高考物理 静电场典型例题

高考物理 静电场典型例题
高考物理 静电场典型例题

静电场的6种高考典型案例

在高考《考试说明》中,静电场部分有九个知识点。高考常考的知识点有七个,并且这七个知识点都属B 级要求。静电场部分涉及的概念、规律都比较抽象,再加上学生的理解力和空间想象力欠缺,因此,静电场问题一直是一个难点问题。

分析近年的高考静电场问题,静电场的考题题型大致可归纳为四大类:

⑴电场线、等势面类;

⑵电场力功、电势能、电势、电势差类;

⑶静电平衡类;

⑷带电粒子的运动类。

〖典型案例分析〗

典型案例一、电场线、等势面类

是指利用典型电场的电场线和等势面的分布情况,以及电场线的特点来求解的问题。解这类问题,我们必须牢记各种典型的电场线和等势面的分布情况,以便与题中情景对照分析,还要灵活运用电场线的特点及等势面的特点,如在等势面上任意两点间移动电荷电场力不做功;沿电场线方向电势越来越低;等势面与电场线一定垂直;电场线的疏密可表示场强大小等。

〖例1〗(1995年全国高考)在静电场中:

A.电场强度处处为零的区域内,电势也一定处处为零

B.电场强度处处相同的区域内,电势也一定处处相同

C.电场强度的方向总是跟等势面垂直的

D.沿着电场强度的方向,电势总是不断降低的

〖命题意图〗

考查电场线、场强和电势关系。

〖解析思路〗

本题A 、B 两选项都用了“一定”的字样,因此只要举出一个反例,就可以否定A 、B 选项的说法,譬如带正电的导体,其内部场强为零,电势不为零;匀强电场的场强处处相同,但顺电场线方向电势逐渐降低,故A 、B 选项均不正确。C 、D 选项正是应记住的电场线特点,故C 、D 正确。

〖探讨评价〗

⑴对电场线类问题,首先我们要牢记各种典型电场电场线和等势面的分布情况,记住电场线的特点,更重要的是要对题意分析全面,并灵活应用各典型电场线的特点。 ⑵电场强度的计算有四种方法:

a 利用定义式q F E =求(用于任何电场);

b 利用决定式2r

Q k E =求(用于求真空场源点电荷的电场强度):

c 利用

d U E =求(适用于匀强电场); d 利用叠加式E=E 1+ E 2+……(矢量合成)。

〖说明〗

电场线与电荷的运动轨迹不一定重合。电荷的运动轨迹由带电粒子受到的合外力情况和初速度情况来决定。只有满足①电场线是直线;②粒子的初速度为零或初速度方向与电场线在同一条直线上时,其运动轨迹才与电场线重合。

〖例2〗(2000年北京、安徽春季高考)如图所示,P 、Q 是两个电量相等的正的点电荷,它们连线的中点是O 、A 、B 是中垂线上的两点,OA

A.E A 一定大于E B ,U A 一定大于U B

B.E A 不一定大于E B ,U A 一定大于U B

C.E A 一定大于E B ,U A 不一定大于U B

D.E A 不一定大于E B ,U A 不一定大于U B

〖命题意图〗

考查点电荷的电场强度、电势的分布规律和场的叠加原理,考查考生分析、综合问题的能力。

〖解析思路〗

在两个点电荷P 、Q 产生的电场中,某一点的场强等于P 、Q 分别在该点产生的场强的矢量和,及点电荷场强计算公式2r

Q k E =知连线中点O(P 、Q 两电荷在O 点的场强等大、反向)和中垂线上距O 无穷远处的场强均为零,而A 、B 处场强是两正点电荷分别在该点产生的电场强度的矢量和,由平行四边形定则知合场强从O 沿中垂线指向∞,A 、B 处场强不为零,所以从O 点起沿中垂线到无穷远处场强先增大后减小,因A 、B 具体位置不确定,所以其场强大小关系不确定。因电场线方向由O 沿中垂线指向∞,故U A >U B 。综上分析,知B 选项正确。

典型案例二、电功、电势能、电势差、电势类

是指电场中电势的计算和电势高低的比较问题。解这类问题,一般要用到:

⑴沿电场线方向电势要降低;

⑵电势的定义式:q U ε

=;

⑶电势差的定义:q

W U AB AB = ⑷匀强电场的两点电势差:U=Ed 等。

〖例3〗(1999年全国高考)图中A 、B 、C 、D 是匀强电场中一正方形的四个顶点。已知A 、

B 、

C 三点的电势分别为U A =15V , U B =3V ,U C =-3V 。由此可得

D 点电势U D = V 。

〖命题意图〗

考查匀强电场的特性、电势,在能力上考核分析、推理、应用物理知识解题的能力。 〖解析思路〗

〖解法1〗

U AC =U A -U C = 18V ,连接AC 并把AC 三等份,(如图)则中间两点的电势分

别为9V 和3 V ,这样B 点必与F 点在同一等势面,连接BF ,过D 点的等势

面恰好过E 点。所以D 点的电势为9 V 。

〖注〗利用等分法在电场中找等势点,是解决此种问题的最基本的也

是比较行之有效的方法。

〖解法2〗

从场强与电势差关系求解。由题中数据可知电场线是从左上方指向右下方,设电场线与水平面成α角,如图所示,根据匀强电场中的场强与电势差的关系知:

U BC =Ecos α·d =6V ,U AD =Ecos α·d =15 -U D 。

显然15 V-U D =6V ,U D =9 V 。

〖解法3〗 从场强的矢量性求解。由场强的竖直分量d U d U E DC AB y ==得: U AB =U DC ,即12V=U D -(-3V ) U D =9V 。 〖例4〗图中A 、B 、C 三点都在匀强电场中。已知AC ⊥BC ,∠ABC=600,BC=20cm 。把

一个q =10-5C 的正电荷从A 移到B ,电场力做功为零;从B 移到C ,电场力做功为-1.73×10-3J ,则该匀强电场的场强大小和方向是:

A.865 V/m ,垂直AC 向左

B.865 V/m ,垂直AC 向右

C.1000V/m ,垂直AB 斜向上

D.1000V/m ,垂直AB 斜向下

〖命题意图〗

考查电场力做功与电势差的关系、考查匀强电场的等势面形状及与电场线之间的关系,考查电场强度计算;在能力上考查分析、应用、判断及理解能力。

〖解析思路〗

把电荷从A 移到B ,电场力不做功,说明A 、B 两点必位于同一个等势面上,题中指明匀强电场,等势面应为平面。且场强方向应垂直等势面,可见,A 、B 不正确,可先排除。 根据电荷从B 移到C 的做功情况,得B 、C 两点电势差V q

W U 173==,因正电荷克服电场力做功知B 点电势比C 点低173V ,因此,场强方向必垂直AB 斜向下,其大小m /V sin BC U d U E 1000600

===--,因此选项D 正确。 〖探讨评价〗

⑴不管运动路径如何,如果电荷在两点间移动时电场力做功为零,则这两点必等势,即在同一个等势面上,匀强电场的等势线是直线,电场线是垂直于等势线且从高电势指向低电势是解决该类问题的基本依据。

⑵应用U=Ed求两点间的电势差,一定要正确理解“d”是两点间沿场强方向的距离。

典型案例三、静电平衡类

是指利用静电平衡状态导体具有的特点来求解的问题。静电平衡状态导体特点:

⑴导体内部场强处处为零,表面上任一点的场强方向跟该点的表面垂直;

⑵整个导体为一个等势体,导体表面为一个等势面;

