并网逆变器电路及测试系统图文分析

合集下载

光伏并网测试方案

光伏并网测试方案

光伏并网测试方案1. 引言光伏并网测试是光伏系统设计、建设和运维中的重要环节。

通过对光伏系统的电流、电压、功率等参数进行测试,可以确保光伏系统安全、稳定地与电网进行并网运行,减少故障风险,提高光伏发电效率。

本文将介绍一种光伏并网测试方案,以确保光伏系统的可靠性和稳定性。

2. 测试前准备进行光伏并网测试之前,需要进行一些准备工作。

首先,确保光伏组件安装完成,光伏逆变器正确连接,并符合国家相关的安全标准和要求。

然后,根据光伏组件的数量和布置情况,选择合适的测试仪器和设备。

常用的测试仪器包括数字电表、示波器、功率分析仪等。

此外,还需要准备光伏并网测试的相关文档和记录表。

3. 光伏并网测试流程光伏并网测试主要包括以下几个步骤:步骤一:测试仪器和设备准备在进行光伏并网测试之前,需要将测试仪器和设备连接好,并确保其正常工作。

检查仪器的电源和信号接口是否正确连接,以及仪器的参数设置是否符合测试要求。

步骤二:测试光伏组件的开路电压和短路电流使用数字电表测试光伏组件的开路电压和短路电流。

首先接通光伏组件的正负极,将数字电表的测量范围调至适合的电压和电流范围,然后分别测量光伏组件的开路电压和短路电流。

记录并比较测试结果,确保光伏组件的性能符合要求。

步骤三:测试光伏逆变器的输出电流和电压使用示波器测试光伏逆变器的输出电流和电压。

首先将示波器的探头连接到光伏逆变器的输出端口,确保示波器的参数设置正确。

然后,读取示波器的测量结果,记录光伏逆变器的输出电流和电压。

比较测试结果与逆变器的额定参数,确保逆变器的输出符合要求。

步骤四:测试光伏组件和逆变器的功率输出使用功率分析仪测试光伏组件和逆变器的功率输出。

首先将功率分析仪与光伏组件和逆变器连接,确保参数设置正确。

然后,读取功率分析仪的测量结果,记录光伏组件和逆变器的功率输出。

比较测试结果与额定参数,确保光伏系统的发电效率符合要求。

步骤五:测试光伏系统的并网运行在测试光伏系统的并网运行之前,需要确保光伏组件和逆变器的参数设置正确,且与电网连接稳定。

非隔离型光伏并网逆变器主电路拓补结构分析

非隔离型光伏并网逆变器主电路拓补结构分析

BOOST双模式升压逆变
优点: • 光伏阵列电压较低时,Boost电路升压加逆变运行, 系统为两级能量变换;光伏阵列电压高于设定值 时,系统变为单级逆变系统,有助于系统效率的 提高。这种拓扑加大了光伏阵列设计安装的自由 度。 缺点: • 同第二种拓朴结构类似
多支路BOOST升压逆变
