高考数学一轮复习 分类计数原理和分步计数原理01课件

合集下载

第一节 分类加法计数原理与分步乘法计数原理 课件(共40张PPT)

第一节 分类加法计数原理与分步乘法计数原理 课件(共40张PPT)
数为A45=120. 故符合题意的四位数一共有960+120=1 080(个). 答案:1 080
角度 涂色、种植问题 [例3] (1)如图,图案共分9个区域,有6 种不同颜色的涂料可供涂色,每个区域只能 涂1种颜色的涂料,其中2和9同色,3和6同 色,4和7同色,5和8同色,且相邻区域的颜色不相同, 则不同的涂色方法有( ) A.360种 B.720种 C.780种 D.840种
1.如图,小明从街道的E处出发,先到F处与小红 会合,再一起到位于G处的老年公寓参加志愿者活动, 则小明到老年公寓可以选择的最短路径条数为( )
A.24 B.18
C.12
D.9
解析:从E点到F点的最短路径有6条,从F点到G点 的最短路径有3条,所以从E点到G点的最短路径有6×3= 18(条),故选B.
4.从0,1,2,3,4,5这六个数字中,任取两个不 同数字相加,其和为偶数的不同取法的种数是______.
解析:从0,1,2,3,4,5六个数字中,任取两数 和为偶数可分为两类,①取出的两数都是偶数,共有3种 方法;②取出的两数都是奇数,共有3种方法,故由分类 加法计数原理得共有N=3+3=6(种).
考点1 分类加法计数原理
1.如图,某货场有两堆集装箱,一
堆2个,一堆3个,现需要全部装运,每
次只能取其中一堆最上面的一个集装箱,则在装运的过
程中不同取法的种数是( )
A.6
B.10
C.12
D.24
解析:将题图中左边的集装箱从上往下分别记为
1,2,3,右边的集装箱从上往下分别记为4,5.分两种
情况讨论:若先取1,则有12345,12453,12435,
答案:D
3.现安排一份5天的工作值班表,每天有一个人值

高三数学一轮复习 第11章第1课时课件

高三数学一轮复习 第11章第1课时课件
=2 100 元.
两个计数原理的综合应用
对于某些复杂的问题,有时既要用分类计数原理, 又要用分步计数原理,重视两个原理的灵活运用, 并注意以下几点: (1)认真审题,分析题目的条件、结论,特别要理 解题目中所讲的“事情”是什么,完成这件事情 的含义和标准是什么. (2)明 确 完 成 这 件 事 情 需 要 “ 分 类 ” 还 是 “ 分
2.混合问题一般是先分类再分步. 3.分类时标准要明确,做到不重复不遗漏. 4.要恰当画出示意图或树状图,使问题的分
析更直观、清楚,便于探索规律.
从近两年的高考试题来看,分类加法计数 原理和分步乘法计数原理是考查的热 点.题型为选择题、填空题,分值在5分左 右,属中档题.两个计数原理较少单独考 查,一般与排列、组合的知识相结合命 题.
(2010·广东卷)为了迎接 2010 年广州亚运会,某大
楼安装了 5 个彩灯,它们闪亮的顺序不固定,每
个彩灯只能闪亮红、橙、黄、绿、蓝中的一种颜
色,且这 5 个彩灯所闪亮的颜色各不相同,记这 5
个彩灯有序地各闪亮一次为一个闪烁,在每个闪
烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两
个闪烁的时间间隔均为 5 秒,如果要实现所有不
(2)确定第二象限的点,可分两步完成:第一 步确定 a,由于 a<0,所以有 3 种确定方法; 第二步确定 b,由于 b>0,所以有 2 种确定方 法.由分步乘法计数原理,得到第二象限点 的个数是 3×2=6.
(3)点 P(a,b)在直线 y=x 上的充要条件是 a =b.因此 a 和 b 必须在集合 M 中取同一元素, 共有 6 种取法,即在直线 y=x 上的点有 6 个.由(1)得不在直线 y=x 上的点共有 36- 6=30(个).

