二次根式有关概念及性质
人教版八年级下册数学第十六章二次根式二次根式的概念和性质教案

-设计分层次练习,从基础到提高,逐步突破难点。
-引导学生通过自主探索和合作交流,构建数学模型,提高数学建模能力。
-在教学中注重教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次根式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算平方根的情况?”(例如:计算正方形边长)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次根式的奥秘。
-详细讲解二次根式的性质,结合图形和实际例子,使学生直观理解。
-以典型例题形式,展示二次根式的化简和运算过程,指出易错点,强调运算规则。
-设计具有挑战性的问题,让学生在实际情境中应用二次根式,识别难点,培养解决问题的能力。
-通过小组讨论和互动,激发学生的学习兴趣,促进数学表达和交流能力的提升。
4.教学策略:
在新课讲授环节,我采用了案例分析的教学方法,让学生通过解决实际问题来体会二次根式的应用。从实践活动的表现来看,学生们对此表现出较高的兴趣,但在小组讨论中,部分学生仍然显得不够积极主动。针对这一问题,我计划在接下来的课程中,多鼓励学生发表自己的观点,培养他们的团队协作能力和沟通能力。
此外,在学生小组讨论环节,我发现有些学生在解决问题时思路不够清晰,容易陷入思维定势。为了帮助学生打破思维局限,我将在以后的课堂中,适时给予他们提示和引导,培养他们的问题分析能力和创新意识。
。
三、教学难点与重点
1.教学重点:
-二次根式的定义及其性质的理解和掌握。
-二次根式的化简和运算方法的运用。
2.教学难点:
-对二次根式性质的深入理解,特别是乘法法则和除法法则的应用。
二次根式概念和性质

二次根式概念和性质
2、 a 表示什么? 表示非负数a的算术平方根
试一试 :说出下列各式的意义;
16, 81, 0, 1, 0.04; 49
观察: 上面几个式子中,被开方数的特点? 被开方数是非负数 即:a0
二次根式概念和性质
1.二次根式的概念
a (a ≥ 0 )表 示 非 负 数 a 的 算 术 平 方 根 ,
二次根式概念和性质
练习: x取何值时,下列二次根式有意义?
(1) x1 x 1 (2) 3x x0
ቤተ መጻሕፍቲ ባይዱ
(3) 4x2 x为全体实数 (4) 1 x0 x
(5) x 3 x0
(7)
1
a
1
1 2a 2
1 (6) x 2 (8) 3 x
|x |4
x0
求二次根式中字母的取值范围的基本依据:
①被开方数大于等于零;
必须满足什么条件?
解:由 x-2≥0 且 x-3≠0,
得 x≥2 且 x≠3。
想一想:假如把题目改为:要使
x-2 x-1
有意义,
x≥2
字母 x 的取值必须满足什么条件?
想一想:一个正数的算术平方根是 正数。
零的算术平方根是 0 。 负数有没有算术平方根? 没有
二次根式概念和性质
练习与反馈
1.要使下列式子有意义,求字母X
a | b | 0 a 0,b 0
a2 | b | 0 a 0,b 0
......
二次根式概念和性质
题型:二次根式的非负性的应用.
注意:几个非负数的和为0,则每一个非负数必为0。
1.已知: x 4 + 2x y =0,求 x-y 的值.