优点: • 同第二种拓朴结构类似 • 由于具有多个DC-DC电路,适合多个不同倾斜面 阵列接入,即阵列1~n可以具有不同的MPPT电 压,十分适合应用于光伏建筑。N一般为2或3。 缺点: • 同第二种拓朴结构类似
耦合电感式双BOOST逆变
• 本发明涉及光伏发电系统中耦合电感式双Boost逆变器电路。本 发明是由两个耦合电感式Boost电路共用直流电源构成,交流输 出取自两个耦合电感式Boost的输出电容之间。本发明解决了单 级逆变电路通过工频变压器升压方式并网和前级DC-DC升压电路、 后级是逆变器方法存在的功率开关管功率损耗较大、变压器功率损耗 大、转换效率低及光伏发电利用率低下等缺陷。本发明是两个耦合电 感式Boost电路,并采用全控型器件开关管,使逆变电路能实现 能量的四像限运行,耦合的电感在较低输入电压时和较小占空比情况 下Boost电路也能输出较高的电压,因此发明的并网逆变器无需 升压变压器,可以实现一级并网发电。 • 光伏发电系统中耦合电感式双Boost逆变器电路,其特征在于: 由两个耦合电感式Boost电路构成,交流输出取自两个耦合电感 式Boost的输出电容之间。 • 发明人:方宇 申请人:扬州大学 申请人地址:江苏省扬州市大学南路88号
H5桥逆变
SMA 的研发团队开发出了H 5 技术—— 一种全新的逆变桥接线方式—— 优化了光 伏系统的并网连接,并大大降低系统成本。于是,全球光伏逆变器中,转换效率高 达98%的首款逆变器在SMA诞生了。 逆变器的基本功能 H桥承担了逆变器的基本功能。一台逆变器通常有四个电气开关,用以调节输入和 输出之间的电流。起初,在逆变器的输入端,光伏组件产生的直流电都暂时储存在 电容器中。这样,电流就可以不受电气开关的影响,一直以峰值运行。由于电气开 关长期打开或关闭,电容器不断地放电,甚至可以说直流电达到了“抽空”状态。 于是,逆变器就只在并网和非并网两种状态下变换。在逆变器的输出端口有电感器, 将脉冲式直流电转化成正弦波式交流电,就可以持续不断地向地方电网进行并网供 电。 H5技术 创立了新标准 目前市场上大部分逆变器都在按照上述方式运行。H5技术的出现打破了这种模式。 因为即便H桥不运行的时候,仍然有电流存在,但却是向相反的方向流动:从逆变器 输出端流向电容器。为了防止并网时的电流波动,减少电流转换过程中的电量损耗, SMA的研发团队开发了一种全新的转换理念——H5技术:电气开关采用一种全新的 脉冲率,在原来四个电气开关的基础上加入了第五个开关,能够在电流自由流动时 防止电流向电容器的流回。这样,也大大减少了原先电流波动造成的电量损耗。 总之,第五个开关的增加,将转换过程的效率损耗降低了一半,达到2%。这样,采 用H5技术的逆变器转换效率就高达98%,这是光伏领域的一个里程碑。

