线性代数知识点及总结

合集下载

线性代数知识点总结初中

线性代数知识点总结初中

线性代数知识点总结初中首先,我们来了解一下向量的概念。

向量是有大小和方向的量,通常用一条有箭头的线段来表示。

在直角坐标系中,一个向量可以用一个有序实数对$(x,y)$来表示,也可以表示为$i\vec{x}+j\vec{y}$(其中$i$和$j$分别为$x$轴和$y$轴上的单位向量,$\vec{x}$和$\vec{y}$分别为向量在$x$轴和$y$轴上的投影)。

其次,我们可以来了解向量的加法和数乘。

向量的加法满足交换律和结合律,即$\vec{a}+\vec{b}=\vec{b}+\vec{a}$,$(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})$。

而向量的数乘即是一个向量与一个实数相乘,结果是一个新的向量,它的大小是原来向量大小的绝对值倍,方向和原来向量方向一致时与原来向量同向,反之则反向。

然后,我们可以学习向量的线性组合。

对于向量组$\vec{a}_1,\vec{a}_2,...,\vec{a}_n$和实数$k_1,k_2,...,k_n$,$\vec{b}=k_1\vec{a}_1+k_2\vec{a}_2+...+k_n\vec{a}_n$称作向量组的线性组合,其中$k_1,k_2,...,k_n$称为线性组合的系数。

接着,我们可以了解向量的数量积。

向量的数量积又叫点积,是两个向量的数量积定义为$\vec{a}\cdot\vec{b}=|\vec{a}||\vec{b}|\cos\theta$,其中$|\vec{a}|$和$|\vec{b}|$分别是向量$\vec{a}$和$\vec{b}$的模,$\theta$是$\vec{a}$和$\vec{b}$之间的夹角。

最后,我们可以学习向量的夹角。

对于两个非零向量$\vec{a}$和$\vec{b}$,它们的夹角$\theta=\arccos\frac{\vec{a}\cdot\vec{b}}{|\vec{a}||\vec{b}|}$。

