空间几何体练习题(偏难)

合集下载

专题14 空间几何体的结构、面积与体积(练)【解析版】

专题14 空间几何体的结构、面积与体积(练)【解析版】

第一篇热点、难点突破篇专题14空间几何体的结构、面积与体积(练)【对点演练】一、单选题1.(2022秋·北京·高三统考阶段练习)已知圆柱的上、下底面的中心分别为1O,2O,过直O O的平面截该圆柱所得的截面是面积为12的正方形,则该圆柱的体积为()线12A.B.12πC.D.则该圆台的体积为()A.36πB.40πC.42πD.45πOO的长度===,1O为ABC的外接圆的圆心,球O的表面积为64π,则1AB BC AC为()B.2C.D.3A【答案】C【分析】由已知求得球O的半径4r=,即可求R=,根据正弦定理求出ABC外接圆半径2出结果.O的半径为r,球O的半径为R.【详解】设圆1依题意得ABC 为等边三角形,则由正弦定理得O 的表面积为如图,根据球的截面性质得2d OA ==的扇形,则该圆锥的侧面积为( ) A .π B .3π2C D .点作球O 的截面,则最小截面的面积为( ) A .3π B .4πC .5πD .6π子,其形状可以看成一个正四面体.广东流行粽子里放蛋黄,现需要在四角状粽子内部放入一个蛋黄,蛋黄的形状近似地看成球,当这个蛋黄的表面积是9π时,则该正四面体的高的最小值为()A.4B.6C.8D.10实物图,石碾子主要由碾盘、碾滚(圆柱形)和碾架组成.碾盘中心设竖轴(碾柱),连碾架,架中装碾滚,以人推或畜拉的方式,通过碾滚在碾盘上的滚动达到碾轧加工粮食作物的目的.若推动拉杆绕碾盘转动2周,碾滚的外边缘恰好滚动了5圈,碾滚与碾柱间的距离忽略不计,则该圆柱形碾滚的高与其底面圆的直径之比约为()A.3:2B.5:4C.5:3D.4:3一卷中称轴截面为等腰直角三角形的圆锥为直角圆锥.若一个直角圆锥的侧面积为,则该圆锥的体积为( )A .B .C .D .9π中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为h (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1cos )S r πα=-(单位:2km ),若458h r =,则S 占地球表面积的百分比约为( ) A .26% B .34% C .42% D .50%【答案】C【分析】设C 表示卫星,过CO 作截面,截地球得大圆O ,过C 作圆O 的切线,CA CB ,线段CO 交圆O 于E ,得AOC α∠=,在直角三角形中求出cos α后,可计算两者面积比.【详解】设C 表示卫星,过CO 作截面,截地球得大圆O ,过C 作圆O 的切线,CA CB ,线段CO 交圆O 于E ,如图,则AOC α∠=,r OE =,CE h =,OA CA ⊥,二、填空题10.(2022秋·江苏徐州·高三期末)已知圆柱的高为8,该圆柱内能容纳半径最大的球的表面积为36π,则圆柱的体积为______.【答案】72π【分析】先分析半径最大的球不可能为圆柱的内切球,所以此球是与圆柱侧面与下底面相切的球,就能求出圆柱底面半径,然后根据圆柱的体积公式可得.【详解】圆柱内能容纳半径最大的球的表面积为36π,设此球半径为r,则24π36π3r r=⇒=如果圆柱有内切球,又因为圆柱的高为8,所以内切球半径为43>,说明这个圆柱内能容纳半径最大的球,与圆柱侧面和下底面相切,与上底面相离,易得圆柱底面半径为3,圆柱的体积为2π3872π⋅⨯=故答案为:72π【冲刺提升】一、单选题1.(2022秋·广东东莞·高三统考期末)已知一个装满水的圆台形容器的上底半径为6,下底半径为1,高为,若将一个铁球放入该容器中,使得铁球完全没入水中,则可放入的铁球的体积的最大值为()A.B.C D.108π【答案】B【分析】作出体积最大时的剖面图,分析出此时圆与上底,两腰相切,建立合适直角坐标系,()53,05<<t=-533)32332=模拟预测)某工厂要生产容积为为侧面成本的2倍,为使成本最小,则圆柱的高与底面半径之比应为()A.1B.1C.2D.4 2圆柱上下底的总面积为3.(2022·浙江·模拟预测)如图,正方体1111的棱长为1,,E F 分别为棱BC ,11的中点,则三棱锥1B AEF -的体积为( )A .524B .316C .29D .181AB ES =因为正方体ABCD A B C D -的棱长为1, 所以111(,1,0),(0,1,1),(1,22AE AB AF =-==-的法向量为(,,)n x y z =112n AE x n AB y z ⎧⋅=-⎪⎨⎪⋅=+⎩所以(2,1,1)n =-,F 平面1AB E 的距离为2AF n n-+⋅=又因为1AB =,121122AB EAB S⎫==⋅⎪⎭所以三棱锥故选:AF ,G ,H 分别是SA ,SB ,BC ,AC 的中点,则四边形EFGH 面积的取值范围是( ) A .()0,∞+ B .⎫∞⎪⎪⎝⎭ C .⎫+∞⎪⎪⎝⎭D .1,2⎛⎫+∞ ⎪⎝⎭【答案】B【分析】画出图形,求出,EF HG ,说明EFHG 是矩形,结合图形,说明S 点在ABC 平面时,面积最小,求出即可得到范围 【详解】如图所示:由正三棱锥S ABC -的底面边长是2,因为E 、F 、G 、H 分别是SA 、SB 、BC 、AC 的中点,设ABC 的中心为SC OA >=所以EFGH 所以四边形且4BC =,6BD =,面ABC 与面BCD 夹角正弦值为1,则空间四边形ABCD 外接球与内切球的表面积之比为( )A B C D 【答案】C【分析】根据空间四边形ABCD 的线面关系可得DB ⊥平面ABC ,则空间四边形ABCD 可以内接于圆柱中,根据圆柱的外接球半径求得空间四边形ABCD 的外接球半径R ,又根据内切球的几何性质用等体积法可求得空间四边形ABCD 的内切球半径r ,即可得空间四边形ABCD 外接球与内切球的表面积之比.【详解】解:面ABC 与面BCD 夹角正弦值为1,∴面ABC ⊥面BCD ,又面ABC ⋂面BCD BC =,DB BC DB ⊥⊂面BCD ,DB ∴⊥平面ABC ,则空间四边形ABCD 可以内接于圆柱12O O 中,如下图所示:点在上底面圆周上,ABC三个顶点在下底面圆周上,则圆柱O O的外接球即空间四边连接OA,则球心为为正ABC4sin6032BC=︒1111333ABC ABD ADC BCDS r S r S r S r⋅+⋅+⋅+⋅,,所以()22142132832ADCS=⨯⨯-=,44612ABC ABD ADC BCDS S S S⨯⨯⨯=+++⨯外接球与内切球的表面积之比为6.(2022秋·湖南长沙·高三长郡中学校考阶段练习)三棱锥A BCD -中,AB BC AD CD BD AC ======,则三棱锥A BCD -的外接球的表面积为( )A .20πB .28πC .32πD .36π23AB AD ==且E 为BD 中点,AE BD ∴⊥,AE AB ∴=又AE CE =120, 过BCD △的外心作平面同理过ABD △l l O ''=,易知连接O E ',O 为BCD △又在OO E '中,603=,∴得27O C O O ''=,即外接球半径7=,故外接球表面积28π=.故选:B7.(2022秋·天津河东·高三统考期末)一个球与一个正三棱柱(底面为等边三角形,侧棱与底面垂直)的两个底面和三个侧面都相切,若棱柱的体积为)A.16πB.4πC.8πD.32π8.(2022秋·黑龙江牡丹江·高三牡丹江一中校考期末)如图截角四面体是一种半正八面体,可由四面体经过适当的截角,即截去四面体的四个顶点所产生的多面体.如图,将棱长为3的正四面体沿棱的三等分点作平行于底面的截面得到所有棱长均为1的截角四面体.则该截角四面体的表面积是______.正六边形每个内角均为2π111A B C 中,点P 在棱1BB 上,且1PA PC ⊥,当1APC 的面积取最小值时,三棱锥-P ABC 的外接球的表面积为______.【答案】28π时,1APC 面积取得最小值,补形后三棱锥的外接球,求出外接球半径和表面积【详解】由勾股定理得:AB =,则16PA =(7x y ++1APC S =2169y +,即2x =其中长方体的外接球的直径为,平面PAB ⊥平面PCD ,则P ABCD -体积的最大值为__________.PO ⊥平面ABCD ,PE CD⊥CD平面POE∴⊥,CD OE底面ABCD是边长为∴⊥,CD BCOE⊂平面ABCD OE BC∴,同理可得:OF∥O E F三点共线故,,∥,且有EF BC设平面PAB⋂平面∥AB CD AB,∴∥∥l AB⊥PE CD平面PAB∴⊥平面PEPF⊂平面∴⊥PE PF不妨设PE22∴+x y且2OP=-即2y m11.(2023·广西梧州·统考一模)边长为1的正方形ABCD 中,点M ,N 分别是DC ,BC 的中点,现将ABN ,ADM △分别沿AN ,AM 折起,使得B ,D 两点重合于点P ,连接PC ,得到四棱锥P AMCN -.(1)证明:平面APN ⊥平面PMN ;(2)求四棱锥P AMCN -的体积. ,所以PMN 为直角三角形,即PMN S=111111222AMN ABN ADM CMN ABCD S S S S S =---=-⨯⨯⨯-⨯正方形设点P 到平面AMN 的距离为h ,由A PMN P V V --=1133PMN AMN S PA S h ⋅=⋅△△,即13188h ⨯=,得h =)AMN MCN S S h +=AMCN 的体积为全国·高三对口高考)如题图,是圆锥底面的圆心,ABC 是底面的内接正三角形.P 为DO 上一点,90APC ∠=︒.(1)求证:PC ⊥平面PAB ;(2)若DO =.求三棱锥-P ABC 的体积. 因为ABC 是底面的内接正三角形,CO AB ⊥,PO OC ⋂AB ⊥平面PC ⊂平面AB PC ⊥,PA AB A =,⊥平面PAB(2)解:设圆锥的母线为l,底面半径为r,则圆锥的侧面积为ππ,即,=603所以,在等腰直角三角形APC。

