人教a版必修1学案1.2.1函数的概念(含答案)
3.1.1(第1课时)函数的概念 学案(含答案)

3.1.1(第1课时)函数的概念学案(含答案)3.13.1函数的概念与性质函数的概念与性质33..1.11.1函数及其表示方法函数及其表示方法第第11课时课时函数的概念函数的概念学习目标1.在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念.2.体会集合语言和对应关系在刻画函数概念中的作用.3.了解构成函数的要素,能求简单函数的定义域和值域.知识点一函数的有关概念函数的定义给定两个非空实数集A与B,以及对应关系f,如果对于集合A中的每一个实数x,在集合B中都有唯一确定的实数y与x对应,则称f为定义在集合A上的一个函数函数的记法yfx,xA定义域x 称为自变量,y称为因变量,自变量取值的范围即数集A称为函数的定义域值域所有函数值组成的集合yB|yfx,xA称为函数的值域知识点二同一个函数一般地,函数有三个要素定义域,对应关系与值域如果两个函数表达式表示的函数定义域相同,对应关系也相同,则称这两个函数表达式表示的就是同一个函数特别提醒两个函数的定义域和对应关系相同就决定了这两个函数的值域也相同思考定义域和值域分别相同的两个函数是同一个函数吗答案不一定,如果对应关系不同,这两个函数一定不是同一个函数1任何两个集合之间都可以建立函数关系2已知定义域和对应关系就可以确定一个函数3若函数的定义域只有一个元素,则值域也只有一个元素4函数yfxx2,xA与uftt2,tA表示的是同一个函数一.函数关系的判断例11多选下列两个集合间的对应中,是A 到B的函数的有AA1,0,1,B1,0,1,fA中的数的平方BA0,1,B1,0,1,fA中的数的开方CAZ,BQ,fA中的数的倒数DA1,2,3,4,B2,4,6,8,fA中的数的2倍答案AD解析A选项121,020,121,为一一对应关系,是A到B的函数B选项00,11,集合A中的元素1在集合B中有两个元素与之对应,不符合函数定义,不是A到B的函数C选项A中元素0的倒数没有意义,不符合函数定义,不是A到B的函数D选项122,224,326,428,为一一对应关系,是A到B的函数2设Mx|0x2,Ny|0y2,给出如图所示的四个图形其中,能表示从集合M到集合N的函数关系的个数是A0B1C2D3答案B解析中,因为在集合M中当1x2时,在N中无元素与之对应,所以不是;中,对于集合M中的任意一个数x,在N中都有唯一的数与之对应,所以是;中,x2对应元素y3N,所以不是;中,当x1时,在N中有两个元素与之对应,所以不是因此只有是反思感悟1判断对应关系是否为函数的两个条件A,B必须是非空实数集A中任意一元素在B中有且只有一个元素与之对应对应关系是“一对一”或“多对一”的是函数关系,“一对多”的不是函数关系2根据图形判断对应关系是否为函数的方法任取一条垂直于x轴的直线l.在定义域内平行移动直线l.若l与图形有且只有一个交点,则是函数;若在定义域内有两个或两个以上的交点,则不是函数跟踪训练11下列对应关系式中是A到B的函数的是AAR,BR,x2y21BA1,0,1,B1,2,y|x|1CAR,BR,y1x2DAZ,BZ,y2x1答案B解析对于A,x2y21可化为y1x2,显然对任意xAx1除外,y值不唯一,故不符合函数的定义;对于B,符合函数的定义;对于C,2A,在此时对应关系无意义,故不符合函数的定义;对于D,1A,但在集合B中找不到与之相对应的数,故不符合函数的定义2判断下列对应关系f是否为定义在集合A 上的函数AR,BR,对应关系fy1x2;A1,2,3,BR,f1f23,f34;A1,2,3,B4,5,6,对应关系如图所示解AR,BR,对于集合A中的元素x0,在对应关系fy1x2的作用下,在集合B中没有元素与之对应,故所给对应关系不是定义在A上的函数由f1f23,f34,知集合A中的每一个元素在对应关系f的作用下,在集合B中都有唯一的元素与之对应,故所给对应关系是定义在A上的函数集合A 中的元素3在集合B中没有与之对应的元素,且集合A中的元素2在集合B中有两个元素5和6与之对应,故所给对应关系不是定义在A上的函数二.求函数的定义域.函数值和值域命题角度1求函数的定义域例2求下列函数的定义域1fxx12x11x;2fx5x|x|3;3fx3xx1.解1要使函数有意义,自变量x的取值必须满足x10,1x0.解得x1,且x1,即函数定义域为x|x1,且x12要使函数有意义,自变量x的取值必须满足5x0,|x|30,解得x5,且x3,即函数定义域为x|x5,且x33要使函数有意义,自变量x的取值必须满足3x0,x10,解得1x3,所以这个函数的定义域为x|1x3延伸探究在本例3条件不变的前提下,求函数yfx1的定义域解由1x13得0x2.所以函数yfx1的定义域为0,2反思感悟求函数定义域的常用依据1若fx是分式,则应考虑使分母不为零2若fx是偶次根式,则被开方数大于或等于零3若fx是由几个式子构成的,则函数的定义域要使各个式子都有意义4若fx是实际问题的解析式,则应符合实际问题,使实际问题有意义跟踪训练2函数y2x23x214x的定义域为________________答案,122,4解析由2x23x20,4x0,4x0,得x12或2x4,所以定义域为,122,4命题角度2求函数值例3已知fx12xxR,且x2,gxx4xR1求f1,g1,gf1的值;2求fgx解1f11211,g1145,gf1g15.2fgxfx412x412x1x2xR,且x2反思感悟求函数值的方法1已知fx的表达式时,只需用a替换表达式中的x即得fa的值2求fga的值应遵循由里往外的原则跟踪训练3已知fx11xxR,且x1,gxx22xR,则f2______,fg2______,fgx________.答案13171x23解析fx11x,f211213.又gxx22,g22226,fg2f611617.fgx11gx1x23.命题角度3求值域例4求下列函数的值域1y2x1,x1,2,3,4;2y3x1x1;3yxx.解1当x1时,y3;当x2时,y5;当x3时,y7;当x4时,y9.所以函数y2x1,x1,2,3,4的值域为3,5,7,92借助反比例函数的特征y3x14x134x1x1,显然4x1可取0以外的一切实数,即所求函数的值域为y|y33设uxx0,则xu2u0,则yu2uu12214u0由u0,可知u12214,所以y0.所以函数yxx的值域为0,反思感悟求函数值域常用的四种方法1观察法对于一些比较简单的函数,其值域可通过观察得到2配方法当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法求其值域3分离常数法此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域;4换元法即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域对于fxaxbcxd其中a,b,c,d为常数,且a0型的函数常用换元法跟踪训练4求下列函数的值域1y2x1x3;2y2xx1.解1分离常数法y2x1x32x37x327x3,显然7x30,所以y2.故函数的值域为,22,2换元法设tx1,则xt21,且t0,所以y2t21t2t142158,由t0,再结合函数的图像如图,可得函数的值域为158,.三.同一个函数的判定例5多选下列各组函数表示同一个函数的是Afxx,gxx2Bfxx21,gtt21Cfx1x0,gxxxDfxx,gx|x|答案BC 解析A中,由于fxx的定义域为R,gxx2的定义域为x|x0,它们的定义域不相同,所以它们不是同一个函数B中,函数的定义域.值域和对应关系都相同,所以它们是同一个函数C中,由于gxxx1的定义域为x|x0,故它们的定义域相同,所以它们是同一个函数D中,两个函数的定义域相同,但对应关系不同,所以它们不是同一个函数反思感悟在两个函数中,只有当定义域.对应关系都相同时,两函数才是同一个函数值域相等,只是前两个要素相等的必然结果跟踪训练5下列各组式子是否表示同一个函数为什么1fx|x|,tt2;2y1x1x,y1x2;3y3x2,yx3.解1fx与t的定义域相同,又tt2|t|,即fx与t的对应关系也相同,fx与t是同一个函数2y1x1x的定义域为x|1x1,y1x2的定义域为x|1x1,即两者定义域相同又y1x1x1x2,两函数的对应关系也相同故y1x1x与y1x2是同一个函数3y3x2|x3|与yx3的定义域相同,但对应关系不同,y3x2与yx3不是同一个函数1若Ax|0x2,By|1y2,下列图形中能表示以A为定义域,B为值域的函数的是答案B解析A中值域为y|0y2,故错误;C,D中值域为1,2,故错误2若fxx1,则f3等于A2B4C22D10答案A解析因为fxx1,所以f3312.3函数y1xx的定义域为Ax|x1Bx|x0Cx|x1或x0Dx|0x1答案D解析由题意可知1x0,x0,解得0x1.4如果函数yx22x的定义域为0,1,2,3,那么其值域为A1,0,3B0,1,2,3Cy|1y3Dy|0y3答案A解析当x取0,1,2,3时,y 的值分别为0,1,0,3,则其值域为1,0,35下列四个图像中,不是以x为自变量的函数的图像是答案C解析根据函数定义,可知对自变量x的任意一个值,都有唯一确定的实数函数值与之对应,显然选项A,B,D满足函数的定义,而选项C不满足1知识清单1函数的概念2函数的定义域.值域3同一个函数的判定2方法归纳观察法.换元法.配方法.分离常数法3常见误区1定义域中的每一个自变量都有唯一确定的值与其相对应2自变量用不同字母表示不影响相同函数的判断。
高中数学第一章集合与函数概念121函数的概念课件新人教A版必修1

A.11
B.12
C.13
D.10
【答案】C
【解析】f[f(1)]=f(3)=9+3+1=13.
