(完整版)考研数学复习高等数学向量代数与空间解析几何
高等数学 向量代数与空间解析几何 (7.5.2)--曲面和曲线

习题7.51. 过定点(,0,0)R -作球面2222x y z R ++=的弦,求动弦中点的轨迹方程.2. 说出下列曲面方程的名称,并作出草图:(1)222(0)x y az a +=>; (2)222(0)x y az a -=>;(3)222z x y =++;(4)220y x z -+=; (5)2222310x y z -++=; (6)222239x y z ++=.3. 说出下列曲面方程的名称,并作出草图:(1)221x y +=; (2)21x =;(3)220x y -=; (4)30y z -=;(5)2222x y z az ++=; (6)22x az =;(7)22149x y +=; (8)22119x y -=; (9)222x y z -=; (10)22234z x y =+.4. 写出适合下列条件的旋转曲面的方程:(1)曲线2210x z y ⎧+=⎪⎨=⎪⎩绕z 轴旋转一周; (2)曲线221940x y z ⎧+=⎪⎨⎪=⎩绕x 轴旋转一周; (3)曲线2210y z x ⎧-=⎪⎨=⎪⎩绕y 轴旋转一周; (4)曲线250z x y ⎧=⎪⎨=⎪⎩绕x 轴旋转一周. 5. 说明下列旋转曲面是如何形成的并写出它的名称: (1)22214y x z +-=; (2)224x y z +=; (3)2221169z x y +-=; (4)2224x y z +=. 6. 指出下列方程表示的曲线:(1)222253x y z x ⎧++=⎪⎨=⎪⎩; (2)222(1)(4)2510x y z y ⎧-+++=⎪⎨+=⎪⎩; (3)2219420y z x ⎧-=⎪⎨⎪-=⎩; (4)241x y z ⎧=⎪⎨=⎪⎩; 7. (1) 将曲线22216:2x y z C z ⎧++=⎪⎨=⎪⎩表示为参数方程,并求其沿z 轴方向的投影柱面及在xOy 面上的投影曲线;(2) 将曲面22z x y =+与平面1x y z ++=的交线C 表示为参数方程,并求其沿z 轴方向的投影柱面及在xOy 面上的投影曲线;(3) 将曲面2222x y z ++=和22z x y =+的交线C 表示为参数方程,并求其沿x 轴方向的投影柱面及在yOz 面上的投影曲线;(4) 将旋转抛物面22z x y =+与平面1y z +=的交线C 表示为参数方程,并求其在各坐标面上的投影曲线;(5) 分别求母线平行于x 轴和y 轴,且通过曲线222222216:0x y z C x z y ⎧++=⎪⎨+-=⎪⎩的柱面方程; (6) 求柱面22z x =与锥面z =所围立体在三坐标面上的投影区域.8. 把下列曲线C 的参数方程化为一般式方程: (1) cos ,:2cos 1,3sin ,x t C y t z t =⎧⎪=-⎨⎪=⎩ [0,2π]t ∈;(2) ,:x t a C y z =+⎧⎪⎪=⎨⎪=⎪⎩[,]t a a ∈-. 9. 试建立下列曲面的参数方程:(1) 椭圆柱面:220022()()1x x y y a b --+=;(2) 双曲柱面:22221y z a b -=;(3) 双叶双曲面:2222221x y z a b c --+=;(4) 椭圆抛物面:2200022()()x x y yz z a b --+=-;(5) 双曲抛物面:2222x y z a b -=;(6) 二次锥面:2222220x y z a b c +-=.。
考研数学一-向量代数和空间解析几何

考研数学一-向量代数和空间解析几何(总分:110.00,做题时间:90分钟)一、{{B}}选择题{{/B}}(总题数:11,分数:22.00)1.设a,b为非零向量,且a⊥b,则必有(分数:2.00)A.(A) |a+b|=|a|+|b|.B.(B) |a-b|=|a|-|b|.C.(C) |a+b|=|a-b|.√D.(D) a+b=a-b.解析:[分析] 由“非零向量a,b满足|a+b|=|a|+|b|的充要条件是a与b方向相同”可知,(A)不对.由“非零向量a,b满足|a-b|=|a|-|b|的充要条件是a与b方向相反”可知,(B)也不对.对于(C):非零向量a、b垂直时,以a,b为两邻的平行四边形是矩形,而矩阵的对角线长度相等,故必有|a+b|="a-b|,即(C)正确.至于(D),显然不对.综上分析,应选(C).2.直线与平面6x+15y-10z+31=0的夹角ψ为(分数:2.00)A. √B.C.D.解析:[分析] 直线方向向量为故选(A).3.下列曲面中,不是旋转曲面的是(分数:2.00)A.B.C. √D.解析:[分析] (A)是绕x轴旋转而成; (B)是绕y旋转而成; (D)是绕z轴旋转而成. (A),(B),(D)都应排除,故应选(C).4.下列直线对,不共面的是(分数:2.00)A. √B.C.D.