分类计数原理与分步计数原理精选教学PPT课件

分类计数原理与分步计数原理精选教学PPT课件
分类计数原理 与分步计数原理
分类计数原理:完成一件事,有n类办法,在第 一类办法中有m1种不同的方法,在第二类办法中有 m2种不同的方法,……,在第n类办法中有mn种不 同的方法,那么完成这件事共有 N= m1+ m2+…+ mn 种不同的方法。 分步计数原理:完成一件事,需要分成n个步骤, 做第一步有m1种不同的方法,做第二步有m2种不同 的方法,……,做第n步有mn种不同的方法,那么完 成这件事共有 N= m1× m2 × … × mn 种不同的方法。
4.从5位男教师和4位女教师中选出3位教师,派到3 个班担任班主任(每班1位班主任),要求这3位 班主任中男、女教师都要有,则不同的选派方案 共有______. 5.在由数字1,2,3,4,5组成的所有没有重复数字的5位 数中,大于23145且小于43521的数共有________.
1.如图,小圆圈表示网络的结点,结点之间的连线 表示它们有网线相联,连线标注的数字表示该 段网线单位时间内可以通过的最大信息量.现从 结点A向结点B传递信息,信息可以分开沿不同 的路线同时传递,则单位时间内传递的最大信 息量为_______.
4.设三位数 n abc ,若以a,b,c为三条边的 长可以构成一个等腰(含等边)三角形,则这样 的三位数n有( ) A. 45个 B. 81个 C. 165个 D. 216个
课堂小结 1. 分类计数与分步计数原理是两个最基本,也是 最重要的原理,是解答排列、组合问题,尤其是 较复杂的排列、组合问题的基础. 2.辨别运用分类计数原理还是分步计数原理的关 键是“分类”还是“分步”,也就是说“分类” 时,各类办法中的每一种方法都是独立的,都能 直接完成这件事,而“分步”时,各步中的方法 是相关的,缺一不可,当且仅当做完个步骤时, 才能完成这件事.