4.下列各组函数中,表示同一个函数的是( )
A.y=x-1 和 y=xx2+-11
B.y=x0 和 y=1
C.f(x)=x2 和 g(x)=(x+1)2
D.f(x)=
xx2和 g(x)=
x x2
【答案】D
【答案】B 【解析】根据函数的存在性和唯一性(定义)可知,B不 正确.
2.函数 f(x)= xx--21的定义域为(
)
A.[1,2)∪(2,+∞) B.(1,+∞)
C.[1,2)
D.[1,+∞)
【答案】A 【解析】由题意可知,要使函数有意义,需满足xx--21≠≥00,,
即 x≥1 且 x≠2.
3.已知f(x)=x2+x+1,则f[f(1)]的值是( )
休息时间到啦
同学们,下课休息十分钟。现在是休息时间,你们休 睛,
看看远处,要保护好眼睛哦~站起来动一动,久坐对 哦~
2.(1)y=x+x+120; (2)y= 2x+3- 21-x+1x. 【解析】(1)由于 00 无意义,故 x+1≠0,即 x≠-1. 又 x+2>0,x>-2,所以 x>-2 且 x≠-1. 所以函数 y=x+x+120的定义域为{x|x>-2 且 x≠-1}.
求函数的定义域
【例 2】求下列函数的定义域: (1)y=2x+3;(2)f(x)=x+1 1; (3)y= x-1+ 1-x;(4)y=xx2+-11. 【解题探究】求函数的定义域,即是求使函数有意义的那 些自变量 x 的取值集合.
【解析】(1)函数 y=2x+3 的定义域为{x|x∈R}. (2)要使函数有意义,即分式有意义,则 x+1≠0,x≠-1. 故函数的定义域为{x|x≠-1}. (3)要使函数有意义,则1x--1x≥≥00,, 即xx≥≤11,, 所以 x=1, 从而函数的定义域为{x|x=1}. (4)因为当 x2-1≠0,即 x≠±1 时,xx2+-11有意义,所以原函 数的定义域是{x|x≠±1}.
人教A版高中数学必修一第一章函数第2讲 1.2.2 复合函数及函数值域 学案

23.分别求下列函数的值域 2x-3 (1)f (x)= ,x∈[3,5) x-2
(2)f (x)=x-4.求函数 f (x)= 的值域. x+1
x2-3x+3 ,g(x)=x+2,求函数 y=f(g(x))的值域. x-1
复合函数及函数值域 1.函数 的定义域是{0,1,2,3},则其值域为( ) A.{-1,0,3} B.{0,1,2,3} C.{y|-1≤y≤3} D.[0,3] 2.下列函数中,与 f(x)=x+2 相等的是( ) 2 x + 2 A.g(x)= x+22 B.h(x)= x+2 3 C.F(x)=( x+2)2 D.G(x)= x+23 3.下列函数中,值域为(0,+∞)的是( ) 1 1 A. y = x B. y = C.y= D.y=x2 x x 4.下列四组函数中表示同一函数的是( ) 2 A.f(x)=x,g(x)=( x) B.f(x)=x2,g(x)=(x+1)2 C.f(x)= x2,g(x)=|x| D.f(x)=0,g(x)= x-1+ 1-x f2x 5.若 f(x-1)定义域是[1,5],则函数 g(x)= 定义域是( ) x A.[0,2] B.(0,2) C.(0,2] D.[0,2) 6.下列函数中,与函数 y=x 相等的是( ) A.y=( x)2 B.y= x2 3 C.y=|x| D. y = x 3 7.已知函数函 f(x)的定义域是(-3,1],则函数 f(2x+1)的定义域是( A.(-5,3] B.(-5,3) C.(-2,0] D.(-2,0) 8.分别求解下列函数的定义域: (1)若 f (x)的定义域为[1,4],则 f (x+2)的定义域为________; y=x2-2x
19.判断函数 f (x)= x+1· x-1与 g(x)= x2-1是否是相等函数?请说明理由. )
【金版新学案】高一数学人教A版必修一练习:1.3.1.2函数的最大值、最小值(含答案解析)

(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题 (每题 5分,共 20 分)1.以下函数在 [1,4] 上最大值为 3的是()1A. y=x+2 B . y= 3x- 2C. y= x2D. y= 1- x分析:B、 C 在 [1,4] 上均为增函数, A 、 D 在 [1,4] 上均为减函数,代入端点值,即可求得最值,应选 A.答案:Ax+ 7x∈ [ -1,,2.函数 f( x)=则 f(x)的最大值、最小值分别为 ()2x+ 6x∈ [1, 2],A. 10,6 B .10,8C. 8,6D.以上都不对分析:当- 1≤x<1 时, 6≤x+7<8 ,当 1≤x≤2时, 8≤2x+6≤10.∴f(x)min= f(- 1)= 6,f(x)max= f(2)= 10.应选 A.答案:A3.已知函数f(x)=- x2+ 4x+ a,x∈ [0,1] ,若 f(x) 有最小值- 2,则 f(x)的最大值为 () A.- 1 B .0C. 1D. 2分析:∵ f(x)=- (x2-4x+ 4)+ a+4=- (x- 2)2+ 4+ a,∴函数 f(x)图象的对称轴为x= 2.∴f(x)在 [0,1] 上单一递加.又∵ f(x)min=- 2,∴ f(0)=- 2,即 a=- 2.∴f(x)max= f(1) =- 1+ 4- 2= 1.答案:C4.当 0≤x≤2时, a<- x2+2x 恒建立,则实数 a 的取值范围是 ()A. (-∞, 1] B .( -∞, 0]C. ( -∞, 0)D. (0,+∞)分析:令 f(x)=- x2+ 2x,则 f(x)=- x2+ 2x=- ( x-1)2+1.又∵ x∈ [0,2] ,∴ f( x)min= f(0) = f(2)= 0.∴ a<0.答案:C二、填空题 (每题 5分,共15 分)1在 [2,3] 上的最小值为 ________.5.函数 y=x-1分析:作出图象可知y=1在[2,3]上是减函数, y min=113- 1= . x- 12答案:126.已知函数 f(x) = x2- 6x+ 8,x∈ [1, a],而且 f(x)的最小值为 f(a),则实数 a 的取值范围是 ________.分析:如右图可知 f(x)在 [1, a]内是单一递减的,又∵ f(x)的单一递减区间为 (-∞,3] ,∴ 1<a≤3.答案:(1,3]7.关于函数 f(x)= x2+ 2x,在使 f(x) ≥M 建立的全部实数M 中,我们把 M 的最大值 M max =- 1 叫做函数 f(x)= x2+ 2x 的下确界,则关于 a∈R,且 a≠0,a2- 4a+ 6 的下确界为 ________.分析:a2- 4a+ 6= (a- 2)2+ 2≥2,2则 a - 4a+ 6 的下确界为 2.三、解答题 (每题 10 分,共 20 分 )2x+ 18.已知函数f(x)=x+1 .(1)用定义证明函数在区间[1,+∞)上是增函数;(2)求该函数在区间[2,4] 上的最大值与最小值.2x1+ 12x2+1分析: (1)证明:任取x1, x2∈ [1,+∞),且 x1<x2,则 f(x1)- f( x2)=x1+1-x2+1=x1- x2.x1+x2+∵1≤x1<x2,∴ x1- x2<0, (x1+ 1)(x2+ 1)>0,∴f(x1) - f(x2)<0 ,即 f(x1)<f(x2),∴函数 f(x)在 [1,+∞)上是增函数.(2)由 (1)知函数 f(x) 在区间 [2,4] 上是增函数,∴f(x)max= f(4) =2×4+1=9,4+1 52×2+ 15f(x)min= f(2)=2+1 =3.9.有甲、乙两种商品,经营销售这两种商品所能获取的收益挨次是P(万元 )和 Q(万元 ),x3它们与投入资本x(万元 )的关系有经验公式:P=5, Q=5x.今有 3万元资本投入经营甲、乙两种商品,为获取最大收益,对甲、乙两种商品的资本投入分别应为多少?能获取的最大收益是多少?分析:设对甲种商品投资 x 万元,则对乙种商品投资(3- x)万元,总收益为y 万元,依据题意得 y=1x+33- x(0 ≤x≤ 3).55令 3- x= t,则 x= 3- t2,0≤t≤ 3.12313221因此 y=5(3- t ) +5t =-5t-2+20,t∈ [0, 3].当 t=3时, y max=21,此时 x= 0.75,3- x= 2.25. 220由此可知,为获取最大收益,对甲、乙两种商品的资本投入分别为0.75 万元和 2.25 万元,获取的最大收益为 1.05 万元.。
