2022年秋国开《离散数学》形考任务2

合集下载

国开电大《离散数学》形考任务1和4试题及答案

国开电大《离散数学》形考任务1和4试题及答案

国开电大《离散数学》形考任务一参考答案单项选择题试题1若集合A的元素个数为10,则其幕集的元素个数为().选择一项:A.lB.100C.1024D.10正确答案是:1024试题2集合A={l,2, 3, 4, 5, 6, 7, 8}上的关系R={<x,y> I x+y=lO且x,yA}, 则R 的性质为().选择一项:A反自反且传递的B对称的C自反的D传递且对称的正确答案是:对称的试题3设集合A={l,2, 3}, 8={3, 4, S}, C={S, 6, 7}, 则AU B -C =( ).一、公式翻译题(每小题4分,共16分)1.将语句 “我会英语, 并且会德语. “翻译成命题公式.答: 设P : 我会头语Q: 我会德语则命题公式为P/\Q 2.将语句 “ 如果今天是周三, 则昨天是周二. “翻译成命题公式.答: 设P: 今天是周三Q: 昨天是周二则命题公式为: PQ 3.将语句"C3次列车每天上午9点发车或者10点发车” 翻译成命题公式.答: 设P : C 3次列车每天卜午9点发车Q : C3次列车每天上午10点发车则命题公式为: -, C P 仁 Q )4.将语句 “小王是个学生, 小李是个职员, 而小张是个军人. “翻译成命题公式. 答: 设: P : 小王是个学生Q : 小李是个职员R : 小张是个军人则命题公式为: p/\Q /\R 二、计算题(每小题12 分, 共 84 分)1.设集合A={{a},a, b ), B ={a, {b)}, 试计算(1)AnB;(2)AU 8;(3)A-(AnB)答:C I )炉B ={a}(2)A u B ={ {a},a,b {b}}(3)A -(A n B)={ { a },a ,b }-{a}={a ,b}2设集合A={2,3, 6, 12, 24, 36}, B为A 的子集,其中B={6,12}, R是A 上的整除关系,试Cl)写出R 的关系表达式;(2)画出关系R 的哈斯图;(3)求出B 的最大元、极大元、最小上界.。

国开形成性考核50501《离散数学(本)》形考任务(1-3)试题及答案

国开形成性考核50501《离散数学(本)》形考任务(1-3)试题及答案

国开形成性考核《离散数学(本)》形考任务(1-3)试题及答案(课程ID:50501,整套相同,如遇顺序不同,Ctrl+F查找,祝同学们取得优异成绩!)形考任务1 集合论部分概念及性质一、单项选择题题目:1、设A={a,b},B={1,2},C={4,5},从A到B的函数f={<a,1>, <b,2>},从B到C的函数g={<1,5>, <2,4>},则下列表述正确的是()。

【A】:f°g ={<5,a >, <4,b >}【B】:g°f ={<a,5>, <b,4>}【C】:f°g ={<a,5>, <b,4>}【D】:g°f ={<5,a >, <4,b >}答案:g°f ={<a,5>, <b,4>}题目:2、设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为()。

【A】:8、1、6、1【B】:无、2、无、2【C】:8、2、8、2【D】:6、2、6、2答案:无、2、无、2题目:3、设集合A={2, 4, 6, 8},B={1, 3, 5, 7},A到B的关系R={<x, y>| y = x +1},则R= ()。

【A】:{<2, 1>, <4, 3>, <6, 5>}【B】:{<2, 1>, <3, 2>, <4, 3>}【C】:{<2, 3>, <4, 5>, <6, 7>}【D】:{<2, 2>, <3, 3>, <4, 6>}答案:{<2, 3>, <4, 5>, <6, 7>}题目:4、设集合A ={1 , 2, 3}上的函数分别为:()。

2016年秋国家开放大学《离散数学》形考2试题及答案(答案全部正确)

2016年秋国家开放大学《离散数学》形考2试题及答案(答案全部正确)

2016年秋国家开放大学《离散数学》形考2试题及答案(答案全部正确)02任务_0001试卷总分:100 测试时间:0单项选择题一、单项选择题(共10 道试题,共100 分。

)1. 设集合A = {1, a },则P(A) = ( ).A. {{1}, {a}}B. {,{1}, {a}}C. {{1}, {a}, {1, a }}D. {,{1}, {a}, {1, a }}2. 集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, y A},则R的性质为().A. 不是自反的B. 不是对称的C. 传递的D. 反自反3. 若集合A={ a,{a},{1,2}},则下列表述正确的是( ).A. {a,{a}} AB. {1,2} AC. {a} AD. A4.设集合A ={1 , 2, 3}上的函数分别为:f = {<1, 2>,<2, 1>,<3, 3>},g = {<1, 3>,<2, 2>,<3, 2>},h = {<1, 3>,<2, 1>,<3, 1>},则h =().A. f◦gB. g◦fC. f◦fD. g◦g5. 设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的()闭包.A. 自反B. 传递C. 对称D. 自反和传递6. 若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).A. A B,且A BB. B A,且A BC. A B,且A BD. A B,且A B7. 设集合A={1,2,3,4,5},偏序关系£是A上的整除关系,则偏序集<A,£>上的元素5是集合A的().A. 最大元B. 最小元C. 极大元D. 极小元8. 若集合A的元素个数为10,则其幂集的元素个数为().A. 1024B. 10C. 100D. 19. 如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.A. 0B. 2C. 1D. 310. 设集合A={a},则A的幂集为( ).A. {{a}}B. {a,{a}}C. {,{a}}D. {,a}02任务_0002试卷总分:100 测试时间:0单项选择题一、单项选择题(共10 道试题,共100 分。

