数值分析课后习题及答案
数值分析习题答案

数值分析习题答案数值分析习题答案数值分析是一门研究利用数值方法解决数学问题的学科。
在实际应用中,我们经常会遇到各种各样的数学问题,而数值分析提供了一种有效的方法来解决这些问题。
在学习数值分析的过程中,我们经常会遇到一些习题,下面我将为大家提供一些数值分析习题的解答。
习题一:给定一个函数f(x) = x^2 - 3x + 2,求解f(x) = 0的根。
解答:要求解方程f(x) = 0的根,可以使用二分法。
首先,我们需要确定一个区间[a, b],使得f(a)和f(b)异号。
根据f(x) = x^2 - 3x + 2的图像,我们可以选择区间[0, 3]。
然后,我们可以使用二分法来逐步缩小区间,直到找到根的近似值。
具体的步骤如下:1. 计算区间中点c = (a + b) / 2。
2. 计算f(c)的值。
3. 如果f(c)接近于0,那么c就是方程的一个根。
4. 如果f(c)和f(a)异号,那么根位于[a, c]之间,令b = c。
5. 如果f(c)和f(b)异号,那么根位于[c, b]之间,令a = c。
6. 重复步骤1-5,直到找到根的近似值。
通过多次迭代,可以得到方程f(x) = 0的一个近似根为x ≈ 1。
这个方法可以用来解决更复杂的方程,并且在实际应用中有广泛的应用。
习题二:给定一个函数f(x) = sin(x),求解f(x) = 0的根。
解答:对于这个问题,我们可以使用牛顿迭代法来求解方程f(x) = 0的根。
牛顿迭代法是一种通过不断逼近函数的根的方法,具体步骤如下:1. 选择一个初始近似值x0。
2. 计算函数f(x)在x0处的导数f'(x0)。
3. 计算下一个近似值x1 = x0 - f(x0) / f'(x0)。
4. 重复步骤2和步骤3,直到找到根的近似值。
对于函数f(x) = sin(x),我们可以选择初始近似值x0 = 1。
然后,我们可以计算f'(x0) = cos(x0) = cos(1) ≈ 0.5403。
数值分析(丁丽娟)课后习题1

习 题 一1.解:168.957x =取*169.0x =,此时,11()*0.043<102e x x x -=-=⨯. 其他类同.3.00045 3.000≈; 73.225073.23(73.22)≈;0.001526320.0015262. 解:01()102a ε≤⨯,0-4110()2() 1.397103580r a a a εε⎛⎫⨯ ⎪⎝⎭=≤≈⨯ 3解:41()102e a -≤⨯, 31()102e b -≤⨯ 2.1811a b +=, 1.1766318ab = ()()()e a b e a e b +≈+,()()()e ab be a ae b ≈+32111()()()1010202e a b e a e b --+≈+≤⨯<⨯, -421()()() 6.504510102e ab be a ae b -≈+≈⨯<⨯ 所以,a b +,ab 都有三位有效数字。
4解:()e x x δ=, ()e x x δ= ()()()e y f x e x '≈11(ln )()e x e x x x xδδ=== 5 1.41421356237310=,设需保留n 位有效数字,由定理1.1,111102n r a ε-+<⨯,故只需131110102n a -+-⨯< 即可。
因为,11a=,可得,4n ≥1.414=6 4.47213595499958=,设需保留n 位有效数字,由定理1.1,131110102n a -+-⨯<即可。
因为,14a =,可得,3n >。
故取4位有效数字。
7. 解: 设正方形的边长为x cm, 则其面积2S x =这里,*100x =, (*)200S x '=.由公式 ()(*)(*)e S S x e x '≈⋅可得, 只要 200(*)1e x ≤, 即(*)0.005e x ≤即可.8. 解:343V R π=, 24V R π'=. ***(*)()(*)(*)r r R V R e V e R V R '⋅≈⋅. 由题意, *3(*)0.01r e R ≤, 所以, *(*)0.00333r e R ≤.9. 解: 212s gt =, s gt '=, (*)0.1e t = (*)(*)(*)0.1*e s s t e t gt '==(*)(*)0.2(*)(*)*r s t e t e s s t t '== 结论显然. 10. 解: (见课件1- 4例题)11. 解: 28x ==± 155.983x =, 311()102x ε-=⨯,2x 有5位有效数字. 21110.0178655.983x x ==≈ 52**52*22110112()()()10255.983e x e e x x --⨯⎛⎫=≈≤<⨯ ⎪⎝⎭所以, 2x 有4位有效数字.12. 证明: (1) ()1111001n x n x n n I nI ex e dx x e --'⎡⎤+===⎣⎦⎰,所以, 11n n I nI -=-(2) 设*0I 有误差0e ,假设计算过程中不产生新的舍入误差, 则由(1)可得,()**111n n n n n n e I I n I I ne ---=-=--=-, (1,2,)n = 从而,()01!n n e n e =-,误差逐步增大.反之, 11k k e e k -=-, ()011!n n e e n =-, 误差逐步缩小.数值试验13.a=5;i=0;while abs(a-1)>=1e-8i=i+1;a=sqrt(a);endia14.pai=1;for i=1:39999if mod(i,2)==0pai=pai+1/(2*i+1);elsepai=pai-1/(2*i+1);endendipai=pai*4。