高中数学第五章一元函数的导数及其应用1.2导数的概念及其几何意义学案新人教A版选择性必修2

导数的概念及其几何意义必备知识·自主学习导思1.什么是函数在某点处的导数?它的几何意义是什么?2.导函数是如何定义的?它与函数在某点处的导数有何关系?1.函数y =f ()x 的自变量x 从x 0变化到x 0+Δx 的平均变化率定义式 Δy Δx =f ()x 0+Δx -f ()x 0Δx实质 函数值的改变量与自变量的改变量之比 意义刻画函数在[]x 0,x 0+Δx 上函数值变化的快慢(1)Δx=x 2-x 1是正数吗?提示:Δx=x 2-x 1可能是正数,也可能是负数,但不能为0. (2)函数的平均变化率的几何意义是什么?提示:几何意义为函数y =f ()x 图象上过两点P 1()x 1,y 1 ,P 2()x 2,y 2 的割线的斜率. 2.函数y =f ()x 在x =x 0处的导数(瞬时变化率)(1)定义:如果当Δx→0时,平均变化率Δy Δx 无限趋近于一个确定的值,即ΔyΔx 有极限,则称y =f ()x 在x =x 0处可导,并把这个确定的值叫做y =f ()x 在x =x 0处的导数. (2)记作f′()x 0 或0x x y' ,即f′()x 0 =lim Δx→0ΔyΔx =lim Δx→0 f ()x 0+Δx -f ()x 0Δx. (3)作用:刻画函数在某点处函数值变化的快慢.(1)函数y =f ()x 在x =x 0处的导数一定存在吗?提示:当Δx→0时,平均变化率ΔyΔx 的极限存在,则函数y =f ()x 在x =x 0处可导,否则在x =x 0处不可导或无导数.(2)函数y =f ()x 在x =x 0处的导数的定义还可以用别的式子表示吗?提示:还可以表示为f′()x 0 =lim Δx→0f ()x 0-Δx -f ()x 0-Δx =x x lim f()x -f ()x 0x -x 0等.3.导数的几何意义函数f(x)在x =x 0处的导数f′(x 0)就是切线P 0T 的斜率k 0, 即k 0=lim Δx→0f (x 0+Δx)-f (x 0)Δx =f′(x 0).(1)曲线的切线与曲线一定只有一个公共点吗?提示:曲线的切线并不一定与曲线只有一个公共点,可以有多个,甚至可以有无穷多个. (2)曲线的切线与导数有什么关系?提示:①函数f(x)在x =x 0处有导数,则函数f(x)在该点处必有切线,并且导数值就是该切线的斜率.②函数f(x)表示的曲线在点(x 0,f(x 0))处有切线,但函数f(x)在该点处不一定可导,例如f(x)=3x 在x =0处有切线,但不可导. 4.导函数的概念(1)定义:当x 变化时,y =f′(x)就是x 的函数,称它为y =f(x)的导函数(简称导数). (2)记作f′(x)或y′,即f′(x)=y′=lim Δx→0f (x +Δx)-f (x )Δx.f′(x)与f′(x 0)相同吗?它们之间有何关系?提示:f′(x)与f′(x 0)不相同.f′(x)是函数f(x)的导函数,f′(x 0)是函数f(x)在x =x 0处的导数值,是函数f′(x)在x =x 0时的函数值.1.辨析记忆(对的打“√”,错的打“×”).(1)函数y =f(x)在x =x 0处的导数f′(x 0)的几何意义是函数y =f(x)在点x =x 0处的函数值.( × )提示:函数y =f(x)在x =x 0处的导数f′(x 0)的几何意义是函数y =f(x)在点x =x 0处的导数值.(2)函数y=f(x)在x=x0处的导数f′(x0)的几何意义是函数y=f(x)在点(x0,f(x0))处的切线与x轴所夹锐角的正切值.( ×)提示:函数y=f(x)在x=x0处的导数f′(x0)的几何意义是函数y=f(x)在点(x0,f(x0))处的切线倾斜角的正切值.(3)函数y=f(x)在x=x0处的导数f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线的斜率.( √)提示:函数y=f(x)在x=x0处的导数f′(x0)的几何意义就是曲线y=f(x)在点(x0,f(x0))处的切线的斜率.(4)函数y=f(x)在x=x0处的导数f′(x0)的几何意义是点(x0,f(x0))与点(0,0)连线的斜率.( ×)提示:函数y=f(x)在x=x0处的导数f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,不是点(x0,f(x0))与点(0,0)连线的斜率.2.设函数f(x)在点x0附近有定义,且有f(x0+Δx)-f(x0)=aΔx+b(Δx)2(a,b为常数),则( )A.f′(x)=a B.f′(x)=bC.f′(x0)=a D.f′(x0)=b【解析】选C.f′(x0)=limΔx→0f(x0+Δx)-f(x0)Δx=limΔx→0(a+b·Δx)=a.3.(教材习题改编)函数y=f(x)的图象如图所示,下列描述错误的是( )A.x=-5处比x=-2处变化快B.x=-4处呈上升趋势C.x=1和x=2处增减趋势相反D.x=0处呈上升趋势【解析】选D.根据导数的几何意义:f′(-5)>0,f′(-4)>0,f′(-2)=0,f′(0)<0,f′(1)f′(2)<0,判断可知D错误.4.已知函数f(x)在x0处的导数为f′(x0)=1,则函数f(x)在x0处切线的倾斜角为________.【解析】设切线的倾斜角为α,则tan α=f′(x 0)=1,又0°≤α<180°,所以α=45°. 答案:45°关键能力·合作学习类型一 求函数在某点处的导数(数学抽象、数学运算)1.已知函数y =f(x)是可导函数,且f′(1)=2,则lim Δx→0 f (1+Δx)-f (1)2Δx =( )A .12B .2C .1D .-1【解析】选C.由题意可得:lim Δx→0 f (1+Δx)-f (1)2Δx=12 lim Δx→0 f (1+Δx)-f (1)Δx =12 f′(1), 即:lim Δx→0f (1+Δx)-f (1)2Δx =12×2=1.2.设曲线f(x)=ax 2在点(1,a)处的切线与直线2x -y -6=0平行,则a 等于( ) A .1 B .12 C .-12D .-1【解析】选A.因为f′(1)=lim Δx→0a (1+Δx)2-a×12Δx=lim Δx→0 2aΔx+a (Δx)2Δx =lim Δx→0 (2a +aΔx)=2a ,所以2a =2,所以a =1.3.求函数f(x)=x 在x =1处的导数.【解析】由导数的定义知,函数在x =1处的导数f′(1) =lim Δx→0 f (1+Δx)-f (1)Δx ,而f (1+Δx)-f (1)Δx=1+Δx-1Δx =11+Δx+1,又lim Δx→011+Δx+1 =12 ,所以f′(1)=12 .求函数y =f(x)在点(x 0,f(x 0)) 处的导数的三个步骤【补偿训练】若函数y=f(x)在x=x0处可导,则limh→0f(x0+h)-f(x0-h)h等于( )A.f′(x0) B.2f′(x0) C.-2f′(x0) D.0【解析】选B.因为Δx=(x0+h)-(x0-h)=2h.所以limh→0f(x0+h)-f(x0-h)h=2limh→0f(x0+h)-f(x0-h)2h=2f′(x0).类型二导数的意义在实际问题中的应用(数学抽象、数学运算)【典例】一质点做抛物线运动,已知在t s时,质点的运动路程(单位:m)为s()t=8-3t2.(1)求质点在[1,1+Δt]这段时间内的平均速度;(2)求质点在t=1 s时的瞬时速度,并说明它们的意义.四步内容理解题意条件:质点的运动路程与时间t的函数关系式结论:(1)求质点在[1,1+Δt]这段时间内的平均速度;(2)求质点在t=1 s时的瞬时速度,并说明它们的意义.思路探求(1)按照平均速度的定义式计算;(2)取平均速度的极限即为瞬时速度.书(1)因为s()t=8-3t2,写表达所以Δs=8-3(1+Δt)2-(8-3×12)=-6Δt-3(Δt)2,所以质点在[1,1+Δt]这段时间内的平均速度为:v=ΔsΔt=-6-3Δt.(2)质点在t=1 s时的瞬时速度即s′(1).s′()1=limΔt→0ΔsΔt=limΔt→0(-6-3Δt)=-6.质点在t=1 s时的瞬时速度为-6 m/s,说明在第1 s附近,质点的运动路程每秒大约减少6 m.题后反思当导数值为正值时,说明运动的方向与位移是一致的;当导数值为负值时,说明运动的方向与位移是相反的.关于导数的实际意义根据物体的路程关于时间的函数求速度与加速度、求已知曲线的切线直接促使了导数的产生.