2017_2019全国卷统计与概率解答题分类汇编(文科数学)

合集下载

最新最全2019高考数学(全国卷、北京卷、江苏、天津、浙江)概率、统计汇编含选择填空解答题

最新最全2019高考数学(全国卷、北京卷、江苏、天津、浙江)概率、统计汇编含选择填空解答题

2019高考数学概率、统计汇编1.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.516B.1132C.2132D.11162.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数B.平均数C.方差D.极差3.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A.8号学生B.200号学生C.616号学生D.815号学生4.设0<a<1,则随机变量X的分布列是则当a在(0,1)内增大时A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大5.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A.16B.14C.13D.126.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5 B.0.6 C.0.7 D.0.87.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A.23B.35C.25D.158.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙9.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有2 0个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.10.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________.11.已知一组数据6,7,8,8,9,10,则该组数据的方差是.12.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.13.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同。

(2017-2019)高考文数真题分类汇编专题01 集合与常用逻辑用语(教师版)

(2017-2019)高考文数真题分类汇编专题01 集合与常用逻辑用语(教师版)

专题一 集合与常用逻辑用语1.【2019年高考全国Ⅰ卷文数】已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A =I ðA .{}1,6B .{}1,7C .{}6,7D .{}1,6,7【答案】C【解析】由已知得{}1,6,7U A =ð, 所以U B A =I ð{6,7}. 故选C .2.【2019年高考全国Ⅱ卷文数】已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(-1,+∞) B .(-∞,2)C .(-1,2)D .∅【答案】C【解析】由题知,(1,2)A B =-I . 故选C .3.【2019年高考全国Ⅲ卷文数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B =I A .{}1,0,1- B .{}0,1 C .{}1,1-D .{}0,1,2【答案】A【解析】∵21,x ≤∵11x -≤≤,∵{}11B x x =-≤≤,又{1,0,1,2}A =-,∵{}1,0,1A B =-I . 故选A .4.【2019年高考北京文数】已知集合A ={|–1<<2},B ={|>1},则A ∪B = A .(–1,1) B .(1,2) C .(–1,+∞)D .(1,+∞)【答案】C【解析】∵{|12},{|1}A x x B x =-<<=>, ∵(1,)A B =-+∞U . 故选C.5.【2019年高考浙江】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B I ð= A .{}1- B .{}0,1 C .{}1,2,3- D .{}1,0,1,3-【答案】A【解析】∵{1,3}U A =-ð,∵(){1}U A B =-I ð. 故选A.6.【2019年高考天津文数】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =I U A .{}2 B .{}2,3 C .{}1,2,3-D .{}1,2,3,4【答案】D【解析】因为{1,2}A C =I ,所以(){1,2,3,4}A C B =I U . 故选D.7.【2019年高考天津文数】设x ∈R ,则“05x <<”是“|1|1x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【答案】B【解析】由|1|1x -<可得02x <<, 易知由05x <<推不出02x <<, 由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件, 即“05x <<”是“|1|1x -<”的必要而不充分条件.故选B.8.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立, 综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 故选A.9.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面 【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件;由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件.故α∥β的充要条件是α内有两条相交直线与β平行. 故选B .10.【2019年高考北京文数】设函数f ()=cos+b sin (b 为常数),则“b =0”是“f ()为偶函数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】当0b =时,()cos sin cos f x x b x x =+=,()f x 为偶函数; 当()f x 为偶函数时,()()f x f x -=对任意的x 恒成立,由()cos()sin()cos sin f x x b x x b x -=-+-=-,得cos sin cos sin x b x x b x +=-, 则sin 0b x =对任意的x 恒成立,从而0b =.故“0b =”是“()f x 为偶函数”的充分必要条件. 故选C.11.【2018年高考浙江】已知全集U ={1,2,3,4,5},A ={1,3},则=U A ðA .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}【答案】C【解析】因为全集U ={1,2,3,4,5},A ={1,3}, 所以根据补集的定义得∁U A ={2,4,5}. 故选C .12.【2018年高考全国Ⅰ卷文数】已知集合{}02A =,,{}21012B =--,,,,,则A B =I A .{}02, B .{}12,C .{}0D .{}21012--,,,, 【答案】A【解析】根据集合的交集中元素的特征,可以求得A ∩B ={0,2}. 故选A.13.【2018年高考全国Ⅱ卷文数】已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B =IA .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,7 【答案】C【解析】∵A ={1,3,5,7},B ={2,3,4,5},∴A ∩B ={3,5}. 故选C.14.【2018年高考全国Ⅲ卷文数】已知集合{|10}A x x =-≥,{0,1,2}B =,则A B =IA .{0}B .{1}C .{1,2}D .{0,1,2} 【答案】C【解析】易得集合{|1}A x x =≥,所以{}1,2A B =I .