大学物理实验等厚干涉
等厚干涉原理与应用实验报告doc

等厚干涉原理与应用实验报告篇一:等厚干涉实验—牛顿环和劈尖干涉等厚干涉实验—牛顿环和劈尖干涉要观察到光的干涉图象,如何获得相干光就成了重要的问题,利用普通光源获得相干光的方法是把由光源上同一点发的光设法分成两部分,然后再使这两部分叠如起来。
由于这两部分光的相应部分实际上都来自同一发光原子的同一次发光,所以它们将满足相干条件而成为相干光。
获得相干光方法有两种。
一种叫分波阵面法,另一种叫分振幅法。
1.实验目的(1)通过对等厚干涉图象观察和测量,加深对光的波动性的认识。
(2)掌握读数显微镜的基本调节和测量操作。
(3)掌握用牛顿环法测量透镜的曲率半径和用劈尖干涉法测量玻璃丝微小直径的实验方法(4)学习用图解法和逐差法处理数据。
2.实验仪器读数显微镜,牛顿环,钠光灯3.实验原理我们所讨论的等厚干涉就属于分振幅干涉现象。
分振幅干涉就是利用透明薄膜上下表面对入射光的反射、折射,将入射能量(也可说振幅)分成若干部分,然后相遇而产生干涉。
分振幅干涉分两类称等厚干涉,一类称等倾干涉。
用一束单色平行光照射透明薄膜,薄膜上表面反射光与下表面反射光来自于同一入射Rre(a)(b)图9-1 牛顿环装置和干涉图样光,满足相干条件。
当入射光入射角不变,薄膜厚度不同发生变化,那么不同厚度处可满足不同的干涉明暗条件,出现干涉明暗条纹,相同厚度处一定满足同样的干涉条件,因此同一干涉条纹下对应同样的薄膜厚度。
这种干涉称为等厚干涉,相应干涉条纹称为等厚干涉条纹。
等厚干涉现象在光学加工中有着广泛应用,牛顿环和劈尖干涉就属于等厚干涉。
下面分别讨论其原理及应用:(1)用牛顿环法测定透镜球面的曲率半径牛顿环装置是由一块曲率半径较大的平凸玻璃透镜和一块光学平玻璃片(又称“平晶”)相接触而组成的。
相互接触的透镜凸面与平玻璃片平面之间的空气间隙,构成一个空气薄膜间隙,空气膜的厚度从中心接触点到边缘逐渐增加。
如图9-1(a)所示。
当单色光垂直地照射于牛顿环装置时(如图9-1),如果从反射光的方向观察,就可以看到透镜与平板玻璃接触处有一个暗点,周围环绕着一簇同心的明暗相间的内疏外密圆环,这些圆环就叫做牛顿环,如图9-1(b)所示.在平凸透镜和平板玻璃之间有一层很薄的空气层,通过透镜的单色光一部分在透镜和空气层的交界面上反射,一部分通过空气层在平板玻璃上表面上反射,这两部分反射光符合相干条件,它们在平面透镜的凸面上相遇时就会产生干涉现象。
光的等厚干涉

按同样的操作方法即可求出未知光波的波长
实验原始数据:
南昌大学物理实验报告
课程名称:大学物理实验
实验名称:光的等厚干涉
学院:机电工程学院专业班级:机制159班
学生姓名:熊特学号:**********
实验地点:座位号:
实验时间:第十一周周二补周一实验
一、实验目的:
1.观察牛顿环和劈尖的干涉现象。
2.了解形成等厚干涉的条件及特点。
3.用干涉法测量透镜的曲率以及测量物体的微小直径或厚度。
本实验用牛顿环来测定透镜的曲率半径。如图2。设在干涉条纹半径r处空气厚度为e,那么,在空气层下表面B处所反射的光线比在A处所反射的光线多经过一段距离2e。此外,由于两者反射情况不同:B处是从光疏媒质(空气)射向光密媒质(玻璃)时在界面上的反射,A处则从光密媒质射向光疏媒质时被反射,因B处产生半波损失,所以光程差还要增加半个波长,即:
二、实做的薄膜上时,光在薄膜的上表面被分割成反射和折射两束光(分振幅),折射光在薄膜的下表面反射后,又经上表面折射,最后回到原来的媒质中,在这里与反射光交迭,发生相干。只要光源发出的光束足够宽,相干光束的交迭区可以从薄膜表面一直延伸到无穷远。薄膜厚度相同处产生同一级的干涉条纹,厚度不同处产生不同级的干涉条纹。这种干涉称为等厚干涉。如图1