2016年秋国家开放大学《离散数学》形考2试题及答案(答案全部正确)

2016年秋国家开放大学《离散数学》形考2试题及答案(答案全部正确)

2016年秋国家开放大学《离散数学》形考2试题及答案(答案全部正确)02任务_0001试卷总分:100 测试时间:0单项选择题一、单项选择题(共10 道试题,共100 分。

)1. 设集合A = {1, a },则P(A) = ( ).A. {{1}, {a}}B. {,{1}, {a}}C. {{1}, {a}, {1, a }}D. {,{1}, {a}, {1, a }}2. 集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, y A},则R的性质为().A. 不是自反的B. 不是对称的C. 传递的D. 反自反3. 若集合A={ a,{a},{1,2}},则下列表述正确的是( ).A. {a,{a}} AB. {1,2} AC. {a} AD. A4.设集合A ={1 , 2, 3}上的函数分别为:f = {<1, 2>,<2, 1>,<3, 3>},g = {<1, 3>,<2, 2>,<3, 2>},h = {<1, 3>,<2, 1>,<3, 1>},则h =().A. f◦gB. g◦fC. f◦fD. g◦g5. 设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的()闭包.A. 自反B. 传递C. 对称D. 自反和传递6. 若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).A. A B,且A BB. B A,且A BC. A B,且A BD. A B,且A B7. 设集合A={1,2,3,4,5},偏序关系≤是A上的整除关系,则偏序集<A,≤>上的元素5是集合A的().A. 最大元B. 最小元C. 极大元D. 极小元8. 若集合A的元素个数为10,则其幂集的元素个数为().A. 1024B. 10C. 100D. 19. 如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.A. 0B. 2C. 1D. 310. 设集合A={a},则A的幂集为( ).A. {{a}}B. {a,{a}}C. {,{a}}D. {,a}02任务_0002试卷总分:100 测试时间:0单项选择题一、单项选择题(共10 道试题,共100 分。