数值分析第三版课本习题及答案

数值分析第三版课本习题及答案第⼀章绪论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五⼊得到的近似数,即误差限不超过最后⼀位的半个单位,试指出它们是⼏位有效数字:*****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====?4. 利⽤公式求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式1n n Y Y -=…)计算到100Y .(五位有效数字),试问计算100Y 将有多⼤误差?7. 求⽅程25610x x -+=的两个根,使它⾄少具有四位有效数字.8. 当N 充分⼤时,怎样求211Ndx x +∞+?9. 正⽅形的边长⼤约为100㎝,应怎样测量才能使其⾯积误差不超过1㎝210. 设212S gt =假定g 是准确的,⽽对t 的测量有±秒的误差,证明当t 增加时S 的绝对误差增加,⽽相对误差却减⼩. 11. 序列{}n y 满⾜递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多⼤?这个计算过程稳定吗?12.计算61)f =,1.4≈,利⽤下列等式计算,哪⼀个得到的结果最好?13.()ln(f x x =,求f (30)的值.若开平⽅⽤六位函数表,问求对数时误差有多⼤?若改⽤另⼀等价公式ln(ln(x x =-计算,求对数时误差有多⼤?14. 试⽤消元法解⽅程组{101012121010;2.x x x x +=+=假定只⽤三位数计算,问结果是否可靠?15. 已知三⾓形⾯积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c 证明⾯积的误差s ?满⾜.s a b cs a b c ≤++第⼆章插值法1. 根据定义的范德蒙⾏列式,令200011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xx x ----==LLL L L L L L L证明()n V x 是n 次多项式,它的根是01,,n x x -L ,且101101()(,,,)()()n n n n V x V x x x x x x x ---=--L L .2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的⼆次插值多项式.3. 给出f (x )=ln x 的数值表⽤线性插值及⼆次插值计算ln 的近似值.x 为互异节点(j =0,1,…,n ),求证:i)0()(0,1,,);nkkj jj x l x x k n =≡=∑Lii)()()1,2,,).nk jj j xx l x k n =-≡0(=∑L7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()x f x e =的等距节点函数表,若⽤⼆次插值求x e 的近似值,要使截断误差不超过610-,问使⽤函数表的步长h 应取多少?9. 若2n n y =,求4n y ?及4n y δ.10. 如果()f x 是m 次多项式,记()()()f x f x h f x ?=+-,证明()f x 的k 阶差分()(0)kf x k m ?≤≤是m k -次多项式,并且()0(m lf x l +?=为正整数).11. 证明1()k k k k k k f g f g g f +?=?+?.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==?=--?∑∑13. 证明12n j n j y y y -=?=?-?∑14. 若1011()n nn n f x a a x a x a x --=++++L 有n 个不同实根12,,,n x x x L ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i) 若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =L L ;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+L L L .16. 74()31f x x x x =+++,求0172,2,,2f L 及0182,2,,2f L . 17. 