光伏并网逆变器调试报告

光伏并网逆变器调试报告

光伏并网逆变器调试报告一、调试目的本次调试的目的是对光伏并网逆变器进行功能和性能的检测和调试,确保逆变器能够稳定可靠地并网运行。

二、调试内容1.逆变器基本功能测试:包括开关机功能、并网检测功能、电压、电流和功率测量功能等的正常运行。

2.并网稳定性测试:逆变器在并网运行状态下,检测其稳定性和响应时间,确认逆变器在电网波动和故障情况下能够快速正确响应并保持稳定运行。

3.微网模式调试:如果逆变器支持微网模式,需要对其进行微网模式下的调试和测试。

4.故障保护功能调试:测试逆变器在过载、过温、短路等异常情况下的保护功能是否能够正常工作。

三、调试步骤和方法1.准备工作:检查逆变器和并网电网的接线是否正确,确认逆变器的参数设置与实际情况相匹配。

2.开关机测试:首先测试逆变器的开关机功能,通过操作逆变器的开关机按钮或遥控器,检测逆变器的开关机状态是否正常,并观察逆变器显示面板上的相应提示。

3.并网检测测试:在逆变器正常开机后,测试逆变器的并网检测功能。

可以通过局部模拟并网的方式进行测试,确认逆变器能够准确检测到电网的状态并进行相应的并网操作。

4.电压、电流和功率测量测试:通过接入电压、电流和功率仪器,测量逆变器输入和输出的电压、电流和功率,确保测量值在合理范围内,与逆变器显示面板上的数值保持一致。

5.并网稳定性测试:通过模拟电网的电压波动或短暂故障,观察逆变器的响应时间和稳定性。

检测逆变器能否在电网异常情况下自动切断输出、保护系统和设备的安全。

6.微网模式调试:如果逆变器具备微网模式功能,可以通过局部模拟微网的方式进行测试,确认逆变器在微网模式下的运行和切换是否正常。

7.故障保护功能测试:通过人为制造过载、过温、短路等异常情况,测试逆变器的保护功能是否能够及时触发,切断输出并保护系统设备的安全。

四、调试结果及分析在调试过程中,逆变器的基本功能和性能测试都能正常运行,包括开关机、并网检测、电压电流功率测量等功能。

基于预测电流控制的T型三电平并网逆变器研究

基于预测电流控制的T型三电平并网逆变器研究

设计应用esign & ApplicationD基于预测电流控制的T型三电平并网逆变器研究Research on T-type three-level grid-connected inverter based on predictive current control雷 兰,吴尚秀,刘文晴(国网江西省电力有限公司余干县供电分公司,江西 上饶 335100)摘 要:本文介绍了一种三相三线制T型三电平并网逆变器系统,根据开关状态建立了其数学模型。

针对传统d -q 变换的电流内环控制器在三相电压型逆变器中存在着动态响应慢及直流电压波动较大的问题,提出一种以泰勒公式为基础的预测电流控制方法,并采用了基于功率前馈的双闭环控制策略,实现了电流的快速跟踪,减少了电流的谐波含量,提高了系统的动态响应速度。

最后,搭建了一台23 kW的实验样机,通过实验样机验证了所提方法和控制策略的可行性。

关键词:逆变器;预测电流;功率前馈;双闭环0 引言随着分布式能源的发展,逆变器是新能源系统与电网接口的核心关键设备,其拓扑结构和控制方式直接决定了分布式系统性能的优劣[1]。

对于三电平拓扑结构而言,该拓扑结构具有逆变转换效率高、开关器件的电压应力等级低、谐波含量和d v /d t 较低等优点[2-3],而T 型拓扑结构比传统的NPC (Neutral Point Clamped )拓扑结构具有二极管数量少、转换效率高、功率损耗均匀等优点[4-5]。

对于T 型并网逆变器而言,输出电流控制是逆变器接入并网的关键技术[6],目前最主要的控制方法包括滞环控制、PI (Proportional Integral )控制和PR (Proportional Resonance )控制等。

滞环控制方法虽具有动态响应速度较快的优点,但在其控制方式下输出的并网电流波形容易失真,而且采样频率较高,加大了并网侧滤波电感设计难度[7]。

在同步坐标系的PI 控制方式下,逆变器系统的输出电流以及电网电压或者输出电压分量直接被采样并参与数字控制,由于数学模型之间存在耦合的缘故,难以实现输出电流的无静差跟踪。

纯正弦波逆变器电路图大全(数字式-自举电容-光耦隔离反馈电路图详解)

纯正弦波逆变器电路图大全(数字式-自举电容-光耦隔离反馈电路图详解)

纯正弦波逆变器电路图大全(数字式/自举电容/光耦
隔离反馈电路图详解)
 纯正弦波逆变器电路图(一)
 基于高性能全数字式正弦波逆变电源的设计方案
 逆变电源硬件结构如图2所示。

主要包括直流推挽升压电路、正弦逆变电路、输出滤波电路、驱动电路、采样电路、主控制器和点阵液晶构成。

其中,直流升压部分将输入电压升高至输出正弦交流电的峰值以上的母线直流电压,正弦逆变部分将母线直流电压逆变后经输出滤波电路得到正弦式交流电,采样电路则对母线电压、母线电流、输出电压、输出电流、输入电压进行采样,以实现短路保护、过压欠压保护、过流保护、闭环稳压等功能。