⑶导体的静电荷分布在外表面上,并且电荷的分布与表面的曲率有关,曲率大的地方电荷分布密。

因此,导体的表面尽管为等势面但导体表面的场强并不一定相同。

〖例5〗(1998年全国高考)一金属球,原来不带电,现沿球的直径的延长线放置一均匀带电的细杆MN,如图所示。金属球上感应电荷产生的电场在球内直径上a、b、c三点的场强大小分别为E a、E b、E c,三者相比:

A. E a最大

B. E b最大

C. E c最大

D. E a=E b=E c

〖命题意图〗

考查静电平衡状态的特点及电场强度的知识。

〖解析思路〗

根据导体在电场中处于静电平衡时的特点,知球内a、b、c三点的合场强都为零。而这三点的场强都是细杆MN和球体感应电荷分别产生的场强的合场强,因此细杆MN产生的场强与金属球上感应电荷产生的场强对球内同一点应大小相等、方向相反,而c点离细杆MN最近,故细杆产生的电场在c点的场强最大,那么,金属球上感应电荷产生的电场在c 点的场强也就最大。因此,C正确。

〖探讨评价〗

处理静电平衡类问题,一定要明白导体内的电场是指的合电场,并且它一定为零,它由外加电场和导体感应电荷产生的电场叠加而成。我们往往要求的是感应电荷在导体内某点产生的电场,而这个电场又不能直接求出,只好经过等效转换研究对象来间接解决问题。在处理静电平衡问题时,必须清楚导体外的电荷并不因导体表面产生感应电荷而影响它在导体内部单独产生的电场。

带电粒子在电场中的运动问题

电场中的带电粒子问题是高考命题频率最多的问题,题型有选择、填空和计算,其难度在中等以上。考题涉及的电场有匀强电场也有非匀强电场或交变电场,涉及的知识不全为电场知识,还有力学的有关知识。

带电粒子在电场中的运动问题大致可分为三类:其一为平衡问题;其二为直线运动问题;其三为偏转问题。解答方法首先是对带电粒子的受力分析,然后再分析运动过程或运动性质,最后确定运用的知识或采用的解题观点。(平衡问题运用的是物体的平衡条件;直线运动问题用到的是运动学公式、牛顿第二定律、动量关系及能量关系;偏转问题用到的是运动的合成与分解,以及运动学中的平抛运动的规律。)下文就分析带电粒子在电场

中的这三类问题。

典型案例四、带电粒子的平衡问题

〖例1〗(1995年上海高考)如图所示,两板间距为d 的平行板电容器与电源连接,电键x 闭合。电容器两板间有一质量为m ,带电量为q 的微粒静止不动。下列各叙述中正确的是:

A.微粒带的是正电

B.电源电动势大小为q mgd

C.断开电键k ,微粒将向下做加速运动

D.保持电键k 闭合,把电容器两板距离增大,微粒将向下做加速运动

〖命题意图〗

考查平行板电容器极板电压和间距与电场强度的关系。考查物体的受力分析及物体的平衡条件,考查用牛顿第二定律分析物体运动性质的能力。

〖解析思路〗

带电粒子在电容器中平衡,则有:q

q d U q qE mg ε===,因此,电源的电动势q

mgd =ε。断开k 时,因电容器极板上已有电量,并且此时两板间电势差仍为U =ε,故微粒仍平衡。因重力向下,故微粒受的电场力向上,在场强方向向下时,微粒带的负电。若把k 闭合,两极板距离变大,此时极板间电势差U =ε不变,则d

d U E ε==变小,mg>qE ,微粒将要向下做加速运动。根据以上分析,本题答案应为B 、D 。

〖探讨评价〗

⑴带电粒子在电容器中匀速运动或静止,都属带电粒子的平衡问题。在这类问题中,常常要判断微粒的电性或计算场强的大小,用到的知识是mg F ,qE F ==,电场力方向与电荷正负的关系等。如果要分析粒子的运动情况,就要分析电场力与mg 的大小关系,最后借助牛顿第二定律判断。

⑵平行板电容器间的电场为匀强电场,该处的d

U E =在电容器始终与电源相连时,U 不变;在与电源断开后再改变电容器的其它量时,Q 不变,此时改变d ,E 不变。对平行板电容器,要掌握电容表达式kd

S C πε4=。 典型案例五、带电粒子的直线运动问题

〖例2〗(1994年全国高考)如图所示。A 、B 是一对平行的金

属板,在两板间加一周期为T 的交变电压U ,A 板的电势U A =0,B 板的电势U B 随时间变化规律为:

在0到2T 的时间内,U B =U 0(正的常数); 在2

T 到T 的时间内,U B =-U 0; 在T 到2

3T 的时间内,U B =U 0; 在2

3T 到2T 的时间内,U B =-U 0…… 现有一电子从A 板上的小孔进入两板间的电场区内。设电子的初速度和重力的影响均可忽略。

A.若电子是在t=0时刻进入的,它将一直向B 板运动

B.若电子是在8T t =

时刻进入的,它可能时而向B 板运动,时而向A 板运动,最后打在B 板上

C.若电子是在83T t =

时刻进入的,它可能时而向B 板运动,时而向A 板运动,最后打在B 板上

D.若电子是在2

T t =时刻进入的,它可能时而向B 板运动,时而向A 板运动 〖命题意图〗

综合考查运动学、动力学和静力学的有关知识;在能力上,考查理 解、推理、分析综合以及数学工具的运用等能力,其中分析综合能力是考核的重点。

〖解析思路〗

根据题意画出两极板间的电压变化规律如图。电子受电场力d

eU F 0=,加速度md

eU a 0=,因此画出a —t 图象如图。取由A 向B 垂直于两板的方向为正方向,按题给A 、B 、C 三个选项给出的初始条件分别作出电子运动的v —t 图象。

图象对t 轴覆盖的面积为“正”即图象在t 轴上方时,

表明电子向B 板运动;图象对t 轴覆盖的面积为“负”即图

象在t 轴的下方时,表明电子向上板运动。而任意时刻正、

负面积的代数和,则表示电子对且板的位移。

由图象容易知道A、B正确。

〖探讨评价〗

求解本题的难点在于电子运动性质的判断。突破难点的方法是利用初始条件和牛顿第二定律分析,并根据分析画出v B—t、v—t、a—t图象,再借助图象最终求解问题。

求解带电粒子在只方向改变的交变电场中的问题,思路有两种:

思路一:用牛顿运动定律、匀变速运动规律和有关电学的知识联立求解;

思路二:用动能定理和有关电学知识求解。

〖例3〗(1993年全国高考)图中AB是一对中间开有小孔的平行金属

板,两小孔的联线与金属板面垂直,两极板间距离为l,两极板间加上

低频交流电压。A板电势为0,B板电势为U=U0cosωt,现有一电子在

t=0时穿过A板上的小孔射入电场,设初速度和重力的影响可忽略不计,

则电子在两极板间可能:

A.以AB间某一点为平衡位置来回振动

B.时而向B板,时而向A板运动,但最后穿出B板

C.一直向B板运动,最后穿出B板,如果ω小于某个值ω0,l小于某个值l0

D.一直向B板运动,最后穿出B板,而不论ω、l为任何值

〖解析思路〗

由于两板间电势差为U0cosωt,是随时间,大小、方向均做周期性变化的“交变电场”,带电粒子做加速度变化的变速直线运动。带电粒子在第一个T/4内做加速度变小的加速运动,第二个T/4内做加速度增大的减速运动,直至速度为0,在这前两个T/4内电子一直向O板运动。第三、第四个T/4内电子则向A板做上述运动直至回到出发点速度又为0,第二个周期又重复第一个周期的运动,因而假设l足够大,则A正确,无论在这种前提下还是l较小B均错误,因为若在AB间来回运动,则不能穿出B板;能穿出B板则不可能来回运动。又假设交变电压的周期足够大,满足T/2> t AB(t AB是电子从A到B先加速后减速时间)则C正确,D错误。

