们为代数式.注意:单独的一个数或一个字母也是代数式.3.列代数式:通过前面的探究,我们知道可以用字母来表示数.在解决实际问题时,常常先把问题中与数量有关的词语用代数式表示出来,即列代数式,使问题变得简洁,更具有一般性.三、课堂练习1.设甲数为a ,乙数为b ,用代数式表示:(1)甲乙两数的和的2倍________;(2)甲、乙两数的平方和________;(3)甲乙两数的和与甲乙两数的差的积____________;(4)甲、乙两数和的平方________.2.我们知道:23 =2×10+3;865=8×100+6×10+5=8×102+6×10+5.类似地:3725=________×103+7×________+2×10+5×________.3.某三位数的个位数字为a,十位数字为b,百位数字为c,则此三位数可表示为________.四、课堂小结1.代数式的定义:由数和字母、字母和字母用运算符号连接所形成的式子,我们称它们为代数式.注意:单独的一个数或一个字母也是代数式.2.列代数式时应注意弄清楚数量之间的关系,正确列出代数式,还要注意其语言的顺序,按先后顺序来列出正确的代数式,并结合规范的代数式表达方式.五、课后作业教材习题3.1第1,4,5,6题.本节课是学生由具体的数之间的数量关系到用字母表示数字的过渡,让学生体会由具体思维到抽象思维的过渡,故在设计其教学过程中,注意所选例题及练习题由易到难,循序渐进,使学生逐步掌握好这一内容,为今后的学习打下一个良好的基础,同时也使学生的抽象思维能力得到初步培养.2.2代数式的值1.使学生掌握代数式的值的概念,并会求代数式的值;2.培养学生准确地运算能力,并适当地渗透对应的思想.重点当字母取具体数字时,对应的代数式的值的求法及正确地书写格式.难点正确地求出代数式的值.一、导入新课1.某礼堂第1排有18个座位,往后每排比前一排多2个座位,问:(1)第n排有多少个座位?(用含n的代数式表示)(2)第10排、第15排、第23排各有多少个座位?2.学生以小组为单位进行探索,得出结果:(1)第n排有18+2(n-1)个座位;(2)第10排,即当n=10时,18+2(n-1)=18+2×9=36;第15排,即当n=15时,18+2(n-1)=18+2×14=46;第23排,即当n=23时,18+2(n-1)=18+2×22=62.二、探究新知由前面的探究可知:当n 取不同的数值时,代数式18+2(n -1)计算得出的结果不同,以上结果可以说明:当n =10时,代数式18+2(n -1)的值是36.一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算出的结果,叫做代数式的值.小结:(1)求代数式的值的步骤:①代入,将字母所取的值代入代数式中;②计算,按照代数式指明的运算进行计算,得出结果. (2)注意的几个问题:①由于代数式的值是由代数式中的字母所取的值确定的,所以代入数值前应先指明字母取值,把“当……时”写出来;②如果字母的值是负数、分数,代入时应加上括号; ③代数式中省略了乘号时,代入数值以后必须添上乘号. 三、课堂练习1.当x =12 时,代数式12 (x 2+1)的值是什么?2.当a =-1,b =4时,求代数式a2+3(b -1)的值.3.已知a ,b 互为相反数,c ,d 互为倒数,m 的相反数是-7,求-m 2-4cd +a +bm的值.四、课堂小结 1.代数式的定义一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值.2.求代数式的值的步骤及应该注意的问题. 五、课后作业 教材习题3.2本节课的重点是代数式的值的概念,难点是如何准确求出代数式的值.前一节刚学习了列代数式,本节可以从列代数式引入,在引出概念时,教材给出字母的一个值,求代数式的值.我觉得不能让学生体验到代数式的值的不唯一,应该自己根据问题的背景,给出代数式中的字母的几个值,求出相应代数式的值.