线性代数知识点总结汇总

线性代数知识点总结汇总

线性代数知识点总结1 行列式一行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:用于化简行列式1行列互换转置,行列式的值不变2两行列互换,行列式变号3提公因式:行列式的某一行列的所有元素都乘以同一数k,等于用数k乘此行列式4拆列分配:行列式中如果某一行列的元素都是两组数之和,那么这个行列式就等于两个行列式之和;5一行列乘k加到另一行列,行列式的值不变;6两行成比例,行列式的值为0;二重要行列式4、上下三角主对角线行列式的值等于主对角线元素的乘积5、副对角线行列式的值等于副对角线元素的乘积乘6、Laplace展开式:A是m阶矩阵,B是n阶矩阵,则7、n阶n≥2范德蒙德行列式数学归纳法证明★8、对角线的元素为a,其余元素为b的行列式的值:三按行列展开9、按行展开定理:1任一行列的各元素与其对应的代数余子式乘积之和等于行列式的值2行列式中某一行列各个元素与另一行列对应元素的代数余子式乘积之和等于0 四行列式公式10、行列式七大公式:1|kA|=k n|A|2|AB|=|A|·|B|3|A T|=|A|4|A-1|=|A|-15|A|=|A|n-16若A的特征值λ1、λ2、……λn,则7若A与B相似,则|A|=|B|五克莱姆法则11、克莱姆法则:1非齐次线性方程组的系数行列式不为0,那么方程为唯一解2如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为03若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0;2 矩阵一矩阵的运算1、矩阵乘法注意事项:1矩阵乘法要求前列后行一致;2矩阵乘法不满足交换律;因式分解的公式对矩阵不适用,但若B=E,O,A-1,A,fA时,可以用交换律3AB=O不能推出A=O或B=O;2、转置的性质5条1A+B T=A T+B T2kA T=kA T3AB T=B T A T4|A|T=|A|5A TT=A二矩阵的逆3、逆的定义:AB=E或BA=E成立,称A可逆,B是A的逆矩阵,记为B=A-1注:A可逆的充要条件是|A|≠04、逆的性质:5条1kA-1=1/k·A-1 k≠02AB-1=B-1·A-13|A-1|=|A|-14A T-1=A-1T5A-1-1=A5、逆的求法:1A为抽象矩阵:由定义或性质求解2A为数字矩阵:A|E→初等行变换→E|A-1三矩阵的初等变换6、初等行列变换定义:1两行列互换;2一行列乘非零常数c3一行列乘k加到另一行列7、初等矩阵:单位矩阵E经过一次初等变换得到的矩阵;8、初等变换与初等矩阵的性质:1初等行列变换相当于左右乘相应的初等矩阵2初等矩阵均为可逆矩阵,且E ij-1=E ij i,j两行互换;E i-1c=E i1/c第i行列乘cE ij-1k=E ij-k第i行乘k加到j★四矩阵的秩9、秩的定义:非零子式的最高阶数注:1rA=0意味着所有元素为0,即A=O2rA n×n=n满秩←→ |A|≠0 ←→A可逆;rA<n←→|A|=0←→A不可逆;3rA=rr=1、2、…、n-1←→r阶子式非零且所有r+1子式均为0;10、秩的性质:7条1A为m×n阶矩阵,则rA≤minm,n2rA±B≤rA±B3rAB≤min{rA,rB}4rkA=rAk≠05rA=rACC是一个可逆矩阵6rA=rA T=rA T A=rAA T7设A是m×n阶矩阵,B是n×s矩阵,AB=O,则rA+rB≤n11、秩的求法:1A为抽象矩阵:由定义或性质求解;2A为数字矩阵:A→初等行变换→阶梯型每行第一个非零元素下面的元素均为0,则rA=非零行的行数五伴随矩阵12、伴随矩阵的性质:8条1AA=AA=|A|E → ★A=|A|A-12kA=k n-1A3AB=BA4|A|=|A|n-15A T=A T6A-1=A-1=A|A|-17A=|A| n-2·A★8rA=n rA=n;rA=1 rA=n-1;rA=0 rA<n-1六分块矩阵13、分块矩阵的乘法:要求前列后行分法相同;14、分块矩阵求逆:3 向量一向量的概念及运算1、向量的内积:α,β=αTβ=βTα2、长度定义:||α||=3、正交定义:α,β=αTβ=βTα=a1b1+a2b2+…+a n b n=04、正交矩阵的定义:A为n阶矩阵,AA T=E ←→ A-1=A T←→ A T A=E → |A|=±1二线性组合和线性表示5、线性表示的充要条件:非零列向量β可由α1,α2,…,αs线性表示1←→非齐次线性方程组α1,α2,…,αs x1,x2,…,x s T=β有解;★2←→rα1,α2,…,αs=rα1,α2,…,αs,β系数矩阵的秩等于增广矩阵的秩,用于大题第一步的检验6、线性表示的充分条件:了解即可若α1,α2,…,αs线性无关,α1,α2,…,αs,β线性相关,则β可由α1,α2,…,αs线性表示;7、线性表示的求法:大题第二步设α1,α2,…,αs线性无关,β可由其线性表示;α1,α2,…,αs|β→初等行变换→行最简形|系数行最简形:每行第一个非0的数为1,其余元素均为0三线性相关和线性无关8、线性相关注意事项:1α线性相关←→α=02α1,α2线性相关←→α1,α2成比例9、线性相关的充要条件:向量组α1,α2,…,αs线性相关1←→有个向量可由其余向量线性表示;2←→齐次方程α1,α2,…,αs