证明两点三次埃尔⽶特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔⽶特插值的误差限.18. 求⼀个次数不⾼于4次的多项式()P x ,使它满⾜(0)(1)P P k =-+并由此求出分段三次埃尔⽶特插值的误差限.19. 试求出⼀个最⾼次数不⾼于4次的函数多项式()P x ,以便使它能够满⾜以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造⼀个台阶形的零次分段插值函数()n x ?并证明当n →∞时,()n x ?在[],a b 上⼀致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()hI x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差. 23. 求4()f x x =在[],a b 上的分段埃尔⽶特插值,并估计误差.24. 给定数据表如下:(0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明 i)[][][][]222()()()()2()()()bbbba a a a f x dx S x dx f x S x dx S x f x S x dx "-"="-"+""-";ii) 若()()(0,1,,)i i f x S x i n ==L ,式中i x 为插值节点,且01n a x x x b =<<<=L ,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'?.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可⽤式的表达式).第三章函数逼近与计算1. (a)利⽤区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做⽐较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =.3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳⼀致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳⼀致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-达到极⼩,⼜问这个解是否唯⼀?6. 求()sin f x x =在[]0,/2π上的最佳⼀次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳⼀次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最⼩?r 是否唯⼀? 9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*的正交多项式.12. 在[]1,1-上利⽤插值极⼩化求11()f x tg x -=的三次近似最佳逼近多项式.13. 设()xf x e =在[]1,1-上的插值极⼩化近似最佳逼近多项式为()n L x ,若nf L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ?=-----,试将()x ?降低到3次多项式并估计误差. 15. 在[ ]1,1-上利⽤幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n n F x H ∈也是奇(偶)函数.17. 求a 、b 使[]220sin ax b x dxπ+-?为最⼩.并与1题及6题的⼀次逼近多项式误差作⽐较.18. ()f x 、[]1(),g x C a b ∈,定义 ()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+??问它们是否构成内积?19. ⽤许⽡兹不等式估计6101x dx x +?的上界,并⽤积分中值定理估计同⼀积分的上下界,并⽐较其结果.20. 选择a ,使下列积分取得最⼩值:112221110010121,,,span x span x x 1?=?=,分别在1?、2?上求出⼀个元素,使得其为[]20,1x C ∈的最佳平⽅逼近,并⽐较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ?=上的最佳平⽅逼近.23.sin (1)arccos ()n n x u x +=是第⼆类切⽐雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切⽐雪夫多项式展开,求三次最佳平⽅逼近多项式并画出误差图形,再计算均⽅误差.25. 把()arccos f x x =在[]1,1-上展成切⽐雪夫级数.26. ⽤最⼩⼆乘法求⼀个形如2y a bx =+的经验公式,使它与下列数据拟合,并求均⽅误差.28. 在某化学反应⾥,根据实验所得分解物的浓度与时间关系如下:⽤最⼩⼆乘拟合求.29. 