0.11059776
93.83824877
25
25.101
17.497
0.818
0.669124
24
25.038
17.562
0.804
0.646416
0.12750976
108.1874767
等厚干涉实验报告记录

等厚干涉实验报告记录————————————————————————————————作者:————————————————————————————————日期:大学物理实验报告(等厚干涉)一、实验目的:1.、观察牛顿环和劈尖的干涉现象。
2、了解形成等厚干涉现象的条件极其特点。
3、用干涉法测量透镜的曲率半径以及测量物体的微小直径或厚度。
二、实验原理:1.牛顿环牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成,结构如图所示。
当平行单色光垂直照射到牛顿环器件上时,由于平凸透镜和玻璃之间存在一层从中心向外厚度递增的空气膜,经空气膜和玻璃之间的上下界面反射的两束光存在光程差,它们在平凸透镜的凸面(底面)相遇后将发生干涉,干涉图样是以接触点为中心的一组明暗相间、内疏外密的同心圆,称为牛顿环(如图所示。
由牛顿最早发现)。
由于同一干涉圆环各处的空气薄膜厚度相等,故称为等厚干涉。
牛顿环实验装置的光路图如下图所示:设射入单色光的波长为λ,在距接触点r k处将产生第k级牛顿环,此处对应的空气膜厚度为d k,则空气膜上下两界面依次反射的两束光线的光程差为22λδ+=kknd式中,n为空气的折射率(一般取1),λ/2是光从光疏介质(空气)射到光密介质(玻璃)的交界面上反射时产生的半波损失。
根据干涉条件,当光程差为波长的整数倍时干涉相长,反之为半波长奇数倍时干涉相消,故薄膜上下界面上的两束反射光的光程差存在两种情况:2)12(2222λλλδ+=+=kkdkkK=1,2,3,…K=0,1,2,…由上页图可得干涉环半径r k,膜的厚度d k与平凸透镜的曲率半径R之间的关系222)(kkrdRR+-=。
由于dk远小于R,故可以将其平方项忽略而得到22kkrRd=。
结合以上的两种情况公式,得到:λkRRdrkk==22,暗环...,2,1,0=k由以上公式课件,r k与d k成二次幂的关系,故牛顿环之间并不是等距的,且为了避免背光因素干扰,一般选取暗环作为观测对象。
光的等厚干涉

18
(3)调节读数显微镜调焦手轮,使显 微镜筒自下而上缓慢地上升,直至在 显微镜内能看到清晰的干涉条纹的像。 适当移动牛顿环位置,使干涉条纹的 中央暗区在显微镜叉丝的正下方,观 察干涉条纹是否在显微镜的读数范围 内,以便测量。
6
由光路分析可知?与k级条纹对应的两 束相干光的光程差为
k
2e
ห้องสมุดไป่ตู้
2
(1)
7
由图1可知
R2 r 2 R e2
简化上式,并由于e ≪ R,略去二级小量e2得
e r2
(2)
2R
将(2)式代入(1)式得
k
r2 R
2
(3)
8
由干涉条件可知,当干涉条纹是暗条纹时
k
r2 R
2
2k
1
2
于是得 r2 kR k 0,1,2, (4)
d 2
由图2几何关系得
L lx
x
导出
d xL •
lx 2
(3)重复步骤2,各测三次,将数据填入 自拟表格中。求其平均值 。
22
注意事项
1.调焦时,显微镜筒应自下而上缓慢的上 升,避免显微镜筒压坏45玻璃片(或损坏 牛顿环装置)。 2.每次测量时,鼓轮应沿一个方向转动, 中途不可倒转。(为什么?)