〖探讨评价〗

这是一道大小和方向都随时间按正弦或余弦函数变化的“交变电场”题目。处在这种交变电场中的带电粒子,往往只要求对带电粒子的运动作定性分析,不要求作定量计算,因此,只要熟练掌握了力和运动的关系,并能深刻理解交变电场的变化规律,能把两者有机地结合起来在脑子中形成一幅清晰的物理画面,这类问题就能迎刃而解。

〖例4〗(2000年山西综合卷)如图所示,倾角为300的直角三角形底边长为2l,底边处在水平位置,斜边为光滑绝缘导轨。现在底边中点O处固

定一正电荷Q,让一个质量为m的带负电的点电荷q从斜面

顶端A沿斜面滑下(始终不脱离斜面)。已测得它滑到仍在斜

边上的垂足D处的速度为v,问该质点滑到斜边底端C点时

的速度和加速度各为多少?

〖命题意图〗

考查机械能守恒、电场力做功特点、点电荷的等势面及牛顿第二定律,考查分析、理

解和应用能力,挖掘隐含信息能力。

〖解析思路〗 因OD OC BO BC BD ====2,则B 、C 、D 三点在以O 为圆心的同一圆周上,是O 点处点电荷Q 产生的电场中的等势点,所以,q 由D 到C 的过程中电场力做功为零,由机械能守恒定律

222

121mv mv mgh C -=…………① 其中2

3603060000L sin sin BC sin BD h === 得gL v v C 32+=…………②

质点在C 点受三个力的作用:电场力2L kQq f =

,方向由C 指向O 点; 重力mg ,方向竖直向下;支撑力N ,方向垂直于斜面向上。

根据牛顿定律,有: ma cos f sin mg =-θθ…………③

ma L

kQq sin mg =-2030 得22321mL

kQq g a C -=…………④ 〖探讨评价〗

⑴本例也是带电粒子的直线运动,但它在运动过程中受到的电场力大小和方向皆发生变化,该题用力的观点根本无法求解,但用能量观点则不同,因D 、C 为等势点,电场力不做功,从而可用机械能守恒。

⑵本题求解关键是挖掘出D 、C 为等势点,电荷从D 到C 电场力不做功。

典型案例六、偏转问题

〖例5〗(1992年全国高考)如图,电子在电势差U 1的加

速电场中由静止开始运动,然后射入电势差为U 2的两块平行

极板的电场中,入射方向跟极板平行。整个装置处于真空中,

重力可忽略。在满足电子能射出平行板磨的条件下,下述四种

情况中,一定能使电子的偏转角φ变大的是:

A.U 1变大,U 2变小

B.U 1变小,U 2变大

C.U 1变小,U 2变小

D.U 1变大,U 2变大

〖命题意图〗

考查动能定理、运动的合成与分解、偏转角;在能力上,考查考生把电学知识和力学

知识结合在一起进行综合分析问题和解决问题的能力。

〖解析思路〗 电子在加速电场中由动能定理得2012

1mv eU = 电子在偏转电场中有:t md eU v ,v v ,t v L y x x 20=

== 由以上各式得:1

22dU LU v v tg x y

==φ,可知要使甲增大必然U 2变大,U 1变小,故选B 。 〖探讨评价〗

⑴本题正是《考试说明》要求掌握的那种带电粒子垂直电场线进入电场的那类问题。解这类问题要用类似平抛运动的分析方法,即分析时一般都分解为两个方向的分运动来处理。

在垂直电场线方向上,粒子做匀速运动,0v v x =,偏转时间0

v L t =; 在平行电场线方向上粒子做初速为零的匀加速运动,at v y =,221at y =

。 当不计重力时,md qU a =,偏转距离20???

? ??=v L md qU y ,偏转角201v md qLU v v tg U x y ==φ ⑵带电粒子垂直电场线进入匀强电场中时,当它从电场中穿出时的速度方向的反向延长线,与进入电场时方向所在的直线的交点恰好为电场宽度的一半(或极板长的一半)。

静电场经典例题

静电场练习题一 1、一个挂在绝缘细线下端的带正电的小球B,静止在图示位置,若固定的带正电小球A的电荷量为Q,B球的质量为m,带电荷量为q,θ=37°,A和B在同一条水平线上,整个装置处于真空中,求A,B两球间的距离. 2、如图所示,有一水平方向的匀强电场,场强大小为900 N/C,在电场 内一水平面上作半径为10 cm的圆心为O的圆,圆上取 A,B两点,AO沿电场方向,BO⊥OA,另在圆心处放一电荷 量为10-9 C的正点电荷,求A处和B处场强大小。 3、如图,光滑斜面倾角为37°,一质量m=1×10-2 kg、电荷量q=+1×10-6 C的小物块置于斜面上,当加上水平向右的匀强电场时,该物体恰 能静止在斜面上,g=10 m/s2,求: (1)该电场的电场强度大小; (2)若电场强度变为原来的,小物块运动的加速度大小.

4、如图所示,真空中,带电荷量分别为+Q和-Q的点电荷A,B相距r, 则: (1)点电荷A,B在中点O产生的场强分别为多大?方向如何? (2)两点电荷连线的中点O的场强为多大? (3)在两点电荷连线的中垂线上,距A,B两点都为r的O′点的场强如何? 5、一试探电荷q=+4×10-9 C,在电场中P点受到的静电力F=6×10-7N.则: (1)P点的场强大小为多少; (2)将试探电荷移走后,P点的场强大小为多少; (3)放一电荷量为q′=1.2×10-6 C的电荷在P点,受到的静电力F′的大小为多少? 6、竖直放置的两块足够长的平行金属板间有匀强电场. 其电场强度为E,在该匀强电场中,用丝线悬挂质量为m 的带电小球,丝线跟竖直方向成θ角时小球恰好平衡, 此时小球与极板间的距离为b,如图所示.(重力加速度

大学物理竞赛指导-经典力学例题-物理中心

大学物理竞赛指导-经典力学选例 一.质点运动学 基本内容:位置,速度,加速度,他们的微积分关系,自然坐标下切、法向加速度,*极坐标下径向速度,横向速度,直线运动,抛物运动,圆周运动,角量描述,相对运动 1.运动学中的两类问题 (1)已知运动方程求质点的速度、加速度。这类问题主要是利用求导数的方法。 例1 一艘船以速率u驶向码头P ,另一艘船以速率v 自码头离去,试证当两船的距离最短时,两船与码头的距离之比为: ()()ααcos :cos v v ++u u 设航路均为直线,α为两直线的夹角。 证:设任一时刻船与码头的距离为x 、y ,两船的距离为l ,则有 α c o s 2222xy y x l -+= 对t求导,得 ()()t x y t y x t y y t x x t l l d d c o s 2d d c o s 2d d 2d d 2d d 2αα--+= 将v , =-=t y u t x d d d d 代入上式,并应用0d d =t l 作为求极值的条件,则得 ααcos cos 0yu x y ux +-+-=v v ()()αα c o s c o s u y u x +++-=v v 由此可求得 ααc o s c o s v v ++=u u y x 即当两船的距离最短时,两船与码头的距离之比为 ()()αα c o s c o s v : v ++u u (2)已知质点加速度函数a =a (x ,v ,t )以及初始条件,建立质点的运动方程。这类问题主要用积分方法。 例2 一质点从静止开始作直线运动,开始时加速度为a 0,此后加速度随时间均匀增加,经过时间τ后,加速度为2a 0,经过时间2τ后,加速度为3 a 0 ,…求经过时间n τ后,该质点的速度和走过的距离。 解:设质点的加速度为 a = a 0+α t ∵ t = τ 时, a =2 a 0 ∴ α = a 0 /τ 即 a = a 0+ a 0 t /τ , 由 a = d v /d t , 得 d v = a d t t t a a t d )/(d 0 000τ??+=v v ∴ 2002t a t a τ +=v

