高二数学导数和定积分习题(含答案)

合集下载

高二数学测试题(导数定积分)

高二数学测试题(导数定积分)

高二数学测试题(导数、定积分)一、选择题1..下列求导数运算正确的是( ) A. 2'11)1(xx x +=+ B. ='2)(log x 2ln 1x C. e x x 3'log 3)3(= D. x x x x sin 2)cos ('2-=2.若曲线b ax x y ++=2在点),0(b 处的切线方程是01=+-y x ,则( )A .1,1==b aB .1,1=-=b aC .1,1-==b aD .1,1-=-=b a 3.⎰42ln xdx 等于( )A .-2ln2B .2ln2C .-ln2D .ln24.若函数x x x f 2)(⋅= 且0)(0='x f ,则=0x ( )A.-1/ln2B.1/ln2C.-ln2D.ln25.函数1)(3++=x ax x f 有极值的充要条件是( )A .0>a ;B .0≥a ;C .0<a ;D .0≤a . 6.设函数)(x f 在定义域内可导,)(x f y =的图象如左图所示,则导函数)(x f y '=可 能为( )7.用长为m 18的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为1:2,则该长方体的最大体积为( )A .32mB .33mC .34mD .35m 8.设)(x f 、)(x g 是定义域为R 的恒大于0的可导函数,且0)()()()(<'-'x g x f x g x f , 则当b x a <<时有( )A .)()()()(b g b f x g x f >B .)()()()(x g a f a g x f >C .)()()()(x g b f b g x f >D .)()()()(a g a f x g x f >9.等比数列}{n a 中4,281==a a ,函数)())(()(821a x a x a x x x f -⋅⋅⋅--=,则x y O A x y O B x y O C x y O Dx yO=')0(f ( )A .62B .92C .122D .15210.若函数x x x f ln 2)(2-=在其定义域的一个子区间()1,1+-k k 上不是单调函数,则实数k 的取值范围( )A .23>k B .21-<k C .2321<<k D .231<≤k 二、填空题11.=-⎰-dx x 1121 .12.函数)0()(f xe x f x '+=,则曲线)(x f y =在1=x 处的切线方程是 .13.曲线3x y =在点(1,1)处的切线与两坐标轴所围成的三角形的面积为 .14.若函数x a x x f +=ln )(在区间]3,2[上是单调函数,则a 的取值范围是 . 15.若函数()313f x x x =-+在()2,10a a -上有最大值,则a 的取值范围为 . 三、解答题 16.求曲线2x y =与直线43+=x y 所围成的图形的面积.17.设函数ππ<<---=x x x x x f ,cos sin )(,求函数)(x f 的单调区间与极值.18.已知函数d cx bx ax x f +++=23)(的图像过点)2,0(P ,且在点))1(,1(--f M 处的切线方程为076=+-y x .①求函数)(x f y =的解析式; ②求函数)(x f y =的单调区间.19.一艘轮船在航行中燃料费和它的速度的立方成正比.已知速度为每小时10千米时,燃 料费是每小时6元,而其它与速度无关的费用是每小时96元,问轮船的速度是多少时,航 行1千米所需的费用总和为最小?20.已知函数212)(x ax x f -=在]1,0(∈x 上的最大值. (1)若函数)(x f 在]1,0(∈x 上单调增加,求a 的取值范围;(2)求函数)(x f 在]1,0(∈x 上的最大值.21.已知函数]1,0[,274)(2∈--=x xx x f . (1)求函数)(x f 的单调区间和值域;(2)设1≥a ,函数]1,0[,23)(23∈--=x a x a x x g ,若对任意]1,0[1∈x ,总存在]1,0[0∈x ,使得)()(10x f x g =成立,求a 的取值范围.。

高二数学积分试题答案及解析

高二数学积分试题答案及解析

高二数学积分试题答案及解析1.计算的结果为().A.1B.C.D.【答案】C【解析】先利用定积分的几何意义求:令,即表示单位圆的(如图),即是圆面积,即;所以=.【考点】定积分的几何意义.2.若,其中,则( ).A.B.C.D.【答案】B【解析】,,即,解得;又因为,所以,即.【考点】微积分基本定理、二倍角公式.3.等于()A.πB.2C.π﹣2D.π+2【答案】D【解析】,故选D.【考点】定积分.4.由直线与曲线所围成的封闭图形的面积为()A.1B.C.D.【答案】A【解析】由定积分的几何意义得面积为。

【考点】定积分的应用5..【答案】【解析】【考点】微积分基本定理的应用.6.若在上可导,,则____________.【答案】【解析】因为,令可得所以所以.【考点】1.导数的计算;2.定积分.7.求曲线,所围成图形的面积.【答案】【解析】由解得:;画出图象可知所求面积应为:【考点】定积分求面积.8.等于()A.B.2C.D.【答案】A【解析】【考点】定积分的基本概念及运算9.由曲线与直线所围成的平面图形(下图中的阴影部分)的面积是____________.【答案】【解析】显然,根据对称性,只需算左边阴影部分的面积即可,曲线y=sinx,y=cosx的交点坐标为(),∴左边阴影部分的面积=,∴阴影部分面积S=2()=.【考点】定积分求曲边图形的面积.10.曲线与坐标轴所围成图形面积是()A.4B.2C.D.3【答案】D【解析】===3【考点】定积分的计算.11..【答案】【解析】。

【考点】微积分的计算。

12.函数与轴,直线围成的封闭图形的面积为()A.B.C.D.【答案】B【解析】由题意,知该封闭图形的面积为,故选B.【考点】定积分的运算及应用.13.曲线,与坐标轴围成的面积()A.4B.3C.2D.0【答案】A【解析】根据正弦函数的图像及定积分的几何意义,可知所求面积,故选A.【考点】定积分在几何中的应用.14.定积分等于()A.B.C.D.【答案】A【解析】因为,所以,故选A.【考点】定积分的运算.15.定积分 .【答案】【解析】因为,其中,表示以原点为圆心,1为半径的圆的面积,所以,所以.【考点】1.定积分的运算;2.定积分的几何意义.16.下列值等于1的定积分是()A.B.C.D.【答案】C【解析】;;【考点】定积分的计算。