解析:[分析] 对于(A):两条直线分别过点M1(-1,0,0)与M2(1,0,2),方向向量分别为对三个向量,由于所以(A)中二直线不共面,故应选(A).5.若单位向量a,b,c满足a+b+c=0,则a·b+b·c+c·a=(分数:2.00)A. √B.C.D.解析:[分析] 由,从而.故选(A).6.已知平面∏:x+2y-z+1=0,曲面z=xy上点P处的法线与平面∏垂直,则点P的坐标为(分数:2.00)A.(A) (1,2,2).B.(B) (2,1,2).√C.(C) (-1,-2,2).D.(D) (-2,-1,2).解析:[分析] z=xy的法向量n={y,x,-1},法线与平面H垂直,从而与平面∏的法向量{1,2,-1}平行,故有,即点P的坐标为(2,1,2).故应选(B).7.设曲面z2-xy=8(z>0)上某点的切平面平行于已知平面x-y+2z-1=0,则该点的坐标为(分数:2.00)A.(A) (-2,2,2).B.(B) (1,-4,2).C.(C) (2,-2,2).√D.(D) (4,-1,2).解析:[分析] 记F(x,y,z)=z2-xy-8,曲面在任意点的法向量n={F'x,F'y,F'z}:{-y,-x,2x}.已知平面的法向量n1={1,-1,2},令n∥n1,即,得x=z=t,y=-t,代入曲面方程F=0,得,因为z=t>0,舍去负值,得切点坐标为(2,-2,2),故应选(C).8.设曲线在点(1,3,4)处的法平面为∏,则原点到∏的距离为(分数:2.00)A.B. √C.D.解析:[分析一] 因在点(1,3,4)处解得dx=4dz,,即,故曲线在点(1,3,4)法平面的法向量,法平面∏的方程为12(x-1)-4(y-3)+3(z-4)=0,即12x-4y+3z-12=0,于是原点到∏的距离故应选(B).[分析二] 曲线在点(1,3,4)处法平面的法向量下同[分析一].9.设非零向量a与b不平行,c=(a×b)×a,则(分数:2.00)A.B. √C.D.解析:[分析] 如下图所示.因,故应选(B).评注若a⊥b,则(a×b)×a=λb,=0.10.过点M0(1,-1,1)与平面x=y+2z=1平行且与相交的的直线方程为(分数:2.00)A. √B.C.D.解析:[分析一]于是[分析二] 过B的直线方程为L:过A与L垂直的平面方程为∏:6(x-3)+6(y-4)+7(z-2)=0,即6x+6y+7z-56=0。
(完整版)空间解析几何与向量代数习题与答案

第七章 空间解析几何与向量代数A一、1、平行于向量)6,7,6(-=a 的单位向量为______________.2、设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角.3、设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴上的投影,及在y 轴上的分向量. 二、1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(⨯⋅-⨯⋅及;及(3)a 、b 的夹角的余弦.2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.2、方程0242222=++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22=绕x 轴旋转一周,生成的曲面方程为_______________,曲面名称为___________________.2)将xOy 坐标面上的x y x 222=+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________.3)将xOy 坐标面上的369422=-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________.4)在平面解析几何中2x y =表示____________图形。
在空间解析几何中2x y =表示______________图形.5)画出下列方程所表示的曲面 (1))(4222y x z += (2))(422y x z += 四、1、指出方程组⎪⎩⎪⎨⎧==+319y 4x 22y 在平面解析几何中表示____________图形,在空间解 析几何中表示______________图形.2、求球面9222=++z y x 与平面1=+z x 的交线在xOy 面上的投影方程. 3、求上半球2220y x a z --≤≤与圆柱体)0(22>≤+a ax y x 的公共部分在xOy 面及xOz 面上的投影. 五、1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求过点(1,1,-1),且平行于向量a =(2,1,1)和b =(1,-1,0)的平面方程.3、求平行于xOz 面且过点(2,-5,3)的平面方程.4、求平行于x 轴且过两点(4,0,-2)和(5,1,7)的平面方程. 