由于代数式的值是由代数式里的字母所取的值决定的,因此在设计教学过程中,注意渗透对应的思想.2.3 整式 2.3.1 单项式1.要求学生能充分理解单项式的特征,能分辨一个代数式是不是单项式; 2.能写出一个单项式的系数与次数; 3.能根据条件,写出符合条件的单项式.重点能熟练写出一个单项式的次数与系数. 难点能逆向写出符合条件的单项式.一、导入新课1.什么样的式子是代数式? 2.列代数式:(1)若正方形的边长为a ,则正方形的面积是________;(2)若三角形一边长为a ,并且这条边上的高为h ,则这个三角形的面积为________; (3)若m 表示一个有理数,则它的相反数是________;(4)小明从每月的零花钱中拿出x 元钱捐给希望工程,一年下来小明共捐款________元. 二、探究新知 1.单项式的概念观察思考:前面通过探究得到的代数式a 2,12 ah ,-m ,12x.它们的共同的特点是什么?小结:上面列出的代数式是由数字与字母的乘积组成的代数式,这样的代数式叫做单项式.注意:(1)单项式是只有数字与字母的积; (2)单独的一个数或一个字母也是单项式. 2.单项式的系数和次数既然单项式是由数字与字母组成的,为了方便,我们有: (1)一个单项式中的数字因数叫做这个单项式的系数;(2)一个单项式中的所有字母因数的指数和叫做这个单项式的次数,同时这个单项式也称为几次式.注意:(1)圆周率π是常数;(即π是数字而不是字母); (2)当一个单项式的系数是1或-1时,“1”通常省略; (3)单项式的系数是带分数时,通常写成假分数. 三、课堂练习1.在①m ,②-23 a ,③16 x 2y ,④x +y 2 ,⑤abc ,⑥3a +b ,⑦0中,是单项式的有________________(只填序号).2.单项式-2x 2y3的系数是________,次数是________.3.若单项式(3m -2)xy n -1的系数是2,次数是4,则n 2-3m =________. 四、课堂小结1.单项式的定义:由数字与字母的乘积组成的代数式,这样的代数式叫做单项式. 注意:(1)单项式是只有数字与字母的积; (2)单独的一个数或一个字母也是单项式. 2.单项式的系数和次数:(1)一个单项式中的数字因数叫做这个单项式的系数;(2)一个单项式中的所有字母因数的指数和叫做这个单项式的次数,同时这个单项式也称为几次式.注意:(1)圆周率π是常数;(即π是数字而不是字母)(2)当一个单项式的系数是1或-1时,“1”通常省略;(3)单项式的系数是带分数时,通常写成假分数.五、课后作业教材习题3.3第1题.本节课的主要内容是在学习代数式中的单项式,学习分辨一个代数式是否是单项式,所以要掌握单项式的主要特征.在掌握此概念的基础上,理解单项式的系数与次数,要特别注意单项式的次数的教学,可以从正反两个方面进行训练,加深学生对单项式的次数的理解.2.3.2多项式2.3.3升幂排列与降幂排列1.要求学生能充分认识单项式与多项式的区别;2.能掌握多项式的有关概念,包括多项式的项、项数、次数、最高次项等;3.能将一个多项式按某个字母的升幂排列和降幂排列.重点多项式的相关概念.难点多项式的次数.一、导入新课1.什么样的式子是单项式?单项式的系数和次数分别是什么?2.列代数式:(1)若三角形的三条边长分别为a,b,c,则三角形的周长是________;(2)某班有男生x人,女生21人,则这个班的学生一共有________人;(3)如图,阴影部分的面积为________.二、探究新知1.多项式的有关概念(1)观察思考:上面探究的这些式子是单项式吗?a+b+c x+212ar-πr2(2)它们都有什么共同特点?它们与单项式有什么联系和区别?由学生小组派代表回答,教师应肯定每一位学生说出的特点,培养学生观察、比较、归纳的能力,同时又锻炼他们的表达能力,通过对特征的讲述,由学生自己归纳出多项式的定义,教师可给予适当的提示及补充.小结:(1)多项式的概念:上面列出的代数式都是由几个单项式相加而成的,几个单项式的和叫做多项式.