x1,x2,…,x s T=0有非零解;★3←→rα1,α2,…,αs<s 即秩小于个数特别地,n个n维列向量α1,α2,…,αn线性相关1←→ rα1,α2,…,αn<n2←→|α1,α2,…,αn |=03←→α1,α2,…,αn不可逆10、线性相关的充分条件:1向量组含有零向量或成比例的向量必相关2部分相关,则整体相关3高维相关,则低维相关4以少表多,多必相关★推论:n+1个n维向量一定线性相关11、线性无关的充要条件向量组α1,α2,…,αs线性无关1←→任意向量均不能由其余向量线性表示;2←→齐次方程α1,α2,…,αs x1,x2,…,x s T=0只有零解3←→rα1,α2,…,αs=s特别地,n个n维向量α1,α2,…,αn线性无关←→rα1,α2,…,αn=n ←→|α1,α2,…,αn |≠0 ←→矩阵可逆12、线性无关的充分条件:1整体无关,部分无关2低维无关,高维无关3正交的非零向量组线性无关4不同特征值的特征向量无关13、线性相关、线性无关判定1定义法★2秩:若小于阶数,线性相关;若等于阶数,线性无关专业知识补充1在矩阵左边乘列满秩矩阵秩=列数,矩阵的秩不变;在矩阵右边乘行满秩矩阵,矩阵的秩不变;2若n维列向量α1,α2,α3线性无关,β1,β2,β3可以由其线性表示,即β1,β2,β3=α1,α2,α3C,则rβ1,β2,β3=rC,从而线性无关;←→rβ1,β2,β3=3 ←→ rC=3 ←→ |C|≠0四极大线性无关组与向量组的秩14、极大线性无关组不唯一15、向量组的秩:极大无关组中向量的个数成为向量组的秩对比:矩阵的秩:非零子式的最高阶数★注:向量组α1,α2,…,αs的秩与矩阵A=α1,α2,…,αs的秩相等★16、极大线性无关组的求法1α1,α2,…,αs为抽象的:定义法2α1,α2,…,αs为数字的:α1,α2,…,αs→初等行变换→阶梯型矩阵则每行第一个非零的数对应的列向量构成极大无关组五向量空间17、基就是极大线性无关组变换公式:若α1,α2,…,αn与β1,β2,…,βn是n维向量空间V的两组基,则基变换公式为β1,β2,…,βn=α1,α2,…,αn C n×n其中,C是从基α1,α2,…,αn到β1,β2,…,βn的过渡矩阵;C=α1,α2,…,αn-1β1,β2,…,βn18、坐标变换公式:向量γ在基α1,α2,…,αn与基β1,β2,…,βn的坐标分别为x=x1,x2,…,x n T,y=y1,y2,…,y n T,,即γ=x1α1 + x2α2 + …+x nαn=y1β1 + y2β2 + …+y nβn,则坐标变换公式为x=Cy或y=C-1x;其中,C是从基α1,α2,…,αn到β1,β2,…,βn的过渡矩阵;C=α1,α2,…,αn-1β1,β2,…,βn六Schmidt正交化19、Schmidt正交化设α1,α2,α3线性无关1正交化令β1=α12单位化4 线性方程组一方程组的表达形与解向量1、解的形式:1一般形式2矩阵形式:Ax=b;3向量形式:A=α1,α2,…,αn2、解的定义:若η=c1,c2,…,c n T满足方程组Ax=b,即Aη=b,称η是Ax=b的一个解向量二解的判定与性质3、齐次方程组:1只有零解←→rA=nn为A的列数或是未知数x的个数2有非零解←→rA<n4、非齐次方程组:1无解←→rA<rA|b←→rA=rA-12唯一解←→rA=rA|b=n3无穷多解←→rA=rA|b<n5、解的性质:1若ξ1,ξ2是Ax=0的解,则k1ξ1+k2ξ2是Ax=0的解2若ξ是Ax=0的解,η是Ax=b的解,则ξ+η是Ax=b的解3若η1,η2是Ax=b的解,则η1-η2是Ax=0的解推广1设η1,η2,…,ηs是Ax=b的解,则k1η1+k2η2+…+k sηs为Ax=b的解当Σk i=1Ax=0的解当Σk i=02设η1,η2,…,ηs是Ax=b的s个线性无关的解,则η2-η1,η3-η1,…,ηs-η1为Ax=0的s-1个线性无关的解;变式:①η1-η2,η3-η2,…,ηs-η2②η2-η1,η3-η2,…,ηs-ηs-1三基础解系6、基础解系定义:1ξ1,ξ2,…,ξs是Ax=0的解2ξ1,ξ2,…,ξs线性相关3Ax=0的所有解均可由其线性表示→基础解系即所有解的极大无关组注:基础解系不唯一;任意n-rA个线性无关的解均可作为基础解系;★7、重要结论:证明也很重要设A施m×n阶矩阵,B是n×s阶矩阵,AB=O1B的列向量均为方程Ax=0的解2rA+rB≤n第2章,秩8、总结:基础解系的求法1A为抽象的:由定义或性质凑n-rA个线性无关的解2A为数字的:A→初等行变换→阶梯型自由未知量分别取1,0,0;0,1,0;0,0,1;代入解得非自由未知量得到基础解系四解的结构通解9、齐次线性方程组的通解所有解设rA=r,ξ1,ξ2,…,ξn-r为Ax=0的基础解系,则Ax=0的通解为k1η1+k2η2+…+k n-rηn-r 其中k1,k2,…,k n-r为任意常数10、非齐次线性方程组的通解设rA=r,ξ1,ξ2,…,ξn-r为Ax=0的基础解系,η为Ax=b的特解,则Ax=b的通解为η+ k1η1+k2η2+…+k n-rηn-r 其中k1,k2,…,k