二次根式知识点的相关概念及对应的公式

二次根式知识点的相关概念及对应的公式一、引言二次根式作为数学中的重要概念,它涉及到了数学运算、代数式简化等方面,对于学习数学的人来说是一个基础而又重要的概念。
在学习二次根式的过程中,我们需要了解相关的概念和对应的公式,并且能够灵活运用于实际问题中。
本文将会从深度和广度的角度,全面评估二次根式的相关概念及对应的公式,并给出一个有价值的文章。
二、二次根式的概念1. 二次根式的定义二次根式是形如$\sqrt{a}$(其中$a\geq 0$)的式子,其中$a$称为被开方数。
我们称$\sqrt{a}$为二次根式,通常可以将$\sqrt{a}$理解为一个数,这个数的平方等于$a$。
$\sqrt{4}$就是一个二次根式,它的值为2,因为$2^2=4$。
2. 二次根式的简化在进行数学运算时,我们经常需要对二次根式进行简化。
当被开方数$a$为某个整数的平方时,二次根式$\sqrt{a}$可以进行化简,即$\sqrt{a}=\pm\sqrt{b}$,其中$b$为$a$的正平方根。
$\sqrt{25}=5$。
3. 二次根式的运算二次根式可以进行加减乘除运算,其中需要特别注意的是,二次根式在进行加减运算时,要求根指数相同才能进行运算。
在进行乘法和除法运算时,我们可以利用二次根式的性质进行化简。
三、二次根式的公式1. 二次根式的乘法公式当两个二次根式相乘时,可以利用乘法分配律进行化简,即$(\sqrt{a}\cdot\sqrt{b}) = \sqrt{ab}$。
这个公式在化简乘法运算时非常有用。
2. 二次根式的除法公式当两个二次根式相除时,可以通过有理化的方法,将分母有理化为整数,从而进行化简。
$\frac{\sqrt{a}}{\sqrt{b}}=\frac{\sqrt{a}}{\sqrt{b}}\cdot\frac{\sqrt{ b}}{\sqrt{b}}=\frac{\sqrt{ab}}{b}$。
3. 二次根式的加法和减法公式二次根式的加法和减法需要根指数相同才能进行运算。
二次根式的概念和性质

前提知识之阳早格格创做
1、二次根式的定义:
咱们已经知讲:每一个正真数有且惟有二个仄圆根,一个记做,称为的算术仄圆根;另一个是.
咱们把形如的式子喊做二次根式,根号下的数喊做被启圆数.
由于正在真数范畴内,背真数不仄圆根,果此惟有当被启圆数利害背真数时,二次根式才正在真数范畴内蓄意思.
2、二次根式的本量
3、二次根式的积的算数仄圆根的本量
4、末尾的估计截止,具备以下特性:
(1)被启圆数中不含启得尽圆的果数(或者果式);(2)被启圆数不含分母.
咱们把谦脚上述二个条件的二次根式,喊做最简二次根式.
注意:①化简二次根式时,末尾截止央供被启圆数中不含启得尽圆的果数.
②化简二次根式时,末尾截止央供被启圆数不含分母.
③以后正在化简二次根式时,不妨曲交把根号下的每一个仄圆果子来掉仄圆号以来移到根号中(注意:从根号下曲交移到根号中的数必须利害背数).
题型一、二次根式的观念战条件
【例1】
【例2】
【例3】
【例4】
【例5】
【例6】
题型二、二次根式的本量
【例7】估计
【例8】
【例??】
【练一练】
??、
??、
??、
7、
题型三积的算数仄圆根的本量【例10】
【例11】
【例12】
【例13】
【例14】
题型四二次根式的化简
【例题粗析】
【例15】
【例16】
【例17】
【例18】
【练一练】
4、
5、6、6、
7、。
初二数学二次根式及其性质(最新整理)

二次根式及其性质(基础)学习目标1、理解二次根式的概念,了解被开方数是非负数的理由. 2、理解并掌握下列结论:,,,并利用它们进行计算和化要点梳理要点梳理要点一、二次根式及代数式的概念1.二次根式:一般地,我们把形如(a≥0) 的式子叫做二次根式,“”称为二次根号. 要点诠释: 二次根式的两个要素:①根指数为2;②被开方数为非负数.2.代数式:形如5,a,a+b,ab,,x3,这些式子,用基本的运算符号(基本运算包括加、减、乘、除、乘方、开方)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式.要点二、二次根式的性质 1、; 2.; 3.. 要点诠释: 1.二次根式(a≥0)的值是非负数,一个非负数可以写成它的算术平方根的平方的形式,即. 2.与要注意区别与联系: 1).的取值范围不同,中≥0,中为任意值. 2).≥0时,==;<0时,无意义,=.典型例题类型一、二次根式的概念 1.当为实数时,下列各式,,,属二次根式的有____ 个.【变式】下列式子中二次根式的个数有( ) (1);(2);(3);(4);(5);(6)() A.2 B.3 C.4 D.52. x取何值时,下列函数在实数范围内有意义? (1); (2)y=-;【变式】下列格式中,一定是二次根式的是( ) A. B. C. D. 