六、1、求过点(1,2,3)且平行于直线51132-=-=z y x 的直线方程. 2、求过点(0,2,4)且与两平面12=+z x ,23=-z y 平行的直线方程.3、求过点(2,0,-3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程.4、求过点(3,1,-2)且通过直线12354zy x =+=-的平面方程. 5、求直线⎩⎨⎧=--=++003z y x z y x 与平面01=+--z y x 的夹角.6、求下列直线与直线、直线与平面的位置关系 1)直线⎩⎨⎧=++-=-+7272z y x z y x 与直线11321-=--=-zy x ; 2)直线431232--=+=-z y x 和平面x+y+z=3. 7、求点(3,-1,2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离.B1、已知0=++c b a (c b a ,,为非零矢量),试证:a c c b b a ⨯=⨯=⨯.2、),(},1,1,1{,3b a b a b a ∠=⨯=⋅求.3、已知和为两非零向量,问取何值时,向量模||tb a +最小?并证明此时)(tb a b +⊥.4、求单位向量,使a n ⊥且x n ⊥轴,其中)8,6,3(=a .5、求过轴,且与平面052=-+z y x 的夹角为3π的平面方程. 6、求过点)2,1,4(1M ,)1,5,3(2--M ,且垂直于07326=++-z y x 的平面.7、求过直线⎩⎨⎧=--+=-+-022012z y x z y x ,且与直线:211zy x =-=平行的平面.8、求在平面:1=++z y x 上,且与直线⎩⎨⎧-==11z y L :垂直相交的直线方程.9、设质量为kg 100的物体从空间点)8,1,3(1M ,移动到点)2,4,1(2M ,计算重力所做的功(长度单位为).10、求曲线⎩⎨⎧==-+30222z x z y 在xoy 坐标面上的投影曲线的方程,并指出原曲线是什么曲线?11、已知k j OB k i OA 3,3+=+=,求OAB ∆的面积 12、.求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面14=+-z y x 上的投影直线方程.C1、设向量c b a ,,有相同起点,且0=++c b a γβα,其中0=++γβα,γβα,,不全为零,证明:c b a ,,终点共线.2、求过点)1,2,1(0-M ,且与直线:121122=--=+y x 相交成3π角的直线方程. 3、过)4,0,1(-且平行于平面01043=-+-z y x 又与直线21311zy x =-=+相交的直线方程. 4、求两直线:1101-=-=-z y x 与直线:0236+=-=z y x 的最短距离. 5、柱面的准线是xoy 面上的圆周(中心在原点,半径为1),母线平行于向量}1,1,1{=g ,求此柱面方程.6、设向量a,b 非零,3),(,2π==b a b ,求xaxb a x -+→0lim.7、求直线⎪⎩⎪⎨⎧--==)1(212:y z y x L 绕y 轴旋转一周所围成曲面方程. 第七章 空间解析几何与向量代数习 题 答 案A一、1、⎩⎨⎧⎭⎬⎫-±116,117,116 2、21M M =2,21cos ,22cos ,21cos ==-=γβα,3,43,32πγπβπα=== 3、在x 轴上的投影为13,在y 轴上的分量为7j 二、1、1)3)1()2(2)1(13=-⋅-+⋅-+⋅=⋅b ak j i k j i b a 75121213++=---=⨯(2)18)(63)2(-=⋅-=⋅-b a b a ,k j i b a b a 14210)(22++=⨯=⨯ (3)2123),cos(^=⋅⋅=b a b a b a 2、}2,2,0{},1,4,2{3221-=-=M M M Mk j i kj iM M M M a 4462201423221--=--=⨯= }1724,1724,1726{--±=±a a 即为所求单位向量。
(完整版)高等数学第七章向量

第七章 空间解析几何与向量代数§7.1 空间直角坐标系§7.2 向量及其加减法、向量与数的乘法一、判断题。
1. 点(-1,-2,-3)是在第八卦限。
( ) 2. 任何向量都有确定的方向。
( ) 3. 任二向量b a ,=.则a =b 同向。
( ) 4. 若二向量b a ,+,则b a ,同向。
( )5. 若二向量b a ,满足关系b a -=a +b,则b a ,反向。
( )6. 若ca b a +=+,则c b =( ) 7. 向量ba ,满足=,则ba ,同向。
( ) 二、填空题。
