高中物理的8种“临界情况”,一定要掌握
高中物理知识点总结归纳(完整版(精选4篇)

高中物理知识点总结归纳(完整版(精选4篇)物理知识点总结篇一1、物体的平衡:物体的平衡有两种情况:一是质点静止或做匀速直线运动;二是物体不转动或匀速转动(此时的物体不能看作质点)。
2、共点力作用下物体的平衡:①平衡状态:静止或匀速直线运动状态,物体的加速度为零。
②平衡条件:合力为零,亦即F合=0或∑Fx=0,∑Fy=0a、二力平衡:这两个共点力必然大小相等,方向相反,作用在同一条直线上。
b、三力平衡:这三个共点力必然在同一平面内,且其中任何两个力的合力与第三个力大小相等,方向相反,作用在同一条直线上,即任何两个力的合力必与第三个力平衡c、若物体在三个以上的共点力作用下处于平衡状态,通常可采用正交分解,必有:F合x=F1x+F2x+………+Fnx=0F合y=F1y+F2y+………+Fny=0(按接触面分解或按运动方向分解)③平衡条件的推论:(ⅰ)当物体处于平衡状态时,它所受的某一个力与所受的其它力的合力等值反向。
(ⅰ)当三个共点力作用在物体(质点)上处于平衡时,三个力的矢量组成一封闭的三角形按同一环绕方向。
3、平衡物体的临界问题:当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)时的转折状态叫临界状态。
可理解成“恰好出现”或“恰好不出现”。
临界问题的分析方法:极限分析法:通过恰当地选取某个物理量推向极端(“极大”、“极小”、“极左”、“极右”)从而把比较隐蔽的临界现象(“各种可能性”)暴露出来,便于解答。
易错现象:(1)不能灵活应用整体法和隔离法;(2)不注意动态平衡中边界条件的约束;(3)不能正确制定临界条件。
学好物理有哪些窍门独立做题。
要独立地(指不依赖他人),保质保量地做一些题。
题目要有一定的数量,不能太少,更要有一定的质量,就是说要有一定的难度。
任何人学习数理化不经过这一关是学不好的。
独立解题,可能有时慢一些,有时要走弯路,有时甚至解不出来,但这些都是正常的,是任何一个初学者走向成功的必由之路。
高中物理知识点归类总结-模型法

模型法(1)“对象模型”:即把研究的对象的本身理想化.用来代替由具体物质组成的、代表研究对象的实体系统,称为对象模型(也可称为概念模型), 实际物体在某种条件下的近似与抽象,如质点、光滑平面、理想气体、理想电表等; 常见的如“力学”中有质点、点电荷、轻绳或杆、轻质弹簧、单摆、弹簧振子、弹性体、绝热物质等;(2)条件模型:把研究对象所处的外部条件理想化.排除外部条件中干扰研究对象运动变化的次要因素,突出外部条件的本质特征或最主要的方面,从而建立的物理模型称为条件模型. (3)过程模型:把具体过理过程纯粹化、理想化后抽象出来的一种物理过程,称过程模型 理想化了的物理现象或过程,如匀速直线运动、自由落体运动、竖直上抛运动、平抛运动、匀速圆周运动、简谐运动等。
有些题目所设物理模型是不清晰的,不宜直接处理,但只要抓住问题的主要因素,忽略次要因素,恰当的将复杂的对象或过程向隐含的理想化模型转化,就能使问题得以解决。
解决物理问题的一般方法可归纳为以下几个环节: 原始的物理模型可分为如下两类:物理解题方法:如整体法、假设法、极限法、逆向思维法、物理模型法、等效法、物理图像法等. 知识分类举要力的瞬时性(产生a )F=ma 、⇒运动状态发生变化⇒牛顿第二定律 1.力的三种效应:时间积累效应(冲量)I=Ft 、⇒动量发生变化⇒动量定理 空间积累效应(做功)w=Fs ⇒动能发生变化⇒动能定理对象模型(质点、轻杆、轻绳、弹簧振子、单摆、理想气体、点电荷、理想电表、理想变压器、匀强电场、匀强磁场、点光源、光线、原子模型等) 过程模型(匀速直线运动、匀变速直线运动、匀速圆周运动、平抛运动、简谐运动、简谐波、弹性碰撞、自由落体运动、竖直上抛运动等)物理模型2.动量观点:动量(状态量):p=mv=K mE 2 冲量(过程量):I = F t动量定理:内容:物体所受合外力的冲量等于它的动量的变化。