高考数学一轮复习讲义分类加法计数原理与分步乘法计数原理教师

高考数学一轮复习讲义分类加法计数原理与分步乘法计数原理教师

课题:分类加法计数原理与分步乘法计数原理知识点1.分类加法计数原理(加法原理)的概念一般形式:完成一件事有n 类不同方案,在第1类方案中有1m 种不同的方法,在第2类方案中有2m 种不同的方法,……,在第n 类方案中有n m 种不同的方法,那么完成这件事共有N=1m +2m +……+n m 种不同的方法.2.分步乘法计数原理(乘法原理)的概念一般形式:完成一件事需要n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事共有N=12n m m m ⨯⨯⨯…种不同的方法.3.两个原理的区别:(1)“每类”间与“每步”间的关系不同:分类加法计数原理中的每一类方案中的任何一种方法、不同类之间的任何一种方法都是相互独立,互不依赖的,且是一次性的;而分步乘法计数原理中的每一步是相互依赖,且是连续性的.(2)“每类”与“每步”完成的效果不同:分类加法计数原理中所描述的每一种方法完成后,整个事件就完成了,而分步乘法计数原理中每一步中的每一种方法得到的只是中间结果,任何一步都不能独立完成这件事.4.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行,同时要优先考虑题中的限制条件.【注1】1.计数问题中如何判定是分类加法计数原理还是分步乘法计数原理:如果已知的每类方法中的每一种方法都能单独完成这件事,用分类加法计数原理;如果每类方法中的每一种方法只能完成事件的一部分,用分步乘法计数原理.2.利用分类计数原理解决问题时:(1)将一个比较复杂的问题分解为若干个“类别”,先分类解决,然后将其整合,如何合理进行分类是解决问题的关键.(2)要准确把握分类加法计数原理的两个特点:①根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏;②分类时,注意完成这件事情的任何一种方法必须属于某一类,不能重复;③对于分类问题所含类型较多时也可考虑使用间接法.3.利用分步乘法计数原理解决问题时要注意:(1)要按事件发生的过程合理分步,即考虑分步的先后顺序.(2)各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这个事件.(3)对完成各步的方法数要准确确定.4.用两个计数原理解决计数问题时,关键是明确需要分类还是分步.(1)分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到“步骤完整”,只有完成了所有步骤,才完成任务,根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.(3)对于复杂问题,可同时运用两个计数原理或借助列表、画图的方法来帮助分析,使问题形象化、直观化.(4)在应用分类加法计数原理和分步乘法计数原理时,一般先分类再分步,每一步当中又可能用到分类加法计数原理.5.在解决具体问题时,首先必须弄清楚是“分类”还是“分步”,接着还要搞清楚“分类”或者“分步”的具体标准是什么.(1)分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.(2)分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的.6.分类加法计数原理的两个条件:(1)根据问题的特点能确定一个适合于它的分类标准,然后在这个标准下进行分类;(2)完成这件事的任何一种方法必须属于某一类,并且分别属于不同类的两种方法是不同的方法,只有满足这些条件,才可以用分类加法计数原理.分步乘法计数原理的两个条件:(1)明确题目中的“完成这件事”是什么,确定完成这件事需要几个步骤,且每步都是独立的.(2)将完成这件事划分成几个步骤来完成,各步骤之间有一定的连续性,只有当所有步骤都完成了,整个事件才算完成,这是分步的基础,也是关键.从计数上来看,各步的方法数的积就是完成事件的方法总数.7应用两种原理解题(1)分清要完成的事情是什么?(2)分清完成该事情是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;(3)有无特殊条件的限制;(4)检验是否有重漏.8.涂色问题:涂色问题是由两个基本原理和排列组合知识的综合运用所产生的一类问题,这类问题是计数原理应用的典型问题,由于涂色本身就是策略的一个运用过程,能较好地考查考生的思维连贯性与敏捷性,加之涂色问题的趣味性,自然成为新课标高考的命题热点.涂色问题的关键是颜色的数目和在不相邻的区域内是否可以使用同一种颜色,具体操作法和按照颜色的数目进行分类法是解决这类问题的首选方法.涂色问题的实质是分类与分步,一般是整体分步,分步过程中若出现某一步需分情况说明时还要进行分类.涂色问题通常没有固定的方法可循,只能按照题目的实际情况,结合两个基本原理和排列组合的知识灵活处理.【注2】(1)用两个计数原理解决计数问题时,关键是在开始之前要进行仔细分析——需要分类还是需要分步,分类时要注意不重不漏,分步时要注意整个事件的完成步骤.