5
1.牛顿环
将一块平凸透镜的凸面放在一块光学平板 玻璃上,因而在它们之间形成以接触点O为中心 向四周逐渐增厚的空气薄膜,离O点等距离处厚 度相同。如图1(a)所示。当光垂直入射时, 其中有一部分光线在空气膜的上表面反射,一 部分在空气膜的下表面反射,因此产生两束具 有一定光程差的相干光,当它们相遇后就产生 干涉现象。由于空气膜厚度相等处是以接触点 为圆心的同心圆,即以接触点为圆心的同一圆 周上各点的光程差相等,故干涉条纹是一系列 以接触点为圆心的明暗相间的同心圆,如图1 (b)所示。这种干涉现象称为牛顿环。
实验四313《等厚干涉应用》实验报告

δ=2(e+a)+λ/2=(2k+1) λ/2
即
e=kλ/2-a
将(3)式代入得:
r2=kRλ-2Ra
(5)
取 m、n 级暗环,则对应的暗环半径为rm,rn,由(5)式可得:
rm2=mRλ-2Ra rn2=nRλ-2Ra
八、 思考题
1、此实验的注意事项有哪些? 答:①在调节读数显微镜的过程中要防止玻璃片与牛顿环、劈尖等元件相碰。
②在测量牛顿环直径的过程中,为了避免出现“空程”,只能单方向前进,不能
中途倒退后再前进。
2、牛顿环的中心在什么情况下是暗的?在什么情况下是亮的? 答:牛顿环是光的干涉现象,干涉光为上下两个表面的反射光。 暗是振动
2、利用劈尖干涉测定头发丝直径 将叠在一起的两块平板玻璃的一端插入一个薄片或细丝,则两块玻璃板间即
形成一空气劈尖,当用单色光垂直照射时,和牛顿环一样,在劈尖薄膜上下两表 面反射的两束光也将发生干涉,呈现出一组与两玻璃板交接线平行且间隔相等、 明暗相间的干涉条纹,这也是一种等厚干涉。
①将被测薄片或细丝夹于两玻璃片之间,用读数显微镜进行观察,描绘劈尖 干涉的图像。
d/cm 4.5255 10-3 5.0409 10-3 4.6589 10-3 4.7418 10-3
七、 误差分析
本实验的误差主要存在以下几点: ①仪器不准或精度不够,制作粗糙(牛顿环和劈尖)所造成的系统误差等。 ②由于牛顿环的暗纹很细,视野不是很明亮叉丝难以对准,内切外切很难对 到,造成误差。 ③劈尖干涉条纹也很细,不易测量,存在误差。 ④条纹太多,可能存在数错的情况。 ⑤测量时前后移动时有可能中途有回测的情况,会产生一定的空程误差。 ⑥劈尖干涉中头发丝的摆放位置不够直,导致在用游标卡尺测量 l 时也会存 在一定的误差等等。
等厚干涉

南昌大学物理实验报告课程名称:大学物理实验实验名称:光的等厚干涉学院:化学学院专业班级:化学类175班学生姓名:郭宇扬学号:7803017142实验地点:基础实验大楼313座位号:26实验时间:第五周星期五下午三点四十五开始一、实验目的:1.观察牛顿环和劈尖的干涉现象。
2.了解形成等厚干涉现象的条件及特点。
3.用干涉法测量透镜的曲率半径以及测量物体的微小直径或厚度。
二、实验原理:三、实验仪器:牛顿环装置、钠光灯、读数显微镜、劈尖等。
四、实验内容和步骤:1、利用牛顿环测定透镜的曲率半径(1)启动钠光灯电源,几分钟后,灯管发光稳定后,就可以开始实验了,注意不要反复拨弄开关。
(2)利用自然光或灯光调节牛顿装置,均匀且很轻地调节装置上的三个螺丝,使牛顿环中心条纹出现在透镜正中,无畸变,且为最小,然后放在显微镜物镜下方。
(3)前后左右移动读数显微镜,也可轻轻转动镜筒上的45度反光玻璃,使钠光灯正对45度玻璃。
直至眼睛看到显微镜视场较亮,呈黄色。
(4)用显微镜观察干涉条纹:先将显微镜筒放至最低,然后慢慢升高镜筒,看到条纹后,来回轻轻微调,直到在显微镜整个视场都能看到非常清晰的干涉条纹,观察并解释干涉条纹的分布特征。
(5)测量牛顿环的直径:转动目镜看清目镜筒中的叉丝,移动牛顿环仪,使十字叉丝的交点与牛顿环中心重合,移动测微鼓轮,使叉丝交点都能准确地与各圆环相切,这样才能正确无误地测出各环直径。
(6)已知钠光波长λ=5.893×10-5cm,利用公式分别求出五个相应的透镜曲率半径值,并求出算术平均值。
2、利用劈尖干涉测定微小厚度或细丝直径(1)将被测薄片或细丝夹于两玻璃板之间,用读数显微镜进行观察,描绘劈尖干涉的图像。
(2)测量劈尖两块玻璃板交线到待测薄片间距l。
(3)测量10个暗纹间距,进而得出一个条纹间距Δl。
(4)数据表格自拟,上述每个量测量次数至少三次。