驱动电路的功能是将驱动信号的逻辑电平进行匹配放大,以满足驱动功率管的要求。

控制电路的功能是产生驱动信号,并对采样信号进行处理,以实现复杂的系统功能。

点阵液晶的功能是显示系统工作信息,如果输出电压、电流以及保护信息等。

 图2
 1)主控制器。

光伏并网逆变器调试报告

光伏并网逆变器调试报告

光伏并网逆变器调试报告一、报告目的本报告旨在对光伏并网逆变器进行调试与测试,以确保逆变器正常工作并达到设计要求。

二、调试内容1.设备连接:将光伏电池板与逆变器连接,确保连接稳固、电缆完好,无任何短路、接触不良等问题。

2.电源接入:将逆变器接入电源,检查电源电压是否符合设计要求,并确保电源接线正确。

3.通信调试:逆变器通过通信模块与监控系统进行数据传输与管理,需要对通信模块进行调试,确保信号传输稳定可靠。

4.逆变器参数调整:按照逆变器的使用说明,调整逆变器参数,包括并网电压、频率、功率因数等,使逆变器输出符合要求。

5.并网检测:逆变器需要检测并网电网的状态,确保并网可靠与安全,需要进行并网检测与保护功能的调试。

三、调试步骤及结果1.设备连接:将光伏电池板与逆变器通过正负极线缆进行连接,确保连接良好,并使用万用表检查线缆的电阻值,确认无异常情况。

2.电源接入:将逆变器的输入端与电源接线盒连接,检查电源电压是否符合逆变器的输入要求,确保电源接线正确并稳定。

3.通信调试:使用监控系统对逆变器进行通信调试,确认逆变器与监控系统的通信模块连接正常,并通过监控系统获取逆变器的相关参数,如输出功率、电流等,确认通信稳定可靠。

4.逆变器参数调整:按照逆变器的使用说明书,对逆变器的参数进行调整,包括并网电压、频率、功率因数等,根据实际要求进行设定,并通过监控系统进行参数读取,确保参数设定准确。

5.并网检测:进行并网检测与保护功能的调试,通过将逆变器与电网连接,并对电网状态进行模拟测试,确认逆变器能够有效检测电网的状态,并进行相应的保护措施,保证并网的可靠与安全。

四、调试结果及问题解决在以上调试步骤中,发现并解决了一下问题:1.设备连接问题:在设备连接时,发现光伏电池板与逆变器之间的正负极线缆接触不良,导致逆变器无法正常运行。

经过重新连接并测试,问题得到解决。

2.电源接入问题:在电源接入时,发现电源电压不稳定,不符合逆变器的输入要求。

LCL型并网逆变器的控制技术

LCL型并网逆变器的控制技术

目录分析
在控制技术方面,该书首先介绍了并网逆变器控制技术的分类,包括间接电流控制和直接电流控 制。其中,间接电流控制又分为基于稳态模型的控制和基于动态模型的控制,直接电流控制则分 为基于PWM的控制和基于SPWM的控制。在此基础上,该书详细阐述了各种控制技术的原理、实现 方法以及优缺点。
该书还介绍了LCL型并网逆变器的设计方法,包括滤波器的设计、功率开关的选择、控制电路的 实现等。同时,通过实验验证了所提出控制技术的有效性和优越性。
LCL型并网逆变器的控制技术
读书笔记
01 思维导图
03 精彩摘录 05 目录分析
目录
02 内容摘要 04 阅读感受 06 作者简介
思维导图
本书关键字分析思维导图
控制
逆变
通过
并网
系统
lcl
输出
并网
技术
控制 技术电能Biblioteka 逆变策略实现
实验
研究
应用
光伏
内容摘要
内容摘要
本书旨在深入探讨LCL型并网逆变器的控制技术,旨在揭示其控制策略和相关实现方法。LCL型并 网逆变器作为一种重要的电力电子设备,在光伏发电等领域具有广泛的应用,因此对其控制技术 的深入研究具有重要的实际意义和价值。 在光伏发电系统中,LCL型并网逆变器的作用是将光伏电池输出的直流电能转化为交流电能,并 输送到电网中。其控制技术的核心是通过调节逆变器输出的电压和电流,以满足电网的需求,同 时保证系统的稳定性和可靠性。 针对LCL型并网逆变器的控制技术,本书从理论和实验两个方面进行了深入研究。本书提出了一 种基于间接电流控制的LCL型并网逆变器控制策略,通过调节逆变器输出电压的幅值和相位,实 现对电流的间接控制。本书设计并实现了一种基于滤波器优化的LCL型并网逆变器控制策略,旨 在减小系统谐波含量,提高电能质量。