1. 点(2,1,-3)关于坐标原点对称的点是2. 点(4,3,-5)在 坐标面上的投影点是M (0,3,-5) 3. 点(5,-3,2)关于 的对称点是M (5,-3,-2)。
4. 设向量a 与b 有共同的始点,则与b a ,共面且平分a 与b 的夹角的向量为 5. 已知向量a 与b 方向相反,且||2||a b =,则b 由a 表示为b = 。
6.设b a ,有共同的始点,则以b a ,为邻边的平行四边形的两条对角线的向量分别为 。
三、选择题。
1.点(4,-3,5)到oy 轴的距离为 (A )2225)3(4+-+ (B )225)3(+-(C )22)3(4-+ (D )2254+ 2.已知梯形OABC 、CB //OA 且21a ,OC =b ,则AB = (A )21b a - (B )b a 21- (C )a b -21 (D )a b 21-3.设有非零向量b a ,,若a ⊥ b ,则必有(A+(B+-(C+<-(D+>-三、试证明以三点A(4,1,9)、B(10,-1,6)、C(2,4,3)为顶点的三角形为等腰直角三角形。
四、在yoz平面上求与三个已知点A(3,1,2)、B(4,-2,-2)、C(0,5,1)等距离的点D。
六、用向量方法证明:三角形两边中点的连线平行与第三边,且长度为第三边的一半。
高等数学第七章 向量代数与空间解析几何

第七章向量代数与空间解析几何空间解析几何是多元函数微积分学必备的基础知识.本章首先建立空间直角坐标系,然后引进有广泛应用的向量代数,以它为工具,讨论空间的平面和直线,最后介绍空间曲面和空间曲线的部分内容.第一节空间直角坐标系平面解析几何是我们已经熟悉的,所谓解析几何就是用解析的,或者说是代数的方法来研究几何问题.坐标法把代数与几何结合起来.代数运算的基本对象是数,几何图形的基本元素是点.正如我们在平面解析几何中所见到的那样,通过建立平面直角坐标系使几何中的点与代数的有序数之间建立一一对应关系.在此基础上,引入运动的观点,使平面曲线和方程对应,从而使我们能够运用代数方法去研究几何问题.同样,要运用代数的方法去研究空间的图形——曲面和空间曲线,就必须建立空间内点与数组之间的对应关系.一、空间直角坐标系空间直角坐标系是平面直角坐标系的推广.过空间一定点O,作三条两两互相垂直的数轴,它们都以O为原点.这三条数轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴),统称坐标轴.它们的正方向按右手法则确定,即以右手握住z轴,右手的四个手指指向x轴的正向以π2角度转向y轴的正向时,大拇指的指向就是z轴的正向(图7-1),这样的三条坐标轴就组成了一空间直角坐标系Oxyz,点O叫做坐标原点.图7-1三条坐标轴两两分别确定一个平面,这样定出的三个相互垂直的平面:xOy,yOz,zOx,统称为坐标面.三个坐标面把空间分成八个部分,称为八个卦限,上半空间(z>0)中,从含有x 轴、y轴、z轴正半轴的那个卦限数起,按逆时针方向分别叫做Ⅰ,Ⅱ,Ⅲ,Ⅳ卦限,下半空间(z<0)中,与Ⅰ,Ⅱ,Ⅲ,Ⅳ四个卦限依次对应地叫做Ⅴ,Ⅵ,Ⅶ,Ⅷ卦限(图7-2).图7-2确定了空间直角坐标系后,就可以建立起空间点与数组之间的对应关系.设M为空间的一点,过点M作三个平面分别垂直于三条坐标轴,它们与x轴、y轴、z 轴的交点依次为P、Q、R(图7-3).这三点在x轴、y轴、z轴上的坐标依次为x,y,z.这样,空间的一点M就惟一地确定了一个有序数组(x,y,z),它称为点M的直角坐标,并依次把x,y和z叫做点M的横坐标,纵坐标和竖坐标.坐标为(x,y,z)的点M通常记为M(x,y,z).图7-3反过来,给定了一有序数组(x,y,z),我们可以在x轴上取坐标为x的点P,在y轴上取坐标为y的点Q,在z轴上取坐标为z的点R,然后通过P、Q与R分别作x轴,y轴与z 轴的垂直平面,这三个平面的交点M就是具有坐标(x,y,z)的点(图7-3).从而对应于一有序数组(x,y,z),必有空间的一个确定的点M.这样,就建立了空间的点M和有序数组(x,y,z)之间的一一对应关系.如图7-3所示x轴,y轴和z轴上的点的坐标分别为P(x,0,0),Q(0,y,0),R(0,0,z);xOy面,yOz面和zOx面上的点的坐标分别为A(x,y,0),B(0,y,z),C(x,0,z);坐标原点O的坐标为O(0,0,0).它们各具有一定的特征,应注意区分.二、空间两点间的距离设M1(x1,y1,z1)、M2(x2,y2,z2)为空间两点,为了用两点的坐标来表达它们间的距离d,我们过M1,M2各作三个分别垂直于三条坐标轴的平面.这六个平面围成一个以M1,M2为对角线的长方体(图7-4).根据勾股定理,有图7-4|M 1M 2|2=|M 1N |2+|NM 2|2=|M 1P |2+|M 1Q |2+|M 1R |2.由于|M 1P |=|P 1P 2|=|x 2-x 1|,|M 1Q |=|Q 1Q 2|=|y 2-y 1|,|M 1R |=|R 1R 2|=|z 2-z 1|,所以d =|M 1M 2|=212212212)()()(z z y y x x -+-+-,这就是两点间的距离公式.特别地,点M (x,y,z )与坐标原点O (0,0,0)的距离为d =|OM |=222z y x ++。