国开电大离散数学(本)形考任务1-3参考答案

国开电大离散数学(本)形考任务1-3参考答案

本课程题目随机请使用Ctrl+F搜索题目1.若集合A的元素个数为10,则其幂集的元素个数为().A. 100B. 1024C. 1D. 10【答案】:10242.设集合A={2, 4, 6, 8},B={1, 3, 5, 7},A到B的关系R={<x, y>| y = x +1},则R= ( ).A. {<2, 2>, <3, 3>, <4, 6>}B. {<2, 1>, <3, 2>, <4, 3>}C. {<2, 3>, <4, 5>, <6, 7>}D. {<2, 1>, <4, 3>, <6, 5>}【答案】:{<2, 3>, <4, 5>, <6, 7>}3.设集合A={a},则A的幂集为( ).【答案】:4.设集合A = {1, a },则P(A) = ( ).【答案】5.设集合A={1,2,3,4,5},偏序关系≤是A上的整除关系,则偏序集<A,≤>上的元素5是集合A的().A. 最小元B. 最大元C. 极大元D. 极小元【答案】:极大元6.集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={<x,y>|x+y=10且x, yA},则R的性质为().A. 传递且对称的B. 对称的C. 自反的D. 反自反且传递的【答案】:对称的7.若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).【答案】:8.若集合A={2,a,{ a },4},则下列表述正确的是( ).【答案】:9.设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为().A. 2B. 3C. 8D. 6【答案】:810.集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, yA},则R的性质为().A. 不是自反的B. 传递的C. 不是对称的D. 反自反【答案】:传递的11.空集的幂集是空集.()对错【答案】:错12.设集合A={a, b, c, d},A上的二元关系R={<a, a >, <b, b>, <b, c>, <c, d>},若在R中再增加两个元素<c, b>,<d, c>,则新得到的关系就具有反自反性质.()对错【答案】:错13.若集合A = {1,2,3}上的二元关系R={<1, 1>,<2, 2>,<1, 2>},则R是自反的关系.()对错【答案】:错14.设集合A={1, 2, 3, 4},B={2, 4, 6, 8},下列关系f = {<1, 4>, <2, 2,>, <4, 6>, <1, 8>}可以构成函数f:.()对错【答案】:错15.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系R=那么R-1={<6, 3>,<8,4>}.()对错【答案】:对16.设A={1, 2}上的二元关系为R={<x, y>|xA,yA, x+y =10},则R的自反闭包为{<1, 1>, <2, 2>}.()对错【答案】:对17.如果R1和R2是A上的自反关系,则、R1∪R2、R1∩R2是自反的.()对错【答案】:对18.设集合A={1, 2, 3},B={1, 2},则P(A)-P(B )= {{3},{1,3},{2,3},{1,2,3}}.()对错【答案】:对19.设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有反自反性质.()对错【答案】:对20.设A={1,2},B={ a, b, c },则A×B的元素个数为8.()对错【答案】:错21.设函数f:N→N,f(n)=n+1,下列表述正确的是().A. f是满射的B. f是单射函数C. f存在反函数D. f是双射的【答案】:f是单射函数22.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.A. 0B. 3C. 1D. 2【答案】:223.设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为( ).A. 无、2、无、2B. 8、1、6、1C. 6、2、6、2D. 8、2、8、2【答案】:无、2、无、224.设集合A = {1, 2, 3, 4, 5}上的偏序关系的哈斯图如图所示,若A的子集B = {3, 4, 5},则元素3为B的().A. 最大下界B. 最小上界C. 下界D. 最小元【答案】:最小上界25.设集合A ={1 , 2, 3}上的函数分别为:f = {<1, 2>,<2, 1>,<3, 3>},g = {<1, 3>,<2, 2>,<3, 2>},h = {<1, 3>,<2, 1>,<3, 1>},则h =().A. g?fB. f?fC. g?gD. f?g【答案】:f?g26.设集合A={1, 2, 3},B={3, 4, 5},C={5, 6, 7},则A∪B–C =( ).A. {1, 2, 3, 4}B. {2, 3, 4, 5}C. {4, 5, 6, 7}D. {1, 2, 3, 5}【答案】:{1, 2, 3, 4}27.设A、B是两个任意集合,则A-B = ( ).A. B =B. A=BD.【答案】:28.设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的()闭包.A. 对称B. 自反C. 自反和传递D. 传递【答案】:对称29.设A={a,b},B={1,2},C={4,5},从A到B的函数f={<a,1>, <b,2>},从B到C的函数g={<1,5>, <2,4>},则下列表述正确的是().A. f°g ={<5,a >, <4,b >}B. f°g ={<a,5>, <b,4>}C. g°f ={<5,a >, <4,b >}D. g°f ={<a,5>, <b,4>}【答案】:g°f ={<a,5>, <b,4>}30.若集合A={ a,{a},{1,2}},则下列表述正确的是().【答案】:31.设A={2, 3},B={1, 2},C={3, 4},从A到B的函数f={<2, 2>, <3, 1>},从B到C的函数g={<1,3>, <2,4>},则Dom(g°f) ={2,3}.()对错【答案】:对32.若集合A = {1,2,3}上的二元关系R={<1, 1>,<1, 2>,<3, 3>},则R是对称的关系.()对错【答案】:错33.设A={a, b},B={1, 2},C={a, b},从A到B的函数f={<a, 1>, <b, 2>},从B到C的函数g={<1,b>, <2, a >},则g°f ={<1,2 >, <2,1 >}.()对错【答案】:错34.若偏序集<A,R>的哈斯图如图二所示,则集合A的最大元为a,极小元不存在.()35.对错【答案】:错35.设集合A={1, 2, 3},B={2, 3, 4},C={3, 4, 5},则A∩(C-B )= {1, 2, 3, 5}.()对错【答案】:错36.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含<1, 1>,<2, 2>,<3, 3> 等元素.()对错【答案】:对37.设集合A={1, 2, 3, 4},B={2, 4, 6, 8},下列关系f = {<1, 8>, <2, 6>, <3, 4>, <4, 2,>}可以构成函数f:.()对错【答案】:对38.设集合A={1, 2, 3},B={1, 2},则A×B={<1,1>, <1,2>, <2,1>, <2,2>, <3,1>, <3,2>}.()对错【答案】:对39.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系,则R的有序对集合为{<2, 2>,<2, 3>,<3, 2>,<3, 3>}.()对错【答案】:对40.设A={1,2,3 },R={<1,1 >, <1,2 >,<2,1 >, <3,3 >},则R是等价关系.()对错【答案】:错41.设无向图G的邻接矩阵为则G的边数为( ).A. 4B. 3C. 5D. 6【答案】:542.无向完全图K4是().A. 非平面图B. 树C. 欧拉图D. 汉密尔顿图【答案】:汉密尔顿图43.设G是连通平面图,有v个结点,e条边,r个面,则r= ( ).A. e-v+2B. v+e-2C. e+v+2D. e-v-2【答案】:e-v+244.