空间几何体(经典习题)

空间几何体(经典习题)

正视图 俯视图侧视图空间几何体(经典习题)一、选择题:1、半径为R 的半圆卷成一个圆锥,则它的体积为( )A .3R B .3R C .3R D .3R 2、一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( ) A. 28cm π B. 212cmπC. 216cmπD. 220cm π3、圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则 圆台较小底面的半径为( )A . 7 B. 6 C. 5 D. 34、棱台上、下底面面积之比为1:9,则棱台的中截面分棱台成两部分的体积之比是( ) A . 1:7 B. 2:7 C. 7:19 D. 5:165、一简单组合体的三视图及尺寸如图示(单位: cm )则该组合 体的体积为( )A. 720003cmB. 640003cmC. 560003cmD. 440003cm62的等腰三角形,俯视图是半径为1的半圆,则该几何体的 体积是( )A. C 7、如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,//EF AB ,32EF =,且EF 与平面ABCD 的距离为2,则该多面体的体积为( )A .92B. 5 C. 6 D. 152侧视图俯视图8、一个棱锥的三视图如图,则该棱锥的体积是( ) C.4 D.89、如图是一个空间几何体的三视图,则该几何体的侧面积为( )第8题 第9题10、如图为一平面图形的直观图,则此平面图形可能是选项中的( )11、棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8 个三棱锥后,剩下的凸多面体的体积是( )A、23 B 、76 C 、45 D 、5612、在一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞D 、E 、F ,且知SD :DA=SE :EB=CF :FS=2:1,若仍用这个容器盛水,则最多可盛原来水的( )A 、2923 B 、2719 C 、3130 D 、2723 13、 一空间几何体的三视图如图所示,A.2π+B. 4π+C. 23π+D. 43π+俯视图14、一个棱锥的三视图如图,则该棱锥的全面积(单位:c 2m )为( ).(A )(B )(C )(D )15、正六棱锥P-ABCDEF 中,G 为PB 的中点,则三棱锥D-GAC 与三棱锥P-GAC 体积之比为( )(A )1:1 (B) 1:2 (C) 2:1 (D) 3:216、如右图,某几何体的正视图与侧视图都是边长为1的正方形, 且体积为12。