(2)多项式的项:多项式中的每个单项式叫做多项式的项,其中不含字母的项叫做常数项.一个多项式含有几项,就叫做几项式.(3)多项式的次数:多项式中次数最高项的次数,叫做多项式的次数.(4)整式的概念:单项式和多项式统称整式.注意:(1)多项式是由单项式构成的,它是几个单项式的和;(2)多项式的次数不是所有项的次数之和;(3)多项式的每一项都包括它前面的符号.教师介绍多项式的项和次数以及常数项等概念,并让学生比较多项式的次数与单项式的次数的区别与联系,渗透类比的数学思想.2.升幂排列与降幂排列(1)任意交换多项式x2+x+1中各项的位置,可以得到哪些不同的排列方式?在这些排列方式中,你认为哪几种比较有规律?(2)学生自主探究,得出结论;任意交换多项式x2+x+1中各项的位置,可以得到6种不同的排列方式,在这些排列方式中,“x2+x+1”与“1+x+x2”的排列是比较有规律的,那么,它们有什么规律呢?(3)学生观察思考后回答.教师小结:我们可以发现:这两种排列方式有一个共同特点:x的指数呈现一种逐渐变小或逐渐变大的排列顺序.从上面的两种整齐的写法中,我们发现:除了美观之外,还会为今后的计算带来方便,因而我们常常把一个多项式各项的位置按照其中一字母的指数大小顺序来排列.(4)升幂排列与降幂排列的概念:把一个多项式按照同一个字母的指数从大到小的顺序排列,叫做这个多项式按此字母的降幂排列;把一个多项式按照同一个字母的指数从小到大的顺序排列,叫做这个多项式按此字母的升幂排列.三、课堂练习1.填空题:(1)下列整式:-25x2,12(a+b)c,3xy,0,2a-33,-5a2+a中,是单项式的有________________________________________________________________________,是多项式的有________________________________________________________________________.(2)多项式-53a3b-7ab-6ab4+1是________次________项式,次数最高项的系数是________.(3)-54a2b-43ab+1是________次________项式,其中三次项系数是________,二次项为________,常数项为________.2.指出下列多项式的次数与项: (1)2xy 3 -14; (2)a 2+2a 2b +ab 2-b 2.3.把多项式3xy -4x 2y 2+x 3-5y 3重新排列: (1)按x 的升幂排列________________________________________________________________________ (2)按y 的升幂排列________________________________________________________________________ 四、课堂小结1.多项式的相关概念及应该注意的问题. 2.升幂排列与降幂排列及应该注意的问题. 五、课后作业教材第98页练习,第100页练习1,2题.本节课主要内容是多项式的相关概念和升幂排列与降幂排列,首先以实际的例子引入多项式,主要让学生区别多项式与单项式,找到多项式的特征,弄清多项式与单项式的联系与区别;接着教师指出多项式的项和次数,这里要特别注意多项式的次数与单项式次数的区别,避免学生混淆.教师通过具体的实例,让学生体会什么是升幂排列与降幂排列,这里主要提醒学生注意在移动多项式的项的时候,要连同它的符号一起移动.2.4整式的加减2.4.1同类项2.4.2合并同类项1.使学生能掌握同类项的概念,并能在多项式中找到同类项;2.能逆向运用同类项的概念,确定某些指数的值;3.理解合并同类项的法则并能熟练运用;4.能在合并同类项的基础上,进行简单的化简求值的运算.重点作为同类项必须满足的条件,会合并同类项.难点同类项概念的逆向运用.一、导入新课1.