图G如图四所示,以下说法正确的是( ) .A. {(b, d)}是边割集B. {(a, d) ,(b, d)}是边割集C. {(a, d)}是割边D. {(a, d)}是边割集【答案】:{(a, d) ,(b, d)}是边割集45.结点数v与边数e满足e=v的无向连通图就是树.( )对错【答案】:错46.设图G如图七所示,则图G的点割集是{f}.( )对错【答案】:错47.无向图G存在欧拉回路,当且仅当G连通且结点度数都是偶数.( )对错【答案】:对48.设G=<V,E>是具有n个结点的简单图,若在G中每一对结点度数之和小于n-1,则在G 中存在一条汉密尔顿路.( )对错【答案】:错49.如图二所示,以下说法正确的是( ).图二A. e是割点B. {b, e}是点割集C. {d}是点割集D. {a, e}是点割集【答案】:e是割点50.设连通平面图G的结点数为5,边数为6,则面数为4.( )对错【答案】:错51.设完全图K有n个结点(n2),m条边,当n为奇数时,K中存在欧拉回路.( )对错【答案】:对52.若图G=<V, E>,其中V={ a, b, c, d },E={ (a, b), (a, d),(b, c), (b, d)},则该图中的割边为(b,c).( )对错【答案】:对53.设G是一个连通平面图,且有6个结点11条边,则G有7个面.( )对错【答案】:对54.无向图G的结点数比边数多1,则G是树.( )对错【答案】:错55.两个图同构的必要条件是结点数相等;边数相等;度数相同的结点数相等.( ) 对错【答案】:对56.无向树T有8个结点,则T的边数为( ).A. 9B. 7C. 6D. 8【答案】:757.无向简单图G是棵树,当且仅当( ).A. G连通且结点数比边数少1B. G的边数比结点数少1C. G中没有回路.D. G连通且边数比结点数少1【答案】:G连通且边数比结点数少158.设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是( ).图五A. (d)是强连通的B. (c)是强连通的C. (b)是强连通的D. (a)是强连通的【答案】:(a)是强连通的59.已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( ).A. 3B. 8C. 4D. 5【答案】:560.已知无向图G的邻接矩阵为,则G有().A. 6点,7边B. 5点,7边C. 6点,8边D. 5点,8边【答案】:5点,7边61.设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是( ).图六A. (c)只是弱连通的B. (d)只是弱连通的C. (a)只是弱连通的D. (b)只是弱连通的【答案】:(d)只是弱连通的62.图G如图三所示,以下说法正确的是( ).A. {b, c}是点割集B. {c}是点割集C. a是割点D. {b, d}是点割集【答案】:{b, c}是点割集63.无向图G存在欧拉回路,当且仅当().A. G中至多有两个奇数度结点B. G中所有结点的度数全为偶数C. G连通且所有结点的度数全为偶数D. G连通且至多有两个奇数度结点【答案】:G连通且所有结点的度数全为偶数64.如图一所示,以下说法正确的是( ) .A. {(a, e) ,(b, c)}是边割集B. {(a, e)}是割边C. {(a, e)}是边割集D. {(d, e)}是边割集【答案】:{(d, e)}是边割集65.若G是一个汉密尔顿图,则G一定是( ).A. 欧拉图B. 平面图C. 对偶图D. 连通图【答案】:连通图66.以下结论正确的是( ).A. 树的每条边都是割边B. 无向完全图都是平面图C. 无向完全图都是欧拉图D. 有n个结点n-1条边的无向图都是树【答案】:树的每条边都是割边67.若G是一个欧拉图,则G一定是( ).A. 平面图B. 对偶图C. 连通图D. 汉密尔顿图【答案】:连通图68.如果图G是无向图,且其结点度数均为偶数,则图G存在一条欧拉回路.( )对错【答案】:错69.已知图G中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G的边数是15.( )对错【答案】:对70.若图G=<V, E>中具有一条汉密尔顿回路,则对于结点集V的每个非空子集S,在G中删除S中的所有结点得到的连通分支数为W,则S中结点数|S|与W满足的关系式为W|S|.( ) 对错【答案】:对71.设G是一个图,结点集合为V,边集合为E,则.( )对错【答案】:对72.汉密尔顿图一定是欧拉图.( )对错【答案】:错73.如图八所示的图G存在一条欧拉回路.( )图八对错【答案】:错74.设G是一个有7个结点16条边的连通图,则G为平面图.( )对错【答案】:错75.设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去4条边后使之变成树.( )对错【答案】:对76.设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去6条边后使之变成树.( )对错【答案】:错77.如图九所示的图G不是欧拉图而是汉密尔顿图.( )对错【答案】:对78.命题公式为( )A. 矛盾式B. 合取范式C. 可满足式D. 重言式【答案】:可满足式79.下列公式( )为重言式.【答案】:80.( ) 对错【答案】:对81.设P:他生病了,Q:他出差了,R:我同意他不参加学习.那么命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为(P∨Q)→┐R.( )对错【答案】:错82.设个体域D={1, 2, 3},A(x)为“x小于3”,则谓词公式(?x)A(x) 的真值为T.( )对错【答案】:对83.设个体域D={1,2, 3, 4},A(x)为“x大于5”,则谓词公式(?x)A(x)的真值为T.( )对错【答案】:错84.命题公式P→(Q∨P)的真值是T.( )对错【答案】:对85.谓词命题公式(?x)((A(x)∧B(x))∨C(y))中的自由变元为x.( )对错【答案】:错86.设P(x):x是人,Q(x):x去上课,那么命题“有人去上课.”为.( ) 对错【答案】:错87.设个体域D={a, b},则谓词公式(?x)(A(x)∧B(x))消去量词后的等值式为(A(a)∧B(a))∧(A(b)∧B(b)).( )对错【答案】:对88.设P:昨天下雨,Q:今天下雨.那么命题“昨天下雨,今天仍然下雨”符号化的结果为P∧Q.( )对错【答案】:对89.设个体域D是整数集合,则命题的真值是().A. TB. 不确定C. 以上说法都不是D. F【答案】:T90.设P:小王来学校,Q:他会参加比赛.那么命题“如果小王来学校,则他会参加比赛”符号化的结果为P→Q.( )对错【答案】:对91.含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式(P∧Q∧R)∨(P∧Q∧┐R).( ) 对错【答案】:对92.设命题公式G:,则使公式G取真值为1的P,Q,R赋值分别是( ).A. 0, 1, 0B. 0, 0, 0C. 0, 0, 1D. 1, 0, 0【答案】:1, 0, 093.设个体域为整数集,则公式的解释可为( ).A. 任一整数x对任意整数y满足x+y=0B. 存在一整数x对任意整数y满足x+y=0C. 对任一整数x存在整数y满足x+y=0D. 存在一整数x有整数y满足x+y=0【答案】:对任一整数x存在整数y满足x+y=094.前提条件的有效结论是( ).A. PB. QC. ┐QD. ┐P【答案】:┐Q95.命题公式(P∨Q) 的合取范式是( ) .A. ┐(┐P∧┐Q)B. (P∧Q)C. (P∨Q)D. (P∧Q)∨(P∨Q)【答案】:(P∨Q)96.命题公式(P∨Q)→R的析取范式是( ).A. (┐P∧┐Q)∨RB. (P∧Q)∨RC. (P∨Q)∨RD. ┐(P∨Q)∨R【答案】:(┐P∧┐Q)∨R97.下列等价公式成立的为( ).【答案】:98.谓词公式成立.( )对错【答案】:对99.设个体域D={a, b},那么谓词公式(?x)A(x)∨(?y)B(y)消去量词后的等值式为A(a)∨B(b).( )对错【答案】:错100.下面的推理是否正确.( )(1) (?x)A(x)→B(x) 前提引入(2) A(y)→B(y) US (1)对错【答案】:错101.设P(x):x是人,Q(x):x学习努力,那么命题“所有的人都学习努力.”为(?x)(P(x)∧Q(x)).( )对错【答案】:错102.谓词公式(x)(A(x)→B(x)∨C(x,y))中的()。