高考数学空间几何体练习题及答案解析

高考数学空间几何体练习题及答案解析

高考数学空间几何体练习题一、选择题1.如图,设地球半径为,点、在赤道上,为地心,点在北纬60°的纬线(为其圆心)上,且点、、、共面,若=90°,则异面直线与所成角的余弦值为A.B.C.D.2.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B.C.D.23.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为的菱形,则该棱柱的体积等于( )(A)(B)(C)(D)4.如图,动点在正方体的对角线上.过点作垂直于平面的直线,与正方体表面相交于.设,,则函数的图象大致是()5. 设分别是中所对边的边长,则直线与的位置关系是()A.平行B.垂直C.重合D.相交但不垂直6. 异面直线a,b成80o角,点P是a,b外的一个定点,若过P点有且仅有2条直线与a,b所成的角相等且等于θ,则θ属于集合( )A.{θ|0o<θ<40o} B.{θ|40o<θ<50o} C.{θ|40o<θ<90o} D.{θ|50o<θ<90o}7.在二面角的两个面内,分别有直线a,b,它们与棱l都不垂直,则()A .当该二面角是直二面角时,可能a//b ,也可能a ⊥bB .当该二面角是直二面角时,可能a//b ,但不可能a ⊥bC .当该二面角不是直二面角时,可能a//b ,但不可能a ⊥bD .当该二面角不是直二面角时,不可能a//b ,也不可能a ⊥b8. 在正方体ABCD -A1B1C1D1中,E 、F 分别为A1D1、B1C1的中点,则在面BCC1B1内到BC 的距离是到EF 的距离的2倍的点的轨迹是( )A .一条线段B .椭圆的一部分C .抛物线的一部分D .双曲线的一部分.9.已知直线,平面,且,给出四个命题:①若,则; ②若,则;③若,则; ④若,则其中正确命题的个数是 A 、4 B 、3 C 、2 D 、110. 长方体一个顶点上三条棱的长分别是6、8、10,且它的八个顶点都在同一个球面上,这个球的表面积是( ) A.B.C.D.11. 如图,在正方体中,M 、N 分别为棱和中点,则异面直线CM 与所成角的正弦值为( )A. B. C. D.12. 在直三棱柱A1B1C1-ABC 中,∠BAC =,AB =AC =AA1=1.已知G 与E 分别为A1B1和CC1的中点,D 与F 分别为线段AC 和AB 上的动点(不包括端点).若GD ⊥EF ,则线段DF 的长度的取值范围为 ( )A .[ ,1)B .[,2)C .[1,)D .[,)13. 已知正四棱锥P —ABCD 的棱长都等于a ,侧棱PB 、PD 的中点分别为M 、N ,则截面AMN 与底面ABCD 所成二面角的大小为A.B.C.D.14.下面命题正确的是A.已知直线,点,直线,则与异面B.已知直线,直线,则C.已知平面,直线,直线,则D.若直线与所成的角相等,则15. 已知平面平面,直线,直线,点,点,记点之间的距离为,点到直线的距离为,直线和的距离为,则()A.B.C.D.16.设为互不重合的平面,l,m,n为互不重合的直线,给出下列四个命题:①若则∥;②若∥∥,则∥;③若∥则∥④若∥则m∥n.其中真命题的个数是()(A)1 (B)2 (C)3 (D)417.已知直线、,平面、,且,给出下列四个命题,其中正确命题的个数为(1)若,则(2)若,则(3)若,则(4)若,则(A) (B) (C)(D)18. 已知是不同的两个平面,直线,直线,命题;命题没有公共点,则的()A.充分不必要的条件 B.必要不充分条件C.充要条件D.既不充分又不必要19. 已知直线和平面m,直线直线b的一个必要不充分的条件是()(A)且(B)且(C)且(D)与m所成角相等20.(给出下列两个命题:甲:异面直线m,n分别在平面α、β内,且n∥α,且m∥β,则α∥β.乙:两平面互相垂直,分别在这两个平面内且互相垂直的两条直线,一定分别与另一平面垂直.正确的判断是A.甲、乙均假B.甲、乙均真C.甲真乙假D.甲假乙真21.设l,m,n是空间三条互相不重合的直线,α,β是空间两个不重合的平面,则下列结论中①当m ,且n 时,“n∥m”是“n∥α”的充要条件②当m 时,“m⊥β”是“αβ”的充要条件③当n⊥α时,“n⊥β”是“α∥β”成立的充要条件④当m 且n是l在α内的射影时,“m⊥n”是“l⊥m”的充要条件正确的个数有( )(A)1个(B)2个(C)3个(D)4个22.设为互不相同的平面,为不重合的三条直线,则的一个充分不必要条件是( ).A. B.C. D.23.在正方体中,分别为和的中点,则与平面所成的角为( ).A. B. C. D.24.如图,在正方体ABCD-A1B1C1D1中,P是侧面BB1C1C内一动点,若P到直线BC 与直线C1D1的距离相等,则动点P的轨迹所在的曲线是()A.直线B.圆C.双曲线 D.抛物线25. 从正方体的八个顶点中任取四个点,在能构成的一对异面直线中,其所成的角的度数不可能是A.B.C.D.26. 已知是直线,是平面,给出下列命题:①若内有两相交直线;②③;④⑤其中正确的命题序号是A.①③⑤B.②④C.①⑤D.①④27. 已知直线m ,n 和平面,则m//n 的必要非充分条件是()A.m//且n//B.m且nC.m//且D.m ,n与成等角28. 在正四面体P---ABC中,D、E、F,分别是AB、BC、CA的中点,下面四个结论不成立的是A.BC∥平面PDF B.DF垂直平面PAEC.平面PDE垂直于平面ABC D.平面PDF垂直平面PAE29.设表示平面,l为直线,l不在平行内,有下列三个事实①②③,以任意两个作为条件,另一个作为结论可构造三个命题,其中正确命题的个数是()A.1 B.2C.3 D.030.设m、n是不同的直线,α、β、γ是不同的平面,有以下四个命题:①;②;③;④其中真命题的序号是()A.①④B.②③C.①③D.②④二、填空题31.斜三棱柱ABC- A1B1C1中,二面角C-A1A-B为120°,侧棱AA1于另外两条棱的距离分别为7cm、8cm,AA1=12cm,则斜三棱柱的侧面积为______ .32.在三棱锥的四个面中,最多有___ 个面为直角三角形.33.在矩形ABCD中,4,3,AB BC==若沿AC将矩形折成一个直二面角B AC D--,则四面体ABCD的外接球的体积为4O___________________。

