高考数学中涂色问题的常见解法及策略

合集下载

排列组合问题之涂色问题(四个方面)

排列组合问题之涂色问题(四个方面)

排列组合问题之涂色问题(四个方面)
1区域涂色问题
1、根据分步计数原理,对各个区域分步涂色,这是处理区域染色问题的基本方法。

2、根据共用了多少种颜色讨论,分别计算出各种情形的种数,再用分类计数原理求出不同的涂色方法种数。

3、根据某两个不相邻区域是否同色分类讨论。

从某两个不相邻区域同色与不同色入手,分别计算出两种情形的种数,再用分类计数原理求出不同涂色方法总数。

4、根据相间区域使用颜色分类讨论。

5、用数列递推公式解决扇形区域涂色问题。

2点涂色问题
3线段涂色问题
方法:㈠根据共用了多少颜色分类讨论。

㈡根据相对线段是否同色分类讨论。

解决线段涂色问题,要特别注意对各条线段依次涂色。

4面涂色问题。

高中数学排列组合涂色与整除问题

高中数学排列组合涂色与整除问题

排列与组合中的涂色问题例析北京师大燕化附中(102500) 钱月华 史树德在排列与组合的练习、检测和高考试题中,近年来多次出现了某些涂色问题。

拨云破雾、还其本来面目,实质是用分类或分步计数原理导航,通过深入缜密分析题意,将原题化归成熟悉的排列、组合或其综合题型、逐类分步推理求解。

一、 带状区域的涂色题带状区域的涂色问题的解法,与推导排列数公式m n A 的思想方法类似,可构造排好顺序的m 个空位(格),从n 个不同元素中任取m (n m ≤)个填充.此类涂色题一般可转化成有限制条件的排列或组合问题.例1 用红黄绿三种颜色给图1的5个带状格子涂色.要求每格涂一种颜色、且相邻格子不能图同一种颜色,共有多少种不同的涂法?解析:从满足一格一颜色、邻格不同色的限制条件入手,分成三类:一类是左边三个邻格从红黄绿中任取3色涂法有33A 种,且右面两相邻格涂法有12A 种.共有121233=⋅A A 种.二类是左起4格涂成红绿红绿的类似模式有33A 种,末一格涂法有12A 种,共有121233=⋅A A 种.三类是左起4格涂成红绿红黄的类似模式有44A 种,其中产生与一类重复的有6种(如红绿红黄绿与一类的红绿红黄绿).综上得:42)6(4412331233=-++A A A A A (种).点评:本例由03年全国高考试题改稿而成,形异质同,也可先排在左起2格,再排第3格、4格、5格、采用逐类相加的解法。

例2 用4种不同颜色给图1的5个格子涂色,要求每个格涂一种颜色,若涂完后同颜色的格子恰有3个,则有多少种不同涂色方法?解析:首先考虑同色的三个格子排列法有35C 种,且任选4种颜色之一涂色,共有35C 4种。

第二步,将已涂色的三格视为一个整体与未涂色两格作全排列有33A 种,共有(35C ∙4) ∙33A =240种。

点评:注意到题中没有相邻两格不同色的约束条件,放宽要求后使问题解法简化,某同学列出算式35C 34A 时否?为什么?例3 用6种不同的颜色给图2的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子不同色,不同的涂色方法共有多少种?(07天津市理科高考16题)图2解析:题中最多使用3种颜色的言外之意是最少使用2种颜色(用1种颜色不合题意),启示我们把解法分成两类:一类是用2种颜色涂有26C 种选法,满足相邻格异色、一个一色的4个格子涂法有22A 种,共有26C 22A =30种。

涂色问题

涂色问题

《排列组合中的涂色问题专题讲座》排列组合中的涂色问题是近几年高考中常考的一类试题,这类问题主要考察学生的分析问题、解决问题的能力,特别是考察对分类计数原理和分步计数原理的理解和应用,解决这类问题大致有两种方法:一是直接法,一个区域一个区域的来解决,但要考虑先从哪个区域入手,往往是与其它区域都相邻的区域首先考虑,同时要注意这类试题往往要求相邻区域不同色,不相邻区域可以同色,则在解决与第一区域不相邻的一块时,要进行分类讨论,因为这一块的涂法对后面的区域有影响;二是从颜色入手,条件中的颜色种数可能大于区域块数,也可能小于区域块数,但不是说所有的颜色都用上,因此可从颜色入手,分类讨论例1:如下图:一个地区分为5个行政区分域,现给地图着色,要求相邻区域不能使用同一种颜色,现有4种颜色可供选择, 解析:充分理解条件是解决问题的关键1)5个区域,4种颜色,相邻区域不同色,则必须至少有两个不相邻区域同色 2)4种颜色供选择隐含着不必把四种颜色用完,只要满足要求即可,也可理解为只用3种颜色也可以满足要求,实际上两个条件合起来就是可以涂4种或3种颜色3)根据以上分析,可以分类解决,分类的标准是看哪两个区域同色 分类解决如下:1)2、4同色,其余不同色,且四种颜色都用上,实际上是四种颜色全排列(把2与4看成一块区域),有44A 种不同的涂法2)3、5同色,其余问题同上,则也有44A 种不同的涂法3)2与4同色,3与5同色,但这两类不同色,实际上是用四种颜色中的3种涂色,有34A 种不同的涂法。