考研数学之高等数学讲义第五章(考点知识点+概念定理总结)

82 第五章 向量代数与空间解析几何§5.1 向量代数(甲)内容要点内容要点一、空间直角坐标系一、空间直角坐标系 二、向量概念二、向量概念®a =®i x +®j y +®k z坐标()z y x ,,模®a =222z y x ++ 方向角g b a ,,方向余弦g b a cos ,cos ,cosa cos =222zy x x ++ ;b cos =222zy x y ++ ;g cos =222zy x z ++三、向量运算三、向量运算设®a ()11,1,z y x ;®b ()22,2,z y x ;®c ()33,3,z y x 1. 加(减)法加(减)法®a ±®b =()2121,21,z z y y x x ±±± 2. 数乘数乘 ()111,,z y x a l l l l =®3. 数量积(点乘)(ⅰ)定义®a ·®b =®a®b ÷øöçèæ®®Ðb a ,cos (ⅱ)坐标公式®a ·®b =21x x +21y y +21z z (ⅲ)重要应用®a ·®b =0Û®a ^®b4.向量积(叉乘)(ⅰ)定义®a ´®b =®®ba ÷øöçèæ®®Ðb a ,sin ®a ´®b 与®a 和®b 皆垂直,且®a ,®b ,®a ´®b 构成右手系构成右手系83(ⅱ)坐标公式®a ´®b =222111z y x z y x k j i®®®(ⅲ)重要应用®a ´®b =®0Û®a ,®b 共线共线5、混合积、混合积 (ⅰ)定义(ⅰ)定义(®a ,®b ,®c )=(®a ´®b )·®c (ⅱ)坐标公式(®a ,®b ,®c )=333222111z y x z y x z y x (ⅲ)÷øöçèæ®®®c b a ,,表示以®a ,®b ,®c 为棱的平行六面体的体积为棱的平行六面体的体积§5.2 平面与直线(甲)内容要点(甲)内容要点一、一、 空间解析几何空间解析几何1 空间解析几何研究的基本问题。
高等数学第七章空间解析几何与向量代数课件.ppt
D
b a BD
2 MB
b M
MA
1 2
(
a
b
)
MB
1 2
(
b
a
)
A
a
MC
1 2
(
a
b
)
MD
1 2
(
b
a
)
首页
上页
返回
下页
结束
C B
第9页,共33页。
三、空间直角坐标系
1. 空间直角坐标系的基本概念
过空间一定点 o ,由三条互相垂直的数轴按右手规则
组成一个空间直角坐标系.
• 坐标原点
Ⅲ
z z 轴(竖轴)
和
计算向量
的模 、方向余弦和方向角 .
解: M1M 2 ( 1 2, 3 2 , 0 2 ) (1, 1, 2 )
(1)2 12 ( 2)2 2
cos 1 , cos 2
2
2
2 ,
,
3
3
3
4
首页
上页
返回
下页
结束
第21页,共33页。
3. 向量在轴上的投影与投影定理
z
r
在三个坐标轴上的分向量:
cos
x r
x x2 y2 z2
z
r
o
y
x
首页
上页
返回
下页
结束
第19页,共33页。
cos x
r
cos y
r
cos rz
x x2 y2 z2
y x2 y2 z2
z x2 y2 z2
方向余弦的性质:
z
r
o
y
向量代数与空间解析几何(11)
21,
cos
1 2
,
cos
22;
2
3
,
3
,
3
4
27
例2. 已知两点A(4, 0, 5)和B(7, 1, 3). 求方向和AB 一致的单位向量.
解: AB = {3, 1, 2} |AB| 32 12 (2)2 14
a AB { 3 , 1 , 2 } | AB | 14 14 14
azk,
b bxi by j bzk
a
b
(axi
ay j
az
k)
(bx
i
by
j
bzk
)
i jk, i j j k k i 0,
| i || j || k | 1,
i i j j k k 1. a b axbx a yby azbz
37
数量积的坐标表达式
a
b
|
a
||
b
|
cos
a b axbx a yby azbz
两向量夹角余弦的坐标表示式
cos
axbx a yby azbz
ax 2 a y2 az 2 bx 2 by2 bz 2
ab
axbx a yby azbz 0
38
例 a
1 b
;已(知2)aa与{1b,1的,夹4}角,b
(2)掌握向量的线性运算、向量的数量积与向量积计算 方法。
(3)掌握二向量平行、垂直的件。
1
1、向量的概念
M2
向量:既有大小又有方向的量.
向量表示:a 或 M1M2
M1
以 M 1为起点,M 2
向量的模: 向量的大小.