故选C.15.【2018年高考北京文数】已知集合A ={|||<2},B ={–2,0,1,2},则A I B =A .{0,1}B .{–1,0,1}C .{–2,0,1,2}D .{–1,0,1,2}【答案】A 【解析】因A ∩B =(−2,2)∩{−2,0,1,2}={0,1}. 故选A.16.【2018年高考天津文数】设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x x =∈-≤<R ,则()A B C =U IA .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}【答案】C【解析】由并集的定义可得:A ∪B ={−1,0,1,2,3,4}, 结合交集的定义可知:(A ∪B )∩C ={−1,0,1}. 故选C.17.【2018年高考浙江】已知平面α,直线m ,n 满足m ⊄α,nα,则“m ∵n ”是“m ∵α”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】因为m ⊄α,n ⊂α,m//n ,所以根据线面平行的判定定理得m//α. 由m//α不能得出m 与α内任一直线平行, 所以m//n 是m//α的充分不必要条件. 故选A.18.【2018年高考天津文数】设x ∈R ,则“38x >”是“||2x >”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 【答案】A【解析】求解不等式可得, 求解绝对值不等式可得或,据此可知:“”是“” 的充分而不必要条件. 故选A.19.【2018年高考北京文数】设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】当a =4,b =1,c =1,d =14时,a,b,c,d 不成等比数列,所以不是充分条件; 当a,b,c,d 成等比数列时,则ad =bc ,所以是必要条件. 综上所述,“ad =bc ”是“a,b,c,d 成等比数列”的必要不充分条件. 故选B.20.【2017年高考全国Ⅰ卷文数】已知集合A ={}|2x x <,B ={}|320x x ->,则A .A IB =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A I B =∅C .A U B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A U B=R【答案】A【解析】由320x ->得32x <, 所以33{|2}{|}{|}22A B x x x x x x =<<=<I I .故选A .21.【2017年高考全国Ⅱ卷文数】设集合{1,2,3},{2,3,4}A B ==,则A B =UA .{}123,4,, B .{}123,, C .{}234,, D .{}134,, 【答案】A【解析】由题意{1,2,3,4}A B =U . 故选A.22.【2017年高考北京文数】已知全集U =R ,集合{|22}A x x x =<->或,则U A =ðA .(2,2)-B .(,2)(2,)-∞-+∞UC .[2,2]-D .(,2][2,)-∞-+∞U【答案】C【解析】因为{2A x x =<-或2}x >,所以{}22U A x x =-≤≤ð. 故选C.23.【2017年高考全国Ⅲ卷文数】已知集合A ={1,2,3,4},B ={2,4,6,8},则A B I 中元素的个数为A .1B .2C .3D .4【答案】B【解析】由题意可得{}2,4A B =I , 故A B I 中元素的个数为2. 所以选B.24.【2017年高考天津文数】设集合{1,2,6},{2,4},{1,2,3,4}A B C ===,则()A B C =U IA .{2}B .{1,2,4}C .{1,2,4,6}D .{1,2,3,4,6} 【答案】B【解析】由题意可得{}1,2,4,6A B =U , 所以{}()1,2,4A B C =U I . 故选B .25.【2017年高考浙江】已知集合{|11}P x x =-<<,{02}Q x =<<,那么P Q =UA .(1,2)-B .(0,1)C .(1,0)-D .(1,2) 【答案】A【解析】利用数轴,取,P Q 中的所有元素,得P Q =U (1,2)-.26.【2017年高考山东文数】设集合{}11M x x =-<,{}2N x x =<,则M N =I A .()1,1- B .()1,2-C .()0,2D .()1,2【答案】C【解析】由|1|1x -<得02x <<,故={|02}{|2}{|02}M N x x x x x x <<<=<<I I . 故选C.27.【2017年高考浙江】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】C【解析】由46511210212(510)S S S a d a d d +-=+-+=, 可知当0d >时,有46520S S S +->,即4652S S S +>, 反之,若4652S S S +>,则0d >, 所以“d >0”是“S 4 + S 6>2S 5”的充分必要条件. 故选C .28.【2017年高考北京文数】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】若0λ∃<,使λ=m n ,则两向量,m n 反向,夹角是180︒, 那么cos1800⋅=︒=-<m n m n m n ;若0⋅<m n ,那么两向量的夹角为(]90,180︒︒,并不一定反向, 即不一定存在负数λ,使得λ=m n , 所以是充分而不必要条件.29.【2017年高考山东文数】已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a <b .下列命题为真命题的是A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝【答案】B【解析】由0x =时,210x x -+≥成立知p 是真命题; 由221(2),12<->-可知q 是假命题, 所以p q ∧⌝是真命题. 故选B.30.【2017年高考天津文数】设x ∈R ,则“20x -≥”是“|1|1x -≤”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由20x -≥,可得2x ≤,由|1|1x -≤,可得111x -≤-≤,即02x ≤≤, 因为{}{}022x x x x ≤≤⊂≤,所以“20x -≥”是“|1|1x -≤”的必要而不充分条件. 故选B .31.【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B =I ▲ .【答案】{1,6}【解析】由题意利用交集的定义求解交集即可. 由题意知,{1,6}A B =I .32.【2018年高考江苏】已知集合A ={0,1,2,8},B ={−1,1,6,8},那么A ∩B =________.【答案】{1,8}【解析】由题设和交集的定义可知:A ∩B ={1,8}.33.【2017年高考江苏】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =I ,则实数的值为 ▲ .【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =, 此时234a +=,满足题意. 故答案为1.34.【2018年高考北京文数】能说明“若a ﹥b ,则11a b<”为假命题的一组a ,b 的值依次为_________. 【答案】1,−1(答案不唯一)【解析】使“若a >b ,则1a<1b”为假命题,则使“若a >b ,则1a≥1b”为真命题即可,只需取a =1,b =−1即可满足,所以满足条件的一组a,b 的值为1,−1(答案不唯一).35.【2017年高考北京文数】能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题的一组整数a ,b ,c 的值依次为______________________________. 【答案】-1,-2,-3(答案不唯一)【解析】()123,1233->->--+-=->-,矛盾, 所以−1,−2,−3可验证该命题是假命题.。