高二数学导数计算试题答案及解析

高二数学导数计算试题答案及解析

高二数学导数计算试题答案及解析1.已知函数,则它的导函数是()A.B.C.D.【答案】B【解析】,【考点】复合函数的导数.2.已知函数f(x)的导函数为f′(x),满足f(x)=2xf′(2)+x3,则f′(2)等于(). A.﹣8B.﹣12C.8D.12【答案】B.【解析】,;令,则,得.【考点】导数的计算.3.已知函数(1)若在上是增函数,求的取值范围;(2)若在处取得极值,且时,恒成立,求的取值范围.【答案】(1);(2)(-∞,-1)∪(2,+∞).【解析】解题思路:(1)利用“若函数在某区间上单调递增,则在该区间恒成立”求解;(2)先根据在处取得极值求得值,再将恒成立问题转化为求,解关于的不等式即可.规律总结:若函数在某区间上单调递增,则在该区间恒成立;“若函数在某区间上单调递减,则在该区间恒成立;求函数最值的步骤:①求导函数;②求极值;③比较极值与端点值,得出最值.试题解析:(1)因在上是增函数,则f′(x)≥0,即3x2-x+b≥0,∴b≥x-3x2在(-∞,+∞)恒成立.=,∴b≥.设g(x)=x-3x2,当x=时,g(x)max(2)由题意,知f′(1)=0,即3-1+b=0,∴b=-2.x∈[-1,2]时,f(x)<c2恒成立,只需f(x)在[-1,2]上的最大值小于c2即可因f′(x)=3x2-x-2,令f′(x)=0,得x=1,或x=-.∵f(1)=-+c,f(-)=+c,f(-1)=+c,f(2)=2+c,∴f(x)=f(2)=2+c,max∴2+c<c 2,解得c>2,或c<-1,所以c的取值范围为(-∞,-1)∪(2,+∞).【考点】1.函数的单调性;2.函数的极值、最值;3.不等式恒成立问题.4.记,,…,.若,则的值为 .【答案】【解析】由f(x)=xcosx,得f(1)(x)=cosx﹣xsinx,f(2)(x)=﹣sinx﹣sinx﹣xcosx=﹣2sinx﹣xcosx,f(3)(x)=﹣2cosx﹣cosx+xsinx=﹣3cosx+xsinx,f(4)(x)=3sinx+sinx+xcosx=4sinx+xcosx,f(5)(x)=4cosx+cosx﹣xsinx=5cosx﹣xsinx,…,则f(0)+f(1)(0)+f(2)+…+f(2013)(0)=0+1+0﹣3+0+5+0﹣…+2013=(1﹣3)+(5﹣7)+…+(2009﹣2011)+2013=﹣2×503+2013=1007,故答案为:1007.【考点】导数的运算.5.为实数,(1)求导数;(2)若,求在[-2,2] 上的最大值和最小值.【答案】⑴ (2) 最大值为最小值为【解析】⑴将括号打开函数变成多项式函数来求导数;也可利用积的导数法则来求解;(2)由结合(1)的结果可求出a值,从而获得的具体解析式,进而获得导数,令其等于零,求得其可能极值,并求出端点的函数值,比较其大小就可求出在[-2,2] 上的最大值和最小值.试题解析:⑴由原式得∴⑵由得,此时有.由得或x="-1" ,又所以f(x)在[-2,2]上的最大值为最小值为【考点】1.函数求导;2.函数的最值.6.已知函数在上不单调,则的取值范围是()A.B.C.D.【答案】A【解析】此题考查导数的应用;,所以当时,原函数递增,当原函数递减;因为在上不单调,所以在上即有减又有增,所以或,或,故选A.【考点】函数的单调性与导数.7.设,若,则()A.B.C.D.【答案】A【解析】因为,所以当时,解得,所以。

高二数学导数、定积分测试题

高二数学导数、定积分测试题

高二数学导数、定积分测试题一、选择题:(本大题共10个小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知函数f (x )=ax 2+c ,且(1)f '=2,则a 的值为 A .1B .2C .-1D . 02.若函数()y f x =的导函数...在区间[,]a b 上是增函数,则函数()y f x =在区间[,]a b 上的图象可能是3.已知函数()f x 在1x =处的导数为1,则(1)(1)3limx f x f x x →--+= A .3 B .23- C . 13 D .32-4.一质点做直线运动,由始点起经过ts 后的距离为43214164s t t t =-+,则速度为零的时刻是 A .4s 末 B .8s 末 C .0s 与8s 末 D .0s 、4s 、8s 末 5.曲线3cos (0)2y x x π=≤≤与坐标轴围成的面积是 A .4 B .52C .3D .2 6.曲线21xy x =-在点()1,1处的切线方程为A .20x y --=B .20x y +-=C .450x y +-=D .450x y --=7.已知函数(),()y f x y g x ==的导函数的图象如下图,那么(),()y f x y g x ==图象可能是8.若存在过点(1,0)的直线与曲线3y x =和21594y ax x =+-都相切,则a 等于( ) A .1-或25-64 B .1-或214 C .74-或25-64D .74-或79.已知自由下落物体的速度为V=gt ,则物体从t=0到t 0所走过的路程为 A . 2012gt B .20gt C . 2013gt D .2014gt10.设函数1()ln (0),3f x x x x =->则()y f x =A .在区间1(,1),(1,)e e 内均有零点。

