求电流参考方向关联的电容电压步骤

合集下载

电工与电子技术前两章复习_OK

电工与电子技术前两章复习_OK

2021/9/4
13
C +q -q


表明 u
i C du dt
①某一时刻电容电流 i 的大小取决于电容电压 u 的
变化率,而与该时刻电压 u 的大小无关。电容是
动态元件;
②当 u 为常数(直流)时,i =0,电容相当于开路,电
容有隔断直流作用;
2021/9/4
14
u(t
)
u(t
)0
1 C
t
t0
与流经它的电流方向、大小无关。
②通过电压源的电流由电源及外电路共同决定。
电压源不能短路!
2021/9/4
26
2.理想电流源
定义
其输出电流总能保持定值或一定的
时间函数,其值与它的两端电压u
无关的元件叫理想电流源。
iS
电路符号
+
_
u
①电流源的输出电流由电源本身决定,与外电路无关。
②电流源两端的电压由电源及外电路共同决定。
各支路上接的是什么元件无关,与电路是线性 还是非线性无关; ③KVL方程是按电压参考方向列写,与电压实际 方向无关。
2021/9/4
35
4. KCL、KVL小结:
① KCL是对支路电流的线性约束,KVL是对回 路电压的线性约束。
② KCL、KVL与组成支路的元件性质及参数无关。
③ KCL表明在每一节点上电荷是守恒的;KVL是 能量守恒的具体体现(电压与路径无关)。
2021/9/4
29
1.6 基尔霍夫定律
分析电路的基本依据 —— 两类约束
1. 元件约束 ——元件性质的约束(VCR) 比如 欧姆定律
2. 拓扑约束 —— 连接方式方面的约束 基尔霍夫电流定律 基尔霍夫电压定律

电路分析基础第1章

电路分析基础第1章

手电筒电路:
干 电 池
导线
二、集总假设、电路元件 1. 集总假设:
J不考虑电路中电场与磁场的相互作用; J不考虑电磁波的传播现象; J实际 电路的 尺寸远小于最 高 工作 频 率所对应 的 波
长 时, 可 将它 所 反映 的 物 理 现象 分 别进行 研究, 即 用三种基本元件表示其三种物理现象;
目 录
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第十一章 集总电路中电压、电流的约束关系 网孔分析和节点分析 叠加方法和网络函数 分解方法和单口网络 电容元件和电感元件 一阶电路 二阶电路 阻抗与导纳 耦合电感和理想变压器
第一章 集总电路中的电压、电流约束关系
1-1 电路及集总电路模型 1-2 电路变量,电压,电流及功率 1-3 基尔霍夫定律 1-4 电阻元件 1-5 电压源 1-6 电流源 1-7 受控源 1-8 分压电路,分流电路 1-9 两类约束,支路电压法和支路电流法
掌握基本概念、基本理论、基本方法。
集总电路: 由电 阻 、电容、电感等元件组成的
电路。(电阻电路、动态电路)
集总参数电路:当实际电路的尺寸远小于使用时
其最高工作频率所对应的波长时,可以用“集总参数 元件”来构成实际部、器件的模型。每一种元件只反 映一种基本电磁现象,且可由数学方法加以定义。
例如,无线电调频接收机,若所接收的信号频率为100MHz, 对应波长λ=c/f = 3m,连接接收天线与接收机之间的传输线 即便只有1m长,也不能作为集总电路来处理。 又如,我国电力用电频率为50Hz,对应的波长为6×106m,对 以此为工作频率的用电设备来说,其尺寸远小于这一波长,可 以按集总电路处理,而对于远距离输电线来说,就不能按集总 电路来处理。