五、实验数据与处理:1、利用牛顿环测定透镜的曲率半径mn x 1/cm x 2/cm d i (=∣x 1-x 2∣)/cm d i 2/cm 2(d m 2-d n 2)/cm 2R/cm 302530.29521.9648.33169.40610.4083108.831⨯29.98322.3027.68158.998292430.23622.0358.20167.25610.3753108.803⨯29.91222.3707.54256.882282330.18622.1018.08565.36710.5483108.950⨯29.84622.4427.40454.819272230.11822.1647.95463.26610.5443108.946⨯29.77322.5127.26152.722262130.06422.2337.83161.32510.7443109.116⨯29.70022.5887.11250.581平均值10.5243108.929⨯()()123.67215294.7541871721126981-5-2222251i 2i ≈=++++==∆=∑=R R R R σcm ()cm100.1236728.9293⨯±=∆±=R R R 1.39%100%8.9290.123672100%≈⨯=⨯∆=RR E 2、利用劈尖干涉测定微小厚度或细丝直径X 首/mmX 1/mmX 2/mmX 3/mmX 4/mmX 5/mmX 6/mmX 尾/mm40.20038.81135.59633.98631.65530.39628.44012.00028.200mmX -X l ==尾首0.3215mm 10X -X l 211=∆0.2331mm 10-l 432==∆X X 0.1956mm 10-l 653==∆X X 0.25013l l l l 321≈∆+∆+∆=∆2-103.3223l 2l d ⨯≈∆=λ六、误差分析:1、读数显微镜上的45°反光玻璃没有调整好角度。
(完整版)光的等厚干涉实验报告.docx

大连理工大学大学物理实验报告院(系)材料学院专业材料物理班级0705成绩姓名童凌炜学号200767025实验台号教师签字实验时间2008 年11 月 04日,第 11 周,星期二第5-6节实验名称光的等厚干涉教师评语实验目的与要求:1.观察牛顿环现象及其特点,加深对等厚干涉现象的认识和理解。
2.学习用等厚干涉法测量平凸透镜曲率半径和薄膜厚度。
3.掌握读数显微镜的使用方法。
实验原理和内容:1.牛顿环牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成,结构如图所示。
当平行单色光垂直照射到牛顿环器件上时,由于平凸透镜和玻璃之间存在一层从中心向外厚度递增的空气膜,经空气膜和玻璃之间的上下界面反射的两束光存在光程差,它们在平凸透镜的凸面(底面)相遇后将发生干涉,干涉图样是以接触点为中心的一组明暗相间、内疏外密的同心圆,称为牛顿环(如图所示。
由牛顿最早发现)。
由于同一干涉圆环各处的空气薄膜厚度相等,故称为等厚干涉。
牛顿环实验装置的光路图如下图所示:射入色光的波λ,在距接触点r k将生第k 牛,此的空气膜厚度d k,空气膜上下两界面依次反射的两束光的光程差k 2nd k2式中,n 空气的折射率(一般取1),λ/2是光从光疏介(空气)射到光密介(玻璃)的交界面上反射生的半波失。
根据干涉条件,当光程差波的整数倍干涉相,反之半波奇数倍干涉相消,故薄膜上下界面上的两束反射光的光程差存在两种情况:2kk2d k22(2k 1)2K=1,2,3, ⋯., 明K=0,1,2, ⋯., 暗由上可得干涉半径r k,膜的厚度d k与平凸透的曲率半径R之的关系R2( R d k ) 2r k2。
由于 dk 小于 R,故可以将其平方忽略而得到2Rd k r k2。
合以上的两种情况公式,得到:r k22Rd k kR ,k 0,1,2..., 暗环由以上公式件,r k与 d k成二次的关系,故牛之并不是等距的,且了避免背光因素干,一般取暗作象。
等厚干涉实验报告

南昌大学物理实验报告课程名称:大学物理实验(下)_____________ 实验名称:等厚干涉____________学院:信息工程学院专业班级:学生姓名:学号:_实验地点:基础实验大楼B313 座位号:___ 实验时间:第6周星期三下午三点四十五分_______一、实验目的:1.观察牛顿环和劈尖的干涉现象。
2.了解形成等厚干涉的条件及特点。
3. 用干涉法测量透镜的曲率半径以及测量物体的微小直径或厚度。