则共有44A +44A +34A =72种不同的涂法点评:本题中区域少于色的种数,要对条件充分理解,但这种方法思路比较乱 另解:(从颜色入手)4种颜色都用完,则2、4或3、5必须有一对同色,则结果为4412A C 3种颜色解决问题,则2、4同色,3、5同色,则结果为343334A A C则共有72种不同的涂色方法另解:(从区域入手):4种颜色用A 、B 、C 、D 来表示(1)涂第一区域有4种涂法,例如涂A(2)涂第二区域有3种涂法,例如涂B(3)涂第三区域有2种涂法,。

解决排列组合中涂色问题专题讲座

解决排列组合中涂色问题专题讲座

解决排列组合中涂色问题的常见方法及策略专题讲座 与涂色问题有关的试题新颖有趣,其中包含着丰富的数学思想。

解决涂色问题方法技巧性强且灵活多变,故这类问题的利于培养学生的创新思维能力、分析问题与观察问题的能力,有利于开发学生的智力。

本文拟总结涂色问题的常见类型及求解方法。

一、区域涂色问题1、 根据分步计数原理,对各个区域分步涂色,这是处理染色问题的基本方法。

例1、 用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种颜色,相邻部分涂不同颜色,则不同的涂色方法有多少种?分析:先给①号区域涂色有5种方法,再给②号涂色有4种方法,接着给③号涂色方法有3种,由于④号与①、②不相邻,因此④号有4种涂法,根据分步计数原理,不同的涂色方法有5434240⨯⨯⨯=2、 根据共用了多少种颜色讨论,分别计算出各种出各种情形的种数,再用加法原理求出不同的涂色方法种数。

例2、(2003江苏卷)四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色。

分析:依题意只能选用4种颜色,要分四类:(1)②与⑤同色、④与⑥同色,则有44A ;(2)③与⑤同色、④与⑥同色,则有44A ;(3)②与⑤同色、③与⑥同色,则有44A ;(4)③与⑤同色、② 与④同色,则有44A ;(5)②与④同色、③与⑥同色,则有44A ;所以根据加法原理得涂色方法总数为544A =120例3、(2003年全国高考题)如图所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着方法共有多少种? 分析:依题意至少要用3种颜色1) 当先用三种颜色时,区域2与4必须同色, 2) 区域3与5必须同色,故有34A 种;3) 当用四种颜色时,若区域2与4同色,① ②③ ④ ⑤ ⑥4) 则区域3与5不同色,有44A 种;若区域3与5同色,则区域2与4不同色,有44A 种,故用四种颜色时共有244A 种。