公式: F 合t = mv’一mv (解题时受力分析和正方向的规定是关键) I=F 合t=F1t1+F2t2+---=∆p=P 末-P 初=mv 末-mv 初动量守恒定律:内容、守恒条件、不同的表达式及含义:'p p =;0p =∆;21p -p ∆=∆内容:相互作用的物体系统,如果不受外力,或它们所受的外力之和为零,它们的总动量保持不变。
高中物理-动力学中的临界和极值问题

高中物理-动力学中的临界和极值问题在应用牛顿运动定律解决动力学问题时,会出现一些临界或极值条件的标志: 1.若题目中出现“恰好”“刚好”等字眼,明显表示过程中存在临界点.2.若题目中有“取值范围”“多长时间”“多大距离”等词语,表明过程中存在着“起止点”,而这些“起止点”往往就对应临界状态.3.若题目中有“最大”“最小”“至多”“至少”等字眼,表明过程中存在着极值,而极值点往往是临界点.4.若题目要求“最终加速度”“稳定加速度”等即是求收尾加速度或收尾速度. 一、接触与分离的临界条件物体分离的临界条件是相互作用力由原来的不为零变为零.因此解答此类问题,应该对原状态下研究对象的受力和运动状态进行分析,由牛顿第二定律或平衡条件列方程,令其中相互作用的弹力为零解得临界状态的加速度,以临界加速度为依据分析各种状态下物体的受力情况及运动状态的变化.质量为m 、半径为R 的小球用长度也为R 的轻质细线悬挂在小车车厢水平顶部的A 点,现观察到小球与车顶有接触,重力加速度为g ,则下列判断正确的是( )A .小车正向右做减速运动,加速度大小可能为3gB .小车正向左做减速运动,加速度大小可能为33gC .若小车向右的加速度大小为23g ,则车厢顶部对小球的弹力为mgD .若细线张力减小,则小球一定离开车厢顶部 [解析] 如图所示,小球恰好与车顶接触的临界状态是车顶对小球的弹力恰为零,故临界加速度a 0=g tan θ,由线长等于小球半径可得,θ=60°,a 0=3g .小球与车顶接触时,小车具有向右的加速度,加速度大小a ≥3g ,A 、B 项错;当小车向右的加速度大小a =23g 时,ma F N +mg=tan θ,解得F N =mg ,C 项正确;细线张力F T =ma sin θ,小球与车顶接触的临界(最小)值F Tmin =2mg ,当张力的初始值F T >2mg 时,张力减小时只要仍大于或等于临界值,小球就不会离开车厢顶部,D 项错误.[答案] C二、绳子断裂与松弛的临界条件绳子所能承受的张力是有限的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是F T =0.如图所示,小车内固定一个倾角为θ=37°的光滑斜面,用一根平行于斜面的细线系住一个质量为m =2 kg 的小球,取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,则:(1)当小车以a 1=5 m/s 2的加速度向右匀加速运动时,细线上的拉力为多大?(2)当小车以a 2=20 m/s 2的加速度向右匀加速运动时,细线上的拉力为多大?[解析] 本题中存在一个临界状态,即小球刚好脱离斜面的状态,设此时加速度为a 0,对小球受力分析如图甲所示.将细线拉力分解为水平x 方向和竖直y 方向两个分力,则得到F cos θ=ma 0 F sin θ-mg =0a 0=g tan θ=403m/s 2.(1)a 1=5 m/s 2<a 0,这时小球没有脱离斜面,对小球受力分析如图乙所示,由牛顿第二定律得 F cos θ-F N sin θ=ma 1 F sin θ+F N cos θ-mg =0 解得F =20 N ,F N =10 N.(2)a2=20 m/s2>a0,这时小球脱离斜面,设此时细线与水平方向之间的夹角为α,对小球受力分析如图丙所示,由牛顿第二定律得F cos α=ma2F sin α=mg两式平方后相加得F2=(ma2)2+(mg)2解得F=(ma2)2+(mg)2=20 5 N.[答案](1)20 N(2)20 5 N三、相对滑动的临界条件两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值,并且还要考虑摩擦力方向的多样性.