《电工学》电路的基本概念与基本定律

《电工学》电路的基本概念与基本定律

(2) 说明功率的平衡关系。
I
解:(1) 对于电源
+++
U= E1 U1= E1 IR01
E1

即 E1= U + IR01 = 220 +50.6 = 223V R01
U = E2 + U2 = E2 + IR02
U

–E2
R02
即 E2= UIR02 = 220 50.6 = 217V
(2) 功率的平衡关系 E1 = E2 + IR01 + IR02
+ (d)
解: (a) 电流从“+”流出,故为电源;
(b) 电流从“+”流入,故为负载;
(c) 电流从“+”流入,故为负载 ;
(d) 电流从“+”流出,故为电源。
例2:已知:U1 = 9V,I = -1A,R = 3Ω
求:元件1、2分别是电源还是负载,并验证
电路功率是否平衡? I R
解:因为U2 = -RI + U1 = 12V
I1 a I2
对回路1:E1 = I1 R1 +I3 R3
R1
R2
或 I1 R1 +I3 R3 –E1 = 0
E1 1 I3 R3 2 E2 对回路2:E2= I2 R2+I3 R3
b
或 I2 R2+I3 R3 –E2 = 0
基尔霍夫电压定律(KVL) 反映了电路中任一
回路中各段电压间相互制约的关系。
所以电流从元件1的“+” 流入,从元件2的“+”流
1 U1
U2 2
出,
故元件1为负载,元件2为电源。 电源产生功率: P2 =︱U2I︱= 12W

电工电子技术第2章

电工电子技术第2章

第2章 正弦交流电路
在交流电路中,因各电流和电压多 +j A 为同一频率的正弦量,故可用有向线段 b r 来表示正弦量的最大值(有效值) Im 、 ψ Um(I、U)和初相ψ ,称为正弦量的相量。 O a +1 在正弦量的大写字母上打“•”表示,如 图2-5 有向线段的表示正弦量 幅值电流、电压相量用 I m、 m表示,有 U • U 效值电流、电压相量用 I 、 表示。将电 U • 路中各电压、电流的相量画在同一坐标 φ I ψ 中,这样的图形称为相量图。 ψ 同频率的u和i可用图2-6相量图表示。 图2-6 u和i的相量图 即 超前 Iφ°,I或 U滞后φ°。 U
第2章 正弦交流电路
2.1
正弦交流电的基本概念
正弦交流电压和电流的大小和方向都按正弦规律 作周期性变化,波形如图2-1a。
u U m s in ( t u ) i I m s in ( t i )
(2-1)
为便于分析,在电路中电压参考方向用“+”、“–” 标出,电流参考方向用实线箭头表示;电压、电流实 际方向用虚线箭头表示如图2-1b、c所示
第2章 正弦交流电路
u Im O φ Ψu Ψi i Um
u
i
t
T
图2-2 u和i相位不等的正弦量波形图
当φ=0º 时,称u、I同相;当φ=180º 时,称u比i反相; 当φ=±90º 时,称u与i正交 。 u i u i
u i
ui
u
i
t
u
i
O a) 同相
t O
b) 反相
O c)正交
t
图2-3 正弦量的同相、反相和正交
第2章 正弦交流电路

电路原理习题答案第一章 电路模型和电路定理练习

电路原理习题答案第一章  电路模型和电路定理练习

第一章电路模型和电路定律电路理论主要研究电路中发生的电磁现象,用电流、电压和功率等物理量来描述其中的过程。

因为电路是由电路元件构成的,因而整个电路的表现如何既要看元件的联接方式,又要看每个元件的特性,这就决定了电路中各支路电流、电压要受到两种基本规律的约束,即:(1)电路元件性质的约束。

也称电路元件的伏安关系(VCR),它仅与元件性质有关,与元件在电路中的联接方式无关。

(2)电路联接方式的约束(亦称拓扑约束)。

这种约束关系则与构成电路的元件性质无关。

基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)是概括这种约束关系的基本定律。

掌握电路的基本规律是分析电路的基础。

1-1说明图(a),(b)中,(1)的参考方向是否关联?(2)乘积表示什么功率?(3)如果在图(a)中;图(b)中,元件实际发出还是吸收功率?解:(1)当流过元件的电流的参考方向是从标示电压正极性的一端指向负极性的一端,即电流的参考方向与元件两端电压降落的方向一致,称电压和电流的参考方向关联。