并网逆变器技术指标及分析

并网逆变器技术指标及分析

并网逆变器技术指标及分析并网逆变器是太阳能光伏并网发电系统的关键部件,由它将直流电能逆变成交流电能,为跟随电网频率和电压变化的电流源。

目前市售的并网型逆变器的产品主要是DC-DC和DC-AC两级能量变换的结构:DC-DC变换环节调整光伏阵列的工作点使其跟踪最大工作点;DC-AC逆变环节主要使输出电流与电网电压同相位,同时获得功率因数。

对于大型、超大型光伏电站一般都选用集中式光伏并网逆变器。

逆变器的配置选用,除了要根据整个光伏电站的各项技术指标并参阅生产厂商提供的产品手册来确定之外,还要重点关注如下几点技术指标。

(l)额定输出功率额定输出功率表示逆变器向负载或电网供电的能力。

选用逆变器应首先考虑光伏阵列的功率,以满足最大负荷下设备对电功率的要求。

当用电设备以纯电阻性负载为主或功率因数大于0.9时,一般选用逆变器的额定输出功率比用电设备总功率大10%~15%。

并网逆变器的额定输出功率与太阳电池功率之比~般为90%。

(2)输出电压的调整性能输出电压的调整性能表征逆变器输出电压的稳压度。

一般逆变器都给出当直流输入电压在允许波动范围内变化时,该逆变器输出交流电压波动偏差的百分率,即电压调整率。

性能好的逆变器的电压调整率应≤3%。

(3)整机效率整机效率表征逆变器自身功率损耗的大小。

逆变器效率还分最大效率、欧洲效率(加权效率)、加州效率、MPPT效率,它们的定义如下。

最大效率ηmax:逆变器所能达到的最大效率。

欧洲效率ηeuro:按照在不同功率点效率根据加权公式计算。

加州效率ηcec:考虑直流电压时对效率的影响,再次平均。

MPPT效率ηMPPT:表示逆变器最大功率点跟踪的精度。

目前,先进水平:ηmax>96.5%,ηMPPT>99%。

(4)启动性能所选用的逆变器应能保证在额定负荷下可靠启动。

高性能逆变器可以做到连续多次满负荷启动而不损坏功率开关器件及其他电路。

对于大型光伏电站,通常选用250kW、500kW集中型并网逆变器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

并网逆变器电路及测试系统图文分析
图6-23并网逆变器原理图
由直流稳压电源的输出电压作为逆变器的输入电压。

在变压器的原边端三段输入,中间是公共端。

在输入端加入了两个功率开关管MOSFET 用来作为控制开关,两个开关管是分别导通的,一次来产生一个交变的电压。

然后经过变压器的升压,就会在变压器的副边端输出一个较高压的交变电压。

因为直流是不能通过变压器升压的,直流流过变压器就会烧掉变压器。

这里生成的交变电压是可以通过改变这两个MOS 管的驱动信号的占空比来控制副边端的电压的大小。

然后这个交变电压经过一个全波不可控的整流桥,产生一个较高压的直流。

这个直流电压在经过电容滤波,滤去交流分量,得到稳定的直流电压。

为安全起见,本实验将升压后的电压与升压前电压调为相同。

然后经过一个由4个MOS 管组成的逆变电路,形成交流电压。

这个逆变电路采用的是SPWM 调制(即正弦波调制),输出一个正弦波的交流电压。

得到的这个交流电压是含有谐波分量的,经过LC 滤波,滤去谐波分量后就可以得到一个标准的正弦波交流电压。

得到的这个正弦波电压再经过隔离变压器的升压就得到了一个工频50Hz 的市电电压,并且它的相位是与电网电压相同的,然后就把变压器的输出电压加载到电网中去。

相关文档
最新文档