第一章-空间几何体与表面积和体积练习题

第一章-空间几何体与表面积和体积练习题

.空间几何体的表面积和体积练习题题1 一个圆锥与一个球的体积相等,圆锥的底面半径是球的半径的3倍,则圆锥的高与底面半径之比为( )A.49B.94C.427D.274题2 正四棱锥P —ABCD 的五个顶点在同一个球面上,若该正四棱锥的底面边长为2,侧棱长为6,则此球的体积为________.题3 一空间几何体的三视图如图所示,则该几何体的体积为( )A .2π+2 3B .4π+2 3C .2π+233D .4π+233题4 如图,正方体ABCD -A 1B 1C 1D 1的棱长为2.动点E ,F 在棱A 1B 1上,点Q 是棱CD 的中点,动点P 在棱AD 上.若EF =1,DP =x ,A 1E =y (x ,y 大于零),则三棱锥P -EFQ 的体积.( )A .与x ,y 都有关B .与x ,y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关题5 直角梯形的一个底角为45°,下底长为上底长的32,这个梯形绕下底所在直线旋转一周所成的旋转体的表面积是(5+2)π,求这个旋转体的体积.题6 设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2 B.73πa 2 C.113πa 2 D .5πa 2题7 在球心同侧有相距9 cm 的两个平行截面,它们的面积分别为49π cm 2和400π cm 2,求球的表面积.题8 正四棱台的高为12cm ,两底面的边长分别为2cm 和12cm .(Ⅰ)求正四棱台的全面积;(Ⅱ)求正四棱台的体积.题9 如图,已知几何体的三视图(单位:cm).(1)画出这个几何体的直观图(不要求写画法);(2)求这个几何体的表面积及体积.题10 如图,在长方体ABCD A B C D ''''-中,用截面截下一个棱锥C A DD ''-,求棱锥C A DD ''-的体积与剩余部分的体积之比.题11已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,求该几何体的体积.题12如图所示,在直三棱柱ABC-A1B1C1中,底面为直角三角形,∠ACB=90°,AC=6,BC=CC1= ,P是BC1上一动点,则CP+P A1的最小值是__________.课后练习详解题1 答案:C详解:设圆锥底面半径为1R ,高为h ,球的半径为2R ,则圆锥体积为2113R h π,球的体积为3243R π.由题意知圆锥的底面半径是球的半径的3倍,即1R =32R .由圆锥与球的体积相等有2113R h π=3243R π,将2R =13R 代入,有21R h =31343R ⨯,故1h R =433=427. 题2 答案:92π 详解:如图所示,设底面中心为O ′,球心为O ,设球半径为R ,∵AB =2,则AO ′=2,PO ′=P A 2-AO ′2=2,OO ′=PO ′-PO =2-R .在Rt △AOO ′中,AO 2=AO ′2+OO ′2⇒R 2=(2)2+(2-R )2,∴R =32,∴V 球=43πR 3=92π.题3 答案:C详解:由几何体的三视图可知,该几何体是由一个底面直径和高都是2的圆柱和一个底面边长为2,侧棱长为2的正四棱锥叠放而成.故该几何体的体积为V =π×12×2+13×(2)2×3=2π+233,故选C. 题4 答案:C详解:设P 到平面EFQ 的距离为h ,则V P -EFQ =13×S △EFQ·h ,由于Q 为CD 的中点,∴点Q 到直线EF 的距离为定值2,又EF =1,∴S △EFQ 为定值,而P 点到平面EFQ 的距离,即P 点到平面A 1B 1CD 的距离,显然与x 有关、与y 无关,故选C.题5 答案:73π. 详解:如图所示,在梯形ABCD 中,AB ∥CD ,∠A =90°,∠B =45°,绕AB 边旋转一周后形成一圆柱和一圆锥的组合体.设CD =x ,则AB =32x ,AD =AB -CD =x 2,BC =22x . S 表=S 柱底圆+S 柱圆侧+S 圆锥侧=π·AD 2+2π·AD ·CD +π·AD ·BC=π·x 24+2π·x 2·x +π·x 2·22x =5+24πx 2. 根据题设,5+24πx 2=(5+2)π,则x =2. 所以旋转体体积V =π·AD 2·CD +π3AD 2·(AB -CD )=π×12×2+π3×12×(3-2)=73π. 题6 答案:B详解:如图,O 1,O 分别为上、下底面的中心,D 为O 1O 的中点,则DB 为球的半径,有r =DB =OD 2+OB 2=a 24+a 23=7a 212, ∴S 表=4πr 2=4π×7a 212=73πa 2. 题7 答案:2500πcm 2.详解:如图为球的轴截面,由球的截面性质知,AO 1∥BO 2,且O 1、O 2分别为两截面圆的圆心,则OO 1⊥AO 1,OO 2⊥BO 2.设球的半径为R .∵π·O 2B 2=49π,∴O 2B =7 cm ,同理π·O 1A 2=400π,∴O 1A =20 cm . 设OO 1=x cm ,则OO 2=(x +9) cm.在Rt △OO 1A 中,R 2=x 2+202, 在Rt △OO 2B 中,R 2=(x +9)2+72,∴x 2+202=72+(x +9)2,解得x =15.∴R 2=x 2+202=252,∴R =25 cm .∴S球=4πR 2=2500π cm 2. ∴球的表面积为2500π cm 2.题8 答案:512 cm 2; 688 cm 3详解:(Ⅰ)斜高'13h == cm S 正四棱台=S 上+S 下+S 侧=22+122+ 12×(2+12)×13=512 cm 2(Ⅱ)V= 13()h= 13(22+122)×12=688 cm 3题9 答案:(1)见详解.(2) 表面积22+4 2 cm 2,体积10 cm 3.详解: (1)这个几何体的直观图如图所示.(2)这个几何体可看成是由正方体AC 1及直三棱柱B 1C 1Q —A 1D 1P 的组合体.由P A 1=PD 1=2,A 1D 1=AD =2,可得P A 1⊥PD 1.故所求几何体的表面积为:S =5×22+2×2×2+2×12×(2)2=22+4 2 cm 2,所求几何体的体积V =23+12×(2)2×2 =10 cm 3.题10 答案:15∶详解: 已知长方体可以看成直四棱柱ADD A BCC B ''''-.设它的底面ADD A ''面积为S ,高为h ,则它的体积为V Sh =.而棱锥C A DD ''-的底面面积为12S ,高是h , 因此棱锥C A DD ''-的体积111326C ADD V Sh Sh -=⨯=''. 余下的体积是1566Sh Sh Sh -=. 所以棱锥C A DD ''-的体积与剩余部分的体积之比为1:5.题11 答案:173 详解:由三视图知,此几何体可以看作是一个边长为2的正方体被截去了一个棱台而得到,此棱台的高为2,一底为直角边长为2的等腰直角三角形,一底为直角边长为1的等腰直角三角形,题12 答案:详解:将△BCC 1沿直线BC 1折到面A 1C 1B 上,如图,连接A 1C ,即为CP +P A 1的最小值,过点C 作CD ⊥C 1D 于D 点,△BCC 1为等腰直角三角形,∴CD =1,C 1D =1,A 1D =A 1C 1+C 1D =7,1AC ∴===。