涂色问题的解题技巧

涂色问题的解题技巧

ʏ江苏省张家港中等专业学校 张 娴 韩文美排列组合中有一类常见问题涂色问题,此类问题基于两个计数原理与排列组合知识,关注图形的结构特征,解决方法技巧性强且灵活多变,有利于培养同学们的创新思维能力㊁分析问题与观察问题以及解决问题的能力,已成为数学命题中比较常见的一类基本题型,备受各方关注㊂1.直线型涂色问题图1例1 (2022 2023学年江苏省常州一中高二下学期段考数学试卷)现有6种不同的颜色,给图1中的5个格子涂色,每个格子涂一种颜色,要求最多使用4种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有种㊂分析:根据题设条件,选出的颜色可以是2种,3种或者4种,依次通过直线型的图形结构特征求出方法数,通过分类法求和,即可得以分析与求解㊂解:由题意选出的颜色可以是2种,3种或者4种,规定左边起为第一个空,不同情况如下㊂当选出2种颜色时,第一个空有2种选择,第一个空颜色确定后,其余空颜色就确定了,共有C 26ˑ2=30(种)方法㊂当选出3种颜色时,第一个空有3种选择,第二个空有2种选择,第三个空可分为与第一个空颜色相同和不同的情况,第四个空和第五个空都各有2种选择,但要去掉整体只用了2种颜色的情况,共有C 36C 13C 12㊃(C 12C 12+C 12C 12)-2C 36C 23=840(种)方法㊂当选出4种颜色时,必有2种颜色相同,可采用插空法,将这2种相同颜色去插入另外3种颜色形成的空,共有C 46C 14A 33C 24=2160(种)方法㊂综上分析,不同的涂色方法共有30+840+2160=3030(种)㊂点评:直线型涂色问题往往从第一个位置入手,逐一分析,在前一个已涂色的条件下涂下一个位置,注意对不同位置的分析加以合理分类讨论与分步处理,进而确定直线型涂色问题的种数㊂2.区域型涂色问题图2例2 (2022 2023学年湖北省武汉市高二下学期期中数学试卷)七巧板是古代劳动人民智慧的结晶㊂图2是某同学用木板制作的七巧板,它包括5个等腰直角三角形㊁一个正方形和一个平行四边形㊂若用四种颜色给各板块涂色,要求正方形板块单独一色,其余板块两块一种颜色,而且有公共边的板块不同色,则不同的涂色方案有种㊂分析:根据题设条件,先对七巧板中的不同区域加以合理标记,并通过画图分析其中四板块A ,B ,C ,D 必涂上不同颜色,再根据分类㊁分步计数原理计算剩下的部分即可得以分析与求解㊂解:由题意知,对七巧板中的不同区域加以合理标记,如图3所示㊂93解题篇 创新题追根溯源 高二数学 2024年3月图3由于一共4种颜色,板块A 需单独一色,剩下6个板块中每2个区域涂同一种颜色,且板块B ,C ,D 两两有公共边不能同色,故板块A ,B ,C ,D 必定涂不同的颜色㊂①当板块E 与板块C 同色时,则板块F ,G 与板块B ,D 或板块D ,B 分别同色,共有2种情况㊂②当板块E 与板块B 同色时,则板块F 只能与D 同色,板块G 只能与C 同色,共1种情况㊂又板块A ,B ,C ,D 颜色可排列,故共(2+1)ˑA 44=72(种)方案㊂点评:区域型涂色问题,应该给区域依次标上相应的序号,以便分析问题㊂在给各区域涂色时,要注意不同的涂色顺序,其解题就有繁简之分㊂在实际解答时,应按不同的涂色顺序多多尝试,看哪一种最简单㊂3.立体型涂色问题图4例3 (2024届上海市七宝中学高三上学期期中数学试卷)某数学兴趣小组用纸板制作正方体教具,如图4所示,现给图中的正方体展开图的6个区域涂色,有红㊁橙㊁黄㊁绿4种颜色可选,要求制作出的正方体相邻面所涂颜色均不同,共有种不同的涂色方法㊂分析:根据题设条件,由正方体展开图的平面图形回归正方体的立体图形,先从涂A 入手,再分C 与F 同色㊁C 与F 不同色两种情况讨论,利用分步㊁分类计数原理分析与运算可得答案㊂图5解:如图5所示,还原回正方体后,D ㊁B 为正方体的前后两个对面,A ㊁E 为正方体的左右两个对面,F ㊁C 为正方体的上下两个对面,先涂A有4种涂法㊂①当C 与F 同色时,涂C 有3种涂法,若D 与B 同色,则有2种涂法,最后涂E 有2种涂法;若D 与B 不同色,则有A 22种涂法,最后涂E 有1种涂法㊂则有4ˑ3ˑ(2ˑ2+A 22ˑ1)=72(种)涂法㊂②当C 与F 不同色时,涂C 有3种涂法,涂F 有2种涂法,此时D 与B 必同色且只有1种涂法,E 也只有1种涂法㊂则有4ˑ3ˑ2ˑ1ˑ1=24(种)涂法㊂综上分析可得,一共有72+24=96(种)不同的涂法㊂点评:立体型涂色问题,往往要同时考虑平面几何的结构特征,又要考虑立体几何的结构特征,综合 二维 与 三维 中的涂色要求与限制条件,全面考查同学们的空间想象能力与逻辑推理能力㊂4.