指出多项式3x2y-4xy2-3+5x2y+2xy2+5的项有哪些.学生观察后回答:这个多项式的项中有3x2y,-4xy2,-3,5x2y,2xy2,5.2.我们常常把具有相同特征的事物归为一类.你能按照一定的标准,将上面的项进行分类吗?怎样分?你的标准是什么?学生自主探究后,进行小组讨论,得出结果,教师鼓励学生进行不同的尝试,并进行比较.二、探究新知1.同类项的概念(1)上面同学们按照不同的标准将以上六项进行了分类,如果我们按照如下分类:3x2y与5x2y,-4xy2与2xy2,-3与5,同学们观察一下,它分类的标准是什么?小结:所含字母相同,相同字母的指数相同.引导学生思考这些所谓相同特征的项有什么相同的特征.(2)同类项的概念:所含字母相同,并且相同字母的指数也相等的项叫做同类项.(3)注意:①同类项中要注意到两个相同:字母相同及相同的字母的指数也相同;②所有的常数项都是同类项;③同类项的判断是以它的总体特征来判断,而不能仅仅看它们的位置,如:系数字母指数3x2y 3x 2y 15x2y 5从上我们很容易发现,这两个所谓的同类项,只有系数不同,而字母相同,而且相同的字母的指数也相同.2.合并同类项(1)单项式3x2y与5x2y是不是同类项?(2)试一试计算3x2y+5x2y的结果是多少?怎样进行计算?3x2y+5x2y=(3+5)x2y=8x2y(3)小结:把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.(4)想一想:怎样合并下列多项式中的同类项?3x2y-4xy2-3+5x2y+2xy2+5学生尝试计算,教师示范讲解:3x2y-4xy2-3+5x2y+2xy2+5=3x2y+5x2y-4xy2+2xy2-3+5=(3x2y+5x2y)+(-4xy2+2xy2)+(-3+5)=(3+5)x2y+(-4+2)xy2+(-3+5)=8x2y-2xy2+2(5)通过刚才的解答,请同学们总结合并同类项的一般步骤有哪些?小结:进行合并同类项的一般步骤:(1)先用相同的划线找到同类项;(2)利用加法交换律与加法结合律把同类项放在一起;(3)利用有理数的加减混合运算,进行系数相加;(4)字母与字母的指数不变.三、课堂练习1.所含________相同,并且________也相同的项叫做同类项.2.在代数式4x2+4xy-8y2-3x+1-5x2+6-7x2中,4x2的同类项是____________,6的同类项是________.3.若2x k y k+2与3x2y n的和为5x2y n,则k=________,n=________.4.若-3x m-1y4与13x2y n+2是同类项,求m,n的值.5.合并同类项:(1)3x2-1-2x-5+3x-x2;(2)-0.8a2b-6ab-1.2a2b+5ab+a2b.四、课堂小结1.同类项的概念:所含字母相同,并且相同字母的指数也相等的项叫做同类项.2.理解同类项的概念及要注意的问题.3.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.4.进行合并同类项的一般步骤.五、课后作业教材第102页练习1,2,3题,第105页练习第1,2,3题.本节课教学内容是同类项、合并同类项,它是本章的重点内容,也是本章的一个难点内容,对后面的学习非常重要,所以一定要要求学生掌握同类项的特征,会正确的合并同类项.在教学中,要通过具体的实例来讲解同类项的特征,举出容易混淆的例子让学生进行辨别,以加深学生的理解,然后通过反向运用,渗透逆向思维的数学思想.在讲解合并同类项时,一是紧扣法则进行计算,二是强调步骤与方法的规范性.2.4.3去括号与添括号1.了解去括号法则依据,理解去括号法则,并初步理解去括号法则的合理性;2.使学生掌握添括号法则,并能熟练地按要求正确地添括号,进行整式的化简.重点理解去括号与添括号法则并能用法则进行正确去括号和添括号.难点括号前面是“-”号和括号前有系数的括号的去法,运用添括号进行整式的简便运算.