B .在区间1(,1),(1,)e e 内均无零点。

高二数学积分试题答案及解析

高二数学积分试题答案及解析

高二数学积分试题答案及解析1.直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为().A.2B.4C.2D.4【答案】D.【解析】作出直线y=4x与曲线y=x3在第一象限内围成的封闭图形(如图);则.【考点】定积分的几何意义.2.等于()A.πB.2C.π﹣2D.π+2【答案】D【解析】,故选D.【考点】定积分.3.下列四个判断:①;②已知随机变量X服从正态分布N(3,),P(X≤6)=0.72,则P(X≤0)=0.28;③已知的展开式的各项系数和为32,则展开式中x项的系数为20;④其中正确的个数有:A.1个B.2个C.3个D.4个【答案】A【解析】对于①因为对一切实数x恒成立,所以不正确;对于②因为随机变量X服从正态分布N(3,),所以其正态曲线关于直线x=3对称,故由P(X≤6)=0.72知,所以,所以正确;对于③已知的展开式的各项系数和为32,令x=1,得,因此展开式的通项为,令10-3r=1得到r=3,所以展开式中x项的系数为,故不正确;对于④表示曲线即圆在x轴上方部分的半圆与x轴和轴y所围成的面积,所以=,而,由于,故知不正确,所以其中正确的只有1个,故选A.【考点】命题真假的判断与应用.4.若在R上可导,,则( )A.B.C.D.【答案】B【解析】欲求积分,则必须求出被积函数.由已知可知函数的解析式并不明确(未知,但为常数).所以对原函数求导,可得,令,,所以,则.【考点】函数导数和函数积分.5.如图所示,抛物线与轴所围成的区域是一块等待开垦的土地,现计划在该区域内围出一块矩形地块ABCD作为工业用地,其中A、B在抛物线上,C、D在轴上.已知工业用地每单位面积价值为元,其它的三个边角地块每单位面积价值元.(1)求等待开垦土地的面积;(2)如何确定点C的位置,才能使得整块土地总价值最大.【答案】(1);(2)点C的坐标为.【解析】(1)由于等待开垦土地是由曲线与x轴围成的,求出曲线与x轴的交点坐标,再用定积分就可求出此块土地的面积;(2)既然要确定点C的位置,使得整块土地总价值最大,那我们只需先设出点C的坐标为(x,0),然后含x的代数式表示出矩形地块ABCD,进而结合(1)的结果就可表示出其它的三个边角地块的面积,从而就能将整块土地总价值表示成为x的函数,再利用导数求此函数的最大值即可.试题解析:(1)由于曲线与x轴的交点坐标为(-1,0)和(1,0),所以所求面积S=,故等待开垦土地的面积为 3分(2)设点C的坐标为,则点B其中,∴ 5分∴土地总价值 7分由得 9分并且当时,故当时,y取得最大值. 12分答:当点C的坐标为时,整个地块的总价值最大. 13分【考点】1.定积分;2.函数的最值.6.定积分等于()A.B.C.D.【答案】B【解析】.【考点】定积分的运算.7.若的值等于()A.B.C.D.【答案】C【解析】根据定积分的可加性,可得,故选C.【考点】定积分的计算.8.()A.B.C.D.【答案】B【解析】.【考点】定积分的计算.9.由曲线与直线所围成的平面图形(下图中的阴影部分)的面积是____________.【答案】【解析】显然,根据对称性,只需算左边阴影部分的面积即可,曲线y=sinx,y=cosx的交点坐标为(),∴左边阴影部分的面积=,∴阴影部分面积S=2()=.【考点】定积分求曲边图形的面积.10.设则 ()A.B.C.D.不存在【答案】C【解析】,故选C.【考点】定积分的计算.11.设f(x) =且,则= .【解析】,,解得。

高二数学导数定积分测试题

高二数学导数定积分测试题
使得 g ( x0 ) f (x1) 成立,求 a 的取值范围 .
参考答案
一、 选择题
题号 1 2 3 4 5 6 7 8 9 10 11 12
答案 C D A C B C D A C A D A
二、 填空题
13、108m
14、
1 1或
3
三、解答题
15.. (
, 2) (0,2) 16、 2 解: 均值不等式定理
17.解 : 因为抛物线过点 P, 所以 a b c 1, ①
又 y / 2ax b, y / x 2 4a b, 4a b 1. ②
又抛物线过点 Q, 4a 2b c 1, ③
由①②③解得 , a 3,b 11, c 9.
e2
1
( x) ( x) 18、(1) f
1, f max 2
min 2
9 19.( 1)分类讨论,得 b

A . b2 4ac 0 B. b 0, c 0
C. b 0, c 0 D. b2 3ac 0
3、设 f ( x)
2
x( ax
bx c)(a
0) 在 x 1 和 x
1 处均有极值,则下列点中一定
在 x 轴上的是( )
A. (a, b) B. (a,c) C. (b,c) D. (a b, c)
/
4.对于 R 上可导的任意函数 f( x),若满足 ( x 1) f ( x) 0 ,则必有( )
3
2
2
21. 解:( 1)对函数 f(x)= 4x 2 7 , x [0,1], 求导,得 f / (x)= 2x
2
4x 16 7 (2 x) 2
(2x 1)(2x (2 x)2
7) , ,

高二数学积分试题答案及解析

高二数学积分试题答案及解析

高二数学积分试题答案及解析1.已知二次函数f(x)=ax2+bx+c,直线l1:x=2,直线l2:y=-t2+8t(其中0≤t≤2,t为常数),若直线l1,l2与函数f(x)的图象以及l1、l2、y轴与函数f(x)的图象所围成的封闭图形(阴影部分)如图所示.(1)求a、b、c的值;(2)求阴影面积S关于t的函数S(t)的解析式.【答案】(1);(2)【解析】(1)根据二次函数过点并且最大为16,列方程组解;(2)定积分的基本思想的核心是“以直代曲”,用“有限”步骤解决“无限”问题,其方法是“分割求近似,求和取极限”,定积分只与积分区间和被积函数有关,与积分变量有关;(3)利用定积分求曲线围成图形的面积的步骤:一根据题意画简图;二确定被积函数;三确定积分的上限和下限,并求出交点坐标;四是运用微积分基本定理计算定积分,求出平面图形的面积;(4)求解时,注意要把定积分与利用定积分计算的曲线围成图形的面积区别开:定积分是一个数值,可为正,为负,也可以为零,而平面图形的面积在一般意义上总为正.试题解析:(1)由图形可知二次函数的图象过点(0,0),(8,0),并且f(x)的最大值为16,则,解得 6分∴函数f(x)的解析式为f(x)=-x2+8x. 7分(2)由,得x2-8x-t(t-8)=0,∴x1=t,x2=8-t,∵0≤t≤2,∴直线l2与f(x)的图象的交点坐标为(t,-t2+8t)由定积分的几何意义知:S(t)==[(-t2+8t)x-(-+4x2)]+[(-+4x2)-(-t2+8t)x].【考点】(1)求二次函数的解析式;(2)利用定积分求阴影部分的面积2.如图阴影部分的面积是A.e+B.e+-1C.e+-2D.e-【答案】C【解析】阴影部分的面积为.【考点】定积分的应用.3.直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为().A.2B.4C.2D.4【答案】D.【解析】作出直线y=4x与曲线y=x3在第一象限内围成的封闭图形(如图);则.【考点】定积分的几何意义.4.函数的图象如图所示,若,则等于()B.2m C.0 D.-m【答案】C【解析】由图可知,,∴令,∴,∴.【考点】定积分的性质.5.由曲线与的边界所围成区域的面积为.【答案】【解析】由题意所求区域为如图阴影∴.【考点】定积分在几何中的应用.6.()A.B.C.D.【答案】B【解析】.【考点】定积分的计算.7.曲线与坐标轴围成的面积是()。