环状型涂色问题图6例4 (2024届浙江省名校联盟高三上学期9月份月考数学试卷)五行是华夏民族创造的哲学思想,多用于哲学㊁中医学和占卜方面㊂五行学说是华夏文明重要的组成部分㊂古代先民认为,天下万物皆由五类元素组成,分别是金㊁木㊁水㊁火㊁土,彼此之间存在相生相克的关系㊂图6是五行图,现有5种颜色可供选择给五 行 涂色,要求五行相生不能用同一种颜色(例如金生火,水生木,不能同色),五行相克可以用同一种颜色(例如水克火,木克土,可以用同一种颜色),则不同的涂色方法种数为( )㊂A.3125 B .1000C .1040D .1020分析:根据题设条件,从数学文化场景中加以合理转化,抽象问题的本质与内涵,通过环状型涂色问题来转化,并加以分析,先根据不相邻区域是否同色进行分类,确定涂色顺序,再分步计数即可㊂解:依题可知五行相克可以用同一种颜4 解题篇 创新题追根溯源 高二数学 2024年3月色,也可以不用同一种颜色,即无限制条件而五行相生不能用同一种颜色,即相邻位置不能用同一种颜色㊂故问题转化为图7中A ,B ,C ,D ,E 5个区域,有5种不同的颜色可用,要求相邻区域不能涂同一种颜色,即5种颜色5个区域的环状涂色问题㊂图7分为以下两类情况㊂第一类,A ,C ,D 3个区域涂3种不同的颜色㊂第一步涂A ,C ,D 区域,从5种不同的颜色中选3种按顺序涂在不同的3个区域上,则有A 35种方法;第二步涂B 区域,由于A ,C 颜色不同,则有3种方法;第三步涂E 区域,由于A ,D 颜色不同,则有3种方法㊂由分步计数原理知,共有3ˑ3ˑA 35=540(种)方法㊂第二类,A ,C ,D 3个区域涂2种不同的颜色㊂C ,D 不能涂同种颜色,则A ,C 涂色相同,或A ,D 涂色相同,两种情况方法数相同㊂若A ,C 涂色相同,第一步涂A ,C ,D 区域,A ,C 可看成同一区域,且A ,D 区域不同色,即涂2个区域不同色,从5种不同的颜色中选2种按顺序涂在不同的2个区域上,则有A 25种方法;第二步涂B 区域,由于A ,C 颜色相同,则有4种方法;第三步涂E 区域,由于A ,D 颜色不同,则有3种方法㊂由分步计数原理知,共有4ˑ3ˑA 25=240(种)方法㊂若A ,D 涂一色,与A ,C 涂一色的方法数相同,则共有2ˑ240=480(种)方法㊂由分类计数原理可知,不同的涂色方法数为540+480=1020㊂选D ㊂点评:求解环状型涂色问题,是基于直线型涂色问题加以分析与处理,同时要考虑最后一个位置与原来第一个位置之间的限制,这样才能形成一个闭环,这也是解决问题中比较容易出错的一个环节,要加以高度重视㊂5.探究型涂色问题例5 (2023年吉林省长春市高考数学质检试卷)将圆分成n (n ȡ2,且n ɪN *)个扇形,每个扇形用红㊁黄㊁蓝㊁橙四色之一涂色,要求相邻扇形不同色,设这n 个扇形的涂色方法为a n 种,则a n 与a n -1的递推关系是㊂分析:根据题设条件,对n 个扇形依次加以编号,按n =2与n >2两种情况加以分类讨论a n 的情况,由分步计数原理得到a n 与a n -1之间的关系㊂解:将圆分成n 个扇形时,将n 个扇形依次设为T 1,T 2, ,T n ㊂设这n 个扇形的涂色方法为a n 种㊂当n =2时,a 2=4ˑ3=12㊂当n >2时,T 1有4种涂法,T 2有3种涂法,接着T 3,T 4, ,T n -1,T n ,依次有3种涂法,故共有4ˑ3n -1种涂法㊂但当T n 与T 1的颜色相同时,有a n -1种涂法,a n =4ˑ3n -1-a n -1㊂点评:求解探究型涂色问题,往往从最简单的图形入手,依次分析两个图形涂色之间的联系与差别,进而加以合理推理,构建相应的关系式,得以解决对应的探究性问题,从而实现问题的解决㊂对于涂色问题,抓住探究问题的本质,结合涂色图形的结构特征,以及涂色的种数与限制条件,从关键点入手,结合选取颜色加以分析,合理分类讨论,借助两个计数原理以及排列组合知识,注意 重 或者 漏 的情形,进而加以合理操作与计算㊂(责任编辑 徐利杰)14解题篇 创新题追根溯源 高二数学 2024年3月。