(多选)如图所示,小车内有一质量为m的物块,一轻质弹簧两端与小车和物块相连,处于压缩状态且在弹性限度内,弹簧的劲度系数为k,形变量为x,物块和小车之间的动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力,运动过程中,物块和小车始终保持相对静止,则下列说法正确的是()A.若μmg小于kx,则小车的加速度方向一定向左B.若μmg小于kx,则小车的加速度最小值为a=kx-μmgm,且小车只能向左加速运动C.若μmg大于kx,则小车的加速度方向可以向左也可以向右D.若μmg大于kx,则小车的加速度最大值为kx+μmgm,最小值为kx-μmgm[解析]若μmg小于kx,而弹簧又处于压缩状态,则物块所受弹簧弹力和静摩擦力的合力水平向左,即小车的加速度一定向左,A对;由牛顿第二定律得kx-F f=ma,当F f=μmg时,加速度方向向左且最小值为a min=kx-μmgm,随着加速度的增加,F f减小到零后又反向增大,当再次出现F f=μmg时,加速度方向向左达最大值a max =kx+μmgm,但小车可向左加速,也可向右减速,B错;若μmg大于kx,则物块所受弹簧弹力和静摩擦力的合力(即加速度)可能水平向左,也可能水平向右,即小车的加速度方向可以向左也可以向右,C对;当物块的合外力水平向右时,加速度的最大值为μmg-kxm,物块的合外力水平向左时,加速度的最大值为μmg+kxm,则小车的加速度最大值为kx+μmgm,最小值为0,D错.[答案]AC四、加速度或速度最大的临界条件当物体在受到变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合外力最大时,具有最大加速度;合外力最小时,具有最小加速度.当出现加速度有最大值或最小值的临界条件时,物体处于临界状态,所对应的速度便会出现最大值或最小值.(多选)(2016·潍坊模拟)如图所示,一个质量为m 的圆环套在一根固定的水平长直杆上,环与杆的动摩擦因数为μ,现给环一个水平向右的恒力F ,使圆环由静止开始运动,同时对环施加一个竖直向上、大小随速度变化的作用力F 1=kv ,其中k 为常数,则圆环运动过程中( )A .最大加速度为FmB .最大加速度为F +μmgmC .最大速度为F +μmgμkD .最大速度为mgk[解析] 当F 1<mg 时,由牛顿第二定律得F -μ(mg -kv )=ma ,当v =mg k 时,圆环的加速度最大,即a max =Fm ,选项A 正确,B 错误;圆环速度逐渐增大,F 1=kv >mg ,由牛顿第二定律得F -μ(kv -mg )=ma ,当a =0时,圆环的速度最大,即v max =F +μmgμk,选项C 正确,D 错误. [答案] AC五、数学推导中的极值问题将物理过程通过数学公式表达出来,根据数学表达式解出临界条件,通常用到三角函数关系.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2. (1)求物块加速度的大小及到达B 点时速度的大小;(2)拉力F 与斜面的夹角多大时,拉力F 最小?拉力F 的最小值是多少?[解析] (1)设物块加速度的大小为a ,到达B 点时速度的大小为v ,由运动学公式得: L =v 0t +12at 2①v =v 0+at ②联立①②式,代入数据解得:a =3 m/s 2,v =8 m/s.(2)设物块所受支持力为F N ,所受摩擦力为F f ,拉力与斜面之间的夹角为α,受力分析如图所示,由牛顿第二定律得:F cos α-mg sin θ-F f =ma ③F sin α+F N -mg cos θ=0④ 又F f =μF N ⑤联立③④⑤解得:F =mg (sin θ+μcos θ)+macos α+μsin α⑥由数学知识得:cos α+33sin α=233sin(60°+α)⑦ 由⑥⑦式可知对应的F 最小值与斜面的夹角α=30°⑧ 联立⑥⑧式,代入数据得F 的最小值为: F min =1335N. [答案] (1)3 m/s 2 8 m/s (2)30°1335N 六、滑块一滑板模型中的临界问题在滑块—滑板模型中,若两者一起运动时优先考虑“被动”的“弱势”物体,该物体通常具有最大加速度,该加速度也为系统一起运动的最大加速度,否则两者将发生相对运动.