可以利用上述实际问题理解导数的实际意义,导数是在某一时刻附近的瞬时变化率,是路程、速度等在这一时刻附近增加(减小)的大小.1.某家电制造集团为尽快实现家电下乡提出四种运输方案,据预测,这四种方案均能在规定时间T内完成预期的运输任务Q0,各种方案的运输总量Q与时间t的函数关系如下所示.在这四种方案中,运输效率(单位时间内的运输量)逐步提高的是( )【解析】选B.从函数图象上看,要求图象在[0,T]上越来越陡峭,在各选项中,只有B项中图象的切线斜率在不断增大,即运输效率(单位时间内的运输量)逐步提高.2.建造一栋面积为x m2的房屋需要成本y万元,y是x的函数,y=f(x)=x10+x10+0.3,求f′(100),并解释它的实际意义.【解析】根据导数的定义,得f′(100)=lim Δx→0 Δy Δx =lim Δx→0 f (100+Δx)-f (100)Δx=lim Δx→0(100+Δx+100+Δx+3)-(100+100+3)10Δx=lim Δx→0⎝⎛⎭⎪⎫110+100+Δx-1010Δx=lim Δx→0 ⎣⎢⎡⎦⎥⎤110+110×(100+Δx+10)=110 +110×(10+10) =0.105. 100 m 2时,成本增加的速度为1 050元/m 2.类型三 导数几何意义的应用(数学抽象、数学运算) 角度1 求切线方程【典例】已知曲线C :y =x 2.求曲线在x =1点处的切线方程.【思路导引】可先求出切点坐标,再求切线的斜率,最后利用点斜式得出切线方程. 【解析】把x =1代入y =x 2得y =12=1.即切点P(1,1),y′|x =1=lim Δx→0 Δy Δx =lim Δx→0 (1+Δx)2-1Δx=lim Δx→0(Δx+2)=2,所以k =y′|x =1=2.所以曲线y =x 2在P(1,1)处的切线方程为y -1=2(x -1),即2x -y -1=0.求曲线y =x 2+1过点P(1,0)的切线方程.【解析】设切点为Q ()a ,a 2+1 ,k =lim Δx→0 f (a +Δx)-f (a )Δx=lim Δx→0(2a +Δx)=2a.所以在Q 点处的切线方程为y -(a 2+1)=2a(x -a).(*) 把点(1,0)代入(*)式得-(a 2+1)=2a(1-a). 解得a =1± 2 .再把a =1± 2 代入到(*)式中.即得y =(2+2 2 )x -(2+2 2 )或y =(2-2 2 )x -(2-2 2 ).这就是所求的切线方程. 角度2 导数值的大小与函数图象变化间的关系【典例】1.已知函数y =f(x)的图象是下列四个选项中的图象之一,且其导函数y =f′(x)的图象如图所示,则该函数的图象是( )【解析】选B.由函数y =f(x)的导函数y =f′(x)的图象自左至右先增后减,可知函数y =f(x)图象的切线的斜率自左至右先增大后减小.2.某斜坡在某段内的倾斜程度可以近似地用函数y =-x 2+4x ⎝ ⎛⎭⎪⎫32≤x≤2 来刻画,试分析该段斜坡的坡度的变化情况.【解析】因为Δy Δx =[-(x +Δx)2+4(x +Δx)]-(-x 2+4x )Δx=-2x·Δx+4Δx-(Δx)2Δx =-2x +4-Δx,所以y′=lim Δx→0Δy Δx =-2x +4⎝ ⎛⎭⎪⎫32≤x≤2 . 由于y′=-2x +4在区间⎣⎢⎡⎦⎥⎤32,2 上是减函数,且0≤y′≤1,故该段斜坡的坡度最开始很接近45°,随着高度慢慢上升,坡度在慢慢变小,在x 达到2时坡度接近0°.1.利用导数的几何意义求切线方程的方法(1)若已知点(x 0,y 0)在已知曲线上,求在点(x 0,y 0)处的切线方程,先求出函数y =f(x)在点x 0处的导数,然后根据直线的点斜式方程,得切线方程y -y 0=f′(x 0)(x -x 0). (2)若点(x 0,y 0)不在曲线上,求过点(x 0,y 0)的切线方程,首先应设出切点坐标,然后根据导数的几何意义列出等式,求出切点坐标,进而求出切线方程.2.导数几何意义理解中的两个关键点关键点一:y =f(x)在点x =x 0处的切线斜率为k ,则k >0⇔f′(x 0)>0;k <0⇔f′(x 0)<0;k =0⇔f′(x 0)=0.关键点二:|f′(x 0)|越大⇔在x 0处瞬时变化越快;|f′(x 0)|越小⇔在x 0处瞬时变化越慢.已知直线l :y =4x +a 和曲线C :y =x 3-2x 2+3相切.求a 的值和切点的坐标. 【解析】设直线l 与曲线C 相切于点P(x 0,y 0), 因为f′(x)=lim Δx→0f (x +Δx)-f (x )Δx=lim Δx→0(x +Δx)3-2(x +Δx)2+3-(x 3-2x 2+3)Δx =3x 2-4x.由题意可知,直线l 的斜率k =4,即3x 20 -4x 0=4,解得x 0=-23 或x 0=2,所以切点的坐标为⎝ ⎛⎭⎪⎫-23,4927 或(2,3).当切点为⎝ ⎛⎭⎪⎫-23,4927 时,有4927 =4×⎝ ⎛⎭⎪⎫-23 +a ,a =12127 ;当切点为(2,3)时,有3=4×2+a ,a =-5.所以当a =12127 时,切点为⎝ ⎛⎭⎪⎫-23,4927 ;当a =-5时,切点为(2,3).【补偿训练】 已知f(x)=x 2+2.求: (1)f(x)在x =1处的导数; (2)f(x)在x =a 处的导数.【解析】(1)因为Δy Δx =f (1+Δx)-f (1)Δx=(1+Δx)2+2-(12+2)Δx =2+Δx,当Δx 趋近于0时2+Δx 趋近于2, 所以f(x)在x =1处的导数等于2.(2)因为Δy Δx =f (a +Δx)-f (a )Δx =(a +Δx)2+2-(a 2+2)Δx=2a +Δx,当Δx 趋近于0时,2a +Δx 趋近于2a , 所以f(x)在x =a 处的导数等于2a.课堂检测·素养达标1.设f′(x 0)=0,则曲线y =f(x)在点(x 0,f(x 0))处的切线( ) A .不存在B .与x 轴平行或重合C .与x 轴垂直D .与x 轴斜交【解析】选B.f′(x 0)=0,说明曲线y =f(x)在点(x 0,f(x 0))处的切线斜率为0,所以与x 轴平行或重合.2.已知函数y =f(x)的图象如图,则f′(x A )与f′(x B )的大小关系是( )A.0>f′(x A )>f′(x B ) B .f′(x A )<f′(x B )<0 C .f′(x A )=f′(x B )D .f′(x A )>f′(x B )>0【解析】选B .f′(x A )和f′(x B )分别表示函数图象在点A ,B 处的切线斜率,故f′(x A )<f′(x B )<0.3.曲线y =9x 在点(3,3)处的切线的倾斜角为( )A .30° B.45° C.135° D.60°【解析】选C.令y =f(x)=9x ,因为曲线f(x)=9x 在点(3,3)处的切线的斜率为k =f′(3)=lim Δx→0 f (3+Δx)-f (3)Δx =lim Δx→0 93+Δx -3Δx=lim Δx→0-33+Δx =-1,所以切线的倾斜角为135°.4.(教材练习改编)曲线f(x)=2x 在点(-2,-1)处的切线方程为________.【解析】f′(-2)=lim Δx→0 f (-2+Δx)-f (-2)Δx=lim Δx→0 2-2+Δx+1Δx=lim Δx→01-2+Δx =-12,所以切线方程为y +1=-12 (x +2),即x +2y +4=0.答案:x +2y +4=05.求函数y =3x 2在x =1处的导数.【解析】因为Δy=3(1+Δx)2-3×12=6Δx+3(Δx)2,所以Δy Δx =6+3Δx,所以y′=lim Δx→0 Δy Δx =lim Δx→0 (6+3Δx)=6.。
人教高中数学A版必修1--第一单元 1.2-1.2.1 应用案巩固提升 课件PPT

第一章
集合与函数概念
4.下列函数中,值域为(0,+∞)的是( A.y= x 1 C.y=x 1 B.y= x
)
D.y=x2+1
解析:选 B.y= x的值域为[0,+∞), 1 y=x的值域为(-∞,0)∪(0,+∞), y=x2+1 的值域为[1,+∞).
第一章
集合与函数概念
5.若函数 f(x)=ax2-1,a 为一个正数,且 f(f(-1))=-1,那 么 a 的值是( A.1 C.-1 ) B.0 D.2
所以 f(2
1 1 2f(1)+f(2)+f2+f(3)+f3+…+f(2
1 016+
017)+f2
1 017=2 017.