高中数学涂色问题

高中数学涂色问题

高中数学涂色问题高中数学里的涂色问题呀,那可真是个有趣又有点小头疼的事儿呢。

咱们就从简单的情况开始说起吧。

比如说有一个简单的图形,像一个正方形被分成了四个小正方形,要给它们涂色,有几种颜色可以选择,而且相邻的正方形不能涂同一种颜色。

这时候咱们就得好好想想啦。

先假设只有两种颜色,那很明显,第一个小正方形可以随便选一种颜色,有2种选择。

到了第二个小正方形,因为不能和第一个同色,那就只有1种选择啦。

第三个小正方形呢,它不能和第二个同色,但是这时候又得看它和第一个小正方形的颜色关系。

如果第一个和第二个颜色不同,那第三个就有1种选择,如果第一个和第二个颜色相同,那第三个就有2种选择。

第四个小正方形也是类似的情况,要考虑它相邻的小正方形的颜色。

再说说如果有三种颜色的情况。

第一个小正方形有3种颜色可以选,第二个就只有2种了,因为不能和第一个一样。

第三个呢,这时候就有点复杂啦。

如果第一个和第二个颜色选得很“巧妙”,那第三个可能有2种选择,如果选得比较“常规”,那可能就只有1种选择。

第四个小正方形同样要综合考虑前面三个小正方形的颜色。

这就像我们在玩一个有规则的游戏一样。

每一步都要小心翼翼,看看前面的“小伙伴”选了啥颜色,然后自己再做出选择。

而且这个过程中呀,很容易出错呢。

有时候觉得自己想得挺对的,结果一检查,发现有相邻的小正方形颜色相同了,就像不小心踩了游戏里的小陷阱一样。

我们在做这种涂色问题的时候,还可以把它想象成给小方格们“穿衣服”。

每个小方格都想穿得与众不同,但是又有规则限制着它们。

如果是更复杂的图形,像三棱柱或者正方体的表面涂色,那就更像一个超级大挑战啦。

比如说正方体,它有六个面呢。

我们给一个面涂了颜色,那和它相邻的四个面就都不能涂这个颜色了。

这就像是在一个小团体里,每个人都有自己的小圈子,这个小圈子里的人不能有重复的特征。

在解决正方体涂色问题的时候,我们可以先固定一个面的颜色,然后再去考虑其他面。

有时候从某个特殊的面开始考虑会更简单哦。

数学彩色涂色问题

数学彩色涂色问题

数学彩色涂色问题数学彩色涂色问题是一类涉及图论和组合数学的问题,涉及到给定一个图,如何用不同的颜色对其进行涂色,使得相邻的节点颜色不同。

这个问题在许多领域都有应用,如地图着色、调度问题等。

本文将介绍数学彩色涂色问题的背景、解决方法以及一些相关应用。

背景介绍数学彩色涂色问题源于图论,图由节点和边组成。

在彩色涂色问题中,我们希望为图的每个节点选择一种颜色,使得任意相邻节点的颜色都不相同。

这里的相邻节点是指通过边连接的节点。

解决方法解决数学彩色涂色问题的方法有很多种,以下是一些常见的方法:1. 贪心算法:贪心算法是一种贪心思想的算法,它根据一定的规则进行选择。

在数学彩色涂色问题中,我们可以使用贪心算法来选择每个节点的颜色。

具体做法是从一个节点开始,依次向其相邻节点涂色,并保证相邻节点颜色不同。

2. 回溯算法:回溯算法是一种通过逐个尝试所有可能解的算法。

在数学彩色涂色问题中,我们可以使用回溯算法来逐个尝试给每个节点涂色,直到找到符合要求的解或者试探所有可能的情况。

3. 图染色算法:图染色算法是一种基于图的染色理论的算法。

在数学彩色涂色问题中,我们可以将图转化为一个染色图,然后使用染色图算法来对节点进行涂色。

应用领域数学彩色涂色问题在许多领域都有应用,如地图着色、调度问题等。

在地图着色问题中,我们希望给定一张地图,使得相邻的地区颜色不同。

数学彩色涂色问题可以帮助我们确定如何给地图上的每个地区选择颜色,以满足相邻地区颜色不同的要求。

在调度问题中,我们希望在给定一组任务和资源的情况下,找到一种合理的分配方案。

数学彩色涂色问题可以帮助我们确定如何将任务分配给资源,以使得任意相邻任务被分配给不同的资源。

结论数学彩色涂色问题是一个有趣且具有实际应用价值的问题。

通过合适的算法和技巧,我们可以有效地解决这类问题,并在实际应用中获得良好的效果。

希望本文对读者理解和解决数学彩色涂色问题提供一些帮助。

巧用数学中的排列和组合知识求解涂色问题

巧用数学中的排列和组合知识求解涂色问题

色, 要求 相邻 2个 区域 涂 不 能 同色 , 如 果 颜 色 可 以 反 复使 用 , 共有 多少 种不 同 的涂色 方法 ? , 解析 ① 4个 区域 涂不 同的颜 色 , 涂法 种 数为 A ; ② 有 且仅 2 个 区域 相 同的颜 色 , 即只有 一 组
例 5 从 给定 的 5种 不 同颜 色 中选 用 若 干 种 颜