(2016·湖北荆州模拟)物体A 的质量m 1=1 kg ,静止在光滑水平面上的木板B 的质量为m 2=0.5 kg 、长l =1 m ,某时刻A 以v 0=4 m/s 的初速度滑上木板B 的上表面,为使A不至于从B 上滑落,在A 滑上B 的同时,给B 施加一个水平向右的拉力F ,若A 与B 之间的动摩擦因数μ=0.2,试求拉力F 应满足的条件.(忽略物体A 的大小)[解析] 物体A 滑上木板B 以后,做匀减速运动, 加速度a A =μg ①木板B 做加速运动,有F +μm 1g =m 2a B ②物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v t ,则v 20-v 2t 2a A =v 2t2a B+l ③ 且v 0-v t a A =v ta B④ 由③④式,可得a B =v 202l-a A =6 m/s 2,代入②式得F =m 2a B -μm 1g =0.5×6 N -0.2×1×10 N =1 N ,若F <1 N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1 N. 当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才能不会从B的左端滑落.即有:F =(m 1+m 2)a , μm 1g =m 1a ,所以F =3 N ,若F 大于3 N ,A 就会相对B 向左端滑下. 综上,力F 应满足的条件是1 N ≤F ≤3 N. [答案] 1 N ≤F ≤3 N1.(2016·西安质检)如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为2m和m,各接触面间的动摩擦因数均为μ.重力加速度为g.要使纸板相对砝码运动,所需拉力的大小至少应大于()A.3μmg B.4μmg C.5μmg D.6μmg解析:选D.纸板相对砝码恰好运动时,对纸板和砝码构成的系统,由牛顿第二定律可得:F-μ(2m+m)g=(2m +m)a,对砝码,由牛顿第二定律可得:2μmg=2ma,联立可得:F=6μmg,选项D正确.2.(多选)(2016·湖北黄冈模拟)如图甲所示,一轻质弹簧的下端固定在水平面上,上端放置一物体(物体与弹簧不连接),初始时物体处于静止状态,现用竖直向上的拉力F作用在物体上,使物体开始向上做匀加速运动,拉力F与物体位移x的关系如图乙所示(g=10 m/s2),下列结论正确的是()A.物体与弹簧分离时,弹簧处于原长状态B.弹簧的劲度系数为750 N/mC.物体的质量为2 kgD.物体的加速度大小为5 m/s2解析:选ACD.物体与弹簧分离时,弹簧的弹力为零,轻弹簧无形变,所以选项A正确;从题图乙中可知ma =10 N,ma=30 N-mg,解得物体的质量为m=2 kg,物体的加速度大小为a=5 m/s2,所以选项C、D正确;弹簧的劲度系数k=mgx0=200.04N/m=500 N/m,所以选项B错误.3.(多选)如图所示,质量均为m的A、B两物块置于光滑水平地面上,A、B接触面光滑,倾角为θ,现分别以水平恒力F作用于A物块上,保持A、B相对静止共同运动,则下列说法中正确的是()A.采用甲方式比采用乙方式的最大加速度大B.两种情况下获取的最大加速度相同C.两种情况下所加的最大推力相同D.采用乙方式可用的最大推力大于甲方式的最大推力解析:选BC.甲方式中,F最大时,A刚要离开地面,A受力如图丙所示,则F N1cos θ=mg①对B:F′N1sin θ=ma1②由牛顿第三定律可知F′N1=F N1③乙方式中,F 最大时,B 刚要离开地面,B 受力如图丁所示,则F N2cos θ=mg ④ F N2sin θ=ma 2⑤由①③④可知F N2=F N1=F N1′⑥由②⑤⑥式可得a 2=a 1,对整体易知F 2=F 1, 故选项B 、C 正确,选项A 、D 错误.4.