类型二、二次根式的性质 3. 计算下列各式: (1) (2)【变式】(1)=_____________ (2)=_____________ 4. 已知,那么可化简为( ) A. B. C. D.【变式】若整数满足条件则的值是___________.巩固练习一.选择题 1.若二次根式有意义,则x的取值范围是( ). A. B.x≥1 C.x<1 D.全体实数 2. 若,化简 ( ). A. B. C. D. 3.下列说法正确的是( ) A.是一个无理数 B.函数的自变量x的取值范围是x≥1 C.8的立方根是 D.若点关于x轴对称,则的值为5. 4. 若a不等于0,a、b互为相反数,则下列各对数中互为相反数的一对数是( ).A.与B.与C.与D.与 5.下列根式是最简二次根式的是( ) A. B. C. D. 6. 已知,化简二次根式的正确结果为( ) A. B. C. D.二. 填空题 7.当x______时,式子在实数范围有意义; 当x_______时,式子在实数范围有意义. 8.=____________. 若,则____________. 9.(1)=_____________ (2)(a>0)=__________________________ 10.若=0,则=_______________ 11.当x≤0时,化简=__________________________ 12.有如下判断: (1) (2)=1 (3) (4) (5) (6)成立的条件是同号.其中正确的有_____个.三综合题 13. 当为何值时,下列式子有意义? (1) (2) (3); (4); 14. 已知实数x,y满足,求代数式的值. 15.若,求的值.。
二次根式知识点归纳

二次根式知识点归纳定义:一般的,式子a (a ≥0)叫做二次根式。
其中“”叫做二次根号,二次根号下的a 叫做被开方数。
性质:1、2≥0,等于a;a<0,等于-a3、45612789一.1.【05A.25 B.52 C.542.【05南京】9的算术平方根是(???).A.-3B.3C.±3D.813.【05南通】已知2x <,的结果是(???).A 、2x -B 、2x +C 、2x --D 、2x -4.【05泰州】下列运算正确的是(???).A .a 2+a 3=a 5B .(-2x)3=-2x 3C .(a -b)(-a +b)=-a 2-2ab -b 2D =5.【05无锡】下列各式中,与y x 2是同类项的是()A 、2xyB 、2xyC 、-y x 2D 、223y x6.【05武汉】若a ≤1,则化简后为(???). A.??B. C.???D.7.【05绵阳】化简时,甲的解法是:==,乙的解法是:,以下判断正确的是(???).A.甲的解法正确,乙的解法不正确B.甲的解法不正确,乙的解法正确C.甲、乙的解法都正确D.甲、乙的解法都不正确8.【05(A)a >9.【05A.8 10.【05A.2411.【05A.(-1)312.【05A 、x 213.【05A .114.【05 A 15.【05A .aa b ++b a b +=1B .1÷b a ×a b =1 C .21()a b +·22a b a b --=1a b +二、填空题1.【05连云港】计算:)13)(13(-+=.2.【05南京】10在两个连续整数a 和b 之间,a<10<b,那么a,b 的值分别是。
3.【05上海】计算:)11=4.【05嘉兴5.【05丽水】当a ≥0.6.【05南平=.7.【05漳州,2,(第n 个数).8.【05曲靖】在实数-2,31,0,-1.2,2中,无理数是. 9.【05黄石】若最简根式b a a +3与b a 2+是同类二次根式,则ab =.10.【05太原】将棱长分别为a cm 和bcm 的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为.(不计损耗)11.【05黄岗】立方等于–64的数是。
16.2.1二次根式的概念和性质(共26张PPT)

引 例 : |a - 1 |+ ( b + 2 ) 2 = 0 , 则 a =
b=
例 4:已知 a+2 +|3b-9|+(4-c)2=0, 求 2a-b+c 的值。 解 : ∵ a+2 ≥ 0、 |3b-9|≥ 0、 (4-c) 2≥ 0,
又 ∵ a+2 +|3b-9|+(4-c) 2=0, ∴ a+2=0 , 3b-9=0 ,4-c=0 。 ∴ a= -2 , b= 3 ,c= 4。 ∴ 2a-b+c=2× (-2) -3+4 = -3。
零 的 算 术 平 方 根 是 0。 负 数 有 没 有 算 术 平 方 根 ? 没有
做一做: 要使下列各式有意义,字母的取值必
须满足什么条件?