高等数学(第八章)向量代数与空间解析几何(全)
若向量a = x1i y1 j z1k,b = x2i y2 j z2k,由数量积的运算性质得
a b = x1x2 y1 y2 z1z2.
设非零向量a = x1, y1, z1,b = x2, y2, z2,则
(1) | a | a a x12 y12 z12;
(2) cos a, b a b
2
向量代数与空间解析几何
空间直角坐标系
一、空间直角坐标系 空间两点间的距离
向量的概念---大小,方向,相等,向径,坐标等.
二、向量代数 向量的运算---加减,数乘,点乘,叉乘,混合积.
❖ 向量位置关系的刻画 ---平行,垂直,夹角. ❖ 向量的方向角、方向余弦.
平面的方程
三、空间的平面 两平面的位置关系
五、 向量的坐标
空间直角坐标系Oxyz 中,在x 轴、y 轴、z 轴上各取一个与坐标轴同向的单位 向量,以此记作i,j,k,把它们称为基本单位向量或基向量.任一向量都可以 唯一地表示为i,j,k 数乘之积.
设M (x, y, z)是空间任意一点,记OM r,则r xi yj zk,我们把上式称为 向量r 的坐标分解式,xi,yj 和zk 称为向量r 沿3 个坐标轴方向的分向量,i,j,
d (x2 x1)2 ( y2 y1)2 (z2 z1)2 .
11
二、 空间两点间的距离 例 1 在z轴上求与点A(3,5, 2)和B(4,1,5)等距离的点M .
解 由于所求的点M 在z 轴上,因此M 点的坐标可设为(0, 0, z),又由于
MA MB ,
由空间两点间的距离公式,得
(3)结合律:(a) b = (a b) a (b);
(4)a a = a 2 ; (5)a b = 0 a b; (6) | a b || a | | b | . 特别地,有
高等数学-第8章-空间解析几何与向量代数
-。
b与a的差b a.向量加法的性质〔运算律〕②结合律+的模一般地不等于a的模加b的模,而有a b a ba b+≤+,即三角形两边之和大于等于第三向量与数的乘法Array、向量的定义:向量a与数m的乘积是一个向量,它的模等于m a,方向与a相同〔假设反〔假设m<0〕。
、向量与数量乘法的性质(运算律)②分配律≠,则向量b平行于a得充分必要条件是:存在唯一实数λ,使b=λa。
a0在实际问题中,有些向量与其起点有关,有些向量与其起点无关。
由于一切向量的共性是它们都有大小和方向,所以在数学上我们研究与起点无关的向量,并称这种向量为自由向量〔以后简称向量〕,即只考虑向量的大小和方向,而不管它的起点在什么地方。
当遇到与起点有关的向量时〔例如,谈到某一质点的运动速度时,这速度就是与所考虑的那一质点的位置有关的向量〕,可在一般原则下作特别处理。
上的射影。
投影向量的定义:AB 的始点A B ''就定义AB 在轴u 上的投影向量。
向量在轴上的投影:向量A B ''在轴AB 在轴u 上的投影,记为投影AB 。
向量在轴上的投影性质:性质1〔投影定理〕AB =cos AB ϕ与向量AB 的夹角。
推论:相等矢量在同一轴上的射影相等。
性质2:Prj(12a a +)=Prj 1a +Prj 2a 。
性质2可推广到有限个向量的情形。
性质3:Prj u λa =λPrj u a 。
向量在坐标轴上的分向量与向量的坐标:向量a 在坐标轴上的投影向量,,y z i a j a k 称为向量在坐标轴上的分向量。
向量a 在三条坐标轴上的投影,y z a a 叫做向量的坐标,记为:a ={,,x y a a 由向量在轴上的投影定义,a 在直角坐标系Oxyz 中的坐标{,,x y z a a a a ,由此可知,向量的投影具有与坐标相同的性质。
利用向量的坐标,可得向量的加法、减法以及向量与数的乘法的运算如下:a ={,x y a a ,{,,}x y zb b b b =利用向量加法的交换律与结合律,以及向量与数乘法的结合律与分配律,有{,x y z z a b a b b a b +=+++{x a b a b -=-{,}x y a a a λλλ=由此可见,对向量进行加、减及与数相乘,只须对向量的各个坐标分别进行相应的数量运算就行了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章向量代数与空间解析几何【数学1要求】
2013年考试内容 向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程、直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程