所以(a)图中的参考方向是关联的;(b)图中的参考方向为非关联。

(2)当取元件的参考方向为关联参考方向时,定义为元件吸收的功率;当取元件的参考方向为非关联时,定义为元件发出的功率。

所以(a)图中的乘积表示元件吸收的功率;(b)图中的乘积表示元件发出的功率。

(3)在电压、电流参考方向关联的条件下,带入数值,经计算,若,表示元件确实吸收了功率;若,表示元件吸收负功率,实际是发出功率。

(a)图中,若,则,表示元件实际发出功率。

在参考方向非关联的条件下,带入数值,经计算,若,为正值,表示元件确实发出功率;若,为负值,表示元件发出负功率,实际是吸收功率。

所以(b)图中当,有,表示元件实际发出功率。

1-2 若某元件端子上的电压和电流取关联参考方向,而,,求:(1)该元件吸收功率的最大值;(2)该元件发出功率的最大值。

解:(1)当时,,元件吸收功率;当时,元件吸收最大功率:(2)当时,,元件实际发出功率;当时,元件发出最大功率:1-3 试校核图中电路所得解答是否满足功率平衡。

电路基本分析 第一章 电路分析的基本概念及定律

电路基本分析  第一章 电路分析的基本概念及定律

Chapter 1
Chapter 1
Chapter 1
举例
开关 干电池
电灯
R0 + US (b)
S R1
(a)
(c)
实际电路与电路模型
Chapter 1
四、电路的分类 1.集总参数电路:其电路的几何尺寸l<<电路的工作频率 对应的波长λ。 集总参数电路又分为线性能 定义:一段时间内电路消耗的功率。可表为:
W=P t
若功率随时间变化,则: w
u、i 方向与w的关系:

t
pdt uidt
0
0

i
t
单位:焦耳J
u、i 方向如图示:
w>0,吸收;w<0, 发出。
a
+
u
_
b
Chapter 1
小结: 1.实际电路或实际电路元件可以用理想电路元件或理想 电路元件组合的电路模型进行模拟。
目 录
第一章 电路的基本概念和定律 第二章 电阻电路的等效变换 第三章 电路分析的网络方程法 第四章 正弦交流电路 第五章 谐振与互感电路 第六章三相电路 第七章 非正弦周期电流电路 第八章 动态电路的时域分析
第九章 动态电路的复频域分析
第十章 二端口网络
Chapter 1
第一章
电路分析的基本概念及定律
Chapter 1
教学目的 1.了解实际电路、理想电路元件和电路模型的概念。 2.熟练掌握电流、电压和电功率的概念。 3.理解电位、电动势和能量的概念。
教学内容概述 主要介绍理想电路元件和电路模型的概念以及电路中常 用的物理量:电流、电压和电功率的概念。 教学重点和难点 重点:电流、电压的参考方向及关联参考方向和电功率 的计算。 难点:电功率的计算及对电路发出和吸收功率的判断。

《电工》教案第十讲正弦交流电路的分析计算

《电工》教案第十讲正弦交流电路的分析计算

第十讲正弦交流电路的分析计算正弦交流电路中的功率功率因数的提高及最大功率的计算时间:2学时重点和难点:正弦交流电路向量法求解;有功功率与无功功率的计算目的:让学生用向量图分析求解正弦交流电路的主要依据,掌握参考向量的选择方法,掌握用向量图分析电路的方法,能熟练应用向量法求解各类实际电路问题;让学生掌握瞬时功率、平均功率的意义和计算方法,掌握功率因数的概念、意义、计算方法,掌握引起无功功率的原因,掌握无功功率、复功率、视在功率、容量的计算方法。

教学方法:多媒体演示、课堂讲授主要教学内容:一、正弦交流电路的分析计算对于任意正弦交流电路,只要用相量表示正弦交流电路中的电压、电流,用阻抗或导纳对应直流电路的电阻或电导,所有的运算采用复数运算规则进行,计算电阻电路时的一些公式和方法,就可以完全用到正弦交流电路中来。

这就是说,运用相量并引用阻抗及导纳,正弦交流电路的计算方法可以仿照电阻电路的处理方法来进行。

正弦交流电路的分析,一种是依靠相量图来解决实际问题,这种方法称为相量图法,而把依靠列出相量方程来解决实际问题的方法称为相量解析法。

两者均属相量法的范畴,它们的依据是共同的。

1、正弦交流电路的相量图法分析计算:1)对于简单的正弦交流电路常借助于相量图进行辅助分析,这样可以直观表现出各电量之间的大小和相位关系。

画相量图时,应遵循以下几点:a、选择参考相量;b、画在同一相量图上的各电量一定是同频率的;c、依据欧姆定律及KCL、KVL的相量形式;d、单一参数R、L、C各元件电压与电流的相量关系;2)参考相量的选取原则:a、串联电路宜选用电流为参考相量,并联电路宜选用电压为参考相量;b 、对于较复杂的混联电路,应根据已知条件综合考虑。