(2)两个原理的区别:①“每类”间与“每步”间的关系不同:分类加法计数原理中的每一类方案中的任何一种方法、不同类之间的任何一种方法都是相互独立,互不依赖的,且是一次性的;而分步乘法计数原理中的每一步是相互依赖,且是连续性的.②“每类”与“每步”完成的效果不同:分类加法计数原理中所描述的每一种方法完成后,整个事件就完成了,而分步乘法计数原理中每一步中的每一种方法得到的只是中间结果,任何一步都不能独立完成这件事.(3)本题定义了新概念“回文数”,然后以此为出发点设置了求五位“回文数”的个数问题.求解时充分依据题设条件与“回文数”的定义,运用分步、分类计数原理,逐一分析探求“回文数”的形成过程,从而确定其个数使得问题获解.典型例题例1图书馆的书架有三层,第一层有3本不同的数学书,第二层有5本不同的语文书,第三层有8本不同的英语书,现从中任取一本书,共有()种不同的取法.A.120 B.16 C.64 D.39【答案】B++=本书,则从中任取一本书,共有16种不同的取法,故选B.【解析】由于书架上有35816例2只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,则这样的四位数有()A.6个B.9个C.18个D.36个【答案】C【解析】由题意知,1,2,3中必有某一个数字重复使用2次,第一步确定谁被使用2次,有3种方法;第二步把这2个相等的数放在四位数不相邻的两个位置上,也有3种方法;第三步将余下的2个数放在四位数余下的2个位置上,有2种方法.故共可组成3×3×2=18个不同的四位数.例3如图所示,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24 B.18 C.12 D.9【答案】B【解析】从E F →的最短路径有6种走法,从F G →的最短路径有3种走法,由乘法原理知,共6318⨯=种走法.故选B .例4某校的A 、B 、C 、D 四位同学准备从三门选修课中各选一门,若要求每门选修课至少有一人选修,且A,B 不选修同一门课,则不同的选法有( )A . 36种B . 72种C . 30种D . 66种【答案】C【解析】先从4人中选出2人作为1个整体有246C =种选法,减去A B 、在同一组还有5种选法,再选 例5用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( )A .144个B .120个C .96个D .72个【答案】B【解析】据题意,万位上只能排4、5.若万位上排4,则有342A ⨯个;若万位上排5,则有343A ⨯个.所以共有342A ⨯343524120A +⨯=⨯=个.选B . 例6图书馆的书架有三层,第一层有3本不同的数学书,第二层有5本不同的语文书,第三层有8本不同的英语书,现从中任取一本书,共有( )种不同的取法.A .120B .16C .64D .39 【答案】B【解析】由于书架上有35816++=本书,则从中任取一本书,共有16种不同的取法,故选B .例7只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,则这样的四位数有( ) A .6个B .9个C .18个D .36个 【答案】C【解析】由题意知,1,2,3中必有某一个数字重复使用2次,第一步确定谁被使用2次,有3种方法;第二步把这2个相等的数放在四位数不相邻的两个位置上,也有3种方法;第三步将余下的2个数放在四位数余下的2个位置上,有2种方法.故共可组成3×3×2=18个不同的四位数.例8某通讯公司推出一组 卡号码,卡号的前七位数字固定,后四位数从“0000”到“9999”共10000个号码.公司规定:凡卡号的后四位带数字“5”或“8”的一律作为“金马卡”,享受一定优惠政策,则这组号码中“金马卡”的个数为( )A .2000B .4096C .5904D .8320【答案】C【解析】先考虑卡号的后四位不带数字“5”与“8”的号码共有4864644096=⨯=个,所以卡号前七位数字固定,后四位带数字“中5”或“8”的卡号共有1000040965904-=个,故选C .例9某班2名同学准备报名参加浙江大学、复旦大学和上海交大的自主招生考试,要求每人最多选报两所学校,则不同的报名结果有( )A .33种B .24种C .27种D .36种【答案】D例10从1,2,…,9这九个数字中,任意抽取两个相加所得的和为奇数的不同代数式的种数是( )A . 6B . 9C . 20D . 25【答案】C【解析】有5个奇数,4个偶数,所以要使和为奇数必取一奇一偶,即有54=20⨯ 种,选C .例11按ABO 血型系统学说,每个人的血型为A ,B ,O ,AB 型四种之一,依血型遗传学,当且仅当父母中至少有一人的血型是AB 型时,子女的血型一定不是O 型,若某人的血型的O 型,则父母血型的所有可能情况有( )A .12种B .6种C .10种D .9种【答案】D【解析】其父母血型一定不为AB 型,那么从剩余的三种血型中选择,共有339⨯=种,故选D .例12有5列火车停在某车站并列的5条轨道上,若火车A 不能停在第1道上,则5列火车的停车方法共有( )A . 96种B . 24种C . 120种D . 12种【答案】A【解析】先安排火车A 有4种方法,再安排剩下4列火车有44A 种方法,因此共有44496A = 方法,选A .例13把5名师范大学的毕业生分配到A 、B 、C 三所学校,每所学校至少一人。