2016年秋国家开放大学《离散数学》形考2试题及答案(答案全部正确)

2016年秋国家开放大学《离散数学》形考2试题及答案(答案全部正确)

2016年秋国家开放大学《离散数学》形考2试题及答案(答案全部正确)02任务_0001试卷总分:100 测试时间:0单项选择题一、单项选择题(共10 道试题,共100 分。

)1. 设集合A = {1, a },则P(A) = ( ).A. {{1}, {a}}B. {,{1}, {a}}C. {{1}, {a}, {1, a }}D. {,{1}, {a}, {1, a }}2. 集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, y A},则R的性质为().A. 不是自反的B. 不是对称的C. 传递的D. 反自反3. 若集合A={ a,{a},{1,2}},则下列表述正确的是( ).A. {a,{a}} AB. {1,2} AC. {a} AD. A4.设集合A ={1 , 2, 3}上的函数分别为:f = {<1, 2>,<2, 1>,<3, 3>},g = {<1, 3>,<2, 2>,<3, 2>},h = {<1, 3>,<2, 1>,<3, 1>},则h =().A. f◦gB. g◦fC. f◦fD. g◦g5. 设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的()闭包.A. 自反B. 传递C. 对称D. 自反和传递6. 若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).A. A B,且A BB. B A,且A BC. A B,且A BD. A B,且A B7. 设集合A={1,2,3,4,5},偏序关系≤是A上的整除关系,则偏序集<A,≤>上的元素5是集合A的().A. 最大元B. 最小元C. 极大元D. 极小元8. 若集合A的元素个数为10,则其幂集的元素个数为().A. 1024B. 10C. 100D. 19. 如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.A. 0B. 2C. 1D. 310. 设集合A={a},则A的幂集为( ).A. {{a}}B. {a,{a}}C. {,{a}}D. {,a}02任务_0002试卷总分:100 测试时间:0单项选择题一、单项选择题(共10 道试题,共100 分。