空间几何体练习题及答案

空间几何体练习题及答案

1.1.1 柱、锥、台、球的结构特征1.下列命题中正确的是( )A.以直角三角形的一直角边为轴旋转所得的旋转体是圆锥B.以直角梯形的一腰为轴旋转所得的旋转体是圆台C.圆柱、圆锥、圆台都有两个底面D.圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥底面圆的半径2.长方体AC 1的长、宽、高分别为3、2、1,从A 到C 1沿长方体的表面的最短距离为( ) A.31+ B.102+ C.23 D.323.下面几何体中,过轴的截面一定是圆面的是( )A.圆柱B.圆锥C.球D.圆台4.一个无盖的正方体盒子展开后的平面图,如图14所示,A 、B 、C 是展开图上的三点,则在正方体盒子中∠ABC=____________.图145.有一粒正方体的骰子每一个面有一个英文字母,如图16所示.从3种不同角度看同一粒骰子的情况,请问H 反面的字母是___________.图166.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm 2,母线与轴的夹角是45°,求这个圆台的高、母线长和底面半径.1.1.2 简单组合体的结构特征1 如图3所示,一个圆环绕着同一个平面内过圆心的直线l 旋转180°,想象并说出它形成的几何体的结构特征.图3.2 已知如图5所示,梯形ABCD 中,AD∥BC,且AD <BC ,当梯形ABCD 绕BC 所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.3.若干个棱长为2、3、5的长方体,依相同方向拼成棱长为90的正方体,则正方体的一条对角线贯穿的小长方体的个数是( ).66 C1.2.3 空间几何体的直观图1. 关于“斜二测画法”,下列说法不正确的是( )A.原图形中平行于x 轴的线段,其对应线段平行于x′轴,长度不变B.原图形中平行于y 轴的线段,其对应线段平行于y′轴,长度变为原来的21 C.在画与直角坐标系xOy 对应的x′O′y′时,∠x′O′y′必须是45°D.在画直观图时,由于选轴的不同,所得的直观图可能不同2.已知一个正方形的直观图是一个平行四边形,其中有一边长为4,则此正方形的面积是( ) .64 C 或64 D.都不对3.一个三角形用斜二测画法画出来的直观图是边长为2的正三角形,则原三角形的面积是( ) A.62 B.64 C.3 D.都不对4.一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积等于( ) A.2221+ B.221+ C.21+ D.22+ 1.1.1 柱、锥、台、球的结构特征1.下列几个命题中,①两个面平行且相似,其余各面都是梯形的多面体是棱台;②有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;③各侧面都是正方形的四棱柱一定是正方体;④分别以矩形两条不等的边所在直线为旋转轴,将矩形旋转,所得到的两个圆柱是两个不同的圆柱. 其中正确的有__________个.( ).2 C分析:①中两个底面平行且相似,其余各面都是梯形,并不能保证侧棱会交于一点,所以①是错误的;②中两个底面互相平行,其余四个面都是等腰梯形,也有可能两底面根本就不相似,所以②不正确;③中底面不一定是正方形,所以③不正确;很明显④是正确的.答案:A1.下列命题中正确的是( )A.以直角三角形的一直角边为轴旋转所得的旋转体是圆锥B.以直角梯形的一腰为轴旋转所得的旋转体是圆台C.圆柱、圆锥、圆台都有两个底面D.圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥底面圆的半径分析:以直角梯形垂直于底的腰为轴,旋转所得的旋转体才是圆台,所以B 不正确;圆锥仅有一个底面,所以C 不正确;圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的母线长,所以D 不正确.很明显A 正确.答案:A2 (2007宁夏模拟,理6)长方体AC 1的长、宽、高分别为3、2、1,从A 到C 1沿长方体的表面的最短距离为( ) A.31+ B.102+ C.23 D.32答案:C3.下面几何体中,过轴的截面一定是圆面的是( )A.圆柱B.圆锥C.球D.圆台分析:圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形,球的轴截面是圆面,所以A 、B 、D 均不正确.答案:C4.(2007山东菏泽二模,文13)一个无盖的正方体盒子展开后的平面图,如图14所示,A 、B 、C 是展开图上的三点,则在正方体盒子中∠ABC=____________.图14分析:如图15所示,折成正方体,很明显点A 、B 、C 是上底面正方形的三个顶点,则∠ABC=90°.图15答案:90°5.(2007山东东营三模,文13)有一粒正方体的骰子每一个面有一个英文字母,如图16所示.从3种不同角度看同一粒骰子的情况,请问H 反面的字母是___________.图16分析:正方体的骰子共有6个面,每个面都有一个字母,从每一个图中都看到有公共顶点的三个面,与标有S 的面相邻的面共有四个,由这三个图,知这四个面分别标有字母H 、E 、O 、p 、d ,因此只能是标有“p”与“d”的面是同一个面,p 与d 是一个字母;翻转图②,使S 面调整到正前面,使p 转成d ,则O 为正下面,所以H 的反面是O.答案:O6.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm 2,母线与轴的夹角是45°,求这个圆台的高、母线长和底面半径.分析:这类题目应该选取轴截面研究几何关系.解:圆台的轴截面如图17,图17设圆台上、下底面半径分别为x cm 和3x cm ,延长AA 1交OO 1的延长线于S.在Rt△SOA 中,∠ASO=45°,则∠SAO=45°.所以SO=AO=3x.所以OO 1=2x. 又21(6x+2x )·2x=392,解得x=7, 所以圆台的高OO 1=14 cm ,母线长l=2OO 1=214cm ,而底面半径分别为7 cm 和21 cm,即圆台的高14 cm ,母线长214cm ,底面半径分别为7 cm 和21 cm.1.1.2 简单组合体的结构特征1 如图3所示,一个圆环绕着同一个平面内过圆心的直线l 旋转180°,想象并说出它形成的几何体的结构特征.图3答案:一个大球内部挖去一个同球心且半径较小的球.2 已知如图5所示,梯形ABCD 中,AD∥BC,且AD <BC ,当梯形ABCD 绕BC 所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.图5 图6解:如图6所示,旋转所得的几何体是两个圆锥和一个圆柱拼接成的组合体.3.(2005湖南数学竞赛,9)若干个棱长为2、3、5的长方体,依相同方向拼成棱长为90的正方体,则正方体的一条对角线贯穿的小长方体的个数是( ).66 C分析:由2、3、5的最小公倍数为30,由2、3、5组成的棱长为30的正方体的一条对角线穿过的长方体为整数个,所以由2、3、5组成棱长为90的正方体的一条对角线穿过的小长方体的个数应为3的倍数. 答案:B1.2.3 空间几何体的直观图1.画水平放置的等边三角形的直观图.2.如图7所示,梯形ABCD 中,AB∥CD,AB=4 cm ,CD=2 cm ,∠DAB=30°,AD=3 cm ,试画出它的直观图.图7解:步骤是:(1)如图8所示,在梯形ABCD 中,以边AB 所在的直线为x 轴,点A 为原点,建立平面直角坐标系xOy.如图9所示,画出对应的x′轴,y′轴,使∠x′A′y′=45°.(2)如图8所示,过D 点作DE⊥x 轴,垂足为E.在x′轴上取A′B′=AB=4 cm,A′E′=AE=323cm ≈2.598 cm ;过E′作E′D′∥y′轴,使E′D′=ED 21,再过点D′作D′C′∥x′轴,且使D′C′=CD=2 cm.图8 图9 图10(3)连接A′D′、B′C′、C′D′,并擦去x′轴与y′轴及其他一些辅助线,如图10所示,则四边形A′B′C′D′就是所求作的直观图.3.关于“斜二测画法”,下列说法不正确的是( )A.原图形中平行于x 轴的线段,其对应线段平行于x′轴,长度不变B.原图形中平行于y 轴的线段,其对应线段平行于y′轴,长度变为原来的21 C.在画与直角坐标系xOy 对应的x′O′y′时,∠x′O′y′必须是45°D.在画直观图时,由于选轴的不同,所得的直观图可能不同分析:在画与直角坐标系xOy 对应的x′O′y′时,∠x′O′y′也可以是135°,所以C 不正确. 答案:C4.已知一个正方形的直观图是一个平行四边形,其中有一边长为4,则此正方形的面积是( ) .64 C 或64 D.都不对分析:根据直观图的画法,平行于x 轴的线段长度不变,平行于y 轴的线段变为原来的一半,于是长为4的边如果平行于x 轴,则正方形边长为4,面积为16,边长为4的边如果平行于y 轴,则正方形边长为8,面积是64.答案:C5.一个三角形用斜二测画法画出来的直观图是边长为2的正三角形,则原三角形的面积是( ) A.62 B.64 C.3 D.都不对分析:根据斜二测画法的规则,正三角形的边长是原三角形的底边长,原三角形的高是正三角形高的22倍,而正三角形的高是3,所以原三角形的高为62,于是其面积为21×2×62=62. 答案:A6.一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积等于( ) A.2221+ B.221+ C.21+ D.22+ 分析:平面图形是上底长为1,下底长为21+,高为2的直角梯形.计算得面积为22+.答案:D。