二、实验原理:1.等厚干涉光的等厚干渉,是利用透明薄膜的上下两表面对入射光依次反射,反射光相遇时发生的物理现象,干涉条件取决于光程差,光程差又取决于产生反射光的薄膜厚度,同一干涉条纹所对应的薄膜厚度相等,所以叫做等厚干渉。
当光源照到一块由透明介质做的薄膜上时,光在薄膜的上表面被分割成反射和折射两束光(分振幅),折射光在薄膜的下表面反射后,又经上表面折射,最后回到原来的媒质中,在这里与反射光交迭,发生相干。
只要光源发出的光束足够宽,相干光束的交迭区可以从薄膜表面一直延伸到无穷远。
薄膜厚度相同处产生同一级的干涉条纹,厚度不同处产生不同级的干涉条纹。
这种干涉称为等厚干涉。
如图1图12. 牛顿环测定透镜的曲率半径当一个曲率半径很大的平凸透镜的凸面放在一片平玻璃上时,两者之间就形成类似劈尖的劈形空气薄层,当平行光垂直地射向平凸透镜时,由于透镜下表面所反射的光和平玻璃片上表面所反射的光互相干涉,结果形成干涉条纹。
如果光束是单色光,我们将观察到明暗相间的同心环形条纹;如是白色光,将观察到彩色条纹。
这种同心的环形干涉条纹称为牛顿环。
图3本实验用牛顿环来测定透镜的曲率半径。
如图2。
设在干涉条纹半径r处空气厚度为e,那么,在空气层下表面B处所反射的光线比在A处所反射的光线多经过一段距离2e。
此外,由于两者反射情况不同:B处是从光疏媒质(空气)射向光密媒质(玻璃)时在界面上的反射,A处则从光密媒质射向光疏媒质时被反射,因B处产生半波损失,所以光程差还要增加半个波长,即:δ=2e+λ/2 (1)根据干涉条件,当光程差为波长整数倍时互相加强,为半波长奇数倍时互相抵消,因此:()()22/122/22/2⎭⎬⎫-----------+=+---------------=+暗环明环λλλλk e k e从上图中可知:r 2=R 2-(R-e)2=2Re-e 2因R远大于e,故e2远小于2Re,e2可忽略不计,于是:e=r2/2R (3)3.劈尖干涉测量薄片厚度如图4所示,劈尖干涉也是一种等厚干涉,其同一条纹是由劈尖相同厚度处的反射光相干产生的,其形状决定于劈尖等厚点的轨迹,所以是直条纹。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理实验等厚干涉
一、引言
干涉是物理学中非常重要的一个现象,它在波动光学中发挥着非常重要的作用。
干涉实验通过调控光线的相位差以及空间分布来制造干涉现象,进而得出许多有意义的结果。
例如,干涉实验可以用来测量光的波长、确定物体的表面形状、研究光的性质等等。
本次实验中,我们将学习一种叫做等厚干涉的技术,并通过实验来验证等厚干涉的原理。
二、等厚干涉原理
等厚干涉法是一种基于相位差补偿的干涉技术,它利用了两层介质中光传播速度不同的性质。
当光线穿过垂直于两层表面的小区域时,由于介质的折射率不同,光线的传播速度也就不同,从而引起相位差。
如果这个相位差等于光的波长的整数倍,那么两束光就会相长干涉,反之就会相消干涉。
等厚干涉是通常用来检测透明平板玻璃厚度和薄膜厚度的技术,也可以用来测量非均匀介质中的折射率变化。
三、实验步骤
1. 准备实验仪器:等厚干涉仪、白光灯、平面透镜、透明样品等。
2. 调节白光灯,使其发出均匀的白光。
3. 将样品放到等厚干涉仪台上,并加上透镜,调整透镜位置,使望远镜可以看到样品。
4. 打开干涉仪,用望远镜观察样品。
通过调整仪器上的螺旋调节器,调整入射光线和反射光线的相位,使样品中的两束光的相位差等于波长的整数倍。
5. 观察干涉条纹,记录下干涉条纹移动的方向、干涉条纹间距等信息。
6. 更换样品,重新进行干涉实验,记录数据并比较不同样品的结果。
四、实验注意事项
1. 实验室中应该保持干涉仪的温度稳定,防止温度变化干扰实验结果。
2. 微调螺钉的调节量应该小,以避免过多干涉中断条纹并使准确度降低。
3. 观察过程中应该定睛两点,以减少眼睛疲劳并保证数据的准确性。
4. 干涉仪的各个部分应该保持适当的清洁和维护,以确保实验的准确性和精确性。
五、实验结果分析
我们在实验中使用平板玻璃和凸透镜作为样品,分别进行了等厚干涉实验。
我们测得了不同位置的干涉条纹,记录下了移动的方向和幅度。
通过绘制样品厚度与干涉条纹间距之间的关系,我们验证了等厚干涉的原理,并计算出了玻璃折射率的值。
六、总结
等厚干涉技术是一种非常重要的干涉技术,它可以用来测量透明介质中的厚度和折射率等参数,也可以用来研究光的性质和物体的表面形状等问题。
在实践中,我们需要精心调节仪器并保持实验室的稳定环境,以获得准确和可靠的实验结果。
通过干涉实验,在实践中学习了光的特性和等厚干涉的原理,提高了实验技术和观察力。