n-r为任意常数五公共解与同解11、公共解定义:如果α既是方程组Ax=0的解,又是方程组Bx=0的解,则称α为其公共解12、非零公共解的充要条件:方程组Ax=0与Bx=0有非零公共解←→有非零解←→13、重要结论需要掌握证明1设A是m×n阶矩阵,则齐次方程ATAx=0与Ax=0同解,rATA=rA2设A是m×n阶矩阵,rA=n,B是n×s阶矩阵,则齐次方程ABx=0与Bx=0同解,rAB=rB5 特征值与特征向量一矩阵的特征值与特征向量1、特征值、特征向量的定义:设A为n阶矩阵,如果存在数λ及非零列向量α,使得Aα=λα,称α是矩阵A属于特征值λ的特征向量;2、特征多项式、特征方程的定义:|λE-A|称为矩阵A的特征多项式λ的n次多项式;|λE-A |=0称为矩阵A的特征方程λ的n次方程;注:特征方程可以写为|A-λE|=03、重要结论:1若α为齐次方程Ax=0的非零解,则Aα=0·α,即α为矩阵A特征值λ=0的特征向量2A的各行元素和为k,则1,1,…,1T为特征值为k的特征向量;3上下三角或主对角的矩阵的特征值为主对角线各元素;△4、总结:特征值与特征向量的求法1A为抽象的:由定义或性质凑2A为数字的:由特征方程法求解5、特征方程法:1解特征方程|λE-A|=0,得矩阵A的n个特征值λ1,λ2,…,λn注:n次方程必须有n个根可有多重根,写作λ1=λ2=…=λs=实数,不能省略2解齐次方程λi E-A=0,得属于特征值λi的线性无关的特征向量,即其基础解系共n-rλi E-A个解6、性质:1不同特征值的特征向量线性无关2k重特征值最多k个线性无关的特征向量1≤n-rλi E-A≤k i3设A的特征值为λ1,λ2,…,λn,则|A|=Πλi,Σλi=Σa ii4当rA=1,即A=αβT,其中α,β均为n维非零列向量,则A的特征值为λ1=Σa ii=αTβ=βTα,λ2=…=λn=05设α是矩阵A属于特征值λ的特征向量,则A fAATA-1A P-1AP相似λfλλλ-1|A|λ-1λαα/ ααP-1α二相似矩阵7、相似矩阵的定义:设A、B均为n阶矩阵,如果存在可逆矩阵P使得B=P-1AP,称A与B相似,记作A~B 8、相似矩阵的性质1若A与B相似,则fA与fB相似2若A与B相似,B与C相似,则A与C相似3相似矩阵有相同的行列式、秩、特征多项式、特征方程、特征值、迹即主对角线元素之和推广4若A与B相似,则AB与BA相似,A T与B T相似,A-1与B-1相似,A与B也相似三矩阵的相似对角化9、相似对角化定义:如果A与对角矩阵相似,即存在可逆矩阵P,使得P-1AP=Λ=,称A可相似对角化;注:Aαi=λiαiαi≠0,由于P可逆,故P的每一列均为矩阵A的特征值λi的特征向量10、相似对角化的充要条件1A有n个线性无关的特征向量2A的k重特征值有k个线性无关的特征向量11、相似对角化的充分条件:1A有n个不同的特征值不同特征值的特征向量线性无关2A为实对称矩阵12、重要结论:1若A可相似对角化,则rA为非零特征值的个数,n-rA为零特征值的个数2若A不可相似对角化,rA不一定为非零特征值的个数四实对称矩阵13、性质1特征值全为实数2不同特征值的特征向量正交3A可相似对角化,即存在可逆矩阵P使得P-1AP=Λ4A可正交相似对角化,即存在正交矩阵Q,使得Q-1AQ=QTAQ=Λ6 二次型一二次型及其标准形1、二次型:1一般形式2矩阵形式常用2、标准形:如果二次型只含平方项,即fx1,x2,…,x n=d1x12+d2x22+…+d n x n2这样的二次型称为标准形对角线3、二次型化为标准形的方法:1配方法:通过可逆线性变换x=CyC可逆,将二次型化为标准形;其中,可逆线性变换及标准形通过先配方再换元得到;★2正交变换法:通过正交变换x=Qy,将二次型化为标准形λ1y12+λ2y22+…+λn y n2其中,λ1,λ2,…,λn是A的n个特征值,Q为A的正交矩阵注:正交矩阵Q不唯一,γi与λi对应即可;二惯性定理及规范形4、定义:正惯性指数:标准形中正平方项的个数称为正惯性指数,记为p;负惯性指数:标准形中负平方项的个数称为负惯性指数,记为q;规范形:f=z12+…z p2-z p+12-…-z p+q2称为二次型的规范形;5、惯性定理:二次型无论选取怎样的可逆线性变换为标准形,其正负惯性指数不变;注:1由于正负惯性指数不变,所以规范形唯一;2p=正特征值的个数,q=负特征值的个数,p+q=非零特征值的个数=rA三合同矩阵6、定义:A、B均为n阶实对称矩阵,若存在可逆矩阵C,使得B=C T AC,称A与B合同△7、总结:n阶实对称矩阵A、B的关系1A、B相似B=P-1AP←→相同的特征值2A、B合同B=C T AC←→相同的正负惯性指数←→相同的正负特征值的个数3A、B等价B=PAQ←→rA=rB注:实对称矩阵相似必合同,合同必等价四正定二次型与正定矩阵8、正定的定义二次型x T Ax,如果任意x≠0,恒有x T Ax>0,则称二次型正定,并称实对称矩阵A是正定矩阵;9、n元二次型x T Ax正定充要条件:1A的正惯性指数为n2A与E合同,即存在可逆矩阵C,使得A=C T C或C T AC=E3A的特征值均大于04A的顺序主子式均大于0k阶顺序主子式为前k行前k列的行列式10、n元二次型x T Ax正定必要条件:1a ii>02|A|>011、总结:二次型x T Ax正定判定大题1A为数字:顺序主子式均大于02A为抽象:①证A为实对称矩阵:A T=A;②再由定义或特征值判定12、重要结论:1若A是正定矩阵,则kAk>0,A k,A T,A-1,A正定2若A、B均为正定矩阵,则A+B正定。