高二数学导数大题练习题(含答案)

高二数学导数大题练习题(含答案)

高二数学导数大题练习题(含答案)一、解答题 1.已知函数()1e -=xx f x . (1)求()f x 极值点;(2)若()()4g x f x =-,证明:2x >时,()()f x g x >成立. 2.已知()()e 1x f x mx m =+<-.(1)当2m =-时,求曲线()y f x =上的斜率为1-的切线方程;(2)当0x ≥时,()2213222m f x x ≥+-恒成立,求实数m 的范围.3.对于正实数a ,b (a b >),我们熟知基本不等式:()()G a b A a b <,,,其中()G a b ,a ,b 的几何平均数,()2a bA a b +=,为a ,b 的算术平均数.现定义a ,b 的对数平均数:(),ln ln a bL a b a b-=-.(1)设1x >,求证:12ln x x x<-,并证明()()G a b L a b <,,;(2)若不等式()()(),,,G a b A a b m L a b +>⋅对任意正实数a ,b (a b >)恒成立,求正实数m 的取值范围. 4.已知函数()ln f x x =.(1)当()()sin 1g x x =-,求函数()()()T x f x g x =+在()0,1的单调性; (2)()()12h x f x b x=+-有两个零点1x ,2x ,且12x x <,求证:121x x +>. 5.已知函数()()e sin x f x rx r *=⋅∈N ,其中e 为自然对数的底数.(1)若1r =,求函数()y f x =的单调区间;(2)证明:对于任意的正实数M ,总存在大于M 的实数a ,b ,使得当[,]x a b ∈时,|()|1f x ≤.6.已知函数21()ln (R)2f x x ax x a =--∈ (1)若2a =时,讨论函数()f x 的单调性;(2)设23()()12g x f x x =++,若函数()g x 在1e e⎡⎤⎢⎥⎣⎦,上有两个零点,求实数a 的取值范围7.设函数()()2()ln 1f x x a x x =++-,其中R a ∈.(1)1a =时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)讨论函数()f x 极值点的个数,并说明理由;(3)若()0,0x f x ∀>成立,求a 的取值范围. 8.已知函数()()32131.3f x x a x x =-++ (1)若1a =,求函数()f x 的单调区间; (2)证明:函数()2y f x a =-至多有一个零点.9.已知函数()()e ln 1xf x a x =+-+,()'f x 是其导函数,其中a R ∈.(1)若()f x 在(,0)-∞上单调递减,求a 的取值范围;(2)若不等式()()f x f x '≤对(,0)x ∀∈-∞恒成立,求a 的取值范围.10.已知函数()()e 11xf x b x a=+-+(1)当114a b ==-,时,求曲线()y f x =在点(0,f (0))处的切线方程; (2)当20e <≤a ,且2x >时,()()ln 1f x b a x ⎡>-⎣]恒成立,求b 的取值范围.【参考答案】一、解答题1.(1)极大值点为2x =,无极小值点; (2)证明见解析. 【解析】 【分析】(1)利用导数求出函数的单调区间即得解;(2)令()()()()4e 31e exx x x F x f x g x --=-=-,利用导数求出函数()F x 的最小值即得证. (1)解:由题意,得()2e xxf x -'=, 令()0f x '>,得2x <;()0f x '<,得2x >; 列表如下:所以f x 极大值点为2x =,无极小值点. (2)证明:()()()4e 34e x x g xf x -=-=,令()()()()4e 31e e xx x x F x f x g x --=-=-, ∴()()()()42442e ee 22e e e xxx x x x x F x +----'=-=.当2x >时,20x -<,24x >,从而42e e 0x -<,∴()0F x '>,()F x 在()2,+∞上是增函数,∴()()221120e e F x F >=-=. ∴当2x >时,()()f x g x >成立. 2.(1)10x y +-=;(2)ln 3⎡-⎣.【解析】 【分析】(1)根据导数的几何意义可利用斜率求得切点坐标,由此可得切线方程;(2)令()()2213222m g x f x x ⎛⎫=-+- ⎪⎝⎭,将问题转化为当0x ≥时,()min 0g x ≥恒成立;①当10m +≥时,由导数可证得()g x 单调递增,由()00g ≥可求得m 范围; ②当10+<m 时,利用零点存在定理可说明存在()00g x '=,并得到()g x 单调性,知()()020min 13e e 022x xg x g x ==-++≥,由此可解得0x 的范围,根据00e x x m -=可求得m 范围. (1)当2m =-时,()e 2x f x x =-,()e 2xf x '=-;令()e 21xf x '=-=-,解得:0x =,∴切点坐标为()0,1,∴所求切线方程为:1y x =-+,即10x y +-=;(2)令()()22221313e 222222x m m g x f x x mx x ⎛⎫=-+-=+--+ ⎪⎝⎭,则原问题转化为:当0x ≥时,()0g x ≥恒成立,即()min 0g x ≥恒成立;()e x g x m x '=+-,()e 1x g x ''=-,则当0x ≥时,()0g x ''≥,()g x '∴在[)0,∞+上单调递增,()()01g x g m ''∴≥=+; ①当10m +≥,即1m ≥-时,()0g x '≥,()g x ∴在[)0,∞+上单调递增,()()2min301022m g x g ∴==-+≥,解得:m ≤≤m ⎡∴∈-⎣; ②当10+<m ,即1m <-时,()00g '<,当x →+∞时,()g x '→+∞;()00,x ∴∃∈+∞,使得()00g x '=,即00e x x m -=,则当()00,x x ∈时,()0g x '<;当()0,x x ∈+∞时,()0g x '>;()g x ∴在()00,x 上单调递减,在()0,x +∞上单调递增,()()()()00022022000000min e1313e e e 222222x x x x xm g x g x mx x x x x -∴==+--+=+---+00213e e 022x x =-++≥, 解得:01e 3x -≤≤,即0ln 3x ≤,又()00,x ∈+∞,(]00,ln3x ∴∈,令()e xh x x =-,则()1e xh x '=-,∴当(]0,ln3x ∈时,()0h x '<,()h x ∴在(]0,ln3上单调递减,()[)000e ln33,1x h x x ∴=-∈--,即[)ln33,1m ∈--;综上所述:实数m的取值范围为ln 3⎡-⎣.【点睛】思路点睛:本题重点考查了导数中的恒成立问题的求解,解题基本思路是通过构造函数的方式,将问题转化为()min 0g x ≥,从而利用对含参函数单调性的讨论来确定最小值点,根据最小值得到不等式求得参数范围. 3.(1)证明见解析 (2)02m <≤ 【解析】 【分析】(1)令()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭,利用导数证明当1x >时,()0f x <,即可得到12ln x x x<-. 