2017年-2019年高考文科数学全国卷三真题试卷与答案(新课标)

2017年-2019年高考文科数学全国卷三真题试卷与答案(新课标)

绝密★ 启用前2017 年普通高等学校招生全国统一考试(新课标Ⅲ)文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12 小题,每小题 5 分,共 60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={1,2,3,4} , B={2,4,6,8} ,则 A B 中元素的个数为A .1B.2C. 3D.42.复平面内表示复数z=i(–2+i)的点位于A .第一象限B.第二象限C.第三象限D.第四象限3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014 年 1 月至 2016 年 12 月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8 月D .各年 1 月至 6 月的月接待游客量相对于7 月至 12 月,波动性更小,变化比较平稳4.已知sincos4=,则 sin 237 B .2 2 7 A .9C .D .9993x 2 y6 05.设 x , y 满足约束条件x 0 ,则 z=x-y 的取值范围是yA .[ – 3,0]B . [ – 3,2]C . [0,2]D . [0,3]16.函数 f(x)= sin(x+)+cos( x-)的最大值为536A .6B . 1C .3D .15557.函数 y=1+x+sin x的部分图像大致为x 2A .B .C .D .8.执行下面的程序框图,为使输出S 的值小于 91,则输入的正整数 N 的最小值为A .5B .4C . 3D .29.已知圆柱的高为 1,它的两个底面的圆周在直径为2 的同一个球的球面上,则该圆柱的体积为A .πB .3πC .ππ42D .410.在正方体ABCDA 1B 1C 1D 1中,E 为棱CD 的中点,则A .A 1E ⊥DC 1B .A 1E ⊥BDC .A 1E ⊥BC 1D .A 1E ⊥ACx 2 y 2 1 ,(a>b>0)的左、右顶点分别为 12 1 2为直径的圆与直线b 2a 2bx ay 2ab0 相切,则C 的离心率为6B .3C .21A .33D .3312.已知函数f ( x)x 2 2x a(e x 1 ex 1) 有唯一零点,则 a=1B .1C .1D . 1A .322二、填空题:本题共 4 小题,每小题 5 分,共 20 分。