空间几何体表面积和体积练习题

空间几何体表面积和体积练习题

空间几何体的表面积和体积练习题题1 一个圆锥与一个球的体积相等,圆锥的底面半径是球的半径的3倍,则圆锥的高与底面半径之比为( )A.49B.94C.427D.274题2 正四棱锥P —ABCD 的五个顶点在同一个球面上,若该正四棱锥的底面边长为2,侧棱长为6,则此球的体积为________.题3 一空间几何体的三视图如图所示,则该几何体的体积为( )A .2π+2 3B .4π+2 3C .2π+233D .4π+233题4 如图,正方体ABCD -A 1B 1C 1D 1的棱长为2.动点E ,F 在棱A 1B 1上,点Q 是棱CD 的中点,动点P 在棱AD 上.若EF =1,DP =x ,A 1E =y (x ,y 大于零),则三棱锥P -EFQ 的体积.( )A .与x ,y 都有关B .与x ,y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关题5 直角梯形的一个底角为45°,下底长为上底长的32,这个梯形绕下底所在直线旋转一周所成的旋转体的表面积是(5+2)π,求这个旋转体的体积.题6 设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2 B.73πa 2 C.113πa 2 D .5πa 2题7 在球心同侧有相距9 cm 的两个平行截面,它们的面积分别为49π cm 2和400π cm 2,求球的表面积.题8 正四棱台的高为12cm ,两底面的边长分别为2cm 和12cm .(Ⅰ)求正四棱台的全面积;(Ⅱ)求正四棱台的体积.题9 如图,已知几何体的三视图(单位:cm).(1)画出这个几何体的直观图(不要求写画法);(2)求这个几何体的表面积及体积.题10 如图,在长方体ABCD A B C D ''''-中,用截面截下一个棱锥C A DD ''-,求棱锥C A DD ''-的体积与剩余部分的体积之比.题11 已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,求该几何体的体积.题12 如图所示,在直三棱柱ABC -A 1B 1C 1中,底面为直角三角形,∠ACB =90°,AC =6,BC =CC 1= ,P 是BC 1上一动点,则CP +P A 1的最小值是__________.课后练习详解题1 答案:C详解:设圆锥底面半径为1R ,高为h ,球的半径为2R ,则圆锥体积为2113R h π,球的体积为3243R π.由题意知圆锥的底面半径是球的半径的3倍,即1R =32R .由圆锥与球的体积相等有2113R h π=3243R π,将2R =13R 代入,有21R h =31343R ⨯,故1h R =433=427. 题2 答案:92π 详解:如图所示,设底面中心为O ′,球心为O ,设球半径为R ,∵AB =2,则AO ′=2,PO ′=P A 2-AO ′2=2,OO ′=PO ′-PO =2-R .在Rt △AOO ′中,AO 2=AO ′2+OO ′2?R 2=(2)2+(2-R )2,∴R =32,∴V 球=43πR 3=92π. 题3 答案:C详解:由几何体的三视图可知,该几何体是由一个底面直径和高都是2的圆柱和一个底面边长为2,侧棱长为2的正四棱锥叠放而成.故该几何体的体积为V =π×12×2+13×(2)2×3=2π+233,故选C. 题4 答案:C详解:设P 到平面EFQ 的距离为h ,则V P -EFQ =13×S △EFQ·h ,由于Q 为CD 的中点,∴点Q 到直线EF 的距离为定值2,又EF =1,∴S △EFQ 为定值,而P 点到平面EFQ 的距离,即P 点到平面A 1B 1CD 的距离,显然与x 有关、与y 无关,故选C.题5 答案:73π. 详解:如图所示,在梯形ABCD 中,AB ∥CD ,∠A =90°,∠B =45°,绕AB 边旋转一周后形成一圆柱和一圆锥的组合体.设CD =x ,则AB =32x ,AD =AB -CD =x 2,BC =22x . S 表=S 柱底圆+S 柱圆侧+S 圆锥侧=π·AD 2+2π·AD ·CD +π·AD ·BC=π·x 24+2π·x 2·x +π·x 2·22x =5+24πx 2. 根据题设,5+24πx 2=(5+2)π,则x =2.所以旋转体体积V =π·AD 2·CD +π3AD 2·(AB -CD )=π×12×2+π3×12×(3-2)=73π. 题6 答案:B详解:如图,O 1,O 分别为上、下底面的中心,D 为O 1O 的中点,则DB 为球的半径,有r =DB =OD 2+OB 2=a 24+a 23=7a 212, ∴S 表=4πr 2=4π×7a 212=73πa 2. 题7 答案:2500πcm 2.详解:如图为球的轴截面,由球的截面性质知,AO 1∥BO 2,且O 1、O 2分别为两截面圆的圆心,则OO 1⊥AO 1,OO 2⊥BO 2.设球的半径为R . ∵π·O 2B 2=49π,∴O 2B =7 cm ,同理π·O 1A 2=400π,∴O 1A =20 cm . 设OO 1=x cm ,则OO 2=(x +9) cm.在Rt △OO 1A 中,R 2=x 2+202, 在Rt △OO 2B 中,R 2=(x +9)2+72,∴x 2+202=72+(x +9)2,解得x =15. ∴R 2=x 2+202=252,∴R =25 cm .∴S球=4πR 2=2500π cm 2. ∴球的表面积为2500π cm 2.题8 答案:512 cm 2; 688 cm 3详解:(Ⅰ)斜高'13h == cm S 正四棱台=S 上+S 下+S 侧=22+122+ 12×(2+12)×13=512 cm 2(Ⅱ)V= 13()h= 13(22+122)×12=688 cm 3题9 答案:(1)见详解.(2) 表面积22+4 2 cm 2,体积10 cm 3.详解: (1)这个几何体的直观图如图所示.(2)这个几何体可看成是由正方体AC 1及直三棱柱B 1C 1Q —A 1D 1P 的组合体. 由P A 1=PD 1=2,A 1D 1=AD =2,可得P A 1⊥PD 1.故所求几何体的表面积为: S =5×22+2×2×2+2×12×(2)2=22+4 2 cm 2,所求几何体的体积V =23+12×(2)2×2 =10 cm 3.题10 答案:15∶详解: 已知长方体可以看成直四棱柱ADD A BCC B ''''-.设它的底面ADD A ''面积为S ,高为h ,则它的体积为V Sh =.而棱锥C A DD ''-的底面面积为12S ,高是h , 因此棱锥C A DD ''-的体积111326C ADD V Sh Sh -=⨯=''. 余下的体积是1566Sh Sh Sh -=. 所以棱锥C A DD ''-的体积与剩余部分的体积之比为1:5.题11 答案:173 详解:由三视图知,此几何体可以看作是一个边长为2的正方体被截去了一个棱台而得到,此棱台的高为2,一底为直角边长为2的等腰直角三角形,一底为直角边长为1的等腰直角三角形,题12 答案: 详解:将△BCC 1沿直线BC 1折到面A 1C 1B 上,如图,连接A 1C ,即为CP +P A 1的最小值,过点C 作CD ⊥C 1D 于D 点,△BCC 1为等腰直角三角形,∴CD =1,C 1D =1,A 1D =A 1C 1+C 1D =7,。

高一数学必修2__1.1空间几何体的结构(练习题)

必修2 1.1空间几何体的结构(练习题)一、选择题1.在棱柱中()A.只有两个面平行 B.所有的棱都平行C.所有的面都是平行四边形 D.两底面平行,且各侧棱也互相平行2.将图1所示的三角形线直线l旋转一周,可以得到如图2所示的几何体的是哪一个三角形()3.若一个平行六面体的四个侧面都是正方形,则这个平行六面体是()A.正方体 B.正四棱锥C.长方体D.直平行六面体4.下面命题中,正确的是()①底面是正方形,侧面都是等腰三角形的棱锥是正四棱锥;②对角线相等的四棱柱必是直棱柱;③底面边长相等的直四棱柱为正四棱柱;④四个面都是全等的三角形的几何体是正四面体5.如图一个封闭的立方体,它6个表面各标出1、2、3、4、5、6这6个数字,现放成下面3个不同的位置,则数字l、2、3对面的数字是()A.4、5、6 B.6、4、5 C.5、4、6 D.5、6、46.如图,能推断这个几何体可能是三棱台的是()A.A1B1=2,AB=3,B1C1=3,BC=4B.A1B l=1,AB=2,B l C l=1.5,BC=3,A1C1=2,AC=3C.A l B l=1,AB=2,B1C l=1.5,BC=3,A l C l=2,AC=4D.AB=A1B1,BC=B1C1,CA=C1A17.有下列命题(1)在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;(2)圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;(3)在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;(4)圆柱的任意两条母线所在的直线是互相平行的.其中正确的是()A.(1)(2) B.(2)(3) C.(1)(3) D.(2)(4)8.下列命题中错误的是()A.圆柱的轴截面是过母线的截面中面积最大的一个B.圆锥的轴截面是所有过顶点的截面中面积最大的一个C.圆台的所有平行于底面的截面都是圆D.圆锥所有的轴截面是全等的等腰三角形9.一个三棱锥四个面中,是直角三角形的最多有()A.1个 B.2个 C.3个 D.4个10.图,这是一个正方体的表面展开图,若把它再折回成正方体后,有下列命题:①点H与点C重合;②点D与点M与点R重合;③点B与点Q重合;④点A与点S重合.其中正确命题的序号是_______________.(注:把你认为正确的命题的序号都填上)11.高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图象如图所示,那么水瓶的形状是_______________.三、解答题12.察以下几何体的变化,通过比较,说出他们的特征.13.一个圆锥截成圆台,已知圆台的上下底面半径的比是1∶4,母线长为10cm,求圆锥的母线长__________.。