编出⽤正交多项式做最⼩⼆乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出⼀张记录{}{}4,3,2,1,0,1,2,3k x =,试⽤改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =L第四章数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量⾼,并指明所构造出的求积公式所具有的代数精度: (1)101()()(0)()hh f x dx A f h A f A f h --≈-++?;(2)21012()()(0)()hh fx dx A f h A f A f h --≈-++?;(3)[]1121()(1)2()3()/3()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'?.2. 分别⽤梯形公式和⾟普森公式计算下列积分: (1)120,84xdx n x =+?; (2)1210(1),10x e dx n x --=?;(3)1,4n =?; (4),6n =.3. 直接验证柯特斯公式具有5次代数精度.4. ⽤⾟普森公式求积分1xedx-?并计算误差.5. 推导下列三种矩形求积公式:(1)2()()()()()2baf f x dx b a f a b a 'η=-+-?; (2)2()()()()()2baf f x dx b a f b b a 'η=---?;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-?.6. 证明梯形公式和⾟普森公式当n →∞时收敛到积分7. ⽤复化梯形公式求积分()baf x dx,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍⼊误差)?8.1x e dx-,要求误差不超过510-.9. 卫星轨道是⼀个椭圆,椭圆周长的计算公式是S a =θ,这⾥a 是椭圆的半长轴,c 是地球中⼼与轨道中⼼(椭圆中⼼)的距离,记h 为近地点距离,H 为远地点距离,6371R =公⾥为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第⼀颗⼈造卫星近地点距离439h =公⾥,远地点距离2384H =公⾥,试求卫星轨道的周长.10. 证明等式3524sin3!5!n nn n ππππ=-+-L试依据sin(/)(3,6,12)n n n π=的值,⽤外推算法求π的近似值.11. ⽤下列⽅法计算积分31dyy ?并⽐较结果.(1) 龙贝格⽅法;(2) 三点及五点⾼斯公式;(3) 将积分区间分为四等分,⽤复化两点⾼斯公式.12. ⽤三点公式和五点公式分别求21()(1)f x x =第五章常微分⽅程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉⽅法和改进的尤拉⽅法的近似解的表达式,并与准确解bx ax y +=221相⽐较。
数值分析课后题答案

数值分析 第二章2.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式. 解:0120121200102021101201220211,1,2,()0,()3,()4;()()1()(1)(2)()()2()()1()(1)(2)()()6()()1()(1)(1)()()3x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------==-+--则二次拉格朗日插值多项式为220()()k k k L x y l x ==∑0223()4()14(1)(2)(1)(1)23537623l x l x x x x x x x =-+=---+-+=+- 6.设,0,1,,j x j n =为互异节点,求证:(1)0()nkkj j j x l x x=≡∑ (0,1,,);k n =(2)()()0nk jj j xx l x =-≡∑ (0,1,,);k n =证明(1) 令()kf x x = 若插值节点为,0,1,,j x j n =,则函数()f x 的n 次插值多项式为0()()nkn j j j L x x l x ==∑.插值余项为(1)1()()()()()(1)!n n n n f R x f x L x x n ξω++=-=+ 又,k n ≤(1)()0()0n n f R x ξ+∴=∴=0()nk kj j j x l x x =∴=∑ (0,1,,);k n =000(2)()()(())()()(())nk j j j n nj i k i k j j j i nnik ii kj j i j x x l x C x x l x C x x l x =-==-==-=-=-∑∑∑∑∑0i n ≤≤又 由上题结论可知()nk ij jj x l x x ==∑()()0ni k i ik i k C x x x x -=∴=-=-=∑原式∴得证。