用分析法证明()()G a b L a b <,,.(2)把题意转化为1112ln a a b m a b b -⎛⎫⋅+ ⎪⎝⎭恒成立.令)1t t =>,即为1ln 01t m t t -⋅-<+恒成立.令()()1ln 11t g t m t t t -=⋅->+,分2m >和02m <≤两种情况求出正实数m 的取值范围.(1)令()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭,定义域为()0,+∞.则()()222221111212222x x x f x x x x x ---'=--==-. 所以当1x >时,()0f x '<,()f x 在()1,+∞上单调递减. 又()10f =,所以当1x >时,()0f x <.所以当1x >时,11ln 2x x x ⎛⎫<- ⎪⎝⎭,即12ln x x x<-.(*)要证()()G a b L a b <,,ln ln a ba b--,只需证ln ab<令)1t t =>,则由(*),得12ln t t t <-.所以()()G a b L a b <,,.(2)由()()(),,,G a b A a b m L a b +<⋅恒成立,得ln ln 2a b a bm a b -+⋅-恒成立,即1112ln aa b m a b b-⎛⎫⋅<+ ⎪⎝⎭恒成立.令)1t t =>,由()221112ln 2t m t t t -⋅<++恒成立,得()1112ln 2t m t t -⋅<+恒成立. 所以1ln 01t m t t -⋅-<+恒成立. 令()()1ln 11t g t m t t t -=⋅->+,则 ()()()()()()222222121121111mt t t m t g t m t t t t t t -+-+--'=⋅-==++⋅+⋅. (注:()10g =) i.当0∆>,即2m >时,易知方程()22110t m t -+--=有一根1t 大于1,一根2t 小于1,所以()g t 在()11,t 上单调递增.所以()()110g t g >=,不符合题意. ii.当02m <≤时,有()()()222214110mt t t t t -+≤-+=--<, 所以()0g t '<,从而()g t 在()1,+∞上单调递减. 故当1t >时,恒有()()10g t g <=,符合题意.综上可知,正实数m 的取值范围为02m <≤. 【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值); (3)利用导数求参数的取值范围. 4.(1)单调递增 (2)证明见解析 【解析】 【分析】(1)直接求导,判断出导数大于0,即可得到单调性;(2)直接由1x ,2x 是函数()1ln 2h x x b x=+-的两个零点得到1212122ln x x x x x x -=,分别解出1211212ln x x x xx -=,2121212ln x x x x x -=,再换元令12x t x =构造函数()12ln l t t t t =--,求导确定单调性即可求解. (1)由题意,函数()()sin 1ln T x x x =-+,则()()1cos 1T x x x'=--+,又∵()0,1x ∈,∴11x>,()()10,1,cos 11x x -∈-<,∴()0T x '>,∴()T x 在(0,1)上单调递增. (2)根据题意,()()1ln 02h x x b x x =+->, ∵1x ,2x 是函数()1ln 2h x x b x =+-的两个零点,∴111ln 02x b x +-=,221ln 02x b x +-=. 两式相减,可得122111ln 22xx x x =-,即112221ln 2x x xx x x -=,∴1212122ln x x x x x x -=,则1211212ln x xx x x -=,2121212ln xx x x x -=.令12x t x =,()0,1t ∈,则1211112ln 2ln 2ln t t t t x x t t t---+=+=.记()12ln l t t t t =--,()0,1t ∈,则()()221t l t t-'=. 又∵()0,1t ∈,∴()0l t '>恒成立,∴()l t 在()0,1上单调递增,故()()1l t l <,即12ln 0t t t --<,即12ln t t t-<.因为ln 0t <,可得112ln t t t->,∴121x x +>.【点睛】本题关键点在于对双变量的处理,通过对111ln 02x b x +-=,221ln 02x b x +-=作差,化简得到1212122ln x x x x xx -=, 分别得到12,x x 后,换元令12x t x =,这样就转换为1个变量,再求导确定单调性即可求解.5.(1)增区间为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 减区间为52,2,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)证明过程见解析. 【解析】 【分析】(1)对函数求导,利用辅助角公式合并为同名三角函数,利用单调增减区间代入公式求解即可.(2)将绝对值不等式转化为11sin e e xxrx ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭,移向构造新函数,利用导数判定单调性,借助零点定理和隐零点证明新构造函数恒正,再结合三角函数的特有的周期特点寻找M 即可. (1)()e (sin cos )sin 4x x f x x x x π⎛⎫'=+=+ ⎪⎝⎭令22242k x k πππππ-≤+≤+,得32,244x k k ππππ⎡⎤∈-+⎢⎥⎣⎦令322242k x k ππππ+≤+≤π+,得24x k ππ⎡∈+⎢⎣,524k ππ⎤+⎥⎦当32,244x k k ππππ⎡⎤∈-+⎢⎥⎣⎦时, ()0f x '>,()f x 单调递增 当24x k ππ⎡∈+⎢⎣,524k ππ⎤+⎥⎦时, ()0,()f x f x '< 单调递減 综上() f x 单调递增区间为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦单调递减区间为 52,2,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)要证|()|1f x ≤,即证e sin 1xrx ⋅≤,即证11sin =e e xx rx ⎛⎫≤ ⎪⎝⎭即证 11sin e e xxrx ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭在[,]x a b ∈时成立即可,[,]x a b ∈时,1sin 0e 1sin 0e xxrx rx ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩. 