最新国家开放大学电大《离散数学(本)》期末题库及答案

最新国家开放大学电大《离散数学(本)》期末题库及答案

最新国家开放大学电大《离散数学(本)》期末题库及答案考试说明:本人针对该科精心汇总了历年题库及答案,形成一个完整的题库,并且每年都在更新。

该题库对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。

做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。

本文库还有其他网核及教学考一体化答案,敬请查看。

《离散数学》题库及答案一一、单项选择题(每小题3分,本题共15分)1.若集合A={a,b},B={ a,b,{ a,b }},则().A.A⊂B,且A∈B B.A∈B,但A⊄BC.A⊂B,但A∉B D.A⊄B,且A∉B2.集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={<x,y>|x+y=10且x, y∈A},则R的性质为().A.自反的B.对称的C.传递且对称的D.反自反且传递的3.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.A.0 B.2 C.1 D.34.如图一所示,以下说法正确的是( ) .A.{(a, e)}是割边B.{(a, e)}是边割集C.{(a, e) ,(b, c)}是边割集D.{(d, e)}是边割集图一5.设A(x):x是人,B(x):x是学生,则命题“不是所有人都是学生”可符号化为().A.(∀x)(A(x)∧B(x)) B.┐(∃x)(A(x)∧B(x))C.┐(∀x)(A(x) →B(x)) D.┐(∃x)(A(x)∧┐B(x))二、填空题(每小题3分,本题共15分)6.若集合A的元素个数为10,则其幂集的元素个数为.7.设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为.8.若A={1,2},R={<x, y>|x∈A, y∈A, x+y=10},则R的自反闭包为.9.结点数v与边数e满足关系的无向连通图就是树.10.设个体域D={a, b, c},则谓词公式(∀x)A(x)消去量词后的等值式为.三、逻辑公式翻译(每小题6分,本题共12分)11.将语句“尽管他接受了这个任务,但他没有完成好.”翻译成命题公式.12.将语句“今天没有下雨.”翻译成命题公式.四、判断说明题(每小题7分,本题共14分)判断下列各题正误,并说明理由.13.下面的推理是否正确,试予以说明.(1) (∀x)F(x)→G(x)前提引入(2) F(y)→G(y)US(1).14.若偏序集<A,R>的哈斯图如图二所示,则集合A的最大元为a,最小元不存在.图二五.计算题(每小题12分,本题共36分)15.求(P∨Q)→(R∨Q)的合取范式.16.设A={0,1,2,3,4},R={<x,y>|x∈A,y∈A且x+y<0},S={<x,y>|x∈A,y∈A且x+y≤3},试求R,S,R•S,R-1,S-1,r(R).17.画一棵带权为1, 2, 2, 3, 4的最优二叉树,计算它们的权.六、证明题(本题共8分)18.设G是一个n阶无向简单图,n是大于等于2的奇数.证明G与G中的奇数度顶点个数相等(G 是G的补图).试题解答一、单项选择题(每小题3分,本题共15分) 1.A 2.B 3.B 4.D 5.C 二、填空题(每小题3分,本题共15分) 6.1024 7.88.{<1,1>,<2,2>} 9.e=v -110.A (a ) ∧A (b )∧A (c )三、逻辑公式翻译(每小题6分,本题共12分)11.设P :他接受了这个任务,Q :他完成好了这个任务, (2分)P ∧⌝ Q . (6分)12.设P :今天下雨, (2分)⌝ P . (6分)四、判断说明题(每小题7分,本题共14分)13.错误. (3分) (2)应为F (y )→G (x ),换名时,约束变元与自由变元不能混淆. (7分) 14.错误. (3分) 集合A 的最大元不存在,a 是极大元. (7分) 五.计算题(每小题12分,本题共36分)15.(P ∨Q )→(R ∨Q )⇔⌝(P ∨Q )∨(R ∨Q ) (4分) ⇔(⌝P ∧⌝Q )∨(R ∨Q )⇔(⌝P ∨R ∨Q )∧(⌝Q ∨R ∨Q )⇔(⌝P ∨R ∨Q ) ∧R 合取范式 (12分) 16.R =∅, (2分) S ={<0,0>,<0,1>,<0,2>,<0,3>,<1,0>,<1,1>,<1,2>,<2,0>,<2,1>,<3,0>} (4分) R •S =∅, (6分)R -1=∅, (8分) S -1= S , (10分) r (R )=I A . (12分) 17.(10分)权为1⨯3+2⨯3+2⨯2+3⨯2+4⨯2=27 (12分)六、证明题(本题共8分)18.证明:因为n 是奇数,所以n 阶完全图每个顶点度数为偶数, (3分) 因此,若G 中顶点v 的度数为奇数,则在G 中v 的度数一定也是奇数, (6分)ο οο ο ο ο ο ο ο 1 2 23 34 75 12所以G 与G 中的奇数度顶点个数相等. (8分)《离散数学》题库及答案二一、单项选择题(每小题3分,本题共15分)1.若集合A ={1,{2},{1,2}},则下列表述正确的是( ). A .2⊂A B .{1}⊂AC .1∉AD .2 ∈ A2.已知一棵无向树T 中有8个顶点,4度、3度、2度的分支点各一个,T 的树叶数为( ). A .6 B .4 C .3 D .53.设无向图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101110011000011100111110 则G 的边数为( ). A .1 B .7 C .6 D .144.设集合A ={a },则A 的幂集为( ).A .{{a }}B .{a ,{a }}C .{∅,{a }}D .{∅,a }5.下列公式中 ( )为永真式.A .⌝A ∧⌝B ↔ ⌝A ∨⌝B B .⌝A ∧⌝B ↔ ⌝(A ∨B )C .⌝A ∧⌝B ↔ A ∨BD .⌝A ∧⌝B ↔ ⌝(A ∧B )二、填空题(每小题3分,本题共15分)6.命题公式P P ⌝∧的真值是 . 7.若无向树T 有5个结点,则T 的边数为 .8.设正则m 叉树的树叶数为t ,分支数为i ,则(m -1)i = .9.设集合A ={1,2}上的关系R ={<1, 1>,<1, 2>},则在R 中仅需加一个元素 ,就可使新得到的关系为对称的.10.(∀x )(A (x )→B (x ,z )∨C (y ))中的自由变元有 .三、逻辑公式翻译(每小题6分,本题共12分)11.将语句“今天上课.”翻译成命题公式.12.将语句“他去操场锻炼,仅当他有时间.”翻译成命题公式.四、判断说明题(每小题7分,本题共14分)判断下列各题正误,并说明理由.13.设集合A={1,2},B={3,4},从A到B的关系为f={<1, 3>},则f是A到B的函数.14.设G是一个有4个结点10条边的连通图,则G为平面图.五.计算题(每小题12分,本题共36分)15.试求出(P∨Q)→(R∨Q)的析取范式.16.设A={{1}, 1, 2},B={1, {2}},试计算(1)(A∩B)(2)(A∪B)(3)A (A∩B).17.图G=<V, E>,其中V={ a, b, c, d },E={ (a, b), (a, c) , (a, d), (b, c), (b, d), (c, d)},对应边的权值依次为1、2、3、1、4及5,试(1)画出G的图形;(2)写出G的邻接矩阵;(3)求出G权最小的生成树及其权值.六、证明题(本题共8分)18.试证明:若R与S是集合A上的自反关系,则R∩S也是集合A上的自反关系.试题解答一、单项选择题(每小题3分,本题共15分)1.B 2.D 3.B 4.C 5.B二、填空题(每小题3分,本题共15分)6.