选 一种颜 色涂 顶 点 S, 再 从 余 下 的 3种颜 色 中任 选 2 种 涂 A 与 B, 由于 A、 B颜 色 可 以交 换 , 故 有 A;种 涂 法; 再 从余 下 的 2种 颜 色 中任 选 一种 涂 D 或 C, 而 D 与 C 中另 一 个 只需 涂 与 其 相 对 顶 点 同色 即可 , 故 有
棱 中 有 1组 对 棱 涂 同 一 种 颜 色 , 故有 C A; 种方 法 . 故 所 求 涂 色 方 法 数 为
Ci A +C A; + A: 一3 3 6 0 种. 3 )空 间 几 何 体 中 面 的 涂 色 问题

例 2 用红 、 黄、 蓝、 紫、 粉
5种 颜 色 涂 在 如 右 图 所 示 的 4 个 区域 内 , 每 个 区 域 涂 一 种 颜
嗍 .数为 : 2 4 十4 8 = = = 7 2 种.
2 )空 间 几 何 体 中 线 段 的 涂 色 问 题
例 1 湖 北 省分 别 与湖 南 、 安徽 、 陕西 3省交 界 ,
且湘 、 皖、 陕互 不交界 , 在 地 图 上 分 别 给 各 省 地 域 涂
2 空 间 几 何 体 中 的 涂 色 问 题
1 )空 间 几 何 体 中 点 的 涂 色 问 题

限制条 件 ;③ 通 常应 用分 步乘 法和 加法 原理 求解.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学中涂色问题的常见解法及策略整理:高三数学组 2009年4月与涂色问题有关的试题新颖有趣,近年已经在高考题中出现,其中包含着丰富的数学思想。

解决涂色问题方法技巧性强且灵活多变,因而这类问题有利于培养学生的创新思维能力、分析问题与观察问题的能力,有利于开发学生的智力。

本文拟总结涂色问题的常见类型及求解方法一.区域涂色问题1、 根据分步计数原理,对各个区域分步涂色,这是处理染色问题的基本方法。

例1、 用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种颜色,相邻部分涂不同颜色,则不同的涂色方法有多少种?分析:先给①号区域涂色有5种方法,再给②号涂色有4种方法,接着给③号涂色方法有3种,由于④号与①、②不相邻,因此④号有4种涂法,根据分步计数原理,不同的涂色方法有5434240⨯⨯⨯=2、 根据共用了多少种颜色讨论,分别计算出各种出各种情形的种数,再用加法原理求出不同的涂色方法种数。

例2、四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色。

分析:依题意只能选用4种颜色,要分四类: (1)②与⑤同色、④与⑥同色,则有44A ; (2)③与⑤同色、④与⑥同色,则有44A ; (3)②与⑤同色、③与⑥同色,则有44A ;(4)③与⑤同色、② 与④同色,则有44A ;(5)②与④同色、③与⑥同色,则有44A ;所以根据加法原理得涂色方法总数为544A =120例3、如图所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4 分析:依题意至少要用3种颜色1) 当先用三种颜色时,区域2与42) 区域3与5必须同色,故有34A 种; 3) 当用四种颜色时,若区域2与4同色,4) 则区域3与5不同色,有44A 种;若区域3有44A 种,故用四种颜色时共有244A 种。

由加法原理可知满足题意的着色方法共有34A +244A =24+2⨯24=723、 根据某两个不相邻区域是否同色分类讨论,从某两个不相邻区域同色与不同色入手,分别计算出两种情形的种数,再用加法原理求出不同涂色方法总数。

例4用红、黄、蓝、白、黑五种颜色涂在如图所示的四个区域内,每个区域涂一种颜色,相邻两个区域涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法? ① ②③④ ⑤ ⑥分析:可把问题分为三类:(1) 四格涂不同的颜色,方法种数为45A ;(2) 有且仅两个区域相同的颜色,即只有一组对角小方格涂相同的颜色,涂法种数为12542C A ;5) 两组对角小方格分别涂相同的颜色,涂法种数为25A , 因此,所求的涂法种数为212255452260A C A A ++=4、 根据相间区使用颜色的种类分类例5如图, 6个扇形区域A 、B 、C 、D 、E 、F ,现给这6个区域着色,要求同一区域涂同一种颜色,相邻的两个区域不得使用同一种颜色,现有4种不同的颜色可1A 解(1)当相间区域A 、C 、E 着同一种颜色时,有4种着色方法,此时,B 、D 、F 各有3种着色方法, 此时,B 、D 、F 各有3种着色方法故有4333108⨯⨯⨯=种方法。