第一章
集合与函数概念
[B
能力提升] )
11.函数的图象与直线 x=1 的交点最多有( A.0 个 C.2 个 B.1 个 D.以上都不对
第一章
集合与函数概念
x2 10.(2017· 石家庄高一检测)已知函数 f(x)= 2. 1+x (1)求
1 1 f(2)+f2,f(3)+f3的值.
1 (2)求证:f(x)+fx是定值.
(3)求 f(2
1 1 2f(1)+f(2)+f2+f(3)+f3+…+f(2
第一章
集合与函数概念
本部分内容讲解结束
按ESC键退出全屏播放
第一章
集合与函数概念
3.下列函数中,不满足 f(2x)=2f(x)的是( A.f(x)=|x| C.f(x)=x+1
)
B.f(x)=x-|x| D.f(x)=-x
解析:选 C.若 f(x)=|x|,则 f(2x)=|2x|=2|x|=2f(x); 若 f(x)=x-|x|,则 f(2x)=2x-|2x|=2(x-|x|)=2f(x); 若 f(x)=-x,则 f(2x)=-2x=2f(x); 若 f(x)=x+1,则 f(2x)=2x+1,不满足 f(2x)=2f(x).
2020-2021学年高中数学 第一章 三角函数 1.2.1 任意角的三角函数学案新人教A版必修4
2020-2021学年高中数学第一章三角函数1.2.1 任意角的三角函数学案新人教A版必修4年级:姓名:1.2 任意角的三角函数1.2.1 任意角的三角函数(一)内容标准学科素养1.理解任意角的三角函数的定义并利用定义求值.2.结合单位圆定义三角函数,判断三角函数在各个象限的符号.3.掌握三角函数诱导公式一.提升数学运算运用直观想象授课提示:对应学生用书第7页[基础认识]知识点一任意角的三角函数阅读教材P11~12,思考并完成以下问题(1)使锐角α的顶点与原点O重合,始边与x轴的非负半轴重合,在终边上任取一点P,作PM⊥x轴于M,设P(x,y),|OP|=r.那么sin α、cos α、tan α如何用x,y或r表示?提示:sin α=|PM||OP|=yr,cos α=|OM||OP|=xr,tan α=|PM||OM|=yx.(2)对确定的锐角α,sin α,cos α,tan α的值是否随P点在终边上的位置的改变而改变?为什么?提示:不变.三角形相似,对应边成比例.(3)当取|OP|=1时,sin α,cos α,tan α的值怎样表示?提示:sin α=y,cos α=x,tan α=yx.(4)如果α的终边OP在第二象限且|OP|=1,P(x,y),sin α,cos α,tan α的表示变化吗?提示:不变.仍是sin α=y,cos α=x,tan α=yx.前提如图,设α是一个任意角,它的终边与单位圆交于点P(x,y)定义正弦y叫做α的正弦,记作sin α,即sin α=y余弦 x 叫做α的余弦,记作cos α,即cos α=x 正切 y x 叫做α的正切,记作tan α,即tan α=yx(x ≠0) 三角函数正弦、余弦、正切都是以角为自变量,以单位圆上的点的坐标或坐标的比值为函数值的函数,将它们统称为三角函数.三角函数 定义域 sin α R cos α Rtan α α≠k π+π2,k ∈Z知识点二 阅读教材P 13,思考并完成以下问题根据三角函数的定义,你能判断正弦、余弦、正切函数的值在各象限的符号吗? (1)当α的终边在第一象限时,P (x ,y ). 提示:sin α=y >0,cos α=x >0,tan α=y x >0 (2)当α的终边在第二象限时,P (x ,y ). 提示:sin α=y >0,cos α=x <0,tan α=y x<0. (3)当α的终边在第三象限时,P (x ,y ).提示:sin α=y <0,cos α=x <0,tan α=yx>0.(4)当α的终边在第四象限时,P (x ,y ).提示:sin α=y <0,cos α=x >0,tan α=yx<0.知识梳理 口诀概括为:一全正、二正弦、三正切、四余弦(如图).知识点三 诱导公式一阅读教材P 14,思考并完成以下问题当角α分别为30°,390°,-330°时,它们的终边有什么特点? 提示:sin 390°=sin(360°+30°), sin(-330°)=sin(-360°+30°), 故30°、390°、-330°终边相同. 知识梳理 诱导公式一sin(α+k ·2π)=sin α, cos(α+k ·2π)=cos α, tan(α+k ·2π)=tan α, 其中k ∈Z .(1)当α的终边在y 轴正半轴时,P (0,1),则α=π2+2k π,k ∈Z .sin α=sin ⎝ ⎛⎭⎪⎫π2+2k π=sin π2=1.cos α=cos ⎝ ⎛⎭⎪⎫π2+2k π=cos π2=0.(2)当α的终边在y 轴负半轴时,P (0,-1),则α=32π+2k π,k ∈Z .sin α=sin ⎝ ⎛⎭⎪⎫32π+2k π=sin 32π=-1.cos α=cos ⎝ ⎛⎭⎪⎫32π+2k π=cos 32π=0.(3)当α的终边在x 轴正半轴时,P (1,0), 则α=2k π,k ∈Z .sin α=sin(2k π+0)=sin 0=0. cos α=cos(2k π+0)=cos 0=1. tan α=tan(2k π+0)=tan 0=0.(4)当α的终边在x 轴负半轴时,P (-1,0), 则α=2k π+π,k ∈Z .sin α=sin(2k π+π)=sin π=0. cos α=cos(2k π+π)=cos π=-1. tan α=tan(2k π+π)=tan π=0.[自我检测]1.若α是第二象限角,则点P (sin α,cos α)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:D2.α的终边与单位圆交于点⎝ ⎛⎭⎪⎫-45,35,则sin α=______,cos α =________.答案:35 -45授课提示:对应学生用书第8页探究一 任意角的三角函数的定义及应用[教材P 12例1、例2]方法步骤:(1)确定终边上点的坐标.(2)应用定义求值. 角度1 已知角α终边上一点的坐标求三角函数值[例1] (1)已知θ终边上一点P (x ,3)(x ≠0),且cos θ=1010x ,求sin θ,tan θ.[解析] 由题意知r =|OP |=x 2+9, 由三角函数定义得cos θ=x r=xx 2+9.又∵cos θ=1010x ,∴x x 2+9=1010x . ∵x ≠0,∴x =±1. 当x =1时,P (1,3),此时sin θ=312+32=31010, tan θ=31=3.当x =-1时,P (-1,3),此时sin θ=3(-1)2+32=31010, tan θ=3-1=-3.(2)已知角α的终边过点P (-3a ,4a )(a ≠0),求2sin α+cos α的值.[解析] r =(-3a )2+(4a )2=5|a |, ①若a >0,则r =5a ,角α在第二象限.sin α=y r =4a 5a =45,cos α=x r =-3a 5a =-35,所以2sin α+cos α=85-35=1.②若a <0,则r =-5a ,角α在第四象限,sin α=4a -5a =-45,cos α=-3a -5a =35.所以2sin α+cos α=-85+35=-1.角度2 已知角α终边所在直线求三角函数值[例2] 已知角α的终边在直线y =-3x 上,求10sin α+3cos α的值.[解析] 由题意知,cos α≠0.设角α的终边上任一点为P (k ,-3k )(k ≠0), 则x =k ,y =-3k ,r =k 2+(-3k )2=10|k |.(1)当k >0时,r =10k ,α是第四象限角,sin α=y r =-3k 10k =-31010,1cos α=r x =10k k=10,∴10sin α+3cos α=10×⎝ ⎛⎭⎪⎫-31010+310=-310+310=0.(2)当k <0时,r =-10k ,α是第二象限角, sin α=y r =-3k -10k =31010,。
【名师伴你行】2017版高中人教A版数学必修1课件:第一章 集合与函数概念1-2-2-2
名师伴你行 ·人教A版 ·数学 ·必修1
课 前 自 主 预 案
课
时
1.2.2 函数的表示法
作 业
课 堂 研 习 导 案
第一章 1.2 1.2.2 第2课时 第3页
名师伴你行 ·人教A版 ·数学 ·必修1
课 前 自 主 预 案
课
时
第2课时 分段函数和映射
作 业
课 堂 研 习 导 案
第一章 1.2 1.2.2 第2课时 第4页
课
义域的不同子集内,对应关系不同而已.
时
作
业
2.函数是映射吗?
课
堂
研
答案:函数是特殊的映射.
习
导
案
第一章 1.2 1.2.2 第2课时 第8页
名师伴你行 ·人教A版 ·数学 ·必修1
课 前 自 主 预 案 课 堂 研 习 导 案
课 时 作 业 第一章 1.2 1.2.2 第2课时 第9页
名师伴你行 ·人教A版 ·数学 ·必修1
(3)根据分段函数的图象求解析式时,首先求出每一段的解析
研
习 导
式,然后写成分段函数的形式.