一、导入新课情境1:某时,2路某趟公交车上有乘客a名,后来在第一个停靠站上来了b名乘客,在第二个停靠站又上来了c名乘客,则(1)此时,此公交车上有乘客________名;(2)还可以理解为:后来一共上来了乘客________名,因而此时公交车上共有乘客________名.由于以上的两个式子________与________都表示同一个量,所以我们有________________.由情境1得到:a+(b+c)=a+b+c情境2:若图书馆内有x名同学,后来有些同学因上课要离开,第一批走了y名同学,第二批又走了z名同学,试用与“情境1”相同的方法,用两种方式写出图书馆内还剩下的同学数.由情境2得到:x-(y+z)=x-y-z.二、探究新知1.去括号法则:(1)由a+(b+c)=a+b+c和x-(y+z)=x-y-z,你发现去括号有什么规律?(2)去括号法则:①括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变正负号;②括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变正负号.2.需要注意的几个问题:(1)去括号是去掉了两部分:括号与括号前的符号;(2)括号内的项的变与不变是统一的;(3)如果括号前有数字,那么这个数字必须乘以括号内的每一项.3.添括号法则:(1)从去括号的运算中,我们知道:a+(b+c)=a+b+ca-(b+c)=a-b-c根据等式的性质,我们有:a+b+c=a+(b+c)a-b-c=a-(b+c)观察思考:变化后的式子相当于添加了括号,那么添括号有什么规律?(2)教师小结添括号法则:所添括号前面是“+”号,括到括号里的各项都不变正负号;所添括号前面是“-”号,括到括号里的各项都改变正负号.注意:添括号与去括号的过程正好相反,添括号是否正确,可以用去括号进行检验.三、课堂练习1.根据去括号法则,在横线上填上“+”号或“-”号:(1)a________(-b+c)=a-b+c;(2)a________(b-c-d)=a-b+c+d;(3)________(a-b)________(c+d)=c+d-a+b.2.已知x+y=2,则x+y+3=________,5-x-y=________.3.化简:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b);(3)a-(2a+b)+2(a-2b);(4)3(5x+4)-(3x-5).四、课堂小结1.去括号法则及去括号时注意的问题.2.添括号法则及添括号时注意的问题.五、课后作业教材第107页练习第1,2,3题,第109页练习第1,2题.本节课去括号的知识是在旧知识的基础上进行发展的.在去括号过程中,必须抓住其特征:括号前是“+”号还是“-”号,去掉括号与符号后,括号内的项到底要不要变号,有什么规律,都必须有总结性的结果.而添括号法则,关键是在实际题目中的应用,在应用中当所添括号前的符号是“-”时,所括到括号内的所有的项都必须改变正负号,这是本节最难的,也是最容易出错的知识点.另外,正确的掌握去括号法则是进行整式加减的基础,所以可以通过不同类别的去括号的训练,增强学生对法则运用的熟练性和去括号的准确性,为后面的学习奠定基础.2.4.4整式的加减1.通过对以前所学知识的综合复习,从而顺利过渡到整式的加减运算;2.在整式的加减中,能灵活结合各方面运算法则,进行正确的计算,提高计算的灵活性.重点结合各方面知识进行整式的加减运算.难点如何更灵活,更准确地进行整式的加减.一、导入新课做一做:某学生合唱团出场时第一排站了n人,从第二排起每一排都比前一排多一人,一共站了四排,则该合唱团一共有多少名学生参加?①学生写出答案:n+(n+1)+(n+2)+(n+3)②提问:以上答案还能进一步化简吗?如何化简?我们进行了哪几步运算?③学生尝试计算.