2017-2019三年高考真题文科数学试题分类汇编:专题13 不等式、推理与证明

2017-2019三年高考真题文科数学试题分类汇编:专题13 不等式、推理与证明

专题13 不等式、推理与证明1.【2019年高考全国I 卷文数】古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是12(12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm【答案】B方法一:如下图所示. 依题意可知:11,22AC AB CD BC ==, ① 腿长为105 cm 得,即>105CD ,164.892AC CD =>, 64.89105169.89AD AC CD =+>+=,所以AD >169.89.②头顶至脖子下端长度为26 cm , 即AB <26,42.07BC =<,=+<68.07 AC AB BC,110.15CD=<,+<68.07+110.15=178.22AC CD,所以<178.22AD.综上,169.89<<178.22AD.故选B.方法二:设人体脖子下端至肚脐的长为x cm,肚脐至腿根的长为y cm,则2626105xx y+==+42.07cm, 5.15cmx y≈≈.又其腿长为105cm,头顶至脖子下端的长度为26cm,所以其身高约为42.07+5.15+105+26=178.22,接近175cm.故选B.【名师点睛】本题考查类比归纳与合情推理,渗透了逻辑推理和数学运算素养.采取类比法,利用转化思想解题.2.【2019年高考全国III卷文数】记不等式组6,20x yx y+≥⎧⎨-≥⎩表示的平面区域为D.命题:(,),29p x y D x y∃∈+≥;命题:(,),212q x y D x y∀∈+≤.下面给出了四个命题①p q∨②p q⌝∨③p q∧⌝④p q⌝∧⌝这四个命题中,所有真命题的编号是A.①③B.①②C.②③D.③④【答案】A根据题中的不等式组可作出可行域,如图中阴影部分所示, 记直线1: 2+9,l y x =-2: =2+12l y x -,由图可知,(,),29,(,),212x y D x y x y D x y ∃∈+∃∈+>, 所以p 为真命题,q 为假命题, 所以p ⌝为假命题,q ⌝为真命题,所以p q ∨为真命题,p q ⌝∨为假命题,p q ∧⌝为真命题,p q ⌝∧⌝为假命题, 所以所有真命题的编号是①③.故选A.【名师点睛】本题将线性规划和不等式,命题判断综合到一起,解题关键在于充分利用取值验证的方法进行判断.3.【2019年高考北京卷文数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2−m 1=52lg 21E E ,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太阳与天狼星的亮度的比值为 A . 1010.1B . 10.1C . lg10.1D . 10–10.1【答案】A两颗星的星等与亮度满足12125lg 2E m m E -=,令211.45,26.7m m =-=-, ()10.111212222lg( 1.4526.7)10.1,1055E E m m E E =⋅-=-+==. 故选:A .【名师点睛】本题以天文学问题为背景,考查考生的数学应用意识、信息处理能力、阅读理解能力以及指数对数运算.4.【2019年高考天津卷文数】设变量,x y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨-⎪⎪-⎩,则目标函数4z x y =-+的最大值为 A .2 B .3C .5D .6【答案】D已知不等式组表示的平面区域如图中的阴影部分. 目标函数的几何意义是直线4y x z =+在y 轴上的截距, 故目标函数在点A 处取得最大值. 由20,1x y x -+=⎧⎨=-⎩,得(1,1)A -,所以max 4(1)15z =-⨯-+=. 故选C.【名师点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域,分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值或范围.即:一画,二移,三求.5.【2019年高考天津卷文数】设x ∈R ,则“05x <<”是“|1|1x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【答案】B11x -<等价于02x <<,故05x <<推不出11x -<; 由11x -<能推出05x <<,故“05x <<”是“|1|1x -<”的必要不充分条件. 故选B .【名师点睛】充要条件的三种判断方法: (1)定义法:根据p ⇒q ,q ⇒p 进行判断;(2)集合法:根据由p ,q 成立的对象构成的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题.6.【2019年高考浙江卷】若实数,x y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =+的最大值是A . 1-B . 1C . 10D . 12【答案】C画出满足约束条件的可行域如图中阴影部分所示. 因为32z x y =+,所以3122y x z =-+. 平移直线3122y x z =-+可知,当该直线经过点A 时,z 取得最大值. 联立两直线方程可得340340x y x y -+=⎧⎨--=⎩,解得22x y =⎧⎨=⎩.即点A 坐标为(2,2)A ,所以max 322210z =⨯+⨯=.故选C.【名师点睛】解答此类问题,要求作图要准确,观察要仔细.往往由于由于作图欠准确而影响答案的准确程度,也有可能在解方程组的过程中出错. 7.【2019年高考浙江卷】若0,0ab >>,则“4a b +≤”是 “4ab ≤”的A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件【答案】A当0, 0a >b >时,a b +≥当且仅当a b =时取等号,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.【名师点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取,a b 的值,从假设情况下推出合理结果或矛盾结果.8.【2018年高考北京卷文数】设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则A .对任意实数a ,(2,1)A ∈B .对任意实数a ,(2,1)A ∉C .当且仅当a <0时,(2,1)A ∉D .当且仅当32a ≤时,(2,1)A ∉【答案】D点(2,1)在直线1x y -=上,4ax y +=表示过定点(0,4),斜率为a -的直线,当0a ≠ 时,2x ay -=表示过定点(2,0),斜率为1a的直线,不等式2x ay -≤表示的区域包含原点,不等式4ax y +>表示的区域不包含原点.直线4ax y +=与直线2x ay -=互相垂直.显然当直线4ax y +=的斜率0a ->时,不等式4ax y +>表示的区域不包含点(2,1),故排除A ;点(2,1)与点(0,4)连线的斜率为32-,当32a -<-,即32a >时,4ax y +>表示的区域包含点(2,1),此时2x ay -<表示的区域也包含点(2,1),故排除B ;当直线4ax y +=的斜率32a -=-,即32a =时,4ax y +>表示的区域不包含点(2,1),故排除C ,故选D.【名师点睛】本题主要考查线性规划问题,考查考生的数形结合思想、化归与转化思想以及逻辑推理能力和运算求解能力,考查的核心素养是直观想象、数学运算. 9.【2018年高考天津卷文数】设x ∈R ,则“38x >”是“||2x >”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【答案】A求解不等式x 3>8可得x >2,求解绝对值不等式|x |>2可得x >2或x <−2,据此可知:“x 3>8”是“|x|>2” 的充分而不必要条件.故选A.【名师点睛】本题主要考查绝对值不等式的解法、充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.10.【2018年高考天津卷文数】设变量,x y 满足约束条件52410x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩,,,,则目标函数35z x y =+的最大值为A .6B .19C .21D .45【答案】C绘制不等式组52410x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩,,,表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程得51x y x y +=⎧⎨-+=⎩,可得点A 的坐标为()2,3A ,据此可知目标函数的最大值为:max 35325321z x y =+=⨯+⨯=.本题选择C 选项.【名师点睛】求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.11.【2017年高考天津卷文数】设x ∈R ,则“20x -≥”是“|1|1x -≤”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B由20x -≥,可得2x ≤,由|1|1x -≤,可得111x -≤-≤,即02x ≤≤,因为{}{}022x x x x ≤≤⊂≤,所以“20x -≥”是“|1|1x -≤”的必要而不充分条件,故选B .【名师点睛】判断充要关系的的方法:①根据定义,若,/p q q p ⇒⇒,那么p 是q 的充分而不必要条件,同时q 是p 的必要而不充分条件,若p q ⇔,那么p 是q 的充要条件,若,//p q q p ⇒⇒,那那么p 是q 的既不充分也不必要条件;②当命题是以集合的形式给出时,那就看包含关系,若:p x A ∈,:q x B ∈,若A 是B 的真子集,那么p 是q 的充分而不必要条件,同时q 是p 的必要而不充分条件,若A B =,那么p 是q 的充要条件,若没有包含关系,那么p 是q 的既不充分也不必要条件;③命题的等价性,根据互为逆否命题的两个命题等价,将“p 是q ”的关系转化为“q ⌝是p ⌝”的关系进行判断. 