空间几何体练习试题和答案解析

(数学 2 必修)第一章空间几何体[ 基础训练A组]一、选择题1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A. 棱台B. 棱锥C. 棱柱D. 都不对主视图左视图俯视图2.棱长都是1的三棱锥的表面积为()A. 3B. 2 3C. 3 3D. 4 33.长方体的一个顶点上三条棱长分别是3, 4,5 ,且它的8 个顶点都在同一球面上,则这个球的表面积是()A.25 B.50 C.125 D.都不对4.正方体的内切球和外接球的半径之比为()A. 3 :1 B.3: 2 C.2: 3 D.3:35.在△ABC中,AB BC ABC ,若使绕直线BC 旋转一周,2, 1.5, 120则所形成的几何体的体积是()A. 92B.72C.52D.326.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为 5 ,它的对角线的长分别是9和15 ,则这个棱柱的侧面积是()A.130 B.140 C.150 D.160二、填空题1.一个棱柱至少有_____个面,面数最少的一个棱锥有________个顶点,. .专业知识分享. .顶点最少的一个棱台有________条侧棱。

2.若三个球的表面积之比是1: 2 :3,则它们的体积之比是_____________。

3.正方体ABCD A1B1C1D1 中,O是上底面ABCD 中心,若正方体的棱长为a,则三棱锥O AB D 的体积为_____________。

1 14.如图,E,F 分别为正方体的面ADD1 A1 、面BCC1B1 的中心,则四边形B F D1E 在该正方体的面上的射影可能是____________ 。

5.已知一个长方体共一顶点的三个面的面积分别是 2 、 3 、 6 ,这个长方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15 ,则它的体积为___________.三、解答题1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12M ,高4M ,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4M (高不变);二是高度增加4M (底面直径不变)。

空间几何体练习题精品

空间几何体1 •右图的几何体是由下面哪个平面图形旋转得到的(B. C.2•下列几何体的轴截面一定是圆面的是(A.圆柱B.圆锥C.球D.D.).圆台3•把直角三角形绕斜边旋转一周,所得的几何体是(A.圆锥B.圆柱C.圆台D.由两个底面贴近的圆锥组成的组合体4•水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是().A • 05•用长为4,A. 8B • 6C .快D .乐宽为2的矩形做侧面围成一个圆柱,此圆柱轴截面面积为(c 8 c 4B. C.2L06 快乐6 •圆台的一个底面周长是另一个底面周长的圆台较小底面的半径为().A. 7B. 6JI3 倍,D. ?母线长为 3,圆台的侧面积为84 二,则7 •如图,已知圆柱体底面圆的半径为C. 52-,高为2,D.3AB, CD分别是两底面的直径,AD,BC是母线•若一只小虫从 A点岀发,从侧面爬行到C点,则小虫爬行的最短路线的长度是___________________ (结果保留根式)•8.设圆锥母线长为I,高为丄,过圆锥的两条母线作一个截面,则截面面积的最大2值为 ________ .29 •若长方体的三个面的面积分别为6 cm ,3 为 .10•六棱台的上、下底面均是正六边形,边长分别是形,侧棱长为13 cm,求它的表面积.三、简答题1.试作出下面几何体的三视图2 2cm ,2 cm ,则此长方体的对角线长8 cm和18 cm,侧面是全等的等腰梯2 •由5个小立方块搭成的几何体,其三视图分别为(右视(正视图)、(俯视图),则该几何体是(图)、12•四边形ABCD, A(0,0), B(1,0), C(2,1), D(0,3),绕y 轴旋转一周,求所得旋转体的体积. 忆i.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为 V 和V 2,则y :V 2 =().A. 1:3B. 1:1C. 2:1D. 3:1 2•三棱锥 V —ABC 的底面ABC 的面积为12,顶点V 到底面ABC 的距离为3,侧面VAB 的 面积为9,则点C 到侧面VAB 的距离为( ). A. 3 B. 4 C. 5 D. 6 3 •若干毫升水倒入底面半径为 2cm 的圆柱形器皿中,量得水面的高度为 6cm , 倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是( ). 3vT2cm 所形成的几何体 若将这些水 A. 6 3cm 4•矩形两邻边的长为 的体积之比为(A. P aB. 6cm a 、b ,C. 2》18cm 当它分别绕边D. b 旋转一周时, a b 5•如图,一个简单空间几何体的三视图其主视图与左视图是边长为 角形、俯视图轮廓为正方形,则其体积是( 4,2 4 3 A • B . 3 3B. C . (b )3 aC.D.2的正三俯视图6•正方体的内切球和外接球的半径之比为( B. '3:22 24cm ,一个球内切于该正方体,那么这个球的体积是(32 3 8 3 4 3 B. cm C. cm D. cm3 3 3A. ■ 3:1 7 •设正方体的全面积为 A. .6 二cm 3C. ). 2: 3D. 3:3 8•已知,棱长都相等的正三棱锥内接于一个球,某学生画岀四个过球心的平面截 球与正三棱锥所得的图形,如下图所示,则( A.以上四个图形都是正确的C.只有⑷是错误的 9・长方体的一个顶点上三条棱长分别是 则这个球的表面积是( ). A. 25 二 B. 50 二10 • 一个圆锥与一个球的体积相等, 径之比为). B.只有⑵⑷是正确的 D.只有(1)(2)是正确的3、4、5,且它的8个顶点都在同一球面上, C. 125 二 D. 圆锥的底面半径是球的半径的 11 • 12. 为 _____ ( ).4 9A. B. -9 44 C. 27 D. ). 都不对 3倍,圆锥的高与底面半 27 若三个球的表面积之比是 1:2:3,则它们的体积之比是 __________ . 一个正方体的顶点都在球面上,它的棱长为 2cm ,则这个球的表面积为 ,体积 13 •已知三棱锥的三条侧棱两两互相垂直,且长度分别为 积 ____ . 三、解答题:1.①轴截面是正方形的圆柱叫等边圆柱. 已知:等边圆柱的底面半径为 r ,求:全面积; ②轴截面是正三角形的圆锥叫等边圆锥 .1cm ,2cm ,3cm ,则此棱锥的体 已知:等边圆锥底面半径为 r ,求:全面积.。