物理选修3_1_第一章《静电场》典型例题

【典型例题】 [例1] 如图中虚线表示等势面,相邻两等势面间电势差相等。有一带正电 的粒子在电场中运动,实线表示该带正电的粒子只在电场力作用下的运动轨迹, 粒子在a点的动能为20 eV,运动到b点时的动能为2 eV。若取c点为零势点, 则当粒子的电势能为一6 eV时,它的动能是() A. 16 eV B. 14 eV C. 6 eV D. 4 eV 解析:因该带正电的粒子从a点运动到b点动能减少了18eV,则运动至c等势面时的动能Ekc=20 eV一=8eV,带电粒子的总能量E=Ekc+Ec=8eV+0=8eV。当粒子的电势能为-6eV时,动能Ek=8eV一(一6)eV=14eV,选项B正确。 说明:带电粒子只在电场力作用下运动,动能和电势能相互转化,总能量守恒。 [例2] 如图所示,在真空中,两条长为60 cm的丝线一端固定于O点,另一 端分别系一质量均为0.1g的小球A和B。当两小球带相同的电荷量时,A球被光 滑的绝缘挡板挡住,且使OB线保持与竖直方向成60?角而静止。求: (1)小球所带电荷量;(2)OB线受到的拉力。 解析:作B 球的受力分析图如图所示,B受G、F、T三力作用,三力平衡时 表示三力的有向线段依次相接可以组成一个封闭的力三角形。由图可知,该力三角形与几何三角形AOB 相似,由于ΔAOB为等边三角形,故力三角形也是等边三角形。 设AB长为l,则(1)由F==mg,得小球电荷量为 Q===2.0×10-6 C (2)OB线受的拉力为T=G=mg=0.1×10—3×10 N=10—3 N [例3] 如图所示,用电池对电容器充电,电路a、b之间接有一灵敏电流表,两极板之间有一个电荷q处于静止状态。现将两极板的间距变大,则() A. 电荷将向上加速运动 B. 电荷将向下加速运动 C。电流表中将有从a到b的电流 D。电流表中将有从b到a的电流

静电场典型例题集锦(打印版)

静电场典型题分类精选 一、电荷守恒定律 库仑定律典型例题 例1 两个半径相同的金属小球,带电量之比为1∶7,相距为r ,两者相互接触后再放回原来的位置上,则 相互作用力可能为原来的多少倍? 练习.(江苏物理)1.两个分别带有电荷量Q -和+3Q 的相同金属小球(均可视为点电荷),固定在相距为r 的两处,它们间库仑力的大小为F 。两小球相互接触后将其固定距离变为2 r ,则两球间库仑力的大小为 A . 112F B .34F C .4 3 F D .12F 二、三自由点电荷共线平衡.. 问题 例1.(改编)已知真空中的两个自由点电荷A 和B, 94 A Q Q =,B Q Q =-,相距L 如图1所示。若在直线AB 上放一自由电荷C,让A 、B 、C 都处于平衡状态,则对C 的放置位置、电性、电量有什么要求? 练习 1.(原创)下列各组共线的三个自由电荷,可以平衡的是( ) A 、4Q 4Q 4Q B 、4Q -5Q 3Q C 、9Q -4Q 36Q D 、-4Q 2Q -3Q 2.如图1所示,三个点电荷q 1、q 2、q 3固定在一直线上,q 2与q 3的距离为q 1与q 2距离的2倍,每个电荷所受静电力的合力均为零,由此可以判定,三个电荷的电量之比q 1∶q 2∶q 3为( ) A .-9∶4∶-36 B .9∶4∶36 C .-3∶2∶-6 D .3∶2∶6 三、三自由点电荷共线不平衡... (具有共同的加速度)问题 例1.质量均为m 的三个小球A 、B 、C 放置在光滑的绝缘水平面的同一直线上,彼此相隔L 。A 球带电量10A Q q =,B Q q =, 若在小球C 上外加一个水平向右的恒力F ,如图4所示,要使三球间距始终保持L 运动,则外力F 应为多大?C 球的带电量C Q 有多大? 图1 图4

大学物理第7章静电场理解练习知识题

第7章 习题精选 (一)选择题 7-1、下列几种说法中哪一个是正确的? (A )电场中某点场强的方向,就是点电荷在该点所受电场力的方向. (B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同. (C )场强可由q F E / =计算,其中q 为试验电荷,q 可正、可负,F 为试验电荷所受电场力. (D )以上说法都不正确. [ ] 7-2、图中实线为某电场的电场线,虚线表示等势面,由图可看出: (A )C B A E E E >>,C B A V V V >>.(B )C B A E E E <<,C B A V V V <<. (C )C B A E E E >>,C B A V V V <<.(D )C B A E E E <<,C B A V V V >>. [ ] 7-3、关于电场强度定义式0/q F E =,下列说法中哪个是正确的? (A )场强E 的大小与试验电荷0q 的大小成反比. (B )对场中某点,试验电荷受力F 与0q 的比值不因0q 而变. (C )试验电荷受力F 的方向就是场强E 的方向. (D )若场中某点不放试验电荷0q ,则0=F ,从而0=E . [ ] 7-4、有一边长为a 的正方形平面,在其中垂线上距中心O 点垂直距离为a /2处,有一电量为q 的正点电荷,如图所示,则通过该平面的电场强度通量为 (A )03εq . (B )0 4επq (C )03επq . (D )06εq [ ] 7-5、已知一高斯面所包围的体积内电荷代数和0=∑q ,则可肯定: (A )高斯面上各点场强均为零. (B )穿过高斯面上每一面元的电场强度通量均为零. (C )穿过整个高斯面的电场强度通量为零. (D )以上说法都不对. [ ] q

浙江省大学物理试题库204-热力学第一定律、典型的热力学过程

浙江工业大学学校 204 条目的4类题型式样及交稿式样 热力学第一定律、典型的热力学过程 一. 选择题 题号:20412001 分值:3分 难度系数等级:2 1 如图所示,一定量理想气体从体积V1,膨胀到体积V2分别经历的过程是:A→B等压过程,A→C等温过程;A→D绝热过程,其中吸热量最多的过程 (A) 是A→B. (B) 是A→ C. (C) 是A→D. (D) 既是A→B也是A→C, 两过程吸热一样多。 [ ] 答案:A 题号:20412002 分值:3分 难度系数等级:2 2 质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加一倍.那么气体温度的改变(绝对值)在 (A) 绝热过程中最大,等压过程中最小. (B) 绝热过程中最大,等温过程中最小. (C) 等压过程中最大,绝热过程中最小. (D) 等压过程中最大,等温过程中最小.[] 答案:D 题号:20412003 分值:3分 难度系数等级:2 V