1、 x+3
2、 2-5x
3、
1 x
4、 a2+1
5、 x-3 + 4-x
6、
x-1 x-2
二次根式的性质(1)
非负数的算术平方根仍然是非负数。
性 质 1 : a ≥ 0 (a ≥ 0 ) ( 双 重 非 负 性 )
3
3
( 5)2 5
( 2 )2 - 2
3
3
二次根式的性质(3)
算一算: 想一想:
02 = 0 ; 2 2 = 2 ; ( -2 ) 2 = 2 ; 3 2 = 3 ; ( -3 ) 2 = 3 。 a2 等 于 什 么 呢 ?
性 质 3: 当 a≥ 0 时 , a2 = 当 a< 0 时 , a2 =
二次根式
1.二次根式的概念
营 销 策 划 方 案的通 用格式
写 清 策 划 书 名称,简 单明了 ,如“xx 营 销 策划书 ”,“xx”为 活动 内容或 营销活 动主题 , 不 需 要 冠 以 协会名 称.如果 需要冠 名协会 ,则可以 考虑以 正、副 标题的 形式出 现.避
2、二次根式的定义及性质

二次根式的定义与性质二次根式基本知识点1.a ≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)2,(0)a a =≥ (2)==a a 2(3)积的算术平方根的性质:b a ab ⋅=(a≥0,b≥0),即积的算术平方根等于积中各因式的算术平方根的积. (4)商的算术平方根的性质b a ba =(0≥a ,0>b ) ,即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.注:注一: 二次根式的概念在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以0a ≥0a ≥)的非负性0a ≥)表示a 的算术平方根,0a ≥)0≥(0a ≥) 这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,0=,则a=0,b=0;||0b =,则a=0,b=0;20b =,则a=0,b=0。
0=,则2018()x y +=____________ a (a >0) a -(a <0) 0 (a =0);注三:二次根式2的性质:2,(0)a a =≥文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。
1、 a 是正数还是负数。
若是正数或0,则等于a ||,(0)a a a ==≥若a 是负数,则等于a 的相反数-a,||,(0)a a a ==<;2a 的取值范围可以是任意实数,即不论a3||a ,再根据绝对值的意义来进行化简。
注五:22,(0)a a =≥1、不同点:a 的取值范围不同,化简的结果也可能不同2、相同点:当被开方数都是非负数,即0a ≥时,2=例:1、二次根式有意义(1)、x 的取值范围是 .(2)x 的取值范围是(3)有意义,那么,直角坐标系中点(,)P m n 的位置在()A 、第一象限B 、第二象限C 、第三象限D 、第四象限2、二次根式定义的运用(1) 若2021y =,则x y +=⇒2()x y =+,则x -y 的值为( )A .-1B .1C .2D .3(2)、当a 1取值最小,并求出这个最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 7
二次根式的有关概念及性质
一、二次根式的有关概念:
1.二次根式:式子(a≥0)叫做二次根式。
2.最简二次根式:满足下列两个条件的二次根式,叫做最简二次根式;
(1)被开方数的因数是整数,因式是整式;
(2)被开方数中不含能开得尽方的因数或因式。如不是最简二次根式,因被开方数中
含有4是可开得尽方的因数,又如,,..........都不是最简二次根式,而,
,5,都是最简二次根式。
3.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根
式就叫做同类二次根式。如, , 就是同类二次根式,因为=2,=3,
它们与的被开方数均为2。
4.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两
个代数式互为有理化因式。如与,a+与a-,-与+,互为有理化因
式。
二、二次根式的性质:
1.(a≥0)是一个非负数, 即≥0;
2.非负数的算术平方根再平方仍得这个数,即:()
2
=a(a≥0);
3.某数的平方的算术平方根等于某数的绝对值,即=|a|=
2 / 7
4.非负数的积的算术平方根等于积中各因式的算术平方根的积,即=·
(a≥0,b≥0)。
5.非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即=
(a≥0,b>0)。
三、例题:
例1.x为何值时,下列各式在实数范围内才有意义:
(1) (2) (3)
(4)+ (5) (6)+
分析:这是一组考察二次根式基本概念的问题,要弄清每一个数学表达式的含义,根据分式
和根式成立的条件去解,即要考虑到分式的分母不能为0并且偶次根号下被开方数要大于或等于
零。
解:(1)∵ 6-x≥0, ∴ x≤6时原式有意义。
(2)∵ x2≥0, ∴ x2+3>0, ∴ x取任意实数原式都有意义。
(3)
∵ ∴
∴ 当x<3且x≠-3时,原式有意义。
(4)
∵ ∴
∴ 当-≤x<时,原式有意义。
(5)
3 / 7
∴
∴ 当x≥0且x≠1时,原式有意义。
(6)
∵ ∴ ∴ x=2
∴ 当x=2时,原式有意义。
例2.写出下列各等式成立的条件:
(1)=-3x (2)=-mn
(3)=1+2a (4)=·
(5)-=7
分析:本题考察算术平方根的概念及二次根式的性质。
解:(1)∵ =|3x|=-3x,
∴ -3x≥0, 3x≤0, ∴ x≤0.