12.【2017年高考天津卷文数】已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,的大小关系为A .a b c <<B .b a c <<C .c b a <<D .c a b <<【答案】C由题意可得221(log )(log 5)5a f f =-=,且22log 5log 4.12>>,0.8122<<,所以0.822log 5log 4.12>>,结合函数的单调性,可得0.822(log 5)(log 4.1)(2)f f f >>,即a b c >>,即c b a <<.故选C .【名师点睛】比较大小是高考的常见题型,指数式、对数式的大小比较要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性、奇偶性等进行大小比较,要特别关注灵活利用函数的奇偶性和单调性,数形结合进行大小比较或解不等式.13.【2017年高考全国I 卷文数】设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为A .0B .1C .2D .3【答案】D如图,作出不等式组表示的可行域,则目标函数z x y =+经过(3,0)A 时z 取得最大值,故max 303z =+=,故选D .a bc【名师点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,并明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数的最值取法或值域范围.14.【2017年高考浙江卷】若x ,y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y =+的取值范围是A .[0,6]B .[0,4]C .[6,)+∞D .[4,)+∞【答案】D如图,可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值,选D .【名师点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),“≤”取下方,“≥”取上方,并明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.15.【2017年高考全国II 卷文数】设,x y 满足约束条件2+330,2330,30,x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩则2z x y =+的最小值是A .15-B .9-C .1D .9【答案】A绘制不等式组表示的可行域如图中阴影部分所示,结合目标函数的几何意义可得函数在点()6,3B --处取得最小值,最小值为min 12315z =--=-.故选A.【名师点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.16.【2017年高考全国II卷文数】甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【答案】D由甲的说法可知乙、丙一人优秀一人良好,则甲、丁两人一人优秀一人良好,乙看到丙的成绩则知道自己的成绩,丁看到甲的成绩则知道自己的成绩,即乙、丁可以知道自己的成绩.故选D.【名师点睛】合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向.合情推理仅是“合乎情理”的推理,它得到的结论不一定正确.而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下).17.【2017年高考北京卷文数】若,x y满足3,2,,xx yy x≤⎧⎪+≥⎨⎪≤⎩则2x y+的最大值为A.1 B.3 C.5 D.9 【答案】D如图,画出可行域,2z x y =+表示斜率为12-的一组平行线,当2z x y =+过点()3,3C 时,目标函数取得最大值max 3239z =+⨯=,故选D.【名师点睛】本题主要考查简单的线性规划.解决此类问题的关键是正确画出不等式组表示的可行域,将目标函数赋予几何意义.求目标函数的最值的一般步骤为:一画、二移、三求.常见的目标函数类型有:(1)截距型:形如z ax by =+.求这类目标函数的最值时常将函数z ax by =+转化为直线的斜截式:a z y xb b=-+,通过求直线的截距的最值间接求出z 的最值;(2)距离型:形如()()22z x a y b =-+-;(3)斜率型:形如y bz x a-=-,而本题属于截距形式. 18.【2017年高考山东卷文数】已知x ,y 满足约束条件250302x y x y -+≤⎧⎪+≥⎨⎪≤⎩,则z =x +2y 的最大值是A .-3B .-1C .1D .3 【答案】D画出约束条件250302x y x y -+≤⎧⎪+≥⎨⎪≤⎩表示的可行域,如图中阴影部分所示,平移直线20x y +=,可知当其经过直线250x y -+=与2y =的交点(1,2)-时,2z x y =+取得最大值,为max 1223z =-+⨯=,故选D.z b【名师点睛】(1)确定二元一次不等式(组)表示的平面区域的方法是:“直线定界,特殊点定域”,即先作直线,再取特殊点,并代入不等式(组).若满足不等式(组),则不等式(组)表示的平面区域为直线与特殊点同侧的那部分区域;否则就对应与特殊点异侧的平面区域.当不等式中带等号时,边界为实线;不带等号时,边界应画为虚线,特殊点常取原点.(2)利用线性规划求目标函数最值的步骤:①画出约束条件对应的可行域;②将目标函数视为动直线,并将其平移经过可行域,找到最优解;③将最优解代入目标函数,求出最大值或最小值.19.【2017年高考山东卷文数】已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a <b .下列命题为真命题的是A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝ 【答案】B由0x =时210x x -+≥成立知p 是真命题,由221(2),12<->-可知q 是假命题,所以p q ∧⌝是真命题,故选B.【名师点睛】判断一个命题为真命题,要给出推理与证明;判断一个命题是假命题,只需举出反例.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.20.【2019年高考全国II 卷文数】若变量x ,y 满足约束条件23603020x y x y y ⎧⎪⎨⎪⎩+-≥+-≤-≤,,,则z =3x –y 的最大值是____________.【答案】9画出不等式组表示的可行域,如图中阴影部分所示,阴影部分表示的三角形ABC 区域,根据直线30x y z --=中的z 表示纵截距的相反数,当直线3z x y =-过点3,0C ()时,z 取最大值为9.【名师点睛】本题考查线性规划中最大值问题,渗透了直观想象、逻辑推理和数学运算素养.采取图解法,利用数形结合思想解题.搞不清楚线性目标函数的几何意义致误,从线性目标函数对应直线的截距观察可行域,平移直线进行判断取最大值还是最小值.21.【2019年高考全国II 卷文数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)【答案】261 【答案】261由图可知第一层(包括上底面)与第三层(包括下底面)各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826+=个面.如图,设该半正多面体的棱长为x ,则AB BE x ==,延长CB 与FE 交于点G ,延长BC 交正方体棱于H ,由半正多面体对称性可知,BGE △为等腰直角三角形,,21)122BG GE CH x GH x x x ∴===∴=⨯+==,1x ∴==,1.【名师点睛】本题立意新颖,空间想象能力要求高,物体位置还原是关键,遇到新题别慌乱,题目其实很简单,稳中求胜是关键.立体几何平面化,无论多难都不怕,强大空间想象能力,快速还原图形.22.【2019年高考北京卷文数】若x ,y 满足2,1,4310,x y x y ≤⎧⎪≥-⎨⎪-+≥⎩则y x -的最小值为__________,最大值为__________. 【答案】3-;1根据题中所给约束条件作出可行域,如图中阴影部分所示.设z y x -=,则=+y x z ,求出满足在可行域范围内z 的最大值、最小值即可,即在可行域内,当直线=+y x z 的纵截距最大时,z 有最大值,当直线=+y x z 的纵截距最小时,z 有最小值.由图可知,当直线=+y x z 过点A 时,z 有最大值, 联立24310x x y =⎧⎨-+=⎩,可得23x y =⎧⎨=⎩ ,即(2,3)A ,所以max 321z =-=;当直线=+y x z 过点(2,1)B -时,z 有最小值, 所以min 123z =--=-.【名师点睛】本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大,注重了基础知识、基本技能的考查.23.【2019年高考天津卷文数】设0,0,24x y x y >>+=,则(1)(21)x y xy++的最小值为__________.【答案】92(1)(21)2212525x y xy y x xy xy xy xy xy++++++===+.因为0,0,24x y x y >>+=,所以24x y +=≥2,02xy ≤<≤,当且仅当22x y ==时取等号成立. 又因为192255=22xy +≥+⨯, 所以(1)(21)x y xy ++的最小值为92.【名师点睛】使用基本不等式求最值时一定要验证等号是否能够成立.24.【2019年高考北京卷文数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.【答案】①130 ;②15.①10x =,顾客一次购买草莓和西瓜各一盒,需要支付()608010130+-=元. ②设顾客一次购买水果的促销前总价为y 元,120y <元时,李明得到的金额为80%y ⨯,符合要求.120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立,即()87,8yy x y x -≥≤,即min158y x ⎛⎫≤= ⎪⎝⎭元. 所以x 的最大值为15.