高一数学空间几何体试题答案及解析

高一数学空间几何体试题答案及解析1.某三棱锥的三视图如图所示,该三棱锥的体积为()A.B.C.D.【答案】A【解析】由三视图知,几何体是一个三棱锥,底面是直角边长为的直角三角形,面积是,三棱锥的一条侧棱与底面垂直,且长度是,这是三棱锥的高,三棱锥的体积是.故选A.【考点】本题考查由三视图求面积、体积.2.已知一空间几何体的三视图如图所示,它的表面积是()A.B.C.D.3【答案】C【解析】该几何体是三棱柱,如下图,,其表面积为。

故选C。

【考点】柱体的表面积公式点评:由几何体的三视图来求出该几何体的表面积或者体积是一个考点,这类题目侧重考察学生的想象能力。

3.已知某一几何体的正(主)视图与侧(左)视图如图,则在下列图形中,可以是该几何体的俯视图的图形有()A.①②③⑤B.②③④⑤C.①③④⑤D.①②③④【答案】D【解析】俯视图为⑤的几何体的侧视图如下,这与题目不相符,而①②③④符合题意。

故选D。

【考点】三视图点评:本题考查简单空间图形的三视图,考查空间想象能力,是基础题.4.如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图中的侧(左)视图、俯视图,在直观图中,是的中点,侧(左)视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.(1)求出该几何体的体积;(2)若是的中点,求证:∥平面;(3)求证:平面⊥平面.【答案】(1)4 (2)主要证明∥ (3)主要证明平面【解析】解:(1)由题意可知,四棱锥中,平面平面,,所以,平面,又,,则四棱锥的体积为.(2)连接,则∥,∥,又,所以四边形为平行四边形,∴∥,∵平面,平面,所以,∥平面.(3)∵,是的中点,∴⊥,又在直三棱柱中可知,平面平面,∴平面,由(2)知,∥,∴平面,又平面,所以,平面平面.【考点】平面与平面垂直的判定;棱柱、棱锥、棱台的体积;直线与平面平行的判定.点评:本题考查的知识点是直线与平面平行的判定,棱锥的体积,平面与平面垂直的判定,其中(1)的关键是由面面垂直的性质定理可得AB⊥平面ACDE,(2)的关键是分析出四边形ANME为平行四边形,即AN∥EM,(3)的关键是熟练掌握空间线线垂直,线面垂直与面面垂直之间的相互转化.5.如图是长方体被一平面所截得到的几何体,四边形为截面,长方形为底面,则四边形的形状为( )A.梯形B.平行四边形C.可能是梯形也可能是平行四边形D.不确定【答案】B【解析】因为,长方体中相对的平面互相平行,所以,被平面截后,EF,GH平行且相等,GF,EH 平行且相等,故四边形的形状为平行四边形,选B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

俯视图
侧视图
正视图
期末复习(1)--------空间几何体
1.一个正方体被一个平面截去一部分后,剩余部分的三视图如图1,则截去部分体积与剩余部
分体积的比值为( )

2. 如图2所示,某三棱锥的三视图均为边长为1的正方形,则该三棱锥的体积是( )
A.212 B.26 C.13 D.16
3.一个多面体的三视图如图3所示,则该多面体的表面积为( )
A.21+3 B.8+2 C.21 D.18

图1 图2 图3
4.已知某几何体的三视图如图4所示,该几何体的体积为( )
A.143 B.4 C.103 D.3
5.已知某几何体的三视图如图5所示,该几何体的体积为( )
A.163 B.803 C.643 D.433
6.已知某几何体的三视图如图6所示,该几何体的体积为( )
A.2 B.83 C.4 D.209

图4 图5 图6

1A.81B.71C.61
D.

5

正视图
侧视图

俯视图

1

1
1

2
1

2
4

4
正视图
侧视图

俯视图

2
2

4
4

2

2
正视图
侧视图

俯视图

1

2
7.如图7,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体
的个条棱中,最长的棱的长度为( )

A.62 B.42 C.6 D.4
8.某几何体的三视图如图8所示,则该几何体的体积为( )
A.8 B.83 C.16 D.163

9.某几何体的三视图如图9所示,则该几何体的体积为( )
A. 23 B. 43 C. 1 D. 13

图7 图8 图9
10.某几何体的三视图如图10所示,则该几何体的体积为( )
A.168 B.88 C.1616 D.816
11.某几何体的三视图如图11所示,则该几何体的体积为( )
A. B. C. D.
12.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正
视图和俯视图如图12所示。若该几何体的表面积为16 + 20,则r=( )

A. 1 B. 2 C. 4 D. 8

图10 图11 图12

13231232
23

正视图
侧视图
俯视图

1

1
1

2
1

侧视图
正视图
俯视图
4
2

2

1
正视图
侧视图

俯视图

2
1
13.某四棱台的三视图如图13所示,则该四棱台的体积是
( )

.4A 14.3B 16.3C .6D
14某几何体的三视图如图14所示,则该几何体的体积为( )
A.2(1)3 B.4(1)3 C.41()32 D.21()32

15.如图15,一个水平放置的透明无盖正方体容器,容器高8cm,将一个球放在容器口,再向容
器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为( )
A.35003cm B.38663cm C.313723cm D.320483cm

图13 图14 图15
16.一个四面体的顶点在空间直角坐标系中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),

画该四面体三视图中的正视图时,以平面为投影面,则得到正视图可以为( )

1
2
2

1
1

正视俯视侧视
侧视图

俯视图
1
11正视图1

1
1
A. B. C. D.
17.已知三棱锥SABC的所有顶点都在球O的球面上,ABC是边长为1的正三角形,SC为

球O的直径,且2SC,则此棱锥的体积为 ( )

A.26 B.36 C.23 D.22
18.高为24的四棱锥S-ABCD的底面是边长为1的正方形,点S、A、B、C、D均在半径
为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为( )

A.24 B.22 C.1 D.2

19.已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=23,则棱锥
O-ABCD的体积为_____________.

20.已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的
最大值为( )

A. B. C. D.

21.三棱锥P-ABC中,ABC为等边三角形,PA=PB=PC=2,PA⊥PB,三棱锥P-ABC的外
接圆的表面积为( )
A.48 B.12 C.43 D.323

22.已知A,B,C,D是同一球面上的四个点,其中ABC是正三角形,AD⊥平面ABC,
AD=2AB=6,则该球的表面积为( )

A.16 B.24 C.323 D.48
23.在三棱锥P-ABC中,PA=PB=PC=3,侧棱PA与底面ABC所成的角为60°,则该三
棱锥外接球的体积为( )
A. B.3 C.4 D.43

24.已知ABC的三个顶点在以O为球心的球面上,且cosA=223,BC=1,AC=3,三棱锥
O-ABC的体积为146,则球O的表面积为_____________.

2334332383
3
25.已知四面体ABCD的顶点都在球O球面上,且 O在BC上,平面ADC⊥平面BDC,
AD=AC=BD,∠DAC=90°,若四面体ABCD的体积为43,则球O的体积为_____________.

26.所有棱长均为1的三棱锥的内切球的体积是_____________.
27.正三棱锥的高为1,底面边长为26,正三棱锥内有一个球与其四个面相切,则球的表
面积是_____________.

相关文档
最新文档