吉林省考研数学复习资料线性代数重点知识点总结

吉林省考研数学复习资料线性代数重点知识点总结

吉林省考研数学复习资料线性代数重点知识点总结线性代数是数学中的一个分支,广泛应用于科学和工程领域。

在吉林省考研数学考试中,线性代数是一个重要的考点。

下面将对线性代数的一些重点知识点进行总结,以帮助考生复习备考。

1. 向量和矩阵向量是线性代数中最基本的概念之一。

向量可以表示为一组有序的数,常用字母表示,如a,b,c。

向量有多种运算,包括加法、减法和数乘等。

矩阵是由数按一定规则排列成的矩形阵列。

矩阵也有加法、减法和数乘等运算,矩阵之间还有乘法运算。

常见的矩阵包括单位矩阵、对角矩阵和方阵等。

2. 线性方程组线性方程组是线性代数中的一个重要内容。

线性方程组可以表示为多个线性方程组成的方程组。

线性方程组有三种基本操作:互换两个方程的次序、用非零常数乘以一个方程、用一个方程的倍数加到另一个方程上。

解线性方程组的方法主要有高斯消元法和矩阵求逆法。

高斯消元法通过对增广矩阵进行一系列行变换,将方程组转化为简化的阶梯形方程组。

矩阵求逆法通过求解增广矩阵的逆矩阵来得到方程组的解。

3. 向量空间和子空间向量空间是数域上的一组向量的集合,满足加法和数乘的封闭性、加法和数乘的结合律、存在零向量和负向量、数乘的分配律等性质。

子空间是向量空间的一个子集,本身也是向量空间。

子空间必须满足加法和数乘的封闭性,以及包含零向量等要求。

4. 线性相关与线性无关一组向量中,如果存在一个向量可以由其他向量线性表示,则称这组向量线性相关;如果不存在这样的情况,则称这组向量线性无关。

线性相关的向量组会存在一些冗余信息,可以通过高斯消元法等方法进行简化。

线性无关的向量组具有更好的性质和应用。

5. 矩阵的特征值与特征向量特征值与特征向量是矩阵的重要性质。

矩阵A的特征值是使得A 减去特征值倍单位矩阵后的矩阵A'奇异的所有特征向量。

矩阵的特征值和特征向量可以用于分析矩阵的性质和应用于线性系统的解与稳定性等问题。

6. 线性变换和矩阵的相似性线性变换是一种保持向量空间运算的映射关系。

大二线性代数知识点总结

大二线性代数知识点总结

大二线性代数知识点总结线性代数是数学中的一个重要分支,是大二学生必修的一门课程。

它涉及了许多基本概念和理论,对于理解和解决各种实际问题具有重要意义。

本文将对大二线性代数的主要知识点进行总结。

1. 向量和矩阵向量是线性代数中最基本的概念之一,可以用于表示空间中的点、矢量和函数等。

向量可以进行加法和数乘等运算,同时具有长度和方向。

矩阵是由若干行和若干列组成的矩形阵列,通常用方括号表示。

矩阵可以进行加法、数乘和矩阵乘法等运算。

矩阵可以表示线性变换和线性方程组等。

2. 行列式行列式是一个数值,它是矩阵中元素的一种特殊组合。

行列式的计算可以用于求解线性方程组、判断矩阵的可逆性和计算变换的缩放因子等。

3. 线性方程组线性方程组是由一组线性方程组成的方程组。

线性方程组的解可以通过高斯消元法、矩阵运算和行列式的方法进行求解。

线性方程组的求解在实际问题中具有广泛的应用,比如求解电路问题、求解物理问题等。

4. 特征值和特征向量矩阵的特征值和特征向量是线性代数中重要的概念。

特征值表示线性变换过程中的缩放因子,特征向量表示在该缩放过程中保持不变的方向。

求解特征值和特征向量可以用于分析矩阵的性质和解决实际问题。

5. 向量空间和线性变换向量空间是由一组向量和定义在其上的运算构成的数学结构。

线性变换是向量空间之间的一种映射关系,它保持向量运算和标量乘法等性质。

向量空间和线性变换是研究线性代数的重要内容,对于分析和解决实际问题具有重要意义。

6. 正交性和内积空间正交性是指向量之间的垂直关系,内积空间是具有内积运算的向量空间。

正交性和内积空间在物理学、工程学和信号处理等领域有广泛的应用,比如信号的傅里叶变换、正交编码等。

以上是大二线性代数的主要知识点总结。

线性代数的应用非常广泛,几乎涉及到所有科学和工程领域。

为了更好地理解和应用线性代数,我们需要通过练习和实践来加深对这些知识点的理解。

希望通过本文的总结,能够对大二线性代数的学习有所帮助。

大学数学线性代数知识点归纳总结

大学数学线性代数知识点归纳总结

大学数学线性代数知识点归纳总结线性代数是数学的一个重要分支,广泛应用于各个领域。

作为大学数学的一门核心课程,线性代数为我们提供了一种处理线性方程组、矩阵运算和向量空间等数学工具和理论。

在这篇文章中,我将对大学数学线性代数的知识点进行归纳总结。

1. 向量与向量空间- 向量的定义和性质- 向量的线性组合与线性相关性- 向量空间的定义和基本性质- 子空间与超平面- 线性无关与基2. 线性方程组- 线性方程组的概念与解的存在唯一性- 矩阵形式与增广矩阵- 初等行变换与线性方程组的等价性- 齐次线性方程组与非齐次线性方程组- 线性方程组的解的结构3. 矩阵与矩阵运算- 矩阵的定义和性质- 矩阵的加法与数乘- 矩阵的转置与对称矩阵- 矩阵乘法与矩阵的秩- 逆矩阵与可逆矩阵4. 特征值与特征向量- 特征值与特征向量的定义 - 特征多项式与特征方程- 对角化与可对角化条件- 特征值与矩阵的相似性5. 线性变换与线性映射- 线性变换的基本性质- 线性变换矩阵与基变换- 线性变换的零空间与像空间 - 线性变换的维数定理6. 内积空间与正交性- 内积空间的定义和性质- 正交向量与正交补空间- 正交投影与最小二乘法- 施密特正交化过程7. 特殊矩阵与应用- 对角矩阵与对角化- 正交矩阵与正交对角化- 幂零矩阵与Jordan标准形- 应用:图像处理、数据压缩、网络分析等通过对以上知识点的整理和总结,我们对大学数学线性代数的学习有了更加清晰的认识。

线性代数的理论和方法在计算机科学、物理学、工程学等领域都有广泛的应用,了解和掌握线性代数知识对于我们的学术研究和职业发展都具有重要意义。

希望本文能帮助读者对线性代数有更深入的了解,并在实际应用中发挥作用。

线性代数知识点总结

线性代数知识点总结

向量的模长
• 定义:向量的大小
• 计算公式:|v| = √(x² + y² + ... + n²)
向量的加法运算
向量加法的定义
• 两个向量的和是一个新的向量,其坐标等于两个向量坐标的和
• 向量加法满足交换律和结合律
向量加法的计算
• 直接将两个向量的对应坐标相加
• 可以用坐标法表示向量加法
向量加法的性质
正定二次型
• 二次型的标准化是将二次型表示为标准二次型的形式
• 正定二次型是指二次型对应的矩阵是正定矩阵
• 标准二次型的形式为f(x) = x′Ax + λx′x
• 正定二次型的二次函数在向量空间的原点处取得最小值
08
线性规划
线性规划问题的定义与模型
线性规划问题的定义
• 线性规划问题是一种优化问题,要求求解一组变量的最优值
06
特征值与特征向量
特征值与特征向量的定义与性质
01
特征值的定义
• 特征值是线性变换特征方程的根
• 特征值表示线性变换对向量的放大倍数
02
特征向量的定义
• 特征向量是线性变换特征方程的解向量
• 特征向量表示线性变换对向量的方向
03
特征值与特征向量的性质
• 特征值具有唯一性和稳定性
• 特征向量具有线性无关性
二次型的定义与表示
二次型的定义
二次型的表示
• 二次型是一种二次函数,表示为f(x) = Ax² + Bx + C
• 二次型可以用矩阵表示,为f(x) = x′Ax + x′Bx + x′Cx
• 其中,A、B、C是常数矩阵
• 其中,A、B、C是二次型的系数矩阵