假(或F,或0)7.48.t-19.<2, 1>10.z,y三、逻辑公式翻译(每小题6分,本题共12分)11.设P :今天上课, (2分) 则命题公式为:P . (6分) 12.设 P :他去操场锻炼,Q :他有时间, (2分) 则命题公式为:P →Q . (6分) 四、判断说明题(每小题7分,本题共14分)13.错误. (3分) 因为A 中元素2没有B 中元素与之对应,故f 不是A 到B 的函数. (7分) 14.错误. (3分) 不满足“设G 是一个有v 个结点e 条边的连通简单平面图,若v ≥3,则e ≤3v -6.” (7分)五.计算题(每小题12分,本题共36分)15.(P ∨Q )→(R ∨Q )⇔ ┐(P ∨Q )∨(R ∨Q ) (4分)⇔ (┐P ∧┐Q )∨(R ∨Q ) (8分)⇔ (┐P ∧┐Q )∨R ∨Q (析取范式) (12分)16.(1)(A ∩B )={1} (4分)(2)(A ∪B )={1, 2, {1}, {2}} (8分) (3) A -(A ∩B )={{1}, 1, 2} (12分)17.(1)G 的图形表示如图一所示:(3分)(2)邻接矩阵:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0111101111011110 (6分) (3)最小的生成树如图二中的粗线所示:图一 ο ο ο ο a b c d1 124 53 图二ο ο ο ο a b cd1 1 2453(10分)权为:1+1+3=5 (12分)六、证明题(本题共8分)18.证明:设∀x∈A,因为R自反,所以x R x,即< x, x>∈R;又因为S自反,所以x R x,即< x, x >∈S.(4分)即< x, x>∈R∩S (6分)故R∩S自反.(8分)《离散数学》题库及答案三一、单项选择题(每小题3分,本题共15分)1.若集合A={ a,{a}},则下列表述正确的是( ).A.{a}⊆A B.{{{a}}}⊆AC.{a,{a}}∈A D.∅∈A2.命题公式(P∨Q)的合取范式是( )A.(P∧Q)B.(P∧Q)∨(P∨Q)C.(P∨Q)D.⌝(⌝P∧⌝Q)3.无向树T有8个结点,则T的边数为( ).A.6 B.7 C.8 D.9 4.图G如图一所示,以下说法正确的是( ).A.a是割点B.{b,c}是点割集C.{b, d}是点割集D.{c}是点割集图一5.下列公式成立的为( ).A.⌝P∧⌝Q ⇔P∨Q B.P→⌝Q⇔⌝P→QC.Q→P⇒ P D.⌝P∧(P∨Q)⇒Q二、填空题(每小题3分,本题共15分)6.设集合A ={2, 3, 4},B ={1, 2, 3, 4},R 是A 到B 的二元关系,},{y x B y A x y x R ≤∈∈><=且且则R 的有序对集合为 .7.如果R 是非空集合A 上的等价关系,a ∈A ,b ∈A ,则可推知R 中至少包含 等元素. 8.设G =<V , E >是有4个结点,8条边的无向连通图,则从G 中删去 条边,可以确定图G 的一棵生成树.9.设G 是具有n 个结点m 条边k 个面的连通平面图,则m 等于 10.设个体域D ={1, 2},A (x )为“x 大于1”,则谓词公式()()x A x ∃的真值为 三、逻辑公式翻译(每小题6分,本题共12分) 11.将语句“今天考试,明天放假.”翻译成命题公式. 12.将语句“我去旅游,仅当我有时间.”翻译成命题公式. 四、判断说明题(每小题7分,本题共14分)判断下列各题正误,并说明理由.13.如果图G 是无向图,且其结点度数均为偶数,则图G 是欧拉图.14.若偏序集<A ,R >的哈斯图如图二所示,则集合A 的最大元为a ,最小元是f .图二五.计算题(每小题12分,本题共36分)15.设谓词公式)),,()(),()((z x y B z y x A x ∀→∃,试(1)写出量词的辖域; (2)指出该公式的自由变元和约束变元. 16.设集合A ={{1},1,2},B ={1,{1,2}},试计算(1)(A -B ); (2)(A ∩B ); (3)A ×B .17.设G =<V ,E >,V ={ v 1,v 2,v 3,v 4 },E ={ (v 1,v 3),(v 2,v 3),(v 2,v 4),(v 3,v 4) },试 (1)给出G 的图形表示; (2)写出其邻接矩阵;(3)求出每个结点的度数; (4)画出其补图的图形. 六、证明题(本题共8分)18.设A ,B 是任意集合,试证明:若A ⨯A=B ⨯B ,则A=B .试题解答(供参考)一、单项选择题(每小题3分,本题共15分) 1.A 2.C 3.B 4.B 5.D 二、填空题(每小题3分,本题共15分)6.{<2, 2>,<2, 3>,<2, 4>,<3, 3>},<3, 4>,<4, 4>} 7.<a , a >,< b , b > 8.5 9.n +k -210.真(或T ,或1)三、逻辑公式翻译(每小题4分,本题共12分)11.设P :今天考试,Q :明天放假. (2分) 则命题公式为:P ∧Q . (6分)12.设P :我去旅游,Q :我有时间, (2分)则命题公式为:P →Q . (6分) 四、判断说明题(每小题7分,本题共14分)13.错误. (3分)当图G 不连通时图G 不为欧拉图. (7分) 14.错误. (3分) 集合A 的最大元与最小元不存在,a 是极大元,f 是极小元,. (7分) 五.计算题(每小题12分,本题共36分)15.(1)∃x 量词的辖域为)),,()(),((z x y B z y x A ∀→, (3分)∀z 量词的辖域为),,(z x y B , (6分) (2)自由变元为)),,()(),((z x y B z y x A ∀→中的y , (9分)约束变元为x 与z . (12分)16.(1)A -B ={{1},2} (4分)(2)A ∩B ={1} (8分) (3)A ×B={<{1},1>,<{1},{1,2}>,<1,1>,<1, {1,2}>,<2,1>,<2, {1,2}>} (12分) 17.(1)G 的图形表示为(如图三):(3分)图三 (2)邻接矩阵:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0110101111000100(6分) (3)v 1,v 2,v 3,v 4结点的度数依次为1,2,3,2 (9分) (4)补图如图四所示:(12分)图四六、证明题(本题共8分)18.证明:设x ∈A ,则<x ,x >∈A ⨯A , (1分) 因为A ⨯A=B ⨯B ,故<x ,x >∈B ⨯B ,则有x ∈B , (3分) 所以A ⊆B . (5分) 设x ∈B ,则<x ,x >∈B ⨯B , (6分) 因为A ⨯A=B ⨯B ,故<x ,x >∈A ⨯A ,则有x ∈A ,所以B ⊆A . (7分) 故得A=B . (8分)《离散数学》题库及答案四一、单项选择题(每小题3分,本题共15分)二、填空题(每小题3分,本题共15分)三、逻辑公式翻译(每小题6分,本题共12分)11.将语句“如果他掌握了计算机的用法,那么他就能完成这项工作.”翻译成命题公式.12.将语句“前天下雨,昨天还是下雨.”翻译成命题公式.四、判断说明题(判断各题正误,并说明理由.每小题7分,本题共14分)五、计算题(每小题12分,本题共36分)六、证明题(本题共8分)试题答案《离散数学》题库及答案五一、单项选择题(每小题3分,本题共15分)试题及答案《离散数学》题库及答案六一、单项选择题(每小题3分,本题共15分)二、填空题(每小题3分,本题共15分)三、逻辑公式翻译(每小题6分,本题共12分)11.将语句“昨天下雨”翻译成命题公式.12.将语句“小王今天上午或者去看电影或者去打球”翻译成命题公式.四、判断说明题(判断各题正误,并说明理由.每小题7分,本题共14分)五、计算题(每小题12分,本题共36分)六、证明题(本题共8分)试题答案及评分标准(供参考)。