3 一定量的理想气体,从a 态出发经过①或②过程到达b 态,acb 为等温线(如图),则①、②两过程中外界对系统传递的热量Q 1、Q 2是 (A) Q 1>0,Q 2>0. (B) Q 1<0,Q 2<0. (C) Q 1>0,Q 2<0. (D) Q 1<0,Q 2>0. [ ] 答案:A 题号:20413004 分值:3分 难度系数等级:3 4 一定量的理想气体分别由初态a 经①过程ab 和由初态a ′经 ②过程a ′cb 到达相同的终态b ,如p -T 图所示,则两个过程中 气体从外界吸收的热量 Q 1,Q 2的关系为: (A) Q 1<0,Q 1> Q 2. (B) Q 1>0,Q 1> Q 2. (C) Q 1<0,Q 1< Q 2. (D) Q 1>0,Q 1< Q 2. [ ] 答案:B 题号:20412005 分值:3分 难度系数等级:2 5. 理想气体向真空作绝热膨胀. (A) 膨胀后,温度不变,压强减小. (B) 膨胀后,温度降低,压强减小. (C) 膨胀后,温度升高,压强减小. (D) 膨胀后,温度不变,压强不变. [ ] 答案:A 题号:20412006 分值:3分 难度系数等级:2 6. 一定量的理想气体,从p -V 图上初态a 经历(1)或(2)过程到达末态b ,已知a 、b 两 态处于同一条绝热线上(图中虚线是绝热线),则气体在 (A) (1)过程中吸热,(2) 过程中放热. (B) (1)过程中放热,(2) 过程中吸热. (C) 两种过程中都吸热. (D) 两种过程中都放热. [ ] 答案:B 题号:20412007 分值:3分 p p p V

大学物理静电场精彩试题库

真空中的静电场 一、选择题 1、下列关于高斯定理的说确的是(A ) A 如果高斯面上E 处处为零,则面未必无电荷。 B 如果高斯面上E 处处不为零,则面必有静电荷。 C 如果高斯面无电荷,则高斯面上E 处处为零。 D 如果高斯面有净电荷,则高斯面上 E 处处不为零。 2、以下说法哪一种是正确的(B ) A 电场中某点电场强度的方向,就是试验电荷在该点所受的电场力方向 B 电场中某点电场强度的方向可由0q F E 确定, 其中0q 为试验电荷的电荷量,0q 可正可 负,F 为试验电荷所受的电场力 C 在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同 D 以上说法都不正确 3、如图所示,有两个电 2、 下列说确的是(D ) A 电场强度为零处,电势一定为零。电势为零处,电场强度一定为零。 B 电势较高处电场强度一定较大,电场强度较小处电势一定较低。 C 带正电的物体电势一定为正,带负电的物体电势一定为负。 D 静电场中任一导体上电势一定处处相等。 3、点电荷q 位于金属球壳中心,球壳外半径分别为 21,R R ,所带静电荷为零B A ,为球壳外两点,试判断下 列 说法的正误(C ) A 移去球壳, B 点电场强度变大 B 移去球壳,A 点电场强度变大 C 移去球壳,A 点电势升高 D 移去球壳,B 点电势升高 4、下列说确的是(D ) A 场强相等的区域,电势也处处相等 B 场强为零处,电势也一定为零 C 电势为零处,场强也一定为零 D 场强大处,电势不一定高

5、如图所示,一个点电荷q位于立方体一顶点A上,则通过abcd 面上的电通量为(C ) A 6 q ε B 12 q ε C 24 q ε D 36 q ε 6、如图所示,在电场强度E的均匀电场中,有一半径为R的半球面, 场强E的方向与半球面的对称抽平行,穿过此半球面的电通量为(C) A E R2 2π B E R2 2π C E R2 π D E R2 2 1 π 7、如图所示两块无限大的铅直平行平面A和B,均匀带电,其电荷密 度均为) (2 0- ? ?m C σ σ,在如图所示的c b a、 、三处的电场强度分别 为(D) A 0, ,0 0, ε σ B 0, 2 ,0 0, ε σ C , , 2ε σ ε σ ε σ D ,0, ε σ ε σ 8、如图所示为一具有球对称性分布的静电场的E~r关系曲线.请指出该静电场是由下列哪种带电体产生的.(B) A 半径为R的均匀带电球面. B半径为R的均匀带电球体. C半径为R的、电荷体密度为Ar = ρ(A为常数)的非均匀带电球体 D半径为R的、电荷体密度为r A/ = ρ(A为常数)的非均匀带电球体 9、设无穷远处电势为零,则半径为R的均匀带电球体产生的电场的电势分布规律为(图中 的 U和b皆为常量):(C) 10、如图所示,在半径为R的“无限长”均匀带电圆筒的静电场中,各点的电场强度E的大小与距轴线的距离r 关系曲线为(A) d a b c q A

高中物理静电场经典习题30道 带答案

一.选择题(共30小题) 1.(2014?山东模拟)如图,在光滑绝缘水平面上,三个带电小球a 、b 和c 分别位于边长为l 的正三角形的三个顶点上;a 、b 带正电,电荷量均为q ,c 带负电.整个系统置于方向水平的匀强电场中.已知静电力常量为k .若 三个小球均处于静止状态,则匀强电场场强的大小为( ) D c 的轴线上有a 、b 、 d 三个点,a 和b 、b 和c 、c 和d 间的距离均为R ,在a 点处有一电荷量为q (q >0)的固定点电荷.已知b 点处的场强为零,则d 点处场强的大小为(k 为静电力常量)( ) D 系数均为k 0的轻质弹簧绝缘连接.当3个小球处在静止状态时,每根弹簧长度为l .已知静电力常量为k ,若不考虑弹簧的静电感应,则每根弹簧的原长为( ) ﹣ 个小球,在力F 的作用下匀加速直线运动,则甲、乙两球之间的距离r 为( ) D

7.(2015?山东模拟)如图甲所示,Q1、Q2为两个被固定的点电荷,其中Q1带负电,a、b两点在它们连线的延长线上.现有一带负电的粒子以一定的初速度沿直线从a点开始经b点向远处运动(粒子只受电场力作用),粒子经过a、b两点时的速度分别为v a、v b,其速度图象如图乙所示.以下说法中正确的是() 8.(2015?上海二模)下列选项中的各圆环大小相同,所带电荷量已在图中标出,且电荷均匀分布,各圆环间 D 12 变化的关系图线如图所示,其中P点电势最低,且AP>BP,则() 以下各量大小判断正确的是()

11.(2015?丰台区模拟)如图所示,将一个电荷量为1.0×10C的点电荷从A点移到B点,电场力做功为2.4×10﹣6J.则下列说法中正确的是() 时速度恰好为零,不计空气阻力,则下列说法正确的是() 带电粒子经过A点飞向B点,径迹如图中虚线所示,以下判断正确的是() 实线所示),则下列说法正确的是()

大学物理期末考试经典题型(带详细答案的)