《线性代数》知识点-归纳整理-大学线代基础知识

《线性代数》知识点-归纳整理-大学线代基础知识

《线性代数》知识点-归纳整理-大学线代基础知识-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN《线性代数》知识点归纳整理诚毅学生编01、余子式与代数余子式 ............................................................................................................................................. - 3 -02、主对角线 ................................................................................................................................................................. - 3 -03、转置行列式 ............................................................................................................................................................. - 3 -04、行列式的性质 ......................................................................................................................................................... - 4 -05、计算行列式 ............................................................................................................................................................. - 4 -06、矩阵中未写出的元素 ............................................................................................................................................. - 5 -07、几类特殊的方阵 ..................................................................................................................................................... - 5 -08、矩阵的运算规则 ..................................................................................................................................................... - 5 -09、矩阵多项式 ............................................................................................................................................................. - 7 -10、对称矩阵 ................................................................................................................................................................. - 7 -11、矩阵的分块 ............................................................................................................................................................. - 8 -12、矩阵的初等变换 ..................................................................................................................................................... - 8 -13、矩阵等价 ................................................................................................................................................................. - 8 -14、初等矩阵 ................................................................................................................................................................. - 8 -15、行阶梯形矩阵与行最简形矩阵 ......................................................................................................................... - 8 -16、逆矩阵 ..................................................................................................................................................................... - 9 -17、充分性与必要性的证明题 ................................................................................................................................... - 10 -18、伴随矩阵 ............................................................................................................................................................... - 10 -19、矩阵的标准形: ................................................................................................................................................... - 11 -20、矩阵的秩: ........................................................................................................................................................... - 11 -21、矩阵的秩的一些定理、推论 ............................................................................................................................... - 11 -22、线性方程组概念 ................................................................................................................................................... - 11 -23、齐次线性方程组与非齐次线性方程组(不含向量)........................................................................................ - 11 -24、行向量、列向量、零向量、负向量的概念 ....................................................................................................... - 13 -25、线性方程组的向量形式 ....................................................................................................................................... - 13 -26、线性相关与线性无关的概念 ......................................................................................................................... - 13 -27、向量个数大于向量维数的向量组必然线性相关.............................................................................................. - 14 -28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩这三者的关系及其例题...................................... - 14 -29、线性表示与线性组合的概念 ......................................................................................................................... - 14 -30、线性表示;非齐次线性方程组的解;矩阵的秩这三者的关系其例题.......................................................... - 14 -31、线性相关(无关)与线性表示的3个定理 ....................................................................................................... - 14 -32、最大线性无关组与向量组的秩 ........................................................................................................................... - 14 -33、线性方程组解的结构 ........................................................................................................................................... - 14 -01、余子式与代数余子式(1)设三阶行列式D =333231232221131211a a a a a a a a a ,则①元素11a ,12a ,13a 的余子式分别为:M 11=33322322a a a a ,M 12=33312321a a a a ,M 13=32312221a a a a对M 11的解释:划掉第1行、第1列,剩下的就是一个二阶行列式33322322a a a a ,这个行列式即元素11a 的余子式M 11。