令1()sin e x h x rx ⎛⎫=- ⎪⎝⎭, 1()cos e xh x r rx ⎛⎫'=+ ⎪⎝⎭当222,k k x rr πππ⎛⎫+ ⎪∈⎪ ⎪⎝⎭时, cos 0,r rx > 所以1()cos 0,e xh x r rx ⎛⎫'=+> ⎪⎝⎭所以()h x 单调递增,2210,e k rk h rππ⎛⎫⎛⎫=-< ⎪ ⎪⎝⎭⎝⎭2221210(0)e k r k h k r ππππ+⎛⎫⎛⎫+ ⎪⎪=±>> ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭0(2)22,k k x rrπππ+∴∃∈ , 满足()00h x =由单调性可知02,k x x r π⎛⎫∈⎪⎝⎭, 满足()0()0h x h x <=又因为当021,,sin 0,0,xk x x rx r e π⎛⎫⎛⎫∈>≥ ⎪ ⎪⎝⎭⎝⎭ 1sin 0xrx e ⎛⎫∴+≥ ⎪⎝⎭,所以1sin 0e 1sin 0e xxrx rx ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩能够同时满足, 对于任意的正实数M ,总存在正整数k ,且满足2Mr k π>时, 使得 2k M r π>成立, 所以不妨取 02,,2k Mr a k b x rππ⎛⎫=>= ⎪⎝⎭ 则,a b M >且[,]x a b ∈时,1sin 01sin 0xxrx e rx e ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩, 故对于任意的正实数M ,总存在大于M 的实数,a b ,使得当[,]x a b ∈ 时,|()|1f x ≤. 6.(1)单调递减区间为1),单调递增区间为1,)+∞ (2)(3,2e] 【解析】 【分析】(1)当2a =时,221()x x f x x--'=,由()0f x '<,可求()f x 的单调递减区间,由()0f x '>,可求()f x 的单调递增区间;(2)函数()g x 在1e e⎡⎤⎢⎥⎣⎦,上有两个零点等价于1ln 2x a x xx =+-在1e e ⎡⎤⎢⎥⎣⎦,上有两解,构造函数1ln ()2x h x x x x =+-,1e e x ⎡⎤∈⎢⎥⎣⎦,,利用导数可求得实数a 的取值范围. (1)当2a =时,21()2ln 2f x x x x =--,定义域为()0+∞,, 则212()21x x x xf x x '=----=, 令()0f x '=,解得1x =,或1x =(舍去),所以当1)x ∈时,()0f x '<,()f x 单调递减;当1,)x ∈+∞时,()0f x '>,()f x 单调递增;故函数的单调递减区间为1),单调递增区间为1,)+∞. (2)设223()()121ln 2g x f x x x ax x =++=-+-,函数()g x 在1e e⎡⎤⎢⎥⎣⎦,上有两个零点等价于1ln 2x a x xx =+-在1e e ⎡⎤⎢⎥⎣⎦,上有两解, 令1ln ()2x h x x x x =+-,1e e x ⎡⎤∈⎢⎥⎣⎦,,则221ln 1()2x x xh x x x ⋅-'=--2222ln x xx -+=, 令2()22ln t x x x =-+,1e e x ⎡⎤∈⎢⎥⎣⎦,,显然,()t x 在区间1e e ⎡⎤⎢⎥⎣⎦,上单调递增, 又()10t =,所以当1[,1)e时,有()0t x <,即()0h x '<, 当(1e]x ∈,时,有()0t x >,即()0h x '>,所以()h x 在区间11e ⎡⎫⎪⎢⎣⎭,上单调递减,在区间(1,e]上单调递增, 则min ()(1)3h x h ==,12()2e eeh =+,(e)2e h =,由方程1ln 2x a x x x =+-在1e e ⎡⎤⎢⎥⎣⎦,上有两解及()1e e h h ⎛⎫> ⎪⎝⎭, 可得实数a 的取值范围是(3,2e]. 7.(1)322ln230x y -+-=(2)当0a <时,函数()f x 有一个极值点; 当809a ≤≤时,函数()f x 无极值点; 当89a >时,函数()f x 有两个极值点. (3)0,1 【解析】 【分析】(1)将1a =代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件,对a 进行分类讨论,利用导数法求函数极值的步骤及函数极值的定义即可求解;(3)根据()0,0x f x ∀>成立,转化为()min 0,0x f x ∀>即可,再利用第(2)的结论即可求解. (1)当1a =时,()2()ln 1f x x x x =++-()()21ln 1111ln 2f =++-=,所以切点为()1,ln2,()()11321,12111112f x x k f x ''=+-∴==+⨯-=++, 所以曲线()y f x =在点()()1,1f 处的切线的斜率为()312k f ='=,所以曲线()y f x =在点()1,ln2处的切线的斜率切线方程为()3ln212y x -=-,即322ln230x y -+-= (2)由题意知函数()f x 的定义域为()1,-+∞,()()21212111ax ax a f x a x x x +-+=+-='++, 令()()221,1,g x ax ax a x =+-+∈-+∞,(i )当0a =时,()10f x '=>,函数()f x 在()1,-+∞单调递增,无极值点 (ii )当0a >时,()Δ98a a =-,①当809a <≤时,()()Δ0,0,0g x f x '≤≥≥,所以函数()f x 在()1,-+∞单调递增,无极值点;②当89a >时,Δ0>,设方程2210ax ax a +-+=两根1212,,x x x x == 此时12x x <()121211111,,,110,12444x x x x g x +=-∴---=>-<<∴<-> ()()121,,,x x x ∴∈-+∞时,()()0,0g x f x '>>,函数()f x 单调递增;()12,x x x ∈时,()()0,0g x f x '<<,函数()f x 单调递减.∴函数有两个极值点;③当0a <时,()Δ980a a =->,设方程2210ax ax a +-+=两根1212,,x x x x ==此时12x x >()12110,1x g x -=>∴-<<()11,x x ∴∈-时,()()0,0g x f x '>>,函数()f x 单调递增;()1,x x ∈+∞时,()()0,0g x f x '<<,函数()f x 单调递减.∴函数有一个极值点;综上所述:当0a <时,函数()f x 有一个极值点; 当809a ≤≤时,函数()f x 无极值点; 当89a >时,函数()f x 有两个极值点.(3)由()0,0x f x ∀>成立等价于()min 0,0x f x ∀>≥即可.①当809a ≤≤时,函数()f x 在()0,+∞上单调递增,()()00,0,f x =∴∈+∞时,()0f x >,符合题意; ②当819a <≤时,由()00g >,得20x ≤,∴函数()f x 在()0,+∞上单调递增, 又()()00,0,f x =∴∈+∞时,()0f x >,符合题意;③当1a >时,由()00<g ,得20x >()20,x x ∴∈时, ()f x 单调递减,()()200,0,f x x =∴∈时,()0f x <时,不合题意;④当0a <时,设()()ln 1h x x x =-+,()0,x ∈+∞,时,()()110,11x h x h x x x =-=>∴+'+在()0,+∞上单调递增. ∴当()0,x ∞∈+时,()()00h x h >=,即()ln 1x x +<,可得()()()221f x x a x x ax a x <+-=+-, 当11x a>-时,()210ax a x +-<,此时()0f x <,不合题意. 综上,a 的取值范围是0,1.【点睛】解决此题的关键是第一问利用导数的几何意义及点斜式即可,第二问主要是对参数进行分类讨论,再结合利用导数法求函数的极值的步骤即可,第三问主要将恒成立问题转化为最值问题再结合第二问的结论即可求解.8.