案
第一章 1.2 1.2.2 第2课时 第20页
名师伴你行 ·人教A版 ·数学 ·必修1
[练习 2]已知函数 f(x)=2|x-1|-3|x|,x∈R.
课 前
(1)画出函数 f(x)的图象;
自
主 预
(2)求函数 f(x)的值域.
自
主 预
(1)集合 A 和 B 必须是非空集合,它们可以是数集、点集,
案
也可以是其他集合.
课
时
作
(2)映射是一种特殊的对应,对应关系可以用图示或文字描述 业
第2课时函数的概念(二(分层练习)21-22高一数学教材配套学案+课件+练习(人教A版19必修第一册
3.1.1 第2课时 函数的概念(二)基 础 练巩固新知 夯实基础1.下列函数与函数y =x 是同一函数的是( )A .y =|x |B .y =3t 3C .y =x 2D .y =v 2v 2. (多选)下列函数,值域为(0,+∞)的是( )A .y =x +1(x >-1)B .y =x 2C .y =1x (x >0)D .y =1x +13.函数y =x 2-2x 的定义域为{0,1,2,3},那么其值域为( )A.{-1,0,3}B.{0,1,2,3}C.{y |-1≤y ≤3}D.{y |0≤y ≤3}4.函数y =x +1的值域为( )A .[-1,+∞)B .[0,+∞)C .(-∞,0]D .(-∞,-1]5.已知函数f (x )=x +1x,则f (2)+f (-2)的值是( ) A .-1 B .0 C .1 D .26.下列函数完全相同的是( )A .f (x )=|x |,g (x )=(x )2B .f (x )=|x |,g (x )=x 2C .f (x )=|x |,g (x )=x 2xD .f (x )=x 2-9x -3,g (x )=x +3 7.函数y =1x -2的定义域是A ,函数y =x 2+2x -3的值域是B ,则A ∩B =__________________(用区间表示).8.求下列函数值域。
(1)f (x )=3x -1,x ∈[-5,2);(2)y =5x -14x +2; (3)f (x )=4-x +x -2.能 力 练综合应用 核心素养9.函数y =5x +4x -1的值域是( ) A .(-∞,5)B .(5,+∞)C .(-∞,5)∪(5,+∞)D .(-∞,1)∪(1,+∞)10.下列各组函数中是同一函数的是( )A .y =x +1与y =x 2-1x -1B .y =x 2+1与s =t 2+1C .y =2x 与y =2x (x ≥0)D .y =(x +1)2与y =x 211.函数f (x )=x 2+1(0<x ≤2且x ∈N *)的值域是( )A .{x |x ≥1}B .{x |x >1}C .{2,3}D .{2,5}12.下列函数中,对于定义域内的任意x ,f (x +1)=f (x )+1恒成立的为( )A .f (x )=x +1B .f (x )=-x 2C .f (x )=1xD .y =|x | 13.若f (x )=11-x 2,则f (3)=_____,f (f (-2))=_____. 14.若函数f (x )=12x 2-x +a 的定义域和值域均为[1,b ](b >1),则a +b 的值为__92__. 15.若函数y =ax 2+2ax +3的值域为[0,+∞),则a 的取值范围是________.16.已知函数f (x )=x 21+x 2. (1)求f (2)+f ⎝⎛⎭⎫12,f (3)+f ⎝⎛⎭⎫13的值. (2)求证:f (x )+f ⎝⎛⎭⎫1x 是定值.(3)求f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+…+f (2019)+f ⎝⎛⎭⎫12019的值.【参考答案】1.B 解析 选项A 和选项C 中,函数的值域都是[0,+∞);选项D 中,函数的定义域是(-∞,0)∪(0,+∞);选项B 中函数的定义域和值域都和函数y =x 相同,对应关系也等价,因此选B.2.AC 解析 y =x +1(x >-1)的值域为(0,+∞);y =x 2的值域为[0,+∞);y =1x (x >0)的值域为(0,+∞);y =1x +1的值域为(-∞,0)∪(0,+∞),3.A 解析 由对应关系y =x 2-2x 得,0→0,1→-1,2→0,3→3,所以值域为{-1,0,3}.4.B 解析 由于x +1≥0,所以函数y =x +1的值域为[0,+∞).5. B 解析 f (2)+f (-2)=2+12-2-12=0. 6.B 解析 A 、C 、D 的定义域均不同.7. [0,2)∪(2,+∞) 解析要使函数式y =1x -2有意义,只需x ≠2,即A ={x |x ≠2};函数y =x 2+2x -3=(x +1)2-4≥0,即B ={y |y ≥0},则A ∩B ={x |0≤x <2或x >2}.8.解:(1)∵x ∈[-5,2),∴-15≤3x <6,∴-16≤3x -1<5,∴函数f (x )=3x -1,x ∈[-5,2)的值域是[-16,5).(2)y =5x -14x +2=544x +2-1-1044x +2=544x +2-1444x +2=54-724x +2. ∵724x +2≠0,∴y ≠54, ∴函数y =5x -14x +2的值域为{y ∈R |y ≠54}. (3)由题意可得,x ∈[2,4],因为f 2(x )=2+24-x x -2=2+2-x -32+1,所以f 2(x )∈[2,4],故函数f (x )的值域为[2,2].9.C 解析∵y =5x +4x -1=5(x -1)+9x -1=5+9x -1,且9x -1≠0,∴y ≠5,即函数的值域为(-∞,5)∪(5,+∞). 10.B 解析对于选项A ,前者定义域为R ,后者定义域为{x |x ≠1},不是同一函数;对于选项B ,虽然变量不同,但定义域和对应关系均相同,是同一函数;对于选项C ,虽然对应关系相同,但定义域不同,不是同一函数;对于选项D ,虽然定义域相同,但对应关系不同,不是同一函数.11.D 解析:∵0<x ≤2且x ∈N *,∴x =1或x =2.∴f (1)=2,f (2)=5,故函数的值域为{2,5}.12.A 解析 对于A 选项,f (x +1)=(x +1)+1=f (x )+1,成立.对于B 选项,f (x +1)=-(x +1)2≠f (x )+1,不成立.对于C 选项,f (x +1)=1x +1,f (x )+1=1x +1,不成立.对于D 选项,f (x +1)=|x +1|,f (x )+1=|x |+1,不成立.13.-18 98 解析 f (3)=11-9=-18,f (f (-2))=f ⎝⎛⎭⎫-13=98.14. 92 解析 ∵f (x )=12x 2-x +a =12(x -1)2+a -12,∴当x ∈[1,b ]时,f (x )min =f (1)=a -12,f (x )max =f (b )=12b 2-b +a .又f (x )在[1,b ]上的值域为[1,b ],∴⎩⎨⎧ a -12=1,12b 2-b +a =b ,解得⎩⎪⎨⎪⎧ a =32,b =1舍去或b =3. ∴a +b =32+3=92. 15. [3,+∞) 解析 函数y =ax 2+2ax +3的值域为[0,+∞),则函数f (x )=ax 2+2ax +3的值域要包括0,即最小值要小于等于0.则{ a >0,Δ=4a 2-12a ≥0,解得a ≥3.所以a 的取值范围是[3,+∞).16. 解 (1)因为f (x )=x 21+x 2,所以f (2)+f ⎝⎛⎭⎫12=221+22+⎝⎛⎭⎫1221+⎝⎛⎭⎫122=1,f (3)+f ⎝⎛⎭⎫13=321+32+⎝⎛⎭⎫1321+⎝⎛⎭⎫132=1. (2)证明:f (x )+f ⎝⎛⎭⎫1x =x 21+x 2+⎝⎛⎭⎫1x 21+⎝⎛⎭⎫1x 2=x 21+x 2+1x 2+1=x 2+1x 2+1=1. (3)由(2)知f (x )+f ⎝⎛⎭⎫1x =1,所以f (2)+f ⎝⎛⎭⎫12=1,f (3)+f ⎝⎛⎭⎫13=1,f (4)+f ⎝⎛⎭⎫14=1,…,f (2019)+f ⎝⎛⎭⎫12019=1. 所以f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+…+f (2019)+f ⎝⎛⎭⎫12019=2018.。
人教版(新教材)高中数学第一册(必修1):第二课时 三角函数值的符号及公式一学案