如图所示,水平桌面光滑,A 、B 物体间的动摩擦因数为μ(可认为最大静摩擦力等于滑动摩擦力),A 物体质量为2m ,B 和C 物体的质量均为m ,滑轮光滑,砝码盘中可以任意加减砝码.在保持A 、B 、C 三个物体相对静止共同向左运动的情况下,B 、C 间绳子所能达到的最大拉力是( )A.12μmg B .μmg C .2μmg D .3μmg 解析:选B.因桌面光滑,当A 、B 、C 三者共同的加速度最大时,F BC =m C a 才能最大.这时,A 、B 间的相互作用力F AB 应是最大静摩擦力2μmg ,对B 、C 整体来讲:F AB =2μmg =(m B +m C )a =2ma ,a =μg ,所以F BC =m C a =μmg ,选项B 正确.5.如图所示,用细线将质量为m 的氢气球拴在车厢地板上的A 点,此时细线与水平方向成θ=37°角,气球与固定在水平车顶上的压力传感器接触,小车静止时,细线恰好伸直但无弹力,压力传感器的示数为气球重力的12.重力加速度为g ,sin37°=0.6,cos 37°=0.8.现要保持细线方向不变而传感器示数为零,下列方法中可行的是( )A .小车向右加速运动,加速度大小为12gB .小车向左加速运动,加速度大小为12gC .小车向右减速运动,加速度大小为23gD .小车向左减速运动,加速度大小为23g解析:选C.小车静止时细线无弹力,气球受到重力mg 、空气浮力f 和车顶压力F N ,由平衡条件得f =mg +F N =32mg ,即浮力与重力的合力为12mg ,方向向上.要使传感器示数为零,则细线有拉力F T ,气球受力如图甲所示,由图乙可得12mg ma =tan 37°,小车加速度大小为a =23g ,方向向左.故小车可以向左做加速运动,也可以向右做减速运动,C 选项正确.6.如图所示,质量为m =1 kg 的物体,放在倾角θ=37°的斜面上,已知物体与斜面间的动摩擦因数μ=0.3,最大静摩擦力等于滑动摩擦力,取g =9.8 m/s 2,sin 37°=0.6,cos 37°=0.8.要使物体与斜面相对静止且一起沿水平方向向左做加速运动,则其加速度多大?解析:当物体恰不向下滑动时,受力分析如图甲所示 F N1sin 37°-F f1cos 37°=ma 1F f1sin 37°+F N1cos 37°=mg F f1=μF N1解得a 1=3.6 m/s 2当物体恰不向上滑动时,受力分析如图乙所示F N2sin 37°+F f2cos 37°=ma2F N2cos 37°=mg+F f2sin 37°F f2=μF N2解得a2=13.3 m/s2因此加速度的取值范围为3.6 m/s2≤a≤13.3 m/s2.答案:3.6 m/s2≤a≤13.3 m/s2。
【高中物理】高中物理知识点:全反射,临界角

【高中物理】高中物理知识点:全反射,临界角光密介质与光疏介质:1.定义:两种介质相比较,折射率较大的介质叫做光密介质,折射率较小的介质叫做光疏介质2.特点:(1)光由光疏介质射人光密介质时,折射角小于入射角;光由光密介质射入光疏介质时,折射角大于入射角。
(2)光在光疏介质中的传播速度大于在光密介质中的传播速度。
(3)光密介质与光疏介质是相对而言的。
单独一种介质无法确定它是光密介质还是光疏介质全反射:1.定义:光从光密介质射人光疏介质时,折射角大于入射角,当入射角增大到某一角度时,折射角达到90。
,折射光完全消失,只剩下反射光,这种现象叫做全反射2.临界角:①定义:折射角为90。
时的入射角叫做全反射的临界角。
②公式:光由折射率为n的介质射入空气 (真空)时,3.条件:①光由光密介质射向光疏介质②入射角等于或大于临界角全反射的计算方法:光从一种介质射入另一种介质时一般都要同时发生反射与折射现象,如图所示。
当光线从光密介质射向光疏介质时,折射角大于入射角。
这样就有可能在入射角还没有增大到90。
以前,折射角就已经达到90。
,以光从水射人空气为例,当入射角增大到某一数值C 时,折射光线恰好掠过水面,和界面平行,折射角等于90。
,再继续增大入射角,光线全部反射回水中,不再有折射光线进入空气中,于是形成光的全反射现象。