(1)()f x 在(,1)-∞-,(3,)+∞上单调递增,在(1,3)-上单调递减(2)证明见解析【解析】【分析】(1)直接求导后判断单调性即可;(2)先变形得到323033x a x x -=++,构造函数,求导后说明单调性即可证明. (1)当1a =时,()()321313f x x x x =-++,2()23f x x x '=--.令()0f x '=,解得1x =-或3x =,当()(),13,x ∞∞∈--⋃+时,()0f x '>;当(1,3)x ∈-时,()0f x '<,故()f x 在(,1)-∞-,(3,)+∞上单调递增,在(1,3)-上单调递减. (2)()321()2333y f x a x a x x =-=-++,由于2330x x ++>,所以()20f x a -=等价于3230.33x a x x -=++ 设()32333x g x a x x =-++, 则()g x '()()222269033x x x x x ++=++,当且仅当0x =或3x =-时,()0g x '=,所以()g x 在(,)-∞+∞上单调递增,故()g x 至多有一个零点,从而()2y f x a =-至多有一个零点.9.(1)1,e⎡⎫+∞⎪⎢⎣⎭ (2)(],1-∞-【解析】【分析】(1)求出导函数()e x af x x'=+,根据()f x 在(,0)-∞上单调递减,可得()e 0x a f x x'=+≤在(,0)-∞上恒成立,分类参数可得e x a x ≥-⋅在(,0)-∞上恒成立,令()()e ,0x g x x x =-⋅<,利用导数求出函数()g x 的最大值即可得解;(2)将已知不等式转化为()ln 10a a x x--+≤对(,0)x ∀∈-∞恒成立,令()()()ln 1,0a h x a x x x =--+<,在对a 分类讨论,求出()h x 的最大值小于等于0,即可求出答案.(1)解:()e x af x x'=+,因为()f x 在(,0)-∞上单调递减,所以()e 0x a f x x'=+≤在(,0)-∞上恒成立,即e x a x ≥-⋅在(,0)-∞上恒成立,令()()e ,0x g x x x =-⋅<,则()()e e 1e x x x g x x x '=--=-+, 当1x <-时,()0g x '>,当10x -<<时,()0g x '<,所以函数()g x 在(),1-∞-上递增,在()1,0-上递减,所以()()max 11eg x g =-=,所以a 的取值范围为1,e ⎡⎫+∞⎪⎢⎣⎭; (2)解:由()()f x f x '≤得()ln 1a a x x-+≤,即()ln 10a a x x --+≤对(,0)x ∀∈-∞恒成立,令()()()ln 1,0a h x a x x x =--+<,()()()221,0a x a a h x x x x x +'=+=<, 当0a =时,()1h x =,不满足()0h x ≤;当0a >时,1x <-时,()0h x '<,10x -<<时,()0h x '>,所以函数()h x 在(),1-∞-上递减,在()1,0-上递增,所以()()min 110h x h a =-=+>,不符合题意;当0a <时,1x <-时,()0h x '>,10x -<<时,()0h x '<,所以函数()h x 在(),1-∞-上递增,在()1,0-上递减,所以()()max 110h x h a =-=+≤,解得1a ≤-,综上所述,a 的取值范围(],1-∞-.【点睛】本题主要考查了利用导数研究函数的单调性和最值,考查了不等式恒成立问题,考查了转化思想和分类讨论思想,考查了学生的计算能力.10.(1)25y x =+(2)[1,)-+∞【解析】【分析】(1)求出()'f x ,然后算出(0),(0)f f '即可;(2)由条件可得e (ln )1ln(1)xb x a x b x a+->-+-恒成立,构造函数()ln (1)h x x b x x =+>,则原不等式等价于e ()x h a(1)h x >-在(2,)x ∈+∞上恒成立,然后可证明2e 1e 10xx x x a--+≥-+>,然后得()h x 在()1,+∞上单调递增,然后即可求解. (1) 当114a b ==-,时,()4e 21x f x x =-+,则()4e 2x f x '=-又因为(0)5,(0)2f f '==所以曲线()y f x =在点(0,f (0))处的切线方程为25y x =+.(2)()()ln 1f x b a x ⎡>-⎣恒成立,即e 1ln(1)ln x bx x b x b a a +-+>-+恒成立. 等价于e (ln )1ln(1)xb x a x b x a+->-+-恒成立. 构造函数()ln (1)h x x b x x =+>,则e e ln 1ln(1)x x b x b x a a+>-+-在(2,)x ∈+∞上恒成立等价于e ()x h a(1)h x >-在(2,)x ∈+∞上恒成立. 因为20e <≤a ,所以2e e ,xx a -≥ 令函数2()e 1(2)x H x x x -=-+>,则2()e 1x H x -'=-,显然()H x '是增函数, 则()(2)0,()H x H H x ''>=在()2,+∞上单调递增,所以()()20H x H >=, 故2e 1e 10xx x x a--+≥-+>,从而可得()h x 在()1,+∞上单调递增, 所以当()1,x ∈+∞时,()10bh x x'=+≥恒成立. 所以b x ≥-,所以1b ≥-,即b 的取值范围是[-1,+∞)【点睛】关键点睛:解答本题第二问的关键是将原不等式变形,构造出函数()ln (1)h x x b x x =+>,属于函数的同构类型,解答的关键是观察不等式的特点,变成同一函数在两个变量处的取值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学导数习题
一:选择题
1. 已知曲线24x y =的一条切线的斜率为1
2,则切点的横坐标为( )
A .1
B .2
C .3
D .4
2. 曲线1323+-=x x y 在点(1,-1)处的切线方程为 ( )
A .43-=x y
B .23+-=x y
C .34+-=x y
D .54-=x y
3. 函数)1()1(2-+=x x y 在1=x 处的导数等于 ( )
A .1
B .2
C .3
D .4
4. 已知函数)(,31)(x f x x f 则处的导数为在=的解析式可能为 ( )
A .)1(3)1()(2-+-=x x x f
B .)1(2)(-=x x f
C .2)1(2)(-=x x f
D .1)(-=x x f
5. 函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( )
(A )2 (B )3 (C )4 (D )5
6. 函数32()31f x x x =-+是减函数的区间为( )
(A)(2,)+∞(B)(,2)-∞(C)(,0)-∞(D)(0,2)
7. 若函数()c bx x x f ++=2的图象的顶点在第四象限,则函数()x f '的图象是( )
8. 函数231()23f x x x =-在区间[0,6]上的最大值是( ) x y o A x
y o D x y o C x y o B
A .323
B .163
C .12
D .9
二:填空题
1. ()f x '是31()213f x x x =
++的导函数,则(1)f '-的值是 。