例1:1 mol 氦气经如图所示的循环,其中p 2= 2 p 1,V 4= 2 V 1,求在1~2、2~3、3~4、4~1等过程中气体与环境的热量交换以及循环效率(可将氦气视为理想气体)。O p V V 1 V 4 p 1p 2解:p 2= 2 p 1 V 2= V 11234T 2= 2 T 1p 3= 2 p 1V 3= 2 V 1T 3= 4 T 1p 4= p 1V 4= 2 V 1 T 4= 2 T 1 (1)O p V V 1 V 4 p 1p 21234)(1212T T C M m Q V -=1→2 为等体过程, 2→3 为等压过程, )(2323T T C M m Q p -=1 1123)2(23RT T T R =-=1 115)24(2 5RT T T R =-=3→4 为等体过程, )(3434T T C M m Q V -=1 113)42(2 3 RT T T R -=-=4→1 为等压过程, )(4141T T C M m Q p -=1 112 5)2(25RT T T R -=-= O p V V 1 V 4 p 1p 21234(2)经历一个循环,系统吸收的总热量 23121Q Q Q +=1 112 13 523RT RT RT =+=系统放出的总热量1 41342211 RT Q Q Q =+=% 1.1513 2 112≈=-=Q Q η三、卡诺循环 A → B :等温膨胀B → C :绝热膨胀C → D :等温压缩D →A :绝热压缩 ab 为等温膨胀过程:0ln 1>=a b ab V V RT M m Q bc 为绝热膨胀过程:0=bc Q cd 为等温压缩过程:0ln 1<= c d cd V V RT M m Q da 为绝热压缩过程:0 =da Q p V O a b c d V a V d V b V c T 1T 2 a b ab V V RT M m Q Q ln 11= =d c c d V V RT M m Q Q ln 12= =, 卡诺热机的循环效率: p V O a b c d V a V d V b V c ) )(1 212a b d c V V V V T T Q Q (ln ln 11-=- =ηT 1T 2 bc 、ab 过程均为绝热过程,由绝热方程: 11--=γγc c b b V T V T 1 1--=γγd d a a V T V T (T b = T 1, T c = T 2)(T a = T 1, T d = T 2) d c a b V V V V =1 212T T Q Q -=- =11η p V O a b c d V a V d V b V c T 1T 2 卡诺制冷机的制冷系数: 1 2 1212))(T T V V V V T T Q Q a b d c ==(ln ln 2 122122T T T Q Q Q A Q -= -== 卡ω

大学物理静电场考试题及答案

大学物理静电场考试题及答案 5 -1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A)放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B)中的( ) 分析与解 “无限大”均匀带电平板激发的电场强度为0 2εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B). 5 -2 下列说法正确的是( ) (A)闭合曲面上各点电场强度都为零时,曲面内一定没有电荷 (B)闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零 (C)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零 (D)闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B). 5 -3 下列说法正确的是( ) (A) 电场强度为零的点,电势也一定为零 (B) 电场强度不为零的点,电势也一定不为零 (C) 电势为零的点,电场强度也一定为零

(D) 电势在某一区域内为常量,则电场强度在该区域内必定为零 分析与解 电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为 (D). *5 -4 在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p 的方向如图所示.当电偶极子被释放后,该电偶极子将( ) (A) 沿逆时针方向旋转直到电偶极矩p 水平指向棒尖端而停止 (B) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时沿电场线方向朝着棒尖端移动 (C) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动 (D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动 分析与解 电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为 (B). 5 -5 精密实验表明,电子与质子电量差值的最大范围不会超过±10-21 e ,而中子电量与零差值的最大范围也不会超过±10-21e ,由最极端的情况考虑,一个有8 个电子,8 个质子和8 个中子构成的氧原子所带的最大可能净电荷是多少? 若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小. 分析 考虑到极限情况, 假设电子与质子电量差值的最大范围为2×10-21 e ,中子电量为10-21 e ,则由一个氧原子所包含的8 个电子、8 个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较. 解 一个氧原子所带的最大可能净电荷为 ()e q 21max 10821-??+= 二个氧原子间的库仑力与万有引力之比为 1108.2π46202max <

静电场典型例题分析

例1 在边长为30cm的正三角形的两个顶点A,B上各放一个带电小球,其中Q1=4×10-6C,Q2=-4×10-6C,求它们在三角形另一顶点C处所产生的电场强度。 解:计算电场强度时,应先计算它的数值,电量的正负号不要代入公式中,然后根据电场源的电性判断场强的方向,用平行四边形法求得合矢量,就可以得出答案。 由场强公式得: C点的场强为E1,E2的矢量和,由图8-1可知,E,E1,E2组成一个等边三角形,大小相同,∴E2= 4×105(N/C)方向与AB边平行。 例2 如图8-2,光滑平面上固定金属小球A,用长L0的绝缘弹簧将A与另一个金属小球B连接,让它们带上等量同种电荷,弹簧伸长量为x1,若两球电量各漏掉一半,弹簧伸长量变为x2,则有:() 解:由题意画示意图,B球先后平衡,于是有 例3点电荷A和B,分别带正电和负电,电量分别为4Q和Q,在AB连线上,如图,电场强度为零的地方在() A.A和B之间B.A右侧 C.B左侧 D.A的右侧及B的左侧 解:因为A带正电,B带负电,所以只有A右侧和B左侧电场强度 方向相反,因为Q A>Q B,所以只有B左侧,才有可能E A与E B等量反向,因而才可能有E A和E B矢量和为零的情况。

例4 如图8-4所示,Q A=3×10-8C,Q B=-3×10-8C,A,B两球相距5cm,在水平方向外电场作用下,A,B保持静止,悬线竖直,求A,B连线中点场强。(两带电小球可看作质点) 解:以A为研究对象,B对A的库仑力和外电场对A的电场力平衡, E外方向与A受到的B的库仑力方向相反,方向向左。在AB的连线中点处E A,E B的方向均向右,设向右为正方向。则有E总=E A+E B-E外。 例5在电场中有一条电场线,其上两点a和b,如图8-5所示,比较a,b两点电势高低和电场强度的大小。如规定无穷远处电势为零,则a,b处电势是大于零还是小于零,为什么? 解:顺电场线方向电势降低,∴U A>U B,由于只有一条电力线,无法看出电场线疏密,也就无法判定场强大小。同样无法判定当无穷远处电势为零时,a,b的电势是大于零还是小于零。若是由正电荷形成的场,则E A>E B,U A>U B>0,若是由负电荷形成的场,则E A<E B,0>U A>U B。 例 6 将一电量为q =2×106C的点电荷从电场外一点移至电场中某点,电场力做功4×10-5J,求A点的电势。 解:解法一:设场外一点P电势为U p所以U p=0,从P→A,电场力的功W=qU PA,所以W=q (U p-U A), 即4×10-5=2×10-6(0-U A) U A=-20V 解法二:设A与场外一点的电势差为U,由W=qU, 因为电场力对正电荷做正功,必由高电势移向低电势,所以U A=-20V 例7 如图8-6所示,实线是一个电场中的电场线,虚线是一个负检验电荷在这个电场中的轨迹,若电荷是从a处运动到b处,以下判断正确的是: [ ]

高中物理静电场题经典例题

高中物理静电场题经典 例题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高中物理静电场练习题 1、如图所示,中央有正对小孔的水平放置的平行板电容器与电源连接,电源电压为U 。将一带电小球从两小孔的正上方P 点处由静止释放,小球恰好能够达到B 板的小孔b 点处,然后又按原路返回。那么,为了使小球能从B 板 的小孔b 处出射,下列可行的办法是( ) A.将A 板上移一段距离 B.将A 板下移一段距离 C.将B 板上移一段距离 D.将B 板下移一段距离 2、如图所示,A 、B 、C 、D 、E 、F 为匀强电场中一个正六边形的六个顶点,已知A 、 B 、 C 三点的电势分别为1V 、6V 和9V 。则 D 、 E 、 F 三 点的电势分别为( ) A 、+7V 、+2V 和+1V B 、+7V 、+2V 和1V C 、-7V 、-2V 和+1V D 、+7V 、-2V 和1V 3、质量为m 、带电量为-q 的粒子(不计重力),在匀强电场中的A 点以初速度υ0沿垂直与场强E 的方向射入到电场中,已知粒子到达B 点时的速度大小为2υ0,A 、B 间距为d ,如图所示。 则(1)A 、B 两点间的电势差为( ) A 、q m U AB 232υ-= B 、q m U AB 232 υ= C 、q m U AB 22υ-= D 、q m U AB 22 υ= (2)匀强电场的场强大小和方向( ) B a b P · m 、q 。 。 U + - E · B ·