第二课时三角函数值的符号及公式一课标要求素养要求1.能利用三角函数的定义,判断正弦、余弦、正切函数值在各象限内的符号.2.通过任意角的三角函数的定义理解终边相同角的同一三角函数值相等. 通过三角函数值在各象限内的符号和公式一的应用,重点提升学生的数学运算和逻辑推理素养.教材知识探究地球自转会引起昼夜的交替变化,而公转引起四季交替变化,月亮圆缺变化的周期性,而三角函数值是否有“周而复始”的变化规律呢?问题如图,角α的终边OP绕原点O,旋转无数周后的三角函数值与α的对应的三角函数值相等吗?提示相等,根据任意角的三角函数的定义可得,终边相同角的同一三角函数值相等.1.三角函数值在各象限的符号口诀概括为:一全正、二正弦、三正切、四余弦(如图).2.公式一 函数名称不变(1)语言表示:终边相同的角的同一三角函数的值相等.(2)式子表示:⎩⎨⎧sin (α+k ·2π)=sin α,cos (α+k ·2π)=cos α,其中k ∈Z .tan (α+k ·2π)=tan α,(3)角α的终边每绕原点旋转一周,函数值将重复出现.教材拓展补遗『微判断』1.同一个三角函数值能找到无数个角与之对应.(√)2.若sin α·cos α>0,则角α为第一象限角.(×)提示 sin α·cos α>0,则sin α,cos α同号,则α为第一、三象限角. 3.终边相同角的同名三角函数的值相等.(√) 4.sin 3>0,cos 4<0.(√)5.sin α>0,则α为第一、二象限角.(×)提示 α的终边位于第一、二象限或y 轴正半轴. 『微训练』1.sin 390°的值为( ) A.32 B.22 C.12D.-12『解 析』 sin 390°=sin(360°+30°)=sin 30°=12,故选C. 『答 案』 C2.下列4个实数中,最小的数是( ) A.sin 1 B.sin 2 C.sin 3D.sin 4『解析』∵4位于第三象限,故sin 4<0,故选D. 『答案』 D3.计算:sin(2π+π6)=________,cos19π3=________.『解析』sin(2π+π6)=sinπ6=12,cos19π3=cos(6π+π3)=cosπ3=12.『答案』1212『微思考』1.三角函数值在各象限的符号由什么决定?提示三角函数值的符号是根据三角函数定义和各象限内坐标符号推导出的.从原点到角的终边上任意一点的距离r总是正值.因此,三角函数在各象限的符号由角α的终边所在象限决定.2.根据公式一,终边相同的角的同一三角函数的值相等,反过来,同一三角函数值相等时,角是否一定为终边相同的角呢?提示不一定,如sin α=12,则α=π6+2kπ或α=5π6+2kπ(k∈Z).题型一三角函数值在各象限的符号『例1』(1)若角θ同时满足sin θ<0且tan θ<0,则角θ的终边一定位于() A.第一象限 B.第二象限C.第三象限D.第四象限『解析』由sin θ<0,可知θ的终边可能位于第三象限或第四象限,也可能与y轴的负半轴重合.由tan θ<0,可知θ的终边可能位于第二象限或第四象限,故θ的终边只能位于第四象限.故选D.『答案』 D(2)判断下列各式的符号:①tan 191°-cos 191°;②sin 2·cos 3·tan 4.解①因为191°是第三象限角;所以tan 191°>0,cos 191°<0.所以tan 191°-cos 191°>0.②因为2是第二象限角,3是第二象限角,4是第三象限角. 所以sin 2>0,cos 3<0,tan 4>0.所以sin 2·cos 3·tan 4<0.规律方法三角函数值符号的判断问题:(1)由三角函数的定义可知sin α=yr,cos α=xr,tan α=yx(r>0)可知三角函数值的符号是由角的终边上一点(除原点)P(x,y)的坐标确定的,故准确确定角的终边位置是判断该角三角函数值符号的关键.(2)由三角函数值的符号确定α角的终边所在象限问题,应首先依据题目中所有三角函数值的符号来确定角α的终边所在的象限,则它们的公共象限即为所求. 『训练1』判断下列三角函数值的符号:(1)sin 3,cos 4,tan 5;(2)sin α·cos α2·tanα2(α为三角形的内角).解(1)∵π2<3<π<4<3π2<5<2π,∴3,4,5分别在第二、三、四象限,∴sin 3>0,cos 4<0,tan 5<0.(2)∵α为三角形的一个内角,∴0<α<π,0<α2<π2,∴sin α>0,cosα2>0,tan α2>0,∴sin α·cos α2·tanα2>0.题型二 公式一的应用『例2』 求下列各式的值: 把绝对值较大的角转化为锐角或钝角 (1)cos 25π3+tan(-15π4); (2)sin 810°+tan 1 125°+cos 420°. 解 (1)原式=cos(8π+π3)+tan(-4π+π4) =cos π3+tan π4=12+1=32;(2)原式=sin(2×360°+90°)+tan(3×360°+45°)+cos(360°+60°)=sin 90°+tan 45°+cos 60° =1+1+12=52.规律方法 利用公式一化简求值的步骤(1)定形:将已知的任意角写成2k π+α的形式,其中α∈『0,2π),k ∈Z .(2)转化:根据公式一,转化为求角α的某个三角函数值.(3)求值:若角为特殊角,可直接求出该角的三角函数值. 『训练2』 求下列各式的值:(1)sin(-1 395°)cos 1 110°+cos(-1 020°)sin 750°; (2)sin ⎝ ⎛⎭⎪⎫-11π6+cos 12π5·tan 4π.解 (1)原式=sin(-4×360°+45°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin 45°cos 30°+cos 60°sin 30°=22×32+12×12=64+14=1+64.(2)原式=sin ⎝ ⎛⎭⎪⎫-2π+π6+cos ⎝ ⎛⎭⎪⎫2π+2π5·tan(4π+0)=sin π6+cos 2π5×0=12.题型三 三角函数值符号与公式一的综合应用『例3』 确定下列函数值的符号. (1)tan (-672°);(2)cos 9π4;(3)tan ⎝ ⎛⎭⎪⎫-11π6;(4)sin 1 480°10′;(5)tan ⎝ ⎛⎭⎪⎫-178π.解 (1)tan(-672°)=tan(-672°+2×360°)=tan 48°>0. (2)cos 9π4=cos ⎝ ⎛⎭⎪⎫π4+2π=cos π4=22>0.(3)tan ⎝ ⎛⎭⎪⎫-11π6=tan ⎝ ⎛⎭⎪⎫-116π+2π=tan π6=33>0.(4)sin 1 480°10′=sin(4×360°+40°10′)=sin 40°10′>0. (5)tan ⎝ ⎛⎭⎪⎫-17π8=tan ⎝ ⎛⎭⎪⎫-π8-2π=tan ⎝ ⎛⎭⎪⎫-π8<0.规律方法 对于绝对值较大的角先利用公式一转化到『0,2π』范围内的角,然后再判断符号.『训练3』 确定下列三角函数值的符号. (1)tan 505°;(2)tan ⎝ ⎛⎭⎪⎫-274π;(3)cos 950°;(4)sin ⎝ ⎛⎭⎪⎫-60π17.解 (1)tan 505°=tan (360°+145°)=tan 145°<0. (2)tan ⎝ ⎛⎭⎪⎫-27π4=tan ⎝ ⎛⎭⎪⎫-8π+5π4=tan 5π4>0.(3)cos 950°=cos (950°-3×360°)=cos (-130°)<0. (4)sin ⎝ ⎛⎭⎪⎫-60π17=sin ⎝⎛⎭⎪⎫-4π+8π17=sin 8π17>0.一、素养落地1.通过本节课的学习,提升学生的数学运算、逻辑推理素养.2.把绝对值较大的角写成k ·2π+α的形式,然后利用公式一转化为较小的角,更有利于判断符号或求函数值.3.角α的三角函数值的符号只与角α所在象限有关,角α所在象限确定,则三角函数值的符号一定确定,规律是“一全正,二正弦,三正切,四余弦”. 二、素养训练 1.sin 256π等于( ) A.12 B.32 C.-12D.-32『解 析』 sin 256π=sin(4π+π6)=sin π6=12. 『答 案』 A2.cos 1 110°的值为( ) A.12 B.32 C.-12D.-32『解 析』 cos 1 110°=cos(3×360°+30°)=cos 30°=32. 『答 案』 B3.已知点P (tan α,cos α)在第三象限,则角α的终边在第________象限. 『解 析』 因为点P (tan α,cos α)在第三象限,则tan α<0且cos α<0,故角α的终边在第二象限. 『答 案』 二4.求值:cos 13π6+tan(-5π3)=________. 『解 析』 原式=cos(2π+π6)+tan(2π-5π3) =cos π6+tan π3=32+3=332. 『答 案』3325.若sin θ·tan θ>0,则θ为第________象限角.『解析』∵sin θ·tan θ>0,∴sin θ与tan θ同号,所以θ为第一或第四象限角. 『答案』一或四。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.2 函数及其表示 1.2.1 函数的概念
自主学习
1.理解函数的概念,能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用. 2.通过实例领悟构成函数的三要素;会求一些简单函数的定义域. 3.了解区间的概念,体会用区间表示数集的意义和作用.
设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A.其中x叫自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域. 2.函数的三要素是定义域、值域和对应关系. 3.由于值域是由函数的定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,则称这两个函数相同. 4.(1)满足不等式a≤x≤b的实数x的集合叫做闭区间,表示为[a,b]. (2)满足不等式a(3)满足不等式a≤x(a,b]. (4)实数集R用区间表示为(-∞,+∞). (5)把满足x≥a.,x>a,x≤b,x∞,b],(-∞,b).