6.1 分类加法计数原理与分步乘法计数原理第1课时PPT课件(人教版)

6.1 分类加法计数原理与分步乘法计数原理第1课时PPT课件(人教版)

探究一
探究二
探究三
素养形成
当堂检测
解:(1)分四类:第1类,从一班学生中选1人,有7种选法;第2类,从二班 学生中选1人,有8种选法;第3类,从三班学生中选1人,有9种选法;第4 类,从四班学生中选1人,有10种选法. 由分类加法计数原理知共有不同的选法N=7+8+9+10=34(种). (2)分四步:第1、2、3、4步分别从一、二、三、四班学生中选一 人任组长.
加法计数原理知共有不同的选法
N=7×8+7×9+7×10+8×9+8×10+9×10=431(种).
探究一
探究二
探究三
素养形成
当堂检测
反思感悟 1.使用两个原理的原则 使用两个原理解题时,一定要从“分类”“分步”的角度入手.“分类”是 对于较复杂应用问题的元素分成互相排挤的几类,逐类解决,用分 类加法计数原理;“分步”就是把问题分化为几个互相关联的步骤,然 后逐步解决,这时可用分步乘法计数原理. 2.应用两个计数原理计数的四个步骤 (1)明确完成的这件事是什么. (2)思考如何完成这件事. (3)判断它属于分类还是分步,是先分类后分步,还是先分步后分类. (4)选择计数原理进行计算.
探究二探Leabharlann 三素养形成当堂检测
变式训练2要从教学楼的一层走到三层,已知从一层到二层有4个扶 梯可走,从二层到三层有2个扶梯可走,则从一层到三层有多少种不 同的走法? 解:第1步,从一层到二层有4种不同的走法; 第2步,从二层到三层有2种不同的走法. 根据分步乘法计数原理知,从教学楼的一层到三层的不同走法有
探究一
探究二
探究三
素养形成
当堂检测
反思感悟 1.分类加法计数原理的推广 分类加法计数原理:完成一件事有n类不同的方案,在第1类方案中 有m1种不同的方法,在第2类方案中有m2种不同的方法,……,在第n 类方案中有mn种不同的方法,那么完成这件事共有 N=m1+m2+m3+…+mn种不同的方法. 2.能用分类加法计数原理解决的问题具有如下特点 (1)完成一件事有若干种方案,这些方案可以分成n类; (2)用每一类中的每一种方法都可以单独完成这件事; (3)把各类的方法数相加,就可以得到完成这件事的所有方法数.

核按钮(新课标)高考数学一轮复习第十章计数原理、概率、随机变量及其分布10.1分类加法计数原理与分步

核按钮(新课标)高考数学一轮复习第十章计数原理、概率、随机变量及其分布10.1分类加法计数原理与分步
第五页,共25页。
3.两个计数原理的区别 分类加法计数原理和分步乘法计数原理解决的都是有关做一件事的不 同方法的种数问题,区别在于:分类加法计数原理针对的是“分类”问题, 其中各种方法______________,用其中______________都可以做完这件事; 分步乘法计数原理针对的是“分步”问题,各个步骤中的方法 ______________,只有______________才算做完这件事. 4.两个计数原理解决计数问题时的方法 最重要的是在开始计算之前要进行仔细分析——是需要分类还是需要 分步. (1)分类要做到“______________”.分类后再分别对每一类进行计数, 最后用分类加法计数原理求和,得到总数. (2)分步要做到“______________”,即完成了所有步骤,恰好完成任务, 当然步与步之间要______________,分步后再计算每一步的方法数,最后 根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.
(2)分两步:先选教师,共 3 种选法,再选学生,共 6+8=14 种选法.由分步乘法计数原理知总选法数为 3×14=42(种).
(3)老师、男同学、女同学各一人可分三步,每步方法数依次为 3、6、8 种.由分步乘法计数原理知选法数为 3×6×8=144(种).
第十六页,共25页。
类型二 两个原理的综合应用
第十五页,共25页。
有一项活动需在 3 名老师,6 名男同学和 8 名女同学中选 人参加.
(1)若只需一人参加,有多少种不同选法? (2)若需一名老师,一名学生参加,有多少种不同选法? (3)若需老师、男同学、女同学各一人参加,有多少种不同选法?
解:(1)只需一人参加,可按老师、男同学、女同学分三类,各 自有 3、6、8 种选法,总选法数为 3+6+8=17(种).