当折射角为90。
时的入射角C叫做临界角,可见发生全反射的条件是:①光线从光密介质射入光疏介质。
②入射角≥临界角(C),对于临界角有:。
分析光的全反射、临界角问题的一般思路:(1)画出恰好发生全反射的光路。
(2)利用几何知识分析边、角关系,找出临界角。
(3)以刚好发生全反射的光线为比较对象来判断光线是否发生全反射,从而画出其他光线的光路图。
物质的密度与光密介质、光疏介质:光密介质和光疏介质是相对的,是根据介质对同种频率的光的折射率大小来划分的。
折射率较小的称为光疏介质,折射率较大的称为光密介质。
显然对同一介质来说,当与其对比的介质不同时,它可能属于光密介质,也可能属于光疏介质,如水相对于空气是光密介质,但相对于玻璃就属于光疏介质了,对于某种介质,没有与之相对比的其他介质时,谈论它是光密介质还是光疏介质是无意义的。
高中物理磁场带电粒子在匀强磁场中运动的临界极值问题与多解问题

带电粒子在匀强磁场中运动的临界极值问题与多解问题一、带电粒子在磁场中运动的临界极值思维方法物理系统由于某些原因而要发生突变时所处的状态,叫做临界状态.突变过程是从量变到质变的过程,在临界状态的前后,系统服从不同的物理规律,按不同的规律变化。
在高考试题中涉及的物理过程中常常出现隐含着一个或几个临界状态,需要通过分析思考,运用所学的知识和已有的能力去分析临界条件,挖掘出临界值,那么如何确定它们的临界条件?下面介绍三种寻找临界点的两种有效方法:1.对称思想带电粒子垂直射入磁场后,将做匀速圆周运动。
分析粒子运动,会发现它们具有对称的特点,即:粒子的运动轨迹关于入射点P与出射点Q的中垂线对称,轨迹圆心O位于对称线上,入射速度、出射速度与PQ线间的夹角(也称为弦切角)相等,并有==2=t,如图所示。
应用这一粒子运动中的“对称性”不仅可以轻松地画出粒子在磁场中的运动轨迹,对于某些临界问题的求解也非常便捷。
【典例】如图所示,半径r=10cm的圆形区域内有匀强磁场,其边界跟y轴在坐标原点O处相切;磁场B=0.33T垂直于纸面向内,在O处有一放射源S可沿纸面向各个方向射出速率均为v=3.2×106m/s的α粒子;已知α粒子质量为m=6.6×10-27kg,电量q=3.2×10-19c,则α粒子通过磁场空间的最大偏转角θ及在磁场中运动的最长时间t各多少?【审题指导】本题α粒子速率一定,所以在磁场中圆周运动半径一定,由于α粒子从点O进入磁场的方向不同故其相应的轨迹与出场位置均不同,则粒子通过磁场的速度偏向角θ不同,要使α粒子在运动中通过磁场区域的偏转角θ最大,则必使粒子在磁场中运动经过的弦长最大,因而圆形磁场区域的直径即为粒子在磁场中运动所经过的最大弦,依此作出α粒子的运动轨迹进行求解。
【名师点睛】当速度一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长。
2.放缩法带电粒子以任意速度沿特定方向射入匀强磁场时,它们将在磁场中做匀速圆周运动,其轨迹半径随速度的变化而变化,如图所示(图中只画出粒子带正电的情景),速度v0越大,运动半径也越大。
高中物理追击、追及和相遇问题

高中物理追击、追及和相遇问题一、追击问题追和被追的两物体的速度相等(同向运动)是能追上、追不上,两者距离有极值的临界条件:1、做匀减速直线运动的物体追赶同向做匀速直线运动的物体.(1)两物体的速度相等时,追赶者仍然没有追上被追者,则永远追不上,这种情况下当两者的速度相等时,它们间的距离最小.(2)两物体的速度相等时,如它们处在空间的同一位置,则追赶者追上被追者,但两者不会有第二次相遇的机会.(3)若追赶者追上被追者时,其速度大于被追者的速度,则被追者还可以再追上追赶者,两者速度相等时,它们间的距离最大.2、初速度为零的匀加速直线运动追赶同向做匀速直线运动的物体.(1)追上前,两者的速度相等时,两者间距离最大.(2)后者与前者的位移大小之差等于它们初始位置间的距离时,后者追上前者.二、相遇问题1、同向运动的两物体追及即相遇.2、相向运动的物体,当各自发生位移大小之和等于开始时两物体间的距离时即相遇.