对点讲练
判断对应是否为函数 【例1】 判断下列对应是否为函数: (1)x2x,x≠0,x∈R;(2)xy,这里y2=x,x∈N,y∈R; (3)集合A=R,B={-1,1},对应关系f:当x为有理数时,f(x)=-1;当x为无理数时,f(x)=1,该对应是不是从A到B的函数? 分析 函数是一种特殊的对应,要检验给定两个变量之间是否具有函数关系,只要检验: (1)定义域和对应关系是否给出; (2)根据给出的对应关系,自变量x在其定义域中的每一个值,是否都有唯一确定的函数值y与之对应.
解 (1)对于任意一个非零实数x,2x被x唯一确定,
所以当x≠0时,→2x是函数, 这个函数也可以表示为f(x)=2x(x≠0).(2) 当x=4时,y2 =4,得y=-2,不是有唯一值和x对应,所以,x→y(y2=x)不是函数. (3)是函数,满足函数的定义,在A中任取一个值,B中有唯一确定的值和它对应. 规律方法 判断函数的标准可以简记成:两个非空数集A、B,一个对应关系f,A中任一对B中唯一(即多对一或一对一). 变式迁移1 判断下列对应是否为集合A到集合B的函数: (1)A=R,B=R,对任意的x∈A,x→x2; (2)A={(x,y)|x,y∈R},B=R,对任意的(x,y)∈A,(x,y)→x+y; (3)A=B=N*,对任意的x∈A,x→|x-3|. 解 (1)是. (2)不是,因为集合A不是数集. (3)不是,因为当x=3时,在集合B中不存在数值与之对应.
已知解析式求函数的定义域 【例2】 求下列函数的定义域: (1)y=31-1-x; (2)y=-x2x2-3x-2; (3)y=2x+3-12-x+1x. 分析 求函数定义域,其实质是求使解析式各部分都有意义的未知数的取值范围. 解 (1)要使函数有意义,需 1-x≥0,1-1-x≠0⇔ x≤1x≠0⇔x≤1且x≠0,所以函数y= 31-1-x的定义域为(-∞,0)∪(0,1].
(2)要使函数有意义,需 -x≥0,2x2-3x-2≠0 ⇔ x≤0,x≠2且x≠-12⇔x≤0且x≠-12. 故函数y=-x2x2-3x-2的定义域为 -∞,-12∪-12,0.
(3)要使函数有意义,需 2x+3≥0,2-x>0,x≠0. 解得-32≤x<2且x≠0, 所以函数y=2x+3-12-x+1x的定义域为
-32,0∪(0,2).
规律方法 求函数定义域的原则:(1)分式的分母不等于零;(2)偶次根式的被开方数(式)为非负数;(3)零指数幂的底数不等于零等. 变式迁移2 求下列函数的定义域:
(1)f(x)=6x2-3x+2; (2)f(x)=3x-1+1-2x+4; (3)f(x)=x+10|x|-x. 解 (1)由x2-3x+2≠0,得x≠1,x≠2. ∴f(x)=6x2-3x+2的定义域是{x∈R|x≠1且x≠2}.
(2)由 3x-1≥01-2x≥0,得13≤x≤12. ∴f(x)=3x-1+1-2x+4的定义域是13,12. (3)由 x+1≠0|x|-x≠0,得 x≠-1|x|≠x, ∴x<0且x≠-1, ∴原函数的定义域为{x|x<0且x≠-1}. 两函数相同的判定 【例3】 下列各题中两个函数是否表示同一函数: (1)f(x)=x,g(x)=(x)2; (2)f(x)=x,g(x)=x2;
(3)f(t)=t,g(x)=3x3; (4)f(x)=x2-4x-2,g(x)=x+2. 分析 要判断两个函数是否为同一函数,关键在于看函数的两要素:定义域和对应关系是否相同,两者只要有一个不同,两个函数就不是同一函数. 解 (1)f(x)的定义域为R,g(x)的定义域为{x|x≥0},两个函数的定义域不同, 故不是同一函数. (2)g(x)=x2=|x|,两个函数对应关系不同,故不是同一函数. (3)g(x)=x,两者的定义域和对应关系相同,故是同一函数. (4)f(x)的定义域为(-∞,2)∪(2,+∞),g(x)的定义域为R,故不是同一函数. 规律方法 只有当两个函数的定义域和对应关系都分别相同时,这两个函数才是同一函数,这就是说: (1)定义域不同,两个函数也就不同; (2)对应关系不同,两个函数也是不同的; (3)即使是定义域和值域分别相同的两个函数,它们也不一定是同一函数,因为函数的定义域和值域不能唯一地确定函数的对应关系; (4)两个函数是否相同,与自变量是什么字母无关. 变式迁移3 试判断下列函数是否为同一函数: (1)f(x)=x·x+1与g(x)=xx+1; (2)f(x)=x2-2x与g(t)=t2-2t; (3)f(x)=1与g(x)=x0(x≠0). 解 (2)是,(1)、(3)不是. 对于(1),f(x)的定义域为[0,+∞), 而g(x)的定义域为(-∞,-1]∪[0,+∞). (3)也是定义域不同.
求函数的值域 【例4】 (1)已知函数f(x)=x2-2x,定义域A={0,1,2,3},求这个函数的值域; (2)求函数f(x)=1x2+1,x∈R,在x=0,1,2处的函数值及该函数的值域. 解 (1)函数的定义域为A={0,1,2,3},分别令x=0,1,2,3得相应的函数值分别为0,- 1,0,3,于是知,函数的值域为{-1,0,3}. (2)f(0)=1,f(1)=12,f(2)=15. 容易看出,这个函数当x=0时,取得最大值,当自变量x的绝对值逐渐变大时,函数值逐渐变小并无限接近于0,但永远不会等于0. 从而可知,这个函数的值域为(0,1]. 规律方法 (1)求函数的值域问题首先必须明确两点:一是值域的概念,即对于定义域A上的函数,其值域是指集合C={y|y=f(x),x∈A};二是函数的定义域和对应关系.对应关系相同,而定义域不同,其值域肯定不同,如f(x)=x2-2x,x∈[0,2]与f(x)=x2-2x,x∈R. (2)求函数的值域没有固定的方法和模式,就目前阶段主要用观察法求值域,但函数的图象在求函数的值域中也起着十分重要的作用. 变式迁移4 (1)函数f(x)=x-1(x≥1)的值域为________(用区间表示); (2)函数y=2x(1≤x≤2)的值域为______(用区间表示). 答案 (1)[0,+∞) (2)[1,2]
1.函数符号y=f(x)是难以理解的抽象符号,它的内涵是“对于定义域中的任意x,在对应关系f的作用下即可得到y”.在学习过程中,不容易认识到函数概念的整体性,而将函数单一地理解成函数中的对应关系,甚至认为函数就是函数值. 2.正确理解函数的三要素,其中对应关系是函数的核心,而函数的定义域就是指能使这个解析式有意义的所有实数的集合,在实际问题中,还必须考虑自变量的取值应符合实际意义. 3.区间是某些数集的一种重要表示形式,具有简单直观的优点,因此是表示函数的定义域、值域及不等式解集的重要工具.
课时作业 一、选择题 1.下列集合A,B及对应关系不能构成函数的是( )
A.A=B=R,f(x)=|x| B.A=B=R,f(x)=1x C.A={1,2,3},B={4,5,6,7},f(x)=x+3 D.A={x|x>0},B={1},f(x)=x0 答案 B 解析 在B项中f(0)无意义,即A中的数0在B中找不到和它对应的数. 2.设f(x)=x2-1x2+1,则f2f12等于( )
A.1 B.-1 C.35 D.-35 答案 B
解析 ∵f(2)=22-122+1=35,f12=122-1122+1=-35 ∴f2f12=-1. 3.函数y=x-10|x|+x的定义域是( ) A.(0,+∞) B.(-∞,0) C.(0,1)∪(1,+∞) D.(-∞,-1)∪(-1,0)∪(0,+∞) 答案 C
解析 由 x-1≠0|x|+x>0,得x>0且x≠1. 4.下列各组函数表示同一函数的是( ) A.y=x2-9x-3与y=x+3 B.y=x2-1与y=x-1 C.y=x0(x≠0)与y=1(x≠0) D.y=2x+1,x∈Z与y=2x-1,x∈Z 答案 C 解析 A中的两函数定义域不同,B中的两函数值域不同,D中的两函数对应关系不同,C正确. 5.给出四个命题: ①函数就是定义域到值域的对应关系;②若函数的定义域只含有一个元素,则值域也只含有一个元素;③因f(x)=5(x∈R),这个函数值不随x的变化而变化,所以f(0)=5也成立;④定义域和对应关系确定后,函数值域也就确定了. 以上命题正确的有( ) A.1个 B.2个 C.3个 D.4个 答案 D 二、填空题 6.将集合{x|2≤x≤8}表示成区间为____________. 答案 [2,8]