习题10(答案)《数值分析》(第二版)第10章_习题参考答案

习题参考答案习题一1.(1) 0.05ε=,0.0185r ε=,有2位有效数字 (2) 0.0005ε=,0.000184r ε=,有4位有效数字 (3) 0.000005ε=,0.000184r ε=,有4位有效数字 (4) 0.0000005ε=,0.000184r ε=,有4位有效数字 2.0.0005ε=,0.00016r ε≈;有4位有效数字 3.|d | 1.210.005 3.650.0050.0050.02930.03a ≤⨯+⨯+≈≤4.*1x 有5位有效数字,*2x 有2位有效数字,*3x 有4位有效数字,*4x 有5位有效数字5.(1) ***124()x x x ε++31.0510−=⨯ (2) ***123()x x x ε=0.21479 (3) *2*4()x x ε50.8865410−=⨯6.略。
7.最小刻度x 满足0.002cm x ≤ 8.*3()10000 mm V επ=,*()0.02r V ε= 9.设正方形边长为a ,*2()0.510a ε−≤⨯10.*1()1%0.00333r R ε=⨯≈11.1||||14x =,2||||9.89949x ≈,||||9x ∞= 12.1|||||1.25||0.02|| 5.15||0| 6.42x =++−+=22221/22||||[(1.25)(0.02)( 5.15)(0)] 5.2996x =++−+=||||| 5.15| 5.15x ∞=−=13.||||10A ∞=,1||||9A =,2||||82.05125A ≈14.||||16A ∞=,1||||16A =,2||||12A =15.(1) ||()||1f x ∞=,1||()||8f x =,2||()||f x π=(2) ||()||23f x ∞=,1||()||17f x =,2||()||10.6427f x ≈ 16.略。
数值分析简明教程课后习题答案(第二版)

0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。
【解】 由于210)(-+=x e x f x,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。
【解】有效数字:因为11102105.001828.0||-⨯=<=- x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=- x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=- x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。
数值分析-第四版-课后习题答案-李庆扬

第一章1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x r δεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而n x 的误差为n n x x n x n x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε, 相对误差为%2)()(ln )(ln ***n x x x n r ==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k k εεεε;(3)*4*2/x x 。
数值分析 课后习题答案 1

1 1 ∴ I n = ( − I n −1 ) 4 n
1
I0 = ∫
1 1 dx = ln 5 ≈ 0.402 1+ 4x 4 0
1 1 I1 = (1 − I 0 ) ≈ 0.150, I 2 = (1 − I 1 ) ≈ 0.213 4 4 1 1 I 3 = (1 − I 2 ) ≈ 0.197, I 4 = (1 − I 3 ) ≈ 0.201 4 4
1 (−1) n en = I n − I n = − ( I n −1 − I n −1 ) = ... = n e0 4 4
此算法是数值稳定的。 此算法是数值稳定的。 定的
f 4 ( x ) = 99 − 70 x , cond ( f 4 ( x )) | x =1.414 = 4949
由计算知,第一种算法误差最小。 由计算知,第一种算法误差最小。
10、试导出计算积分 I n = 、 ∫
1ห้องสมุดไป่ตู้
1 1 xn dx ( n = 1, 2, 3, 4) 的递推计算公式 I n = ( − I n−1 ) ,用此递 4 n 1 + 4x 0
的近似值, 利用以下四种计算格式, 7、计算 ( 2 − 1)6 的近似值,取 2 ≈ 1.414 。利用以下四种计算格式,试问哪一种算法误差 最小。 最小。 ( 1) ( 3)
1 ( 2 + 1) 1 (3 + 2 2)3
6
(2) (3 − 2 2 )3 (4) 99 − 70 2