可以选电路内部某并联部分电压为参考相量,也可以选其中某部分的电流为参考相量;或选用端电压或电流为参考相量。

例1 并联电路如图(a )所示,用相量图定性表明各电流相量的关系。

解:并联电路宜从两端电压入手,选电压相量S U 为参考相量。

大学电路分析第四章课后习题答案

大学电路分析第四章课后习题答案

4-2.5μF 电容的端电压如图示。

(1)绘出电流波形图。

(2)确定2μs t =和10μs t =时电容的储能。

解:(1)由电压波形图写出电容端电压的表达式:10 0μs 1μs10 1μs 3μs ()1040 3μs 4μs 0 4μs t t t u t t t t≤≤⎧⎪≤≤⎪=⎨-+≤≤⎪⎪≤⎩式中时间t 的单位为微秒;电压的单位为毫伏。

电容伏安关系的微分形式:50 0μs 1μs 0 1μs 3μs()()50 3μs 4μs 0 4μs t t du t i t C t dt t<<⎧⎪<<⎪==⎨-<<⎪⎪<⎩上式中时间的单位为微秒;电压的单位为毫伏;电容的单位为微法拉;电流的单位为毫安。

电容电流的波形如右图所示。

(2)电容的储能21()()2w t Cu t =,即电容储能与电容端电压的平方成正比。

当2μs t =时,电容端电压为10毫伏,故:()()22631010μs 11()5101010 2.510J 22t w t Cu ---===⨯⨯⨯⨯=⨯当10μs t =时,电容的端电压为0,故当10μs t =时电容的储能为0。

4-3.定值电流4A 从t=0开始对2F 电容充电,问:(1)10秒后电容的储能是多少100秒后电容的储能是多少设电容初始电压为0。

解:电容端电压:()()()00110422t tC C u t u i d d t C τττ+++=+==⎰⎰;()1021020V C u =⨯=; ()1002100200V C u =⨯=()()211010400J 2C w Cu ==; ()()2110010040000J 2C w Cu ==4-6.通过3mH 电感的电流波形如图示。

(1)试求电感端电压()L u t ,并绘出波形图;(2)试求电感功率()L p t ,并绘出波形图;(3)试求电感储能()L w t ,并绘出波形图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求电流参考方向关联的电容电压步骤
当电流经过电容器时,电容器中的电压会发生变化。电容电压的变化
可以通过电流参考方向来确定。以下是关联电流参考方向的电容电压变化
的步骤。

1.确定电流参考方向:首先,需要确定电流的参考方向。电流参考方
向通常以箭头的形式表示,指示电流的流动方向。可按照实际电路中电流
的实际流动情况来确定电流的参考方向。

2.考虑电容器的正负极性:每个电容器都有正极和负极。在电流参考
方向确定后,需要根据电容器的正负极性来确定电容器的电压变化方向。

3.根据电流参考方向和电容器极性确定电压变化方向:根据电流参考
方向和电容器的正负极性,可以确定电容器的电压变化方向。如果电流与
正极相同,则电容器的电压会增加;如果电流与负极相同,则电容器的电
压会减小。

4.分析电容器的电流和电压:根据电流参考方向和电容器的正负极性,
可以确定电容器的电压变化方向,进而分析电容器的电流和电压之间的关
系。通过这种关系,我们可以了解电容器的电流和电压如何随时间变化。

5.计算电容器的电压:根据电流参考方向和电容器的正负极性,可以
确定电容器的电压变化方向,进而计算电容器的电压。这可以通过应用基
本的电容器电压变化方程来实现。

6.理解电流参考方向对电容电压的影响:通过电流参考方向的确定,
我们可以在电路中理解电容器的电压是如何受到电流的影响的。这对于电
路分析和设计以及理解电容器的应用非常重要。
总之,通过确定电流参考方向,我们可以确定电容器的电压变化方向,
进而分析电容器的电流和电压之间的关系。这有助于我们更好地理解电容
器在电路中的行为,并应用于电路分析和设计中。

相关文档
最新文档