A 、qd m E 2 21υ= 方向水平向左 B 、qd m E 2 21υ= 方向水平向右 C 、qd m E 2212 υ= 方向水平向左 D 、qd m E 2212 υ= 方向水平向右 4、一个点电荷从竟电场中的A 点移到电场中的B 点,其电势能变化为零,则( ) A 、A 、B 两点处的场强一定相等 B 、该电荷一定能够沿着某一等势 面移动 C 、A 、B 两点的电势一定相等 D 、作用于该电荷上的电场力始终与其运 动方向垂直 5、在静电场中( ) A.电场强度处处为零的区域内,电势也一定处处为零 B.电场强度处处相等的区域内,电势也一定处处相等 C.电场强度的方向总是跟等势面垂直 D.沿着电场线的方向电势是不断降低的 6、一个初动能为E K 的带电粒子,沿着与电场线垂直的方向射入两平行金属板间的匀强电场中,飞出时该粒子的动能为2E K ,如果粒子射入时的初速度变为原来的2倍,那么当它飞出电场时动能为( ) A 、4E K B 、4.25E K C 、5E K D 、8 E K 7、如图所示,实线为一簇电场线,虚线是间距相等的等势面,一带电粒子沿着电场线方向运动,当它位于等势面φ1上时,其动能为20eV ,当它运动 到等势面φ3上时,动能恰好等于零,设φ2=0,则,当粒子 的动能为8eV 时,其电势能为( ) A 、12eV B 、 2eV 4

大学物理(下)考试题库分解

大学物理(下)试题库 第九章 静电场 知识点1:电场、电场强度的概念 1、、【 】下列说法不正确的是: A : 只要有电荷存在,电荷周围就一定存在电场; B :电场是一种物质; C :电荷间的相互作用是通过电场而产生的; D :电荷间的相互作用是一种超距作用。 2、【 】 电场中有一点P ,下列说法中正确的是: A : 若放在P 点的检验电荷的电量减半,则P 点的场强减半; B :若P 点没有试探电荷,则P 点场强为零; C : P 点的场强越大,则同一电荷在P 点受到的电场力越大; D : P 点的场强方向为就是放在该点的电荷受电场力的方向 3、【 】关于电场线的说法,不正确的是: A : 沿着电场线的方向电场强度越来越小; B : 在没有电荷的地方,电场线不会中止; C : 电场线是人们假设的,用以形象表示电场的强弱和方向,客观上并不存在: D :电场线是始于正电荷或无穷远,止于负电荷或无穷远。 4、【 】下列性质中不属于静电场的是: A :物质性; B :叠加性; C :涡旋性; D :对其中的电荷有力的作用。 5、【 】在坐标原点放一正电荷Q ,它在P 点(x=+1, y=0)产生的电场强度为E .现在,另外有一个负电荷-2Q ,试问应将它放在什么位置才能使 P 点的电场强度等于零? (A) x 轴上x>1. (B) x 轴上00 6、真空中一点电荷的场强分布函数为:E = ___________________。 7、半径为R ,电量为Q 的均匀带电圆环,其圆心O 点的电场强度E=_____ 。 8、【 】两个点电荷21q q 和固定在一条直线上。相距为d ,把第三个点电荷3q 放在2 1,q q 的延长线上,与2q 相距为d ,故使 3q 保持静止,则 (A )21 2q q = (B )212q q -= (C ) 214q q -= (D )2122q q -= 9、如图一半径为R 的带有一缺口的细圆环,缺口长度为d (d<

(完整word版)高中物理静电场必做经典例题(带答案)

1 高中物理阶段性测试(一) 一、选择题(每题4分,共40分) 1.下列说法正确的是 ( ) A .元电荷就是质子 B .点电荷是很小的带电体 C .摩擦起电说明电荷可以创造 D .库仑定律适用于在真空中两个点电荷之间相互作用力的计算 2.在电场中某点用+q 测得场强E ,当撤去+q 而放入-q/2时,则该点的场强 ( ) A .大小为E / 2,方向和E 相同 B .大小为E /2,方向和E 相反 C .大小为E ,方向和E 相同 D .大小为 E ,方向和E 相反 3.绝缘细线的上端固定,下端悬挂一只轻质小球a ,a 表面镀有铝膜,在a 的近 端有一绝缘金属球b ,开始时,a 、b 均不带电,如图所示.现使b 球带电,则( ) A .a 、b 之间不发生静电相互作用 B .b 立即把a 排斥开 C .b 将吸引a ,吸住后不放开 D .b 将吸引a ,接触后又把a 排斥开 4.关于点电荷,正确的说法是 ( ) A .只有体积很小带电体才能看作点电荷 B .体积很大的带电体一定不能视为点电荷 C .当两个带电体的大小与形状对它们之间的相互静电力的影响可以忽略时,这两个带电体便可看作点电荷 D .一切带电体在任何情况下均可视为点电荷 5.两只相同的金属小球(可视为点电荷)所带的电量大小之比为1:7 ,将它们

相互接触后再放回到原来的位置,则它们之间库仑力的大小可能变为原来的() A.4/7 B.3/7 C.9/7 D.16/7 6.下列对公式 E =F/q的理解正确的是() A.公式中的 q 是场源电荷的电荷量 B.电场中某点的电场强度 E 与电场力F成正比,与电荷量q 成反比 C.电场中某点的电场强度 E 与q无关 D.电场中某点的电场强度 E 的方向与电荷在该点所受的电场力 F 的方向一致 7.下列关于电场线的说法正确的是() A.电场线是电荷运动的轨迹,因此两条电场线可能相交 B.电荷在电场线上会受到电场力,在两条电场线之间的某一点不受电场力C.电场线是为了描述电场而假想的线,不是电场中真实存在的线 D.电场线不是假想的东西,而是电场中真实存在的物质 8.关于把正电荷从静电场中电势较高的点移到电势较低的点,下列判断正确的是() A.电荷的电势能增加 B.电荷的电势能减少 C.电场力对电荷做正功 D.电荷克服电场力做功 9.一个带负电的粒子只在静电力作用下从一个固定的点电荷附近飞过,运动轨迹如图中的实线所示,箭头表示粒子运动的方向。图中虚线表示点电荷电场的两个等势面。下列说法正确的是() A.A、B两点的场强大小关系是E A