' 解:计算各项的条件数 cond ( f ( x )) =| xf ( x ) | f ( x)
f1 ( x ) =
1 , cond ( f1 ( x )) |x =1.414 = 20.4804 ( x + 1)6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析课后习题及答案第一章绪论(12)第二章插值法(40-42)2、当时,,求的二次插值多项式。
[解]。
3、给出的数值表用线性插值及二次插值计算的近似值。
X 0.4 0.5 0.6 0.7 0.8 -0.916291 -0.693147 -0.510826 -0.357765 -0.223144 [解]若取,,则,,则,从而。
若取,,,则,,,则,从而补充题:1、令,,写出的一次插值多项式,并估计插值余项。
[解]由,可知,,余项为,故。
2、设,试利用拉格朗日插值余项定理写出以为插值节点的三次插值多项式。
[解]由插值余项定理,有,从而。
5、给定数据表:,1 2 4 6 7 4 1 0 1 1 求4次牛顿插值多项式,并写出插值余项。
[解]一阶差商二阶差商三阶差商四阶差商 1 42 1 -34 0 6 17 1 0 由差商表可得4次牛顿插值多项式为:,插值余项为。
第三章函数逼近与计算(80-82)26、用最小二乘法求一个形如的经验公式,使它与下列数据相拟合,并求均方误差。
19 25 31 38 44 19.0 32.3 49.0 73.3 97.8[解]由。
又,,,故法方程为,解得。
均方误差为。
27、观测物体的直线运动,得出以下数据:时间t(秒)0 0.9 1.9 3.0 3.9 5.0 距离s(米)0 10 30 5080 110 [解]设直线运动为二次多项式,则由。
,。
又,,,故法方程为,解得。
故直线运动为。
补充题:1、现测得通过某电阻R的电流I及其两端的电压U如下表:I ……U ……试用最小二乘原理确定电阻R的大小。
[解]电流、电阻与电压之间满足如下关系:。
应用最小二乘原理,求R使得达到最小。
对求导得到:。
令,得到电阻R为。
2、对于某个长度测量了n次,得到n个近似值,通常取平均值作为所求长度,请说明理由。
[解]令,求x使得达到最小。
对求导得到:,令,得到,这说明取平均值在最小二乘意义下误差达到最小。
3、有函数如下表,要求用公式拟合所给数据,试确定拟合公式中的a和b。
-3 -2 -1 0 1 2 3 -1.76 0.42 1.20 1.341.432.25 4.38 [解]取,,则,,,而,。
故法方程为,解得。
4、在某个低温过程中,函数y依赖于温度的实验数据为1 2 3 4 0.8 1.5 1.8 2.0 已知经验公式的形式为,是用最小二乘法求出a和b。
[解]取,,则,,,而,。
故法方程为,解得。
5、单原子波函数的形式为,试按照最小二乘法决定参数a和b,已知数据如下:X 0 1 2 4 y 2.010 1.210 0.740 0.450 [解]对两边取对数得,令,,则拟合函数变为,所给数据转化为X 0 1 2 4 y 0.6981 0.1906 -0.3011 -0.7985取,,则,,,而,。
故法方程为,解得。
因而拟合函数为,原拟合函数为。
第四章数值积分与数值微分(107)2、分别用梯形公式和辛普森公式计算下列积分:(1);[解]。
精确值为。
3);[解](略),精确值为。
4、用辛普森公式求积分并估计误差。
[解]。
,从而。
第五章常微分方程数值解法(141-142)1、就初值问题分别导出欧拉方法和改进的欧拉方法的近似解的表达式,并与准确解相比较。
[解]由欧拉公式可知,即,从而,即,又因为,,所以。
再由,可知误差为。
由改进的欧拉公式可知,即,从而,即,又因为,,所以。
再由,可知误差为。
2、用改进的欧拉方法求解初值问题,取步长计算,并与准确解相比较。
[解]由改进的欧拉公式可知,又由,,,可得,从而;;;;;;;;;。
3、用改进的欧拉方法解,取步长计算,并与准确解相比较。
[解]由改进的欧拉公式可知,又由,,,可得,从而;;;;。
4、用梯形方法解初值问题,证明其近似解为,并证明当时,它收敛于原初值问题的准确解。
[解]由梯形公式可知,,从而,即,从而,又由可知,。
5、利用欧拉方法计算积分在点的近似值。
[解]令,则,从而令,利用欧拉方法得到:,又由,得到:;;;。
12、将下列方程化为一阶方程组:1);[解]令,则,从而有,,再令,则初值问题为。
[精确解为]3)。
[解]令,,则,,从而有,初值为。
第六章方程求根(163-164)1、用二分法求方程的正根,要求误差。
[解]令,则,,所以有根区间为;又因为,所以有根区间为;,所以有根区间为;,所以有根区间为;,所以有根区间为;,所以有根区间为;取,这时它与精确解的距离。
3、为求方程在附近的一个根,设将方程改写成下列等价形式,并建立相应的迭代公式:1),迭代公式;2),迭代公式;3),迭代公式;4),迭代公式。
试分析每种迭代公式的收敛性,并选取一种公式求出具有四位有效数字的近似值。
[解]1)设,则,从而,所以迭代方法局部收敛。
2)设,则,从而,所以迭代方法局部收敛。