【名师点睛】本题主要考查不等式的概念与性质、数学的应用意识、数学式子变形与运算求解能力,以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养.25.【2018年高考浙江卷】若,x y 满足约束条件0,26,2,x y x y x y -≥⎧⎪+≤⎨⎪+≥⎩则3z x y =+的最小值是___________,最大值是___________. 【答案】−2 8作0,26,2x y x y x y -≥⎧⎪+≤⎨⎪+≥⎩表示的可行域,如图中阴影部分所示,则直线3z x y =+过点A (2,2)时z 取最大值8,过点B (4,−2)时z 取最小值−2.【名师点睛】线性规划的实质是把代数问题几何化,即用数形结合的思想解题.需要注意的是: 一、准确无误地作出可行域;二、画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错; 三、一般情况下,目标函数的最大或最小值会在可行域的端点或边界处取得. 26.【2018年高考北京卷文数】若x ,y 满足12x y x +≤≤,则2y−x 的最小值是_________.【答案】3作出可行域,如图,则直线2z y x =-过点A (1,2)时,z 取最小值3.【名师点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错; 三、一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得. 解本题时,先作出可行域,再根据目标函数与可行域关系,确定最小值取法.27.【2018年高考全国I 卷文数】若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_____________. 【答案】6根据题中所给的约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,画出其对应的可行域,如图所示:由32z x y =+可得3122y x z =-+,画出直线32y x =-,将其上下移动,结合2z的几何意义,可知当直线过点B 时,z 取得最大值,由2200x y y --=⎧⎨=⎩,解得()2,0B ,此时max 3206z =⨯+=,故答案为6.【名师点睛】该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型,根据不同的形式,应用相应的方法求解.28.【2018年高考全国III 卷文数】(2018新课标Ⅲ文科)若变量x y ,满足约束条件23024020.x y x y x ++≥⎧⎪-+≥⎨⎪-≤⎩,,则13z x y =+的最大值是________. 【答案】3作出约束条件23024020x y x y x ++≥⎧⎪-+≥⎨⎪-≤⎩,,表示的可行域如下图所示.由图可知目标函数在直线240x y -+=与2x =的交点(2,3)处取得最大值3. 故答案为3.【名师点睛】(1)确定二元一次不等式(组)表示的平面区域的方法是:“直线定界,特殊点定域”,即先作直线,再取特殊点,并代入不等式(组).若满足不等式(组),则不等式(组)表示的平面区域为直线与特殊点同侧的那部分区域;否则就对应与特殊点异侧的平面区域.当不等式中带等号时,边界为实线;不带等号时,边界应画为虚线,特殊点常取原点.(2)利用线性规划求目标函数最值的步骤:①画出约束条件对应的可行域;②将目标函数视为动直线,并将其平移经过可行域,找到最优解;③将最优解代入目标函数,求出最大值或最小值.29.【2018年高考全国II 卷文数】若,x y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,, 则z x y =+的最大值为__________. 【答案】9不等式组25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,表示的可行域是以()()()5,4,1,2,5,0A B C 为顶点的三角形区域,如下图所示,目标函数z x y =+的最大值必在顶点处取得,易知当5,4x y ==时,max 9z =.【名师点睛】该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型,根据不同的形式,应用相应的方法求解.30.【2018年高考天津卷文数】(2018天津文科)已知,a b ∈R ,且360a b -+=,则128ab+的最小值为 . 【答案】14由a −3b +6=0可知a −3b =−6,且2a +18b =2a +2−3b ,因为对于任意x ,2x >0恒成立,结合基本不等式的结论可得:2a +2−3b ≥2×√2a ×2−3b =2×√2−6=14.当且仅当{2a =2−3ba −3b =6,即{a =3b =−1 时等号成立. 综上可得2a +18b 的最小值为14.【名师点睛】利用基本不等式求最值时,要灵活运用以下两个公式: ①22,,2a b a b ab ∈+≥R ,当且仅当a b =时取等号;②,a b +∈R ,a b +≥,当且仅当a b =时取等号.解题时要注意公式的适用条件、等号成立的条件,同时求最值时注意“1的妙用”.31.【2018年高考江苏卷】在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为___________. 【答案】9由题意可知,S △ABC =S △ABD +S △BCD ,由角平分线性质和三角形面积公式得12acsin120°=12a ×1×sin60°+12c ×1×sin60°,化简得ac =a +c,1a+1c=1,因此4a +c =(4a +c )(1a +1c )=5+c a +4a c≥5+2√c a ⋅4a c=9,当且仅当c =2a =3时取等号,则4a +c 的最小值为9.【名师点睛】线性规划问题是高考中常考考点,主要以选择或填空的形式出现,基本题型为给出约束条件求目标函数的最值,主要结合方式有:截距型、斜率型、距离型等. 32.【2017年高考上海卷】不等式11x x->的解集为________ 【答案】(),0-∞ 由题意,不等式11x x ->,得111100x x x->⇒<⇒<, 所以不等式的解集为(),0-∞.【名师点睛】本题考查解不等式,能正确化简不等式是解决该题的关键.33.【2017年高考北京卷文数】能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题的一组整数a ,b ,c 的值依次为___________. 【答案】−1,−2,−3(答案不唯一)()123,1233->->--+-=->-,矛盾,所以−1,−2,−3可验证该命题是假命题.【名师点睛】对于判断不等式恒成立问题,一般采用举反例排除法.解答本题时利用赋值的方式举反例进行验证,答案不唯一.34.【2017年高考北京卷文数】某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(ⅰ)男学生人数多于女学生人数;(ⅱ)女学生人数多于教师人数; (ⅲ)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为_________. ②该小组人数的最小值为_________. 【答案】6 12设男生人数、女生人数、教师人数分别为a b c 、、, 则*2,,,c a b c a b c >>>∈N . ①max 846a b b >>>⇒=,②min 3,635,412.c a b a b a b c =>>>⇒==⇒++=【名师点睛】本题主要考查了命题的逻辑分析、简单的合情推理, 题目设计巧妙,解题时要抓住关键,逐步推断,本题主要考查考生分析问题、解决问题的能力,同时注意不等式关系以及正整数这个条件.35.【2017年高考天津卷文数】若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________.【答案】444224141144a b a b ab ab ab ab +++≥=+≥=,(前一个等号成立的条件是222a b =,后一个等号成立的条件是12ab =,两个等号可以同时成立,当且仅当22,24a b ==时取等号). 【名师点睛】利用均值不等式求最值时要灵活运用以下两个公式:①22,,2a b a b ab ∈+≥R ,当且仅当a b =时取等号;②,a b +∈R ,a b +≥,当且仅当a b =时取等号.解题时要注意公式的适用条件、等号成立的条件,同时求最值时注意“1的妙用”. 36.【2017年高考山东卷文数】若直线1(00)x ya b a b+=>,>过点(1,2),则2a +b 的最小值为___________. 【答案】8 由直线1(00)x ya b a b+=>,> 过点(1,2)可得121a b +=,所以1242(2)()448b a a b a b aba b +=++=++≥+=.当且仅当4b a a b=,即4,2b a ==时等号成立.【名师点睛】应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式. 37.【2017年高考江苏卷】某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是___________. 【答案】30总费用为600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立. 【名师点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.38.【2017年高考天津卷文数】电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.(Ⅲ)用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域; (Ⅱ)问电视台每周播出甲、乙两套连续剧各多少次,才能使收视人次最多? 【答案】(I )见解+析;(II )见解+析.(Ⅰ)由已知,,x y 满足的数学关系式为706060055302x y x y x y x y +≤⎧⎪+≥⎪⎪≤⎨⎪∈⎪∈⎪⎩N N ,即7660620x y x y x y x y +≤⎧⎪+≥⎪⎪-≤⎨⎪∈⎪∈⎪⎩N N.该二元一次不等式组所表示的平面区域为图1中阴影部分内的整点(包括边界):。