二、探究新知出示投影:例1①求单项式5x2y,-2x2y,2xy2,-4x2y的和;②5x2y+(-2x2y)+2xy2+(-4x2y).提问:在这几个单项式相加时,为什么-2x2y,-4x2y要加上括号.(在学生讨论后,教师作必要强调)出示投影:例2 1.说出下列单项式的和:①-3x,-2x,-5x2,5x2;②-2n,3n2,-5n2.2.写出下列第一个式子减去第二个式子的差:①3ab,-2ab;②5ax2,-4x2a.出示投影:例3①求3x2+6x+3与4x2+7x-6的和.②n+(n+1)+(n+2)+(n+3).教师巡视,然后针对学生出现的问题,集中讲评在列代数式时,可能有的学生对多项式不加括号,教师要引导学生分析为什么每个多项式要加括号.变式训练:(3x2+6x+3)-(4x2+7x-6).小结(1)整式的化简实质上就是整式的加减,去括号和合并同类项是整式加减的基础.(2)整式加减的一般步骤可以总结为:①如果有括号,那么先去括号;②如果有同类项,再合并同类项.三、课堂练习1.将代数式先化简,再求值:2a2-b2+2(b2-a2)-(a2+2b2),其中a=243,b=3.2.计算:2(x-3x2+1)-3(2x2-x-2).3.先化简,再求值:5x-[3x-x(2x-3)],其中x=2.4.如果某三角形第一条边长为(2a-b)cm,第二条边比第一条边长(a+b)cm,第三条边比第一条边的2倍少b cm,求这个三角形的周长.四、课堂小结1.整式的加减实际上就是去括号、合并同类项这两个知识的综合.2.整式的加减的一般步骤:(1)如果有括号,那么先算括号;(2)如果有同类项,则合并同类项.3.求多项式的值,一般先将多项式化简再代入求值,这样使计算简便.4.数学是解决实际问题的重要工具.五、课后作业教材第111页练习第1,2,3题.通过实际问题,让学生经历一个实际背景,去体会进行整式的加减的必要性.通过“去括号、合并同类项”习题的练习归纳、总结出整式的加减的一般步骤,培养学生的观察、分析、归纳和概括的能力,掌握知识的发生发展过程,理解整式的加减实质就是去括号、合并同类项,教学过程中由学生小组讨论概括出整式的加减的一般步骤,然后出示例题,由学生解答.同时采取由学生出题,其他同学抢答等形式,来提高学生的学习兴趣,充分发挥他们的主观能动性,提高课堂教学效益.。
2.4.3 去括号和添括号 第2课时 添括号 课件 数学华东师大版七年级上册
典例导思
题型二 添括号法则的运用
(1)已知2 x +3 y =8,则14-6 x -9 y = -10 ;
(2)已知x2+xy=3,xy+y2=2,求2x2-xy-3y2的
值;
解:(2)原式=2( x2+ xy )-3 xy -3 y2 =2( x2+ xy )-3( xy + y2).
将 x2+ xy =3, xy + y2=2代入,得 原式=2×3-3×2=0.
4. 按要求把多项式5 a3b -2 ab +3 ab3-2 b2添上括号: (1)把前两项括到带有“+”号的括号里,把后两项 括到带有“-”号的括号里;
解:(1)5 a3b -2 ab +3 ab3-2 b2=+(5 a3b -2 ab ) -(-3 ab3+2 b2).
(2)把后三项括到带有“-”号的括号里;
=12 x3-4 x +2 024 =4(3 x3- x )+2 024. 再把3 x3- x =1代入上式,得 原式=4×1+2 0243,则代数式2 x -4 y -8的值是
(D)
A. 5
B. -5
C. 2
D. -2
6. 计算:(1)178 x -59 x +39 x = 158 x ;
典例导思
[误区点拨] 添括号时,若括号前是“-”号,添括号 后,括号里的各项都要改变符号.
典例导思
1. 在等式1- a2+2 ab - b2=1-( )中,括号里应
填( A )
A. a2-2 ab + b2
B. a2-2 ab - b2
C. - a2-2 ab + b2
D. - a2+2 ab - b2
典例导思
题型一 运用添括号法则进行添括号