(2)当相间区域A 、C 、E 着色两不同的颜色时,有234C A 种着色方法,此时B 、D 、F有322⨯⨯种着色方法,故共有2234322432C A ⨯⨯⨯=种着色方法。

(3)当相间区域A 、C 、E 着三种不同的颜色时有34A 种着色方法,此时B 、D 、F 各有2种着色方法。

此时共有34222192A ⨯⨯⨯=种方法。

故总计有108+432+192=732种方法。

说明:关于扇形区域区域涂色问题还可以用数列中的递推公来解决。

如:如图,把一个圆分成(2)n n ≥个扇形,每个扇形用红、白、蓝、黑四色之一染色,要求相邻扇形不同色,有多少种染色方法? 解:设分成n 个扇形时染色方法为n a 种 (1) 当n=2时1A 、2A 有24A =12种,即2a =12 (2)当分成n 个扇形,如图,1A 与2A 不同色,2A 与3A 不同色,,1n A -与n A 不同色,共有143n -⨯种染色方法, 但由于n A 与1A 邻,所以应排除n A 与1A 同色的情形;n A 与1A 同色时,可把n A 、 1前2n -个扇形加在一起为1n -个扇形,此时有1n a -种染色法,故有如下递推关系:1143n n n a a --=⨯-1211243(43)43n n n n n n a a a -----∴=-+⨯=--+⨯+⨯21321234343434343n n n n n n n a a -------=-⨯+⨯=-+⨯-⨯+⨯124[33(1)3](1)33n n n n n --==⨯-++-⨯=-⨯+二.点的涂色问题方法有:(1)可根据共用了多少种颜色分类讨论,(2)根据相对顶点是否同色分类讨论,(3)将空间问题平面化,转化成区域涂色问题。

例6、将一个四棱锥S ABCD -的每个顶点染上一种颜色,并使同一条棱的两端点异色,如果只有5种颜色可供使用,那么不同的染色方法的总数是多少?解法一:满足题设条件的染色至少要用三种颜色。

(1)若恰用三种颜色,可先从五种颜色中任选一种染顶点S ,再从余下的四种颜色中任选两种涂A 、B 、C 、D 四点,此时只能A 与C 、B 与D 分别同色,故有125460C A =种方法。

(2)若恰用四种颜色染色,可以先从五种颜色中任选一种颜色染顶点S ,再从余下的四种颜色中任选两种染A 与B ,由于A 、B 颜色可以交换,故有24A 种染法;再从余下的两种颜色中任选一种染D 或C ,而D 与C ,而D 与C 中另一个只需染与其相对顶点同色即可,故有12115422240C A C C =种方法。

(3)若恰用五种颜色染色,有55120A =种染色法综上所知,满足题意的染色方法数为60+240+120=420种。

解法二:设想染色按S —A —B —C —D 的顺序进行,对S 、A 、B 染色,有54360⨯⨯=种染色方法。

由于C 点的颜色可能与A 同色或不同色,这影响到D 点颜色的选取方法数,故分类讨论:C 与A 同色时(此时C 对颜色的选取方法唯一),D 应与A (C )、S 不同色,有3种选择;C 与A 不同色时,C 有2种选择的颜色,D 也有2种颜色可供选择,从而对C 、D 染色有13227⨯+⨯=种染色方法。

由乘法原理,总的染色方法是607420⨯=解法三:可把这个问题转化成相邻区域不同色问题:如图,对这五个区域用5种颜色涂色,有多少种不同的涂色方法? 二.线段涂色问题 对线段涂色问题,要注意对各条线段依次涂色,主要方法有: 6) 根据共用了多少颜色分类讨论 7) 根据相对线段是否同色分类讨论。

例7、用红、黃、蓝、白四种颜色涂矩形ABCD 的四条边,每条边只涂一种颜色 ,且使相邻两边涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法?解法一:(1)使用四颜色共有44A 种;(2)使用三种颜色涂色,则必须将一组对边染成同色,故有112423C C A 种,(3)使用二种颜色时,则两组对边必须分别同色,有24A 种因此,所求的染色方法数为411224423484A C C A A ++=种 解法二:涂色按AB -BC -CD -DA 的顺序进行,对AB 、BC 涂色有4312⨯=种涂色方法。