高考数学一轮复习 第十章 计数原理 第1讲 分类加法计数原理与分步乘法计数原理 理

第十章计数原理第1讲分类加法计数原理与分步乘法计数原理一、选择题1.如图,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有( )A.72种.48种C.24种 D.12种解析先分两类:一是四种颜色都用,这时A有4种涂法,B有3种涂法,C有2种涂法,D有1种涂法,共有4×3×2×1=24种涂法;二是用三种颜色,这时A,B,C的涂法有4×3×2=24种,D只要不与C同色即可,故D有2种涂法.故不同的涂法共有24+24×2=72种.答案 A2.如图,用6种不同的颜色把图中A、B、C、D四块区域分开,若相邻区域不能涂同一种颜色,则不同的涂法共有( ).A.400种 B.460种C.480种 D.496种解析从A开始,有6种方法,B有5种,C有4种,D、A同色1种,D、A不同色3种,∴不同涂法有6×5×4×(1+3)=480(种),故选C.答案 C3.某省高中学校自实施素质教育以来,学生社团得到迅猛发展,某校高一新生中的五名同学打算参加“春晖文学社”、“舞者轮滑俱乐部”、“篮球之家”、“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团.且同学甲不参加“围棋苑”,则不同的参加方法的种数为( ).A.72 B.108 C.180 D.216解析设五名同学分别为甲、乙、丙、丁、戊,由题意,如果甲不参加“围棋苑”,有下列两种情况:(1)从乙、丙、丁、戊中选一人(如乙)参加“围棋苑”,有C14种方法,然后从甲与丙、丁、戊共4人中选2人(如丙、丁)并成一组与甲、戊分配到其他三个社团中,有C24A33种方法,故共有C14C24A33种参加方法;(2)从乙、丙、丁、戊中选2人(如乙、丙)参加“围棋苑”,有C24种方法,甲与丁、戊分配到其他三个社团中有A33种方法,这时共有C24A33种参加方法;综合(1)(2),共有C14C24A33+C24A33=180种参加方法.答案 C4.有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有( )A.8种 B.9种C.10种 D.11种解析分四步完成,共有3×3×1×1=9种.答案 B5.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有( ).A.300种B.240种C.144种D.96种解析甲、乙两人不去巴黎游览情况较多,采用排除法,符合条件的选择方案有C46A44-C12A35=240.答案 B6.4位同学从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法有( ).A.12种 B.24种 C.30种 D.36种解析分三步,第一步先从4位同学中选2人选修课程甲.共有C24种不同选法,第二步给第3位同学选课程,有2种选法.第三步给第4位同学选课程,也有2种不同选法.故共有C24×2×2=24(种).答案 B二、填空题7.将数字1,2,3,4,5,6按第一行1个数,第二行2个数,第三行3个数的形式随机排列,设N i(i=1,2,3)表示第i行中最大的数,则满足N1<N2<N3的所有排列的个数是________.(用数字作答)解析由已知数字6一定在第三行,第三行的排法种数为A13A25=60;剩余的三个数字中最大的一定排在第二行,第二行的排法种数为A12A12=4,由分步计数原理满足条件的排列个数是240.答案2408.数字1,2,3,…,9这九个数字填写在如图的9个空格中,要求每一行从左到右依次增大,每列从上到下也依次增大,当数字4固定在中心位置时,则所有填写空格的方法共有________种.解析必有1、4、9在主对角线上,2、3只有两种不同的填法,对于它们的每一种填法,5只有两种填法.对于5的每一种填法,6、7、8只有3种不同的填法,由分步计数原理知共有22×3=12种填法.答案129.如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.解析当相同的数字不是1时,有C13个;当相同的数字是1时,共有C13C13个,由分类加法计数原理得共有“好数”C13+C13C13=12个.答案1210.给n个自上而下相连的正方形着黑色或白色.当n≤4时,在所有不同的着色方案中,黑色正方形互不相邻的着色方案如下图所示:由此推断,当n=6时,黑色正方形互不相邻的着色方案共有__________种,至少有两个黑色正方形相邻的着色方案共有________种.(结果用数值表示)答案 21;43三、解答题11.如图所示三组平行线分别有m、n、k条,在此图形中(1)共有多少个三角形?(2)共有多少个平行四边形?解(1)每个三角形与从三组平行线中各取一条的取法是一一对应的,由分步计数原理知共可构成m·n·k个三角形.(2)每个平行四边形与从两组平行线中各取两条的取法是一一对应的,由分类和分步计数原理知共可构成C2m C2n+C2n C2k+C2k C2m个平行四边形.12.设集合M={-3,-2,-1,0,1,2},P(a,b)是坐标平面上的点,a,b∈M.(1)P可以表示多少个平面上的不同的点?(2)P可以表示多少个第二象限内的点?(3)P可以表示多少个不在直线y=x上的点?解(1)分两步,第一步确定横坐标有6种,第二步确定纵坐标有6种,经检验36个点均不相同,由分步乘法计数原理得N=6×6=36(个).(2)分两步,第一步确定横坐标有3种,第二步确定纵坐标有2种,根据分步乘法计数原理得N=3×2=6个.(3)分两步,第一步确定横坐标有6种,第二步确定纵坐标有5种,根据分步乘法计数原理得N=6×5=30个.13.现安排一份5天的工作值班表,每天有一个人值班,共有5个人,每个人都可以值多天班或不值班,但相邻两天不准由同一个人值班,问此值班表共有多少种不同的排法?解可将星期一、二、三、四、五分给5个人,相邻的数字不分给同一个人.星期一:可分给5人中的任何一人,有5种分法;星期二:可分给剩余4人中的任何一人,有4种分法;星期三:可分给除去分到星期二的剩余4人中的任何一人,有4种分法;同理星期四和星期五都有4种不同的分法,由分步计数原理共有5×4×4×4×4=1 280种不同的排法.14.已知集合A={a1,a2,a3,a4},B={0,1,2,3},f是从A到B的映射.(1)若B中每一元素都有原象,这样不同的f有多少个?(2)若B中的元素0必无原象,这样的f有多少个?(3)若f满足f(a1)+f(a2)+f(a3)+f(a4)=4,这样的f又有多少个?解(1)显然对应是一一对应的,即为a1找象有4种方法,a2找象有3种方法,a3找象有2种方法,a4找象有1种方法,所以不同的f共有4×3×2×1=24(个).(2)0必无原象,1,2,3有无原象不限,所以为A中每一元素找象时都有3种方法.所以不同的f共有34=81(个).(3)分为如下四类:第一类,A中每一元素都与1对应,有1种方法;第二类,A中有两个元素对应1,一个元素对应2,另一个元素与0对应,有C24·C12=12种方法;第三类,A中有两个元素对应2,另两个元素对应0,有C24·C22=6种方法;第四类,A中有一个元素对应1,一个元素对应3,另两个元素与0对应,有C14·C13=12种方法.所以不同的f共有1+12+6+12=31(个).。