2013年考试要求
1. 理解空间直角坐标系,理解向量的概念及其表示。 2. 掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件。 3. 理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法。 4. 掌握平面方程和直线方程及其求法。 5. 会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。 6. 会求点到直线以及点到平面的距离。 7. 了解曲面方程和空间曲线方程的概念。 8. 了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程。
了解空间曲线的参数方程和一般方程。了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程。
一、三基及其延拓
1. 向量代数 研究的对象为自由向量,研究的空间限于实物空间,即不超过三维的空间。 ①向量的一般表示,等 ●几何表示:以原点为起点的有向线段。 ●坐标表示: ●投影表示:; 坐标系:任何极大完备无关向量组 可以构成坐标系,如果将该向量组施密特正交化和单位化,则构成正交直角坐标系,很显然,如果中的每一向量是3维(,有三个坐标分量),则不可能由二维坐标系(,有二个独立分量)表示,这个思想应特别注意。 ②向量的方向角和方向余弦 ●与轴、轴和轴的正向且非负的夹角称为的方向角。 ●称为的方向余弦,且 ●任意向量(为的单位向量,并规定离开原点为正方向。) 称为的单位向量,并且。 ●任意向量线元(为的单位向量,并规定离开原点为正方向。)
● 任意向量面元(为面元法线的单位向量,并规定与轴夹角为锐角时为正方向。) ③夹角专题 ●两向量的夹角规定:为两向量不大于的夹角,即。
●直线与平面的夹角规定:直线与该直线在平面上的投影直线之间的夹角,。 ●平面与平面的夹角规定:两平面的公垂面与他们的截痕直线之间的夹角,。 又等于他们的法线之间不超过的夹角。 ●定比分点公式:为同一直线上的三点, ④数量积又称标积或点积,表示为
或: 称为在上的投影。 注意:数量积本质上就是一个实数。在三维以上空间的数量积称为内积,且可表示为
③向量积又称叉积或外积,表示为 ● 方向规定:转向角不超过的右手螺旋定则。 ●, ●几何意义:=平行四边形的面积; ⑤混和积表示为 ● ●几何意义:代表平行六面体的体积; ⑥求导法则
2、场论考点 ●场的概念:在全部空间或部分空间里的每一点,都对应着某个物理量的确定值,叫做该空间的物理量的场,分为数量场与向量场两类。数量场用梯度描述,向量场用散度与旋度描述。 ●场论的数学核心:梯度算符,用表示,定义为。 ①梯度定义:,就好比楼梯的陡度。 ②散度定义:,表示分散的程度。 如果没有分散,则散度为零,如静磁场的散度。 ③旋度定义:,表示蜗旋的程度。 如没有闭合,即不存在蜗旋,则旋度为零,如静电场的旋度。 ④运算关系(本知识点内容数学1-4不作要求,高数甲乙或高数AB需掌握)
⑤高斯公式的场论表示 ⑥斯托克斯公式场论表示 ⑦平面格林公式 评注在高斯公式和斯托克斯公式中,各符号的具体意义如下:
评注读者最难理解是关系:。其实就是的方向余弦 元投影面元的关系,读者可在三维空间作一个平面。然后在该平面内过点画无数线元,每一线元在平面的投影为,显然,并有:,同理可得其他两个坐标平面的面元投影关系:。上述关系是读者能否学好空间积分的关键,务必掌握。
3、万能坐标系——正交曲线坐标系(本小节内容数学1-4不作要求,高数甲乙或高数
需掌握) 在该系中任一曲线元为球面系、柱面系等坐标曲线元。 对直角坐标;; 对柱坐标系; 对球坐标系; 则 即: 而(无须掌握证明过程) (无须掌握证明过程)
记住的结论形式即可。 ● 拉普拉斯算子在球坐标系的形式
●拉普拉斯算子在柱坐标系的形式 ;
4. 直线方程 方向向量:一簇与该直线平行的方向数;一般用表示直线的方向向量。 ①一般式方程 ,一般表示平面的法线向量。 则直线的方向向量 ②点向式(标准式)
③参数式为直线上已知点,方向数: ④两点式
⑤方向角式:,为已知。 ⑥直线间关系
点到直线的距离 直线到直线的距离 两平行直线的距离同上 两异面直线的距离(画出平行六面体图推导出下式)