(2017-2019)高考理数真题分类汇编专题14 概率与统计(选择题、填空题)(教师版)

(2017-2019)高考理数真题分类汇编专题14 概率与统计(选择题、填空题)(教师版)

专题14 概率与统计(选择题、填空题)1.【2019年高考全国Ⅲ卷理数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A .0.5 B .0.6 C .0.7D .0.8【答案】C【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C .【名师点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.2.【2019年高考全国Ⅱ卷理数】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差D .极差 【答案】A【解析】设9位评委评分按从小到大排列为123489x x x x x x <<<<<L .则①原始中位数为5x ,去掉最低分1x ,最高分9x 后剩余2348x x x x <<<<L ,中位数仍为5x ,A 正确; ②原始平均数1234891()9x x x x x x x =<<<<<L ,后平均数23481()7x x x x x '=<<<L ,平均数受极端值影响较大,x 与x '不一定相同,B 不正确; ③2222111[()()()]9q S x x x x x x =-+-++-L ,22222381[()()()]7s x x x x x x '=-'+-'++-'L ,由②易知,C 不正确;④原极差91x x =-,后极差82x x =-,显然极差变小,D 不正确.故选A . 3.【2019年高考浙江卷】设0<a <1,则随机变量的分布列是则当a 在(0,1)内增大时, A .()D X 增大B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大【答案】D【分析】研究方差随a 变化的增大或减小规律,常用方法就是将方差用参数a 表示,应用函数知识求解.本题根据方差与期望的关系,将方差表示为a 的二次函数,二次函数的图象和性质解题.题目有一定综合性,注重重要知识、基础知识、运算求解能力的考查. 【解析】方法1:由分布列得1()3aE X +=, 则2222111111211()(0)()(1)()333333926a a a D X a a +++=-⨯+-⨯+-⨯=-+, 则当a 在(0,1)内增大时,()D X 先减小后增大.故选D .方法2:则222221(1)222213()()()0[()]3399924a a a a D X E X E X a +-+=-=++-==-+,则当a 在(0,1)内增大时,()D X 先减小后增大.故选D .【名师点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.4.【2018年高考全国Ⅱ卷理数】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112 B .114 C .115D .118【答案】C【解析】不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有C 102=45种方法,因为7231119131730+=+=+=,所以随机选取两个不同的数,其和等于30的有3种方法,故所求概率为31=4515,故选C . 【名师点睛】古典概型中基本事件数的探求方法:(1)列举法;(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法;(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化;(4)排列组合法:适用于限制条件较多且元素数目较多的题目.5.【2018年高考全国Ⅰ卷理数】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 【答案】A【解析】设新农村建设前的收入为M ,而新农村建设后的收入为2M ,则新农村建设前种植收入为0.6M ,而新农村建设后的种植收入为0.74M ,所以种植收入增加了,所以A 项不正确;新农村建设前其他收入为0.04M ,新农村建设后其他收入为0.1M ,故增加了一倍以上,所以B 项正确;新农村建设前,养殖收入为0.3M ,新农村建设后为0.6M ,所以增加了一倍,所以C 项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的30%+28%=58%>50%,所以超过了经济收入的一半,所以D 正确;故选A .6.【2018年高考全国Ⅲ卷理数】某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,(4)(6)P X P X =<=,则p = A .0.7B .0.6C .0.4D .0.3【答案】B【解析】∵()(1)D X np p =-,∴0.4p =或0.6p =,4466641010(4)C (1)(6)C (1)P X p p P X p p ==-<==-Q ,22(1)p p ∴-<,可知0.5p >,故0.6p =.故选B .7.【2018年高考浙江卷】设01p <<,随机变量ξ的分布列是则当p 在(0,1)内增大时, A .D (ξ)减小 B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小【答案】D【解析】∵E(ξ)=0×1−p 2+1×12+2×p 2=p +12,∴D(ξ)=1−p 2(0−p −12)2+12(1−p −12)2+p2(2−p −12)2=−p 2+p +14,∵12∈(0,1),∴D(ξ)先增大后减小,故选D . 8.【2018年高考全国Ⅰ卷理数】下图自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 3【答案】A【解析】设AC =b ,AB =c ,BC =a ,则有b 2+c 2=a 2,从而可以求得ΔABC 的面积为S 1=12bc ,黑色部分的面积为22221π()π()[π()]2222c b a S bc =⋅+⋅-⋅-2222221π()π44424c b a c b a bc +-=+-+=⋅+1122bc bc =,其余部分的面积为2231π1π()2242a a S bc bc =⋅-=-,所以有12S S =, 根据面积型几何概型的概率公式,可以得到p 1=p 2,故选A .9.【2017年高考全国Ⅲ卷理数】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 【答案】A【解析】观察折线图,每年7月到8月折线图呈下降趋势,月接待游客量减少,选项A 说法错误; 折线图整体呈现出增长的趋势,年接待游客量逐年增加,选项B 说法正确;每年的接待游客量7,8月份达到最高点,即各年的月接待游客量高峰期大致在7,8月,选项C 说法正确;每年1月至6月的月折线图平稳,月接待游客量波动性更小,7月至12月折线图不平稳,月接待游客量波动性大,选项D 说法正确. 故选A .【名师点睛】将频率分布直方图中相邻的矩形的上底边的中点顺次连结起就得到一条折线,我们称这条折线为本组数据的频率分布折线图,频率分布折线图的首、尾两端取值区间两端点须分别向外延伸半个组距,即折线图是频率分布直方图的近似,它们比频率分布表更直观、形象地反映了样本的分布规律. 10.【2017年高考全国Ⅰ卷理数】如图,正方形ABCD 内的图形自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8 C .12D .π4【答案】B【解析】设正方形边长为a ,则圆的半径为2a ,正方形的面积为2a ,圆的面积为2π4a .由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221ππ248a a ⋅=,故选B . 【秒杀解】由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率p 满足1142p <<,故选B . 【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A . 11.【2017年高考山东卷理数】从分别标有,,,的张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是 A .B .C .D .【答案】C【解析】标有1,2,,9L 的9张卡片中,标奇数的有5张,标偶数的有4张,所以抽到的2张卡片上的数奇偶性不同的概率是11542C C 5989=⨯,故选C .1299518495979【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率考查,属于简单题. 12.【2017年高考浙江卷】已知随机变量i ξ满足P (i ξ=1)=p i ,P (i ξ=0)=1–p i ,i =1,2.若0<p 1<p 2<12,则A .1()E ξ<2()E ξ,1()D ξ<2()D ξB .1()E ξ<2()E ξ,1()D ξ>2()D ξC .1()E ξ>2()E ξ,1()D ξ<2()D ξD .1()E ξ>2()E ξ,1()D ξ>2()D ξ【答案】A【解析】∵1122(),()E p E p ξξ==,∴12()()E E ξξ<,∵111222()(1),()(1)D p p D p p ξξ=-=-,∴121212()()()(1)0D D p p p p ξξ-=---<,故选A . 【名师点睛】求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列,组合与概率知识求出X 取各个值时的概率.对于服从某些特殊分布的随机变量,其分布列可以直接应用公式给出,其中超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.由已知本题随机变量i ξ服从两点分布,由两点分布数学期望与方差的公式可得A 正确.13.【2017年高考山东卷理数】为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为.已知,,.该班某学生的脚长为24,据此估计其身高为A .B .C .D .【答案】C【解析】由已知得22.5,160,x y ==则$160422.570,a=-⨯= 当24x =时,ˆ42470y=⨯+166=,故选C . 【名师点睛】判断两个变量是否线性相关及相关程度通常有两种方法:(1)利用散点图直观判断;(2)将相关数据代入相关系数的公式求出,然后根据的大小进行判断.求线性回归方程时,在严格按照公式求解时,一定要注意计算的准确性.14.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是______________.ˆˆˆybx a =+101225i i x ==∑1011600i i y ==∑ˆ4b =160163166170r r r【答案】53【解析】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 15.【2019年高考全国Ⅱ卷理数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________. 【答案】0.98【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【解析】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10201040++=,所以该站所有高铁平均正点率约为39.20.9840=. 【名师点睛】本题考查了概率统计,渗透了数据处理和数学运算素养,侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.16.【2019年高考全国Ⅰ卷理数】甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是______________. 【答案】0.18【分析】本题应注意分情况讨论,即前五场甲队获胜的两种情况,应用独立事件的概率的计算公式求解.题目有一定的难度,注重了基础知识、基本计算能力及分类讨论思想的考查.【解析】前四场中有一场客场输,第五场赢时,甲队以4:1获胜的概率是30.60.50.520.108,⨯⨯⨯=前四场中有一场主场输,第五场赢时,甲队以4:1获胜的概率是220.40.60.520.072,⨯⨯⨯=综上所述,甲队以4:1获胜的概率是0.1080.0720.18.q =+=【名师点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以4:1获胜的两种情况;易错点之三是是否能够准确计算. 17.【2018年高考江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为______________.【答案】90【解析】由茎叶图可知,5位裁判打出的分数分别为89,89,90,91,91, 故平均数为8989909191905++++=.18.【2018年高考江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为______________. 【答案】310【解析】从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种, 因此所求概率为310. 19.【2017年高考全国Ⅱ卷理数】一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX =______________. 【答案】1.96【解析】由题意可得,抽到二等品的件数符合二项分布,即~(100,0.02)X B ,由二项分布的期望公式可得(1)1000.020.98 1.96DX np p =-=⨯⨯=.【名师点睛】判断一个随机变量是否服从二项分布,要看两点:①是否为n 次独立重复试验,在每次试验中事件A 发生的概率是否均为p ;②随机变量是否为在这n 次独立重复试验中某事件发生的次数,且()C (1)k k n kn P X k p p -==-表示在独立重复试验中,事件A 恰好发生次的概率.20.【2017年高考江苏卷】记函数()f x =D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是______________.【答案】59【解析】由260x x +-≥,即260x x --≤,得23x -≤≤,根据几何概型的概率计算公式得x D ∈的概率是3(2)55(4)9--=--.21.【2017年高考江苏卷】某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取______________件. 【答案】18【解析】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18.。