3)设,则,从而,所以迭代方法发散。
4)设,则,从而,所以迭代方法发散。
4、比较求的根到三位小数所需的计算量:1)在区间内用二分法; 2)用迭代法,取初值。
[解]1)使用二分法,令,则,,有根区间为;,有根区间为;,有根区间为;,有根区间为;,有根区间为;,有根区间为;,有根区间为;,有根区间为;,有根区间为;,有根区间为;,有根区间为;从而,共二分10次。
2)使用迭代法,则,,,,即,共迭代4次。
7、用下列方法求在附近的根。
根的准确值,要求计算结果准确到四位有效数字。
1)用牛顿法;2)用弦截法,取;3)用抛物线法,取[解]1),,,,迭代停止。
2),,,,迭代停止。
3),其中,,故,,,,,,,,下略。
8、分别用二分法和牛顿法求的最小正根。
[解]参见第6题,。
13、应用牛顿法于方程,导出求的迭代公式,并求的值。
[解]令,则。
补充题3、利用适当的迭代格式证明。
[证明]考虑迭代格式,则,,……,。
令,则。
当时,,并且,因而迭代格式产生的序列收敛于方程在内的唯一根。
4、设a为正整数,试建立一个求的牛顿迭代公式,要求在迭代公式中不含有除法运算,并考虑公式的收敛性。
[解]考虑方程,则为以上方程的根。
,用牛顿迭代公式。
迭代函数中不含有除法运算。
由递推得到,解得,,所以当时,方法收敛。
第七章解线性方程组的直接方法(198-201,部分)13、用追赶法解三对角方程组,其中,。
15、下列矩阵能否分解为(其中L为单位下三角阵,U为上三角阵)?若能分解,那么分解是否唯一。
,,。
[解]因为A的一、二、三阶顺序主子式分别为1,0,-10,所以A不能直接分解为三角阵的乘积,但换行后可以。
因为B的一、二、三阶顺序主子式分别为1,0,0,所以B不能分解为三角阵的乘积。
因为C的一、二、三阶顺序主子式分别为1,5,1,所以C能够分解为三角阵的乘积,并且分解是唯一的。
16、试画出部分选主元素三角分解法框图,并且用此法解方程组。
[解]。
2、用列主元Gauss消去法求解下列方程组:(1);[解](1),故。
3、用矩阵的直接三角分解法求解方程组:。
[解]由可知,求解可得,求解可得。
6、用追赶法求解三对角方程组:(1),(2),(3)。
[解]依追赶法对其增广矩阵进行初等变换,(1),回代得到:。
(2),回代得到:。
(3),回代得到:。
第八章解线性方程组的迭代法(217-219)1、设方程组,(a)考察用雅可比迭代法,高斯-赛德尔迭代法解此方程组的收敛性;(b)用雅可比迭代法及高斯-赛德尔迭代法解此方程组,要求当时迭代终止。
[解](a)由系数矩阵为严格对角占优矩阵可知,使用雅可比、高斯-赛德尔迭代法求解此方程组均收敛。
[精确解为](b)使用雅可比迭代法:,使用高斯-赛德尔迭代法:。
5、设方程组(a);(b);试考察解此方程组的雅克比迭代法及高斯-赛德尔迭代法的收敛性。
[解](a)由系数矩阵可知,,由可知,,从而雅可比迭代法不收敛。
,由可知,,从而高斯-塞德尔迭代法收敛。
(b)由系数矩阵可知,,由可知,,从而雅可比迭代法收敛。
,由可知,,从而高斯-塞德尔迭代法不收敛。
8、设方程组,(a)求解此方程组的雅克比迭代法的迭代矩阵的谱半径;(b)求解此方程组的高斯-赛德尔迭代法的迭代矩阵的谱半径;(c)考察解此方程组的雅克比迭代法及高斯-赛德尔迭代法的收敛性。
[解]由系数矩阵可知,(a),由可知,。
(b),由,可知。
(c)因为A是严格对角占优矩阵,两种迭代法都收敛。
10、用SOR方法解方程组(取);要求当时迭代终止。
[解]由系数矩阵及,,可知,,从而由可得。
[精确解为]14、证明矩阵对于是正定的,而雅克比迭代只对是收敛的。
[证明]由,,可知,当,即时,矩阵A是正定的。
又由,可知,,从而当,即时,雅可比迭代是收敛的。
补充题1、用Jacobi迭代法求解方程组,初始向量为。
[解] Jacobi迭代格式为,迭代求解得到:,,,。
2、设有迭代格式,其中,,试证明该迭代格式收敛,并取计算求解。
[证明]设为B的特征值,则由可得,从而该迭代格式收敛。
取计算得,,,。
3、给定方程组,用雅可比迭代法和高斯-塞德尔迭代法是否收敛?[解]由系数矩阵可知,(1)雅可比迭代矩阵为,由可知,,因而雅可比迭代法发散。
(2)高斯-塞德尔迭代矩阵为,由可知,,因而高斯-塞德尔迭代法收敛。
4、给定线性方程组,用雅可比迭代法和高斯-塞德尔迭代法是否收敛?[解](1)雅可比迭代矩阵为,由可知,,因而雅可比迭代法发散。
(2)高斯-塞德尔迭代矩阵为,由可知,,因而高斯-塞德尔迭代法收敛。
5、给定线性方程组,其中,用雅可比迭代法和高斯-塞德尔迭代法是否收敛?[解](1)雅可比迭代矩阵为,由可知,因而雅可比迭代法发散。
(2)高斯-塞德尔迭代矩阵为,由可知,,因而高斯-塞德尔迭代法收敛。
[另解:显然A为对称矩阵,并且a 的各阶顺序主子式大于零,从而A为对称正定矩阵,可知高斯-塞德尔迭代法收敛。
]6、设线性方程组的系数矩阵为,试求能使雅可比迭代法收敛的a的取值范围。
[解]当时,系数矩阵A为奇异矩阵,不能使用雅可比迭代法。
当时,雅可比迭代矩阵为,由可知,因而当,即时,雅可比迭代法收敛。
..。