大学线性代数知识点归纳总结

大学线性代数知识点归纳总结

大学线性代数知识点归纳总结线性代数是大学数学的重要分支之一,广泛应用于各个学科领域。

在学习线性代数过程中,我们需要掌握一系列的基本知识点。

本文将对大学线性代数的知识点进行归纳总结,旨在帮助读者梳理思路,全面了解线性代数的基本概念和运算方法。

1. 行列式行列式是线性代数的基础概念之一,在矩阵运算和方程组求解中起到重要作用。

行列式的计算涉及到代数余子式、代数余子式和行列式的关系等内容。

我们需要掌握行列式的计算方法,包括二阶和三阶行列式的计算公式,以及行列式的性质和运算规则。

2. 矩阵矩阵是线性代数的核心概念之一,广泛应用于各个学科领域。

我们需要了解矩阵的表示方法、矩阵的基本运算、矩阵的转置和逆矩阵等基本概念。

此外,矩阵乘法的计算方法和矩阵的行、列空间也是我们需要掌握的内容。

3. 向量空间向量空间是线性代数的重要概念,用于描述向量的性质和运算规则。

我们需要了解向量空间的定义和基本性质,包括向量加法、标量乘法、零向量、向量的线性组合和线性相关性等概念。

此外,向量空间的子空间、基和维数也是我们需要掌握的内容。

4. 线性变换线性变换是线性代数的核心内容之一,用于描述向量空间之间的映射关系。

我们需要理解线性变换的定义和性质,包括线性变换的加法、标量乘法、零变换和逆变换等。

此外,线性变换的矩阵表示和特征值、特征向量也是我们需要重点掌握的内容。

5. 特征值和特征向量特征值和特征向量是矩阵理论中的重要概念,揭示了线性变换中的重要性质。

我们需要了解特征值和特征向量的定义和计算方法,以及它们在线性代数中的应用。

6. 正交性与正交变换正交性是线性代数中重要的概念,与内积空间和正交变换密切相关。

我们需要了解正交性的定义和性质,包括正交向量、正交矩阵和正交变换等。

此外,正交化过程和正交矩阵的性质也是我们需要掌握的内容。

7. 最小二乘法最小二乘法是线性代数在实际问题中的应用之一,用于求解线性方程组的近似解。

我们需要了解最小二乘法的基本原理和计算方法,包括最小二乘解的存在唯一性和求解过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数知识点总结第一章 行列式1. n 阶行列式()()121212111212122212121==-∑n nnn t p p p n p p np p p p n n nna a a a a a D a a a a a a 2.特殊行列式1212n nλλλλλλ=,()()1122121n n n nλλλλλλ-=-3.行列式的性质定义记111212122212nn n n nna a a a a a D a a a =,112111222212n n T nnnna a a a a a D a a a =,行列式TD 称为行列式D 的转置行列式。

性质1行列式与它的转置行列式相等。

性质2 互换行列式的两行()↔i j r r 或列()↔i j c c ,行列式变号。

推论如果行列式有两行〔列〕完全一样〔成比例〕,则此行列式为零。

性质3 行列式*一行〔列〕中所有的元素都乘以同一数()⨯j k r k ,等于用数k 乘此行列式; 推论1 D 的*一行〔列〕中所有元素的公因子可以提到D 的外面; 推论2 D 中*一行〔列〕所有元素为零,则=0D 。

性质4 假设行列式的*一列〔行〕的元素都是两数之和,则1112111212222212()()()i i n i i n n n ni ninna a a a a a a a a a D a a a a a '+'+='+11121111121121222*********12i n i n i n i n n n ninnn n ninna aa a a a a a a a a a a a a a a a a a a a a a ''=+' 性质6 把行列式的*一列〔行〕的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式的值不变。

而算得行列式的值。

4. 行列式按行〔列〕展开余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的1n -阶行列式叫做元素ij a 的余子式,记作ij M 。

代数余子式()1i jij ij A M +=-记,叫做元素ij a 的代数余子式。

引理一个n 阶行列式,如果其中第i 行所有元素除〔i ,j 〕(,)i j 元外ij a 都为零,则这行列式等于ij a 与它的代数余子式的乘积,即ij ij D a A =。

〔高阶行列式计算首先把行列上的元素尽可能多的化成0,保存一个非零元素,降阶〕定理n 阶行列式111212122212=n n n n nna a a a a a D a a a 等于它的任意一行〔列〕的各元素与其对应的代数余子式的乘积之和,即1122i i i i in in D a A a A a A =+++,(1,2,,)i n =1122j j j j nj nj D a A a A a A =+++或,(1,2,,)j n =。

第二章 矩阵1.矩阵111212122211n n m m mn a a a a a a A a a a ⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭行列式是数值,矩阵是数表,各个元素组成方阵:行数与列数都等于n 的矩阵A 。

记作:A n 。

行(列)矩阵:只有一行(列)的矩阵。

也称行(列)向量。

同型矩阵:两矩阵的行数相等,列数也相等。

相等矩阵:AB 同型,且对应元素相等。

记作:A =B 零矩阵:元素都是零的矩阵〔不同型的零矩阵不同〕 对角阵:不在主对角线上的元素都是零。

单位阵:主对角线上元素都是1,其它元素都是0,记作:E注意矩阵与行列式有本质的区别,行列式是一个算式,一个数字行列式经过计算可求得其值,而矩阵仅仅是一个数表,它的行数和列数可以不同。

2. 矩阵的运算矩阵的加法111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b A B a b a b a b +++⎛⎫⎪+++⎪+= ⎪⎪+++⎝⎭说明只有当两个矩阵是同型矩阵时,才能进展加法运算。

矩阵加法的运算规律()1A B B A +=+;()()()2A B C A B C ++=++()()1112121222113,()n n ij ij m nm n m m mn a a a a a a A a A a a a a ⨯⨯---⎛⎫⎪--- ⎪=-=-= ⎪⎪---⎝⎭设矩阵记,A -称为矩阵A 的负矩阵()()()40,A A A B A B +-=-=+-。

数与矩阵相乘111212122211,n n m m mn a a a a a a A A A A A a a a λλλλλλλλλλλλλλ⎛⎫⎪ ⎪== ⎪⎪⎝⎭数与矩阵的乘积记作或规定为数乘矩阵的运算规律〔设A B 、为m n ⨯矩阵,,λμ为数〕()()()1A A λμλμ=;()()2A A A λμλμ+=+;()()3A B A B λλλ+=+。

矩阵相加与数乘矩阵统称为矩阵的线性运算。

矩阵与矩阵相乘设(b )ij B =是一个m s ⨯矩阵,(b )ij B =是一个s n ⨯矩阵,则规定矩阵A 与矩阵B的乘积是一个m n⨯矩阵(c )ij C =,其中()12121122j j i i is i j i j is sj sj b b a a a a b a b a b b ⎛⎫⎪ ⎪=+++ ⎪ ⎪ ⎪⎝⎭1sik kj k a b ==∑,()1,2,;1,2,,i m j n ==,并把此乘积记作C AB = 注意1。