其中:和分别为两直线上的任意两点,不管这两点位置如何, 的投影的模都等于。 5. 平面方程 ①一般式 法线方向向量 形象记忆掌握法:“影评”(隐蔽平行坐标量),如不出现,则∥y轴;依此类推。 ②点法式
③三点式 =0 ④截距式:即平面经过下列三点:
⑤平面束方程 不包含;如果所求平面通过已知直线(一般式),则用平面束方程会比较简便,但必须验证是否满足所求结论,以免遗漏。 ⑥平面间的关系 ● ●=0 ●夹角 ●点到平面的距离,对直线到平面的距离只要在已知直线上任取一点即可类似处理
证明:在平面上任取一点,作平面的法线向量,则。 ●两平行平面之间的距离 6. 平面与直线之关系 夹角 7.曲面及其方程 7.1 准线与母线的界定 准线一般指基准曲线,如旋转轴,圆或圆锥曲线;母线顾名思义是由该曲线旋转或平移(可以是空间平移)后可以生成所要求的曲面的曲线(就像母亲生孩子);其中的旋转轴和平移基准也就是准线。如一条直线沿某一圆周平移一周形成圆柱面。
7.2 二次曲面 ●二次曲面的二次型表示
的特征值就确定了三类曲面: ●大纲中只要求掌握一部分二次曲面,包括:九种常用二次曲面,圆柱面和一般锥面。如何掌握?下列技巧提供了全面解决方略。 陈氏第6技从准线与母线的三种关系和陈式4法来系统掌握考点,并理解曲面图形。
7.3 投影方程的确定 任一空间曲线: 在平面π上的投影构成一条平面曲线——投影曲线;以投影曲线为母线沿垂直于平面π的任意准线移动构成投影柱面,如直线的投影柱面就是一个垂直于π的平面。 如求曲线在平面上的投影方程 由中消去得到一个母线∥z轴的柱面方程。 则投影于平面上的投影方程为 评注空间几何解题一般切入点:首先尽可能画出草图,思考所求结论必须知道几个可能的条件,这些条件在题目中一般又是隐含出现的,我们的目标就是从隐含条件推出需要的条件,然后套用直线或平面的方程类型。其中,重点注意已知直线的方向向量和已知平面的法向向量与待求直线或平面的关系。 【例1】求直线在平面:=0上和三个坐标平面上的的投影方程。 解:第一步求投影柱面(对直线投影而言投影柱面就是投影平面)方程的,该平面显然与垂直,又 则易知 又也通过,可以利用上的已知点,则为
在平面π投影正好为与的交线,其方程为 直线在三个平面上的投影方程为: 8. 二次曲面方程和图形的研究 8.1 准线和母线是研究曲面的核心技术。已知曲面方程,用零点法可确定准线和母线,从而确定曲面的生成方式;用截痕法可以确定曲面的具体形状;用伸缩法可以研究曲面之间的转换,建立新曲面方程和后面的将要建立的旋转曲面方程要使用动静点转换法。研考数学中的曲面都是由母线沿准线空间平移或旋转及坐标伸缩变形而形成。
●零点法 例如:分析曲面方程为的图形,令为一开口向下的抛物线;令为一开口向上的抛物线;这两个抛物线就构成了该二次曲面的准线和母线,可以想象,该二次曲面是有其中一个抛物线沿另一个抛物线平移生成。
●截痕法 平面与曲面的交线称为截痕,通过综合截痕的变化来了解曲面的形状的方法,称为截痕法。例如:在中,令,这是一条双曲线,也就是用水平平面截该曲面时,其截痕是双曲线。综合零点法的分析,我们就能够确定:正是双曲抛物面,即马鞍面。
●伸缩法 如在曲面上取一静点,现把变形为动点,然后想办法消去静点坐标(即动静点转换法)。又,给定两了点坐标的伸缩变换关系,如令,则:称为原曲面经伸缩变形后的新曲面方程。 例如圆柱面变成椭圆柱面: 又如圆锥面变成椭圆锥面:
常用曲面之一:柱面 评注柱面是由母线沿准线空间平移形成,柱面的准线和母线必有一个是直线。其中,直线为准线,曲线为母线。如果是圆柱面,则准线和母线可以互换;如果为非圆柱面,如棱柱面,则必须取直线为准线,曲线为母线。 圆柱面椭圆柱面 双曲柱面抛物柱面 特点:柱面方程中,柱面轴平行于隐含的坐标轴,如的轴平行于轴。 注意:在三维情况下圆的方程的一种形式为 形象记忆掌握法:影(隐)评(平)。 ●柱面方程的一般求法: 给定准线和母线的方向,求柱面方法如下: 设为柱面上的任意点,根据柱面形成的过程,必在准线上有相应的点,使得,由此可以利用直线的方程将两点的坐标间关系找出来,即: (1) 又由于在上,故 (2) 用(1)式代入(2)式,由得
所求的柱面方程为 例如:已知母线方向及准线,则柱面方程为 这是一个斜的椭圆柱面。 特别地:若母线平行某一坐标轴,如平行,则,则柱面方程就是: 8.3 常用曲面之二:旋转曲面(母线沿直线准线旋转移形成) ●平面曲线沿z轴旋转不能形成曲面; ●平面曲线沿轴旋转; ●平面曲线沿轴旋转。
形象记忆法:舅留加饭(方)。即旋转轴留在曲面方程中,增加没出现的一个变量,然后相加开平方。 如二维曲线绕旋转后的曲面方程为