2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122
y x =+,则(1)(1)f f '+= 。

3. 曲线3
x y =在点()1,1处的切线与x 轴、直线2=x 所围成的三角形的面积为__________。

4. 已知曲线31433y x =
+,则过点(2,4)P “改为在点(2,4)P ”的切线方程是______________
5. 已知()()n f
x 是对函数()f x 连续进行n 次求导,若65()f x x x =+,对于任意x R ∈,都有()()n f x =0,则n 的最少值为 。

6.设
⎰-=1110)(2dx x f ,则⎰-=11)(dx x f ________,⎰-=11)(dx x f ______,⎰-=+11]1)(2[51dx x f
三:大题
1.已知曲线C :x x x y 232
3+-=,直线kx y l =:,且直线l 与曲线C 相切于点()00,y x 00≠x ,求直线l 的方程及切点坐标。

2.已知()132
3+-+=x x ax x f 在R 上是减函数,求a 的取值范围。

3.设函数32
()2338f x x ax bx c =+++在1x =及2x =时取得极值。

(1)求a 、b 的值;
(2)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围。

参考答案
选择题
1.a
2.b
3.d
4.a
5.d
6.d
7.a
8.a
填空题
1解析:()2'2+=x x f ,所以()3211'=+=-f
答案:3
2解析:因为21=k ,所以()2
11'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()2
51=f ,所以()()31'1=+f f 答案:3
3 3
8
4 044=+-x y
5 7
6 5、-5、
512 大题
1解析: 直线过原点,则()000
0≠=x x y k 。

由点()00,y x 在曲线C 上,则02030023x x x y +-=,∴ 230200
0+-=x x x y 。

又263'2+-=x x y ,∴ 在()
00,y x 处曲线C 的切线斜率为()263'0200+-==x x x f k ,∴ 26323020020+-=+-x x x x ,整理得:03200=-x x ,解得:2
30=x 或00=x (舍),此时,830-=y ,41-=k 。

所以,直线l 的方程为x y 4
1-=,切点坐标是⎪⎭
⎫ ⎝⎛-83,23。

答案:直线l 的方程为x y 41-=,切点坐标是⎪⎭
⎫ ⎝⎛-83,23 2 解析:函数()x f 的导数为()163'2-+=x ax x f 。

对于R x ∈都有()0'<x f 时,
()x f 为减函数。

由()R x x ax ∈<-+01632
可得⎩⎨⎧<+=∆<012360a a ,解得3-<a 。

所以,当3-<a 时,函数()x f 对R x ∈为减函数。

(1) 当3-=a 时,()983131333
23+⎪⎭⎫ ⎝⎛--=+-+-=x x x x x f 。

由函数3
x y =在R 上的单调性,可知当3-=a 是,函数()x f 对R x ∈为减函数。

(2) 当3->a 时,函数()x f 在R 上存在增区间。

所以,当3->a 时,函数()x f 在
R 上不是单调递减函数。

综合(1)(2)(3)可知3-≤a 。

答案:3-≤a
3 解析:(1)2()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有
(1)0f '=,(2)0f '=.即6630241230a b a b ++=⎧⎨++=⎩
,.,解得3a =-,4b =。

(2)由(Ⅰ)可知,32()29128f x x x x c =-++,2
()618126(1)(2)f x x x x x '=-+=--。

当(01)x ∈,时,()0f x '>;当(12)x ∈,时,()0f x '<;当(23)x ∈,时,()0f x '>。

所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+。

则当[]03x ∈,
时,()f x 的最大值为(3)98f c =+。

因为对于任意的[]03x ∈,,有2
()f x c <恒成立, 所以 2
98c c +<,解得 1c <-或9c >,因此c 的取值范围为(1)(9)-∞-+∞ ,,。

答案:(1)3a =-,4b =;(2)(1)(9)-∞-+∞ ,,。

相关文档
最新文档