国家开放大学电大《离散数学》《岩土力学》网络课形考网考作业(合集)答案

国家开放大学电大《离散数学》《岩土力学》网络课形考网考作业(合集)答案
如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有( )个.
选择一项:
A. 1
B. 3
C. 2
D. 0
题目6
集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, y∈A},则R的性质为( ).
选择一项:
A. 不是对称的
B. 反自反
C. 不是自反的
D. 传递的
选择一项:
A. (b)只是弱连通的
B. (c)只是弱连通的
C. (a)只是弱连通的
D. (d)只是弱连通的
判断题
题目11
设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去4条边后使之变成树.( )
选择一项:


题目12
汉密尔顿图一定是欧拉图.( )
选择一项:


题目13
设连通平面图G的结点数为5,边数为6,则面数为4.( )


形考任务2
单项选择题
题目1
无向完全图K4是( ).
选择一项:
A. 树
B. 欧拉图
C. 汉密尔顿图
D. 非平面图
题目2
已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( ).
选择一项:
A. 4
B. 8
C. 3
D. 5
题目3
设无向图G的邻接矩阵为
则G的边数为( ).
选择一项:
选择一项:


题目16
如果R1和R2是A上的自反关系,则、R1∪R2、R1∩R2是自反的.( )
选择一项:


题目17
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

形考任务二(占形考总分的20%)
1.n阶无向完全图Kn的边数是(B).单选题(5 分)
A.n
B. n(n-1)/2
C.n-1
D.n(n-1)
2.n阶无向完全图Kn每个结点的度数是(C).单选题(5 分)
A.n
B. n(n-1)/2
C. n-1
D.n(n-1)
3.已知无向图G的结点度数之和为20,则图G的边数为(D).单选题(5 分)
A.5
B.15
C.20
D.10
4.已知无向图G 有15条边,则G的结点度数之和为(C).单选题(5 分)
A.10
B.20
C.30
D.5
5.图G如图所示,以下说法正确的是( D) .Image单选题(5 分)
A.{(a, e)}是割边
B.{(a, e)}是边割集
C.{(a, e) ,(b, c)}是边割集
D.{(d, e)}是边割集
6.若图G=<V, E>,其中V={ a, b, c, d },E={ (a, b), (b, c) , (b, d)},则该图中的割点为(B).单选题(5 分)
A.a
B.b
C.c
D.d
7.设无向完全图KImage有n个结点(n≥2),m条边,当(C)时,KImage中存在欧拉回路.单选题(5 分)
A.m为奇数
B.n为偶数
C.n为奇数
D.m为偶数
8.设G是欧拉图,则G的奇数度数的结点数为( A )个.单选题(5 分)
A.0
B.1
C.2
D.4
9.设G为连通无向图,则(A)时,G中存在欧拉回路.单选题(5 分)
A.G不存在奇数度数的结点
B.G存在偶数度数的结点
C.G存在一个奇数度数的结点
D.G存在两个奇数度数的结点
10.设连通平面图G有v个结点,e条边,r个面,则.单选题(5 分) B
A.v + e - r=2
B.r +v - e =2
C.v +e - r=4
D.v +e – r = – 4
11.已知图G中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G的边
数是15.( A)判断题(5 分)
A.正确
B.错误
12.设G是一个无向图,结点集合为V,边集合为E,则G的结点度数之和为2|E|.( A) 判断题(5 分)
A.正确
B.错误
13.若图G=<V, E>,其中V={ a, b, c, d },E={ (a, b), (a, d), (b, c), (b, d)},则该图中的割边为(b, c).( A) 判断题(5 分)
A.正确
B.错误
14. 边数相等与度数相同的结点数相等是两个图同构的必要条件.判断题(5 分) A
A.正确
B.错误
15.若图G中存在欧拉路,则图G是一个欧拉图.判断题(5 分) B
A.正确
B.错误
16. 无向图G存在欧拉回路,当且仅当G连通且结点度数都是偶数.( A )判断题(5 分)
A.正确
B.错误
17. 设G是具有n个结点m条边k个面的连通平面图,则n-m=2-k.判断题(5 分) A
A.正确
B.错误
18. 设G是一个有6个结点13条边的连通图,则G为平面图.判断题(5 分) B
A.正确
B.错误
19. 完全图K5是平面图.判断题(5 分) B
A.正确
B.错误
20. 设G是汉密尔顿图,S是其结点集的一个子集,若S的元素个数为6,则在G -S中的连通分支数不超过6判断题(5 分) A
A.正确
B.错误。

相关文档
最新文档