6.1分类加法计数原理与分步乘法计数原理课件(人教版)

第六章 计数原理
6.1 分类加法计数原理 与分步乘法计数原理
1.理解分类加法计数原理与分步乘法 计数原理.(重点) 2.会用这两个原理分析和解决一些简 单的实际计数问题.(难点)
1.核糖核酸(RNA)分子有碱基按一定顺序排列而成。 已知碱基有4种,但由成百上千个碱基组成的RNA分 子的种数非常巨大。为什么?
B 果将这 2 个新节目插人节目单中,那么不同的插法种数为( )
A.12
B.20
C.36
D.120
解析:利用分步计数原理,第一步插入第一个新节目,有 4 种方法,第二步插 入第二个新节目,此时有 5 个空,故有 5 种方法.因此不同的插法共有 45 20 种.故选 B.
2.如图,用 4 种不同的颜色对 A,B,C,D 四个区域涂色,要求相邻的两个区
工程学
如果这名同学只能选一个专业,那么他共有多少种选择?
解:这名同学可以选择 A,B 两所大学中的一所. 在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方法. 因为没有一个强项专业是两所大学共有的, 所以根据分类加法计数原理, 这名同学可能的专业选择种数为 N 5 4 9 .
完成一件事需要两个步骤,做第 1 步有 m 种不同的方
法,做第 2 步有 n 种不同的方法,那么完成这件事共有 N
=m×n种不同的方法.
例 1 在填写高考志愿表时,一名高中毕业生了解到,A,B
两所大学各有一些自己感兴趣的强项专业,如下表.
A 大学
B 大学
生物学
数学
化学
会计学
医学
信息技术学
物理学
法学Biblioteka 例5 给程序模块命名,需要用3个字符,其中首字符要求用字母 A~G或U~Z,后两个字符要求用数字1~9,最多可以给多少个程 序模块命名?