例1、两辆车同时同地同向做直线运动,甲以4m/s的速度做匀速运动,乙由静止开始以2m/s2的加速度做匀加速直线运动. 求:(1)它们经过多长时间相遇?相遇处离原出发地多远?(2)相遇前两物体何时距离最大?最大距离多少?解析:(1)经过t时间两物体相遇,位移为s,根据各自的运动规律列出方程:代入数据可得t=4s,s=16m.(2)甲乙经过时间t'它们之间的距离最大,则从上面分析可知应该满足条件为:,,解得:此时它们之间最大距离为什么当时,两车间的距离最大?这是因为在以前,两车间距离逐渐变大,当以后,,它们间的距离逐渐变小,因此当时,它们间的距离最大.例2、羚羊从静止开始奔跑,经过50m的距离能加速到最大速度为25m/s,并能保持一段较长的时间;猎豹从静止开始奔跑,经过60m的距离能加速到最大速度30m/s,以后只能维持这一速度4.0s. 设猎豹距羚羊x时开始攻击,羚羊在猎豹开始攻击后1.0s才开始奔跑,假定羚羊和猎豹在加速阶段分别做匀加速运动,且均沿同一直线奔跑,则:(1)猎豹要在减速前追到羚羊,x值应在什么范围?(2)猎豹要在其加速阶段追到羚羊,x值应在什么范围?解析:解决这类题目,关键是要读懂题目,比如:猎豹在减速前一共用了多长时间,减速前的运动是何种运动等等.(1)由下图可知,猎豹要在减速前追到羚羊:对猎豹:,对羚羊同理可得:,即;当x≤55m时,猎豹能在减速前追上羚羊(2)猎豹要在其加速阶段追到羚羊,则:对猎豹:对羚羊:则:即:当x≤31.9m时,猎豹能在加速阶段追上羚羊.。
专题04水平面内圆周运动的临界问题高中物理练习分类专题教案(人教版2019)

第五章抛体运动专题04:水平面内圆周运动的临界问题题组一以弹力改变为临界条件1.(2023广东深圳红岭中学期中)传统吹糖技艺为我们展现了中国非物质文化遗产的独特魅力,向人们生动传述着不朽的民间手艺与文化记忆。
其中,甩糖是中国传统糖塑的重要表现形式之一,可简化成如图的模型,糖丝AC、BC可视为细线,其一端系在竖直杆上,另一端共同系着质量为m的麦芽糖。
当系统绕竖直杆以角速度ω水平旋转时,两根细线均处于伸直状态,忽略空气阻力。
下列说法正确的是()A.麦芽糖一定受到三个力作用B.麦芽糖可能受两个力作用C.增大角速度,糖丝AC的拉力减小,BC的拉力增大D.增大角速度,糖丝AC的拉力增大,BC的拉力减小2.(2023河北石家庄月考)如图所示,转动轴垂直于光滑水平面,交点O的上方h处(A点)固定细绳的一端,细绳的另一端拴接一质量为m的小球B,绳长l大于h,转动轴带动小球在光滑水平面上做圆周运动。
当转动的角速度ω逐渐增大时,下列说法正确的是()A.小球始终受三个力的作用B.细绳上的拉力始终保持不变C.要使球不离开水平面,结合l cos θ=h得到角速度的最大值为√gℎD.角速度ω逐渐增大,球可以上升到高度h以上3.(2023江苏常州高级中学月考)一光滑圆锥固定在水平地面上,其圆锥角为74°,圆锥底面的圆心为O'。
用一根长为0.5 m的轻绳一端系一质量为0.1 kg的小球(可视为质点),另一端固定在光滑圆锥顶上O点,O点距地面的高度为0.75 m,如图所示,如果使小球在光滑圆锥表面上做圆周运动。
(取重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8)(1)小球的角速度不断缓慢增大,求小球恰离开圆锥表面时的角速度和此时轻绳的拉力;(2)当小球的角速度为2 rad/s时,求轻绳中的拉力大小;N时会被拉断,求当轻绳断裂后小球落地点与O'点间的(3)逐渐增大小球的角速度,若轻绳受力为53距离。
圆周运动中的连接体问题、临界问题—人教版高中物理必修二课件(共15张ppt)

2
7
解析:C 错:两个人做圆周运动,向心力的大小相等,质量 不同,角速度相同,所以他们的运动半径不同.D 对:设甲的半 径为 R1,则乙的半径为 0.9 m-R1,故 m 甲 ω2R1=m 乙 ω2(0.9 m- R1),解得 R1=0.3 m.B 错:再根据 9.2 N=m 甲 ω2R1 可知,角速 度 ω≈0.62 rad/s.A 错:两个人的角速度相同,半径不同,故他 们的线速度不相同.