由于CD 的颜色可能与AB 同色或不同色,这影响到DA 颜色的选取方法数,故分类讨论: 当CD 与AB 同色时,这时CD 对颜色的选取方法唯一,则DA 有3种颜色可供选择CD 与AB 不同色时,CD 有两种可供选择的颜色,DA 也有两种可供选择的颜色,从而对CD 、DA 涂色有13227⨯+⨯=种涂色方法。

由乘法原理,总的涂色方法数为12784⨯=种例8、用六种颜色给正四面体A BCD -的每条棱染色,要求每条棱只染一种颜色且共顶点的棱涂不同的颜色,问有多少种不同的涂色方法?解:(1)若恰用三种颜色涂色,则每组对棱必须涂同一颜色,而这三组间的颜色不同,故有36A 种方法。

(2)若恰用四种颜色涂色,则三组对棱中有二组对棱的组内对棱涂同色,但组与组之间不同色,故有3466C A 种方法。

(3)若恰用五种颜色涂色,则三组对棱中有一组对棱涂同一种颜色,故有1536C A 种方法。

(4)若恰用六种颜色涂色,则有66A 种不同的方法。

综上,满足题意的总的染色方法数为4080665613462336=+++A A C A C A 种。

三.面涂色问题例9、从给定的六种不同颜色中选用若干种颜色,将一个正方体的6个面涂色,每两个具有公共棱的面涂成不同的颜色,则不同的涂色方案共有多少种?分析:显然,至少需要3三种颜色,由于有多种不同情况,仍应考虑利用加法原理分类、乘法原理分步进行讨论解:根据共用多少种不同的颜色分类讨论(1)用了六种颜色,确定某种颜色所涂面为下底面,则上底颜色可有5种选择,在上、下底已涂好后,再确定其余4种颜色中的某一种所涂面为左侧面,则其余3个面有3!种涂色方案,根据乘法原理30!351=⨯=n(2)共用五种颜色,选定五种颜色有656=C 种方法,必有两面同色(必为相对面),确定为上、下底面,其颜色可有5种选择,再确定一种颜色为左侧面,此时的方法数取决于右侧面的颜色,有3种选择(前后面可通过翻转交换)9035562=⨯⨯=C n ;(3)共用四种颜色,仿上分析可得9024463==C C n ;(4)共用三种颜色,20364==C n例10、四棱锥P ABCD -,用4种不同的颜色涂在四棱锥的各个面上,要求相邻不同色,有多少种涂法?⇒ 面,区域5相当于底面;根据共用颜色多少分类:(1) 最少要用3种颜色,即1与3同色、2与4同色,此时有34A 种;(2) 当用4种颜色时,1与3同色、2与4两组中只能有一组同色,此时有1424C A ;故满足题意总的涂色方法总方法交总数为31442472A C A += 用三种不同的颜色填涂如右图33⨯方格中的9个区域,要求每行、每列的三个区域都不同色,则不同的填涂方法种数共有( D )BCA 、48、B 、24C 、12D 、6“立几”中的计数问题求解策略在近几年的高考试题和各地模拟试题中频繁出现以“立几”中的点、线、面的位置关系为背景的计数问题,这类问题题型新颖、解法灵活、多个知识点交织在一起,综合性强,能力要求高,有一定的难度,它不仅考查相关的基础知识,而且注重对数学思想方法和数学能力的考查。

现结合具体例子谈谈这种问题的求解策略。

1. 直接求解例1:从平面α上取6个点,从平面β上取4个点,这10个点最多可以确定多少个三棱锥?解析: 利用三棱锥的形成将问题分成α平面上有1个点、2个点、3个点三类直接求解共有132231646464194C C C C C C ++=个三棱锥例2: 在四棱锥P-ABCD 中,顶点为P ,从其它的顶点和各棱的中点中取3个,使它们和点P 在同一平面上,不同的取法有 A.40 B. 48 C. 56 D. 62种 解析: 满足题设的取法可以分成三类(1) 在四棱锥的每一个侧面上除P 点外取三点有35440C =种不同取法;(2) 在两个对角面上除点P 外任取3点,共有3428C =种不同取法;(3) 过点P 的每一条棱上的3点和与这条棱异面的棱的中点也共面,共有1248C =种不同取法,故共有40+8+8=56种评注:这类问题应根据立体图形的几何特点,选取恰当的分类标准,做到分类不重复、不遗漏。

相关文档
最新文档