(2017-2019)高考理数真题分类汇编专题15 概率与统计(解答题)(教师版)

(2017-2019)高考理数真题分类汇编专题15 概率与统计(解答题)(教师版)

专题15 概率与统计(解答题)1.【2019年高考全国Ⅲ卷理数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【答案】(1)a=0.35,b=0.10;(2)甲、乙离子残留百分比的平均值的估计值分别为4.05,6.00.【解析】(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1–0.05–0.15–0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.2.【2019年高考全国Ⅱ卷理数】11分制乒乓球比赛,每赢一球得1分,当某局打成1010平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方1010平后,甲先发球,两人又打了个球该局比赛结束.(1)求P(=2);(2)求事件“=4且甲获胜”的概率.【答案】(1)0.5;(2)0.1.【解析】(1)=2就是10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分. 因此P (=2)=0.5×0.4+(1–0.5)×(1–0.4)=0.5.(2)=4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束, 且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分. 因此所求概率为[0.5×(1–0.4)+(1–0.5)×0.4]×0.5×0.4=0.1.3.【2019年高考天津卷理数】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望; (2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率. 【答案】(1)分布列见解析,()2E X =;(2)20243. 【分析】本小题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.【解析】(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故2~(3,)3X B ,从而3321()C ()(),0,1,2,333kkkP X k k -===.所以,随机变量X 的分布列为随机变量X 的数学期望()323E X =⨯=.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y , 则2~(3,)3Y B ,且{3,1}{2,0}M X Y X Y =====U . 由题意知事件{3,1}X Y ==与{2,0}X Y ==互斥,且事件{3}X =与{1}Y =,事件{2}X =与{0}Y =均相互独立, 从而由(1)知()({3,1}{2,0})P M P X Y X Y =====U(3,1)(2,0)P X Y P X Y ===+== (3)(1)(2)(0)P X P Y P X P Y ===+==824120279927243=⨯+⨯=. 4.【2019年高考北京卷理数】改革开放以,人们的支付方式发生了巨大转变.近年,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(1)从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率;(2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以表示这2人中上个月支付金额大于1000元的人数,求的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】(1)0.4;(2)分布列见解析,E ()=1;(3)见解析.【解析】(1)由题意知,样本中仅使用A 的学生有18+9+3=30人,仅使用B 的学生有10+14+1=25人,A ,B 两种支付方式都不使用的学生有5人.故样本中A ,B 两种支付方式都使用的学生有100−30−25−5=40人.所以从全校学生中随机抽取1人,该学生上个月A ,B 两种支付方式都使用的概率估计为400.4100=. (2)的所有可能值为0,1,2.记事件C 为“从样本仅使用A 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”,事件D 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”. 由题设知,事件C ,D 相互独立,且93141()0.4,()0.63025P C P D ++====. 所以(2)()()()0.24P X P CD P C P D ====,(1)()P X P CD CD ==U ()()()()P C P D P C P D =+0.4(10.6)(10.4)0.6=⨯-+-⨯0.52=,(0)()()()0.24P X P CD P C P D ====.所以的分布列为故的数学期望()00.2410.5220.241E X =⨯+⨯+⨯=.(3)记事件E 为“从样本仅使用A 的学生中随机抽查3人,他们本月的支付金额都大于2000元”. 假设样本仅使用A 的学生中,本月支付金额大于2000元的人数没有变化, 则由上个月的样本数据得33011()C 4060P E ==. 答案示例1:可以认为有变化. 理由如下:P (E )比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化,所以可以认为有变化. 答案示例2:无法确定有没有变化.理由如下: 事件E 是随机事件,P (E )比较小,一般不容易发生, 但还是有可能发生的,所以无法确定有没有变化.5.【2019年高考全国Ⅰ卷理数】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为. (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =L 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =L ,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =L 为等比数列; (ii)求4p ,并根据4p 的值解释这种试验方案的合理性. 【答案】(1)分布列见解析;(2)(i)证明见解析,(ii)45 127p =,解释见解析. 【解析】的所有可能取值为1,0,1-.(1)(1)P X αβ=-=-,(0)(1)(1)P X αβαβ==+--, (1)(1)P X αβ==-,所以X 的分布列为(2)(i )由(1)得0.4,0.5,0.1a b c ===.因此110.40.5 0.1i i i i p p p p -+=++,故110.1()0.4()i i i i p p p p +--=-, 即114()i i i i p p p p +--=-. 又因为1010p p p -=≠,所以1{}(0,1,2,,7)i i p p i +-=L 为公比为4,首项为1p 的等比数列. (ii )由(i )可得88776100p p p p p p p p =-+-++-+L877610()()()p p p p p p =-+-++-L81413p -=.由于8=1p ,故18341p =-, 所以44433221101( 411()327)(5())p p p p p p p p p p -=-+-+-+=-=. 4p 表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时, 认为甲药更有效的概率为410.0039257p =≈, 此时得出错误结论的