总例题分析

例 题 分 析 例1、无限长同轴电缆内导体半径为R 1,外导体半径为R 2,内外导体之间的电压为U 。现固定外导体半径 R 2,调整内导体半径R 1,问: (1)内外导体半径的比值R 1 /R 2为多少时内导体表面上的电场强度最小,和最小电场强度E min =?; (2)此时电缆的特性阻抗Z 0为多少?(设该同轴电缆中介质的参数为μ0和ε0). 分析:解:(1)由高斯定律可得,内外导体间的电场强度沿径向方向,且大小为 ρE ετ π2= )(21R ρR << 电介质中电场强度的最大值出现在内导体表面上, 1max 2R E πετ = (1) 内外导体间的电压 12 ln π221 R R d U R R ε τ ? = ?=ρE (2) 把式(1)代入式(2),可得2R 和max E 一定时,电压U 与内导体半径1R 之间的关系 12 1max ln R R R E U = (3) 为了求出1R 取什么数值时电压为最大值,令 0)1(ln d d 1 2max 1=-=R R E R U 由此得 e 1 2 =R R 即当内外导体半径的比值e 12=R R 时,内导体表面的电场强度最小。且最小电场强度 1min R U E = (2)此时电缆的特性阻抗 Ω == 60ln π211 2 000R R Z εμ

例2、双线平行传输线导线半径为a ,两轴线距离d ,如果此双线传输线周围的介质电导率为 .求 双线传输线漏电导。 分析:利用恒定电场和静电场之间的比拟关系求解,也可以利用漏电导的定义求解。 解:双线传输线的电容在第二章里例中已经计算过.结果为 ln d a C πε = ,根据恒定电场与恒定电场的 对应关系。 , ,把上述结果中的相应参量替换得到ln d a G πσ = 当然这里也可以利用例4的方法,求出双线传输线总的横向电流以及两线之间的电位差,再根据定义I G U = 求出双线传输线的漏电导,结果是一样的。 总结:掌握如何利用恒定电场和静电场之间的比拟关系求解典型传输设备的漏电导. 例3、一半径为a 的导体球,作为接地电极深埋于地下,土壤的电导率为 ,求此电极的接地电阻. 分析: 1、 假定不计导体球自身的电阻,那么导体球为等位体,导体球面为等位面. 2、 因为是深埋地下,可以不考虑地面的影响,所以电流是以球心对称的形式,沿着径向(和导体球表面垂直)在土壤中扩散。 解: 如图所示,导体球深埋于地下,可以忽略地面的影响,电流流入导体球后,垂直于导体球表面向土 壤扩散,土壤中距导体球球心处的电流密度为 ,相应土壤中电场强度为 则导体球电位: 所以土壤中导体球的接地电阻为 总结:此题也可利用静电比拟法,因为孤立导体球的电容为4C a πε=,所以由C G 的比拟关系,电导 4G a πσ=。掌握接地电阻的计算. 例4、均匀平面波从理想介质(μr =1,εr =16)垂直入射到理想导体表面上,测得理想介质中电场强度最大值为200V/m ,第一个最大电场强度值与理想导体表面的距离为1m ,求: (1)该平面波的频率和相位常数; (2)试写出介质中电场和磁场的瞬时表达式。 解:

高中物理静电场题经典例题

高中物理静电场练习题 1、如图所示,中央有正对小孔的水平放置的平行板电容器与电源连接,电源电压为U 。将一带电小球从两小孔的正上方P 点处由静止释放,小球恰好能够达到B 板的小孔b 点处,然后又按原路返回。那 么,为了使小球能从B 板 的小孔b 处出射,下列可行的办法是( ) A.将A 板上移一段距离 B.将A 板下移一段距离 C.将B 板上移一段距离 D.将B 板下移一段距离 2、如图所示,A 、B 、C 、D 、E 、F 为匀强电场中一个正六边形的六个顶点,已知A 、B 、C 三点的电势 分别为1V 、6V 和9V 。则D 、E 、F 三 点的电势分别为( ) A 、+7V 、+2V 和+1V B 、+7V 、+2V 和1V ¥ C 、-7V 、-2V 和+1V D 、+7V 、-2V 和1V 3、质量为m 、带电量为-q 的粒子(不计重力),在匀强电场中的A 点以初速度υ0沿垂直与场强E 的方向射入到电场中,已知粒子到达B 点时的速度大小为2υ0,A 、B 间距为d ,如图所示。 则(1)A 、B 两点间的电势差为( ) A 、q m U AB 232υ-= B 、q m U AB 232 υ= C 、q m U AB 22υ-= D 、q m U AB 22 υ= (2)匀强电场的场强大小和方向( ) A 、qd m E 2 21υ= 方向水平向左 B 、qd m E 2 21υ= 方向水平向右 C 、qd m E 2212 υ= 方向水平向左 D 、qd m E 2212 υ= 方向水平向右 4、一个点电荷从竟电场中的A 点移到电场中的B 点,其电势能变化为零,则( ) A 、A 、B 两点处的场强一定相等 B 、该电荷一定能够沿着某一等势面移动 C 、A 、B 两点的电势一定相等 D 、作用于该电荷上的电场力始终与其运动方向垂直 5、在静电场中( ) A.电场强度处处为零的区域内,电势也一定处处为零 . B.电场强度处处相等的区域内,电势也一定处处相等 C.电场强度的方向总是跟等势面垂直 D.沿着电场线的方向电势是不断降低的 6、一个初动能为E K 的带电粒子,沿着与电场线垂直的方向射入两平行金属板间的匀强电场中,飞出时该粒子的动能为2E K ,如果粒子射入时的初速度变为原来的2倍,那么当它飞出电场时动能为( ) A B a P · m 、q 。 >U + - ~ A E B 。

大学物理电磁学综合复习试题1

电学 一、选择题: 1.图中所示曲线表示某种球对称性静电场的场强大小E 随径向距离r 变化的关系,请指出该电场是由下列哪一种带电体产生的: A .半径为R 的均匀带电球面; B .半径为R 的均匀带电球体; C .点电荷; D .外半径为R ,内半径为R /2的均匀带电球壳体。 ( ) 2.如图所示,在坐标( a ,0 )处放置一点电荷+q ,在坐标(a ,0)处放置另一点电荷-q 。P 点是x 轴上的一点,坐标为(x ,0)。当a x >>时,该点场强的大小为: A . x q 04πε ; B . 3 0x qa πε ; C . 3 02x qa πε ; D .2 04x q πε 。 ( ) 3.在静电场中,下列说法中哪一种是正确的? A .带正电的导体,其电势一定是正值; B .等势面上各点的场强一定相等; C .场强为零处,电势也一定为零; D .场强相等处,电势梯度矢量一定相等。 ( ) 4.如图所示为一沿轴放置的无限长分段均匀带电直线,电荷线密度分别为()0<+x λ和 ()0>-x λ,则o — xy 坐标平面上P 点(o ,a ) A .0; B .a i 02πελ?; C .a i 04πελ?; D .a j i 02) (πελ??+。 ( ) -a x -Q +q P

5.如图,两无限大平行平板,其电荷面密度均为+σ,则图中三处的电场强度的大小分别为: A . 0εσ,0,0εσ; B .0,0 εσ,0; C . 02εσ,0εσ,02εσ; D . 0,0 2εσ ,0。 ( ) 6.如图示,直线MN 长为l 2,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有点电荷+q ,M 点有点电荷-q 。今将一实验电荷+q ,从O 点 出发沿路径OCDP 移到无穷远处,设无穷远处的电势为零, 则电场力作功: A .A <0,且为有限常量; B .A >0,且为有限常量; C .A =∞; D .A =0。 ( ) 7.关于静电场中某点电势值的正负,下列说法中正确的是: A .电势值的正负取决于置于该点的实验电荷的正负; B .电势值的正负取决于电场力对实验电荷作功的正负; C .电势值的正负取决于电势零点的选取; D .电势值的正负取决于产生电场的电荷的正负。 ( ) 8.一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为d 处(d

相关文档
最新文档