(2)∵ ==|mn|=-mn,
∴ mn≤0, ∵ 成立,隐含m≥0,
∴ m≥0且n≤0.
(3)∵ =|2a+1|=1+2a
∴ 1+2a≥0, ∴ a≥-.
(4)由题意得 ∴
∴ x=±1.
4 / 7
(5)∵ -
=-
=|x+5|-|2-x|=7
∴ 只有|x+5|=x+5, |2-x|=x-2时才成立,
∴ ∴ ∴ x≥2.
例3.化简下列各式:
(1) (2)a2(m<0) (3)+|2-x|+(2
(6)(y<0) (7)+
分析:
在二次根式化简的题目中,若有已知条件或隐含条件,则根据已知或隐含条件化简,若没有
已知条件或隐含条件时,则必须加以讨论,特别是对于开方后式中有两个绝对值以上的题目,要
采取零点分段的方法逐一加以考虑。
解:(1)∵ π>3, ∴ =|3-π|=π-3.
(2)∵ m<0, 要使有意义,则a<0,
∴ a2=a2=a2·=-=-a.
(3)∵ 2
=x-2+x-2+3-x=x-1.
(4)=|3x-1|=
5 / 7
在这里我们分3x-1≥0或3x-1<0两种情况进行了讨论。
(5)(x-y)+
∵ 有意义,∴ y-x>0
∴ 原式=(x-y)·+
=+|x-y|
=+y-x=-+y-x.
(6)∵ y<0,
∴ 原式=
=2|xy|
=-2|x|y
当x≥0时, 原式=-2xy,
当x<0时, 原式=2xy。
(7)+
=+=|4-x|+|x+1|
∵ 若|4-x|=0,则x=4;若|x+1|=0则x=-1,则本题需要将x的取值分成三段,即分x≤-1, -1
当x≤-1时,原式=4-x+(-x-1)=4-x-x-1=3-2x.
当-1
例4.把根号外的因式移至根号内:
(1)2 (2)-5 (3)m(m≥0)
6 / 7
(4)x(x≤0) (5)a
分析:本题需逆用性质=·(a≥0,b≥0)只能将根号外的正因式移至根号内。
解:(1)2=·=。
(2)-5=-·=-。
(3)∵ m≥0, ∴ m=·=。
(4)x(x≤0) ∴ x=-·=-。
(5)∵ 成立,∴ 隐含a<0,
∴ a·=-·=-=-。
例5.(1)已知:y-1=,求:x+2y的值。
(2)若+|x-2y|=0, 求:x2+y2的值。
分析:(1)观察已知条件,等式右边有两个根式,要使两个根式有意义,则
∴ x=2,
∴ y=1, 从而可求出x+2y的值。
(1)解:由已知可得:∴ x=2, y=1
当x=2, y=1时
x+2y=2+2×1=4.
7 / 7
(2)解:∵ +|x-2y|=0
两个非负数的和为零,则只有每个非负数都为零,
∴ ∴
当x=0, y=0时
∴ x2+y2=0+0=0.