互为向心力,角速度相同.设两球所需的向心力大小为 Fn,角 速度为 ω,则
对球 m1:Fn=m1ω2r1, 对球 m2:Fn=m2ω2r2, 由上述两式得 r1:r2=1:2. 答案:D
2
6
变式训练 2 甲、乙两名溜冰运动员,m 甲=80 kg,m 乙=40 kg,面对面拉着弹簧测力计做圆周运动的溜冰表演,如图所示.两 人相距 0.9 m,弹簧测力计的示数为 9.2 N,下列判断中正确的是
【答案】 D
2
11
变式训练 3 如图所示,两绳系一质量为 0.1 kg 的小球,两 绳的另一端分别固定于轴的 A、B 两处,上面绳长 2 m,两绳拉 直时与轴的夹角分别为 30°和 45°,问球的角速度在什么范围内 两绳始终都有张力?(g 取 10 m/s2)
2
12
解析:当上绳绷紧,下绳恰好伸直但无张力时,小球受力如
10
rad/s 时,两绳始终都有张力.
答案:
10 3 3
rad/s<ω<
10
rad/s
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理的8种“临界情况”,一定要掌握
高中物理的8种“临界情况”
1刚好不相撞
两物体最终速度相等或者接触时速度相等。
2刚好不分离
两物体仍然接触、弹力为零,且速度和加速度相等。
3刚好不滑动
1、转盘上“物体刚好发生滑动”:向心力为最大静摩擦力。
2、斜面上物体刚好不上(下)滑:静摩擦力为最大静摩擦力,物体平衡。
3、保持物体静止在斜面上的最小水平推力:静摩擦力为最大静摩擦力,物体平衡。
4、拉动物体的最小力:静摩擦力为最大静摩擦力,物体平衡。
4运动到某一极端位置
1、绳端物体刚好通过最高点(等效最高点):物体运动到最高点时重力(等效重力)等于向心力,速度大小为(gR)1/2[(gˊR)1/2]。
2、杆端物体刚好通过最高点:物体运动到最高点时速度为零。
3、刚好运动到某一点:到达该点时速度为零。
4、物体刚好滑出(滑不出)小车:物体滑到小车一端时与小车速度刚好相等。
5、粒子刚好飞出(飞不出)两个极板间的匀强电场:粒子沿极板的边缘射出(粒子运动轨迹与极板相切)。
6、粒子刚好飞出(飞不出)磁场:粒子运动轨迹与磁场边界相切。
5速度达到最大或最小时
物体所受的合外力为零,即加速度为零
1、机车启动过程中速度达最大匀速行驶:牵引力和阻力平衡。
2、导体棒在磁场中做切割运动时达稳定状态:感应电流产生的安培力和其他力的合力平衡。
6某一量达到极大(小)值
1、两个物体距离最近(远):速度相等。
2、圆形磁场区的半径最小:磁场区是以公共弦为直径的圆。
3、使通电导线在倾斜导轨上静止的最小磁感应强度:安培力平行于斜面。
4、穿过圆形磁场区域时间最长:入射点和出射点分别为圆形直径两端点。
7绳的临界问题
1、绳刚好被拉直:绳上拉力为零。
2、绳刚好被拉断:绳上的张力等于绳能承受的最大拉力。
3、绳子突然绷紧:速度突变,沿绳子径向方向的速度减为零。
8运动的突变
1、天车下悬挂重物水平运动,天车突停:重物从直线运动转为圆周运动,绳拉力增加。
2、绳系小球摆动,绳碰到(离开)钉子:圆周运动半径变化,拉力突变。
3、物体运动到曲面和水平面的交界处:对支持面的压力突变。
4、稳定轨道上运行的卫星突然加速或减速:卫星变轨,做离心运动或近心运动。