A 与B2。

矩阵的乘法不满足交换律,即在一般情况下,AB BA ≠,而且两个非零矩阵的乘积可能是零矩阵。

3。

对于n 阶方阵A 和B ,假设AB=BA ,则称A 与B 是可交换的。

矩阵乘法的运算规律()()()1AB C A BC =;()()()()2AB A B A B λλλ==()()3A B C AB AC +=+,()B C A BA CA +=+()4m n n n m m m n m n A E E A A ⨯⨯⨯⨯⨯== ()5假设A 是n 阶方阵,则称A k为A 的k 次幂,即k k A A AA =个,并且m k m k A A A +=,()km mk A A =(),m k 为正整数。

规定:A 0=E 〔只有方阵才有幂运算〕注意 矩阵不满足交换律,即AB BA ≠,()kk k AB A B ≠〔但也有例外〕转置矩阵把矩阵A 的行换成同序数的列得到的新矩阵,叫做A 的转置矩阵,记作A T ,()()1TT A A =;()()2T T T A B A B +=+;()()3T T A A λλ=;()()4TT T AB B A =。

方阵的行列式由n 阶方阵A 的元素所构成的行列式,叫做方阵A 的行列式,记作A注意矩阵与行列式是两个不同的概念,n 阶矩阵是n 2个数按一定方式排成的数表,而n 阶行列式则是这些数按一定的运算法则所确定的一个数。

()1T A A =;()2n A A λλ=;(3)AB A B B A BA ===对称阵设A 为n 阶方阵,如果满足A =A T,则A 称为对称阵。

伴随矩阵行列式A 的各个元素的代数余子式ij A 所构成的如下矩阵112111222212n n nnnn A A A A A A A A A A *⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭称为矩阵A 的伴随矩阵。

性质AA A A A E **==〔易忘知识点〕 总结〔1〕只有当两个矩阵是同型矩阵时,才能进展加法运算。

〔2〕只有当第一个矩阵的列数等于第二个矩阵的行数时,两个矩阵才能相乘,且矩阵相乘不满足交换律。

〔3〕矩阵的数乘运算与行列式的数乘运算不同。

逆矩阵:AB =BA =E ,则说矩阵A 是可逆的,并把矩阵B 称为A 的逆矩阵。

1A B -=即。

说明1 A ,B 互为逆阵,A = B -12 只对方阵定义逆阵。

〔只有方阵才有逆矩阵〕 3.假设A 是可逆矩阵,则A 的逆矩阵是唯一的。

定理1矩阵A 可逆的充分必要条件是0A ≠,并且当A 可逆时,有1*1AA A-=〔重要〕奇异矩阵与非奇异矩阵当0A =时,A 称为奇异矩阵,当0A ≠时,A称为非奇异矩阵。

即求逆矩阵方法**1(1)||||021(3)||A A A A A A -≠=先求并判断当时逆阵存在;()求;求。

初等变换的应用:求逆矩阵:()1(|)|A E E A -−−−−→初等行变换。

逆矩阵的运算性质()()1111,,A AAA---=若可逆则亦可逆且()()1112,0,,A A A A λλλ--≠=若可逆数则可逆且。

()1113,,,A B AB AB B A ---=若为同阶方阵且均可逆则亦可逆且()。

()()()114,,TTTA A AA--=若可逆则亦可逆且。

()115,A A A --=若可逆则有。

3.矩阵的初等变换初等行〔列〕变换()1()i j r r ↔对调两行,记作。

()20()i k r k ≠⨯以数乘以某一行的所有元素,记作。

()3()i j k r kr +把某一行所有元素的倍加到另一行对应的元素上去,记作。

初等列变换:把初等行变换中的行变为列,即为初等列变换,所用记号是把"r 〞换成"c 〞。

矩阵等价A B A B 如果矩阵经有限次初等变换变成矩阵,就称矩阵与等价。

行阶梯形矩阵:可画出一条阶梯线,线的下方全为零,每个台阶只有一行,台阶数即是非零行的行数阶梯线的竖线〔每段竖线的长度为一行〕后面的第一个元素为非零元,也是非零行的第一个非零元。

〔非零行数及矩阵的秩〕.00000340005213023012的秩求矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=B R(B)=3行最简形矩阵:行阶梯矩阵中非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0.标准型:对行最简形矩阵再施以初等列变换,可以变换为形如r m nE OF O O ⨯⎛⎫=⎪⎝⎭的矩阵,称为标准型。

标准形矩阵是所有与矩阵A 等价的矩阵中形状最简单的矩阵。

初等变换的应用求逆矩阵:()1(|)|A E E A -−−−−→初等行变换或1A E E A -⎛⎫⎛⎫−−−−→⎪ ⎪⎝⎭⎝⎭初等列变换。

4. 矩阵的秩矩阵的秩任何矩阵m n A ⨯,总可以经过有限次初等变换把它变为行阶梯形,行阶梯形矩阵中非零行的行数是唯一确定的。

〔非零行的行数即为矩阵的秩〕说明1. 矩阵A m ×n ,则R (A ) ≤min{m ,n };2. R (A ) = R (A T );3. R (A )≥r 的充分必要条件是至少有一个r 阶子式不为零;4. R (A )≤r 的充分必要条件是所有r + 1 阶子式都为零. 满秩和满秩矩阵矩阵()ij m nA a ⨯=,假设()R A m =,称A 为行满秩矩阵;假设()R A n =,称A 为列满秩矩阵;,(),A n R A n A =若为阶方阵且则称为满秩矩阵。

相关文档
最新文档