分类计数原理与分步计数原理 人教课标版精品课件

分步时做到不缺步
答:从书架上的第1、2、3层各取一本书,有24种不同的 取法。
例2 一种号码锁有4个拨号盘,每个拨号盘上有从0到9共 10个数字,这4个拨号盘可以组成多少个四位数字的号码?
解:由于号码锁的每个拨号盘有0到9这10个数字,每个 拨号盘的数字有10种取法。根据分步计数原理,4个拨 号盘上各取1数字组成的个数是
是( C ) A. 12
B.64
C.81
D.7
2、火车上有10名乘客,沿途有5个车站,乘客下车的
可能方式有 ( A )种
A. 510 B. 105 C. 50 D. 以上都不对
总结:
1.分类计数原理:做一件事,完成它可以有 n 类办法,在第一 类办法中有m1种不同的方法,在第一类办法中有m2种不同的方 法,… …,在第n类办法中有mn种不同的方法。那麽完成这件事 共有 N= m1+ m2+… …+ mn 种不同的方法。
大自然给予了我们很多美好的东西,只是我们自己却不知道去好好珍惜,只有当我们在失去后或者犯错了,我们才会去说后悔没有珍惜,希望能给一次机会重新来过,只是这样的重来真的还能重来吗?我们谁都不能去肯定,路,自己选择,自己走下去,也许有人给你使绊,也许有人会拉你一把,但终归还是需要自己去选择,自己亲自去走。人生经历太多,失败了、跌倒了,可以站起来继续走,如果走错了,可以选择正确的路,但我们如果放弃了,就有可能一直停留在那,多年以后,或许你已经被遗忘。
人,活着其实很累,在公司,上有可能需要讨好领导,下还需要和同事打好关系,回家需要处理好家庭的关系,交际需要维护好朋友自己的友谊,一不小心就有可能会各种质疑的话语,让我们心里、身体上背负着更重的压力。
也许经常有这样的场景,喧嚣的闹市,聚会上,热闹非凡,尽情的喝着酒,各种嘈杂,殊不知在心里巴不得这聚会早点结束就好,想着明天还要早起上班,想着家里的妻儿还在幽幽的盼着,而你自己也根本就不喜欢这样的场合,偶尔还可以,时间长了,你已经不知该怎样去选择。年纪越大,时间越来越少,身体越来越没以前那么能抗,而自己明白的事情却越来越迷茫,入夜时分,站在这个城市的中央,越来越觉得生活的选择已经不由的我们自己来做主,只剩下了莫名的伤感。

计数原理(优秀课件)


THANKS
感谢观看
在社会科学中,分类计数原理可以应用于 社会调查和统计分析等方面,例如调查问 卷的数据分析和人口统计等。
03
分步计数原理
定义与解释
定义
分步计数原理,也称为分治法,是计数原理中的一种基本方法。它基于将一个复杂问题分解为若干个 简单子问题,然后分别对每个子问题进行计数,最后将各个子问题的计数结果相乘得到总计数。
同样地,我们考虑第一个学 生有5门课程可以选择,第 二个学生也有5门课程可以 选择,依此类推,直到最后 一个学生。根据分步计数原 理,总的不同选课方案为 $5 times 5 times 5 times ... times 5 = 5^{30}$。
应用场景
应用场景1
在组合数学中,分步计数原理常被用于解决排列组合问题。例如,在求解排列数、组合数 或概率分布时,可以通过将问题分解为若干个子问题,然后利用分步计数原理进行计算。
首先,我们考虑第一个学生 有5门课程可以选择,第二 个学生也有5门课程可以选 择,依此类推,直到最后一 个学生。根据分步计数原理 ,总的不同选课方案为 $5 times 5 times 5 times ... times 5 = 5^{30}$。
一个班有30名学生,每个学 生需要从5门课程中选1门课 程。问有多少种不同的选课 方案?
应用场景2
在计算机科学中,分步计数原理被广泛应用于算法设计和数据结构。例如,在求解图论中 的路径、遍历等问题时,可以利用分步计数原理来计算不同路径的数量。
应用场景3
在实际生活中,分步计数原理也被广泛应用于各种场景。例如,在制定计划或决策时,可 以将整个过程分解为若干个子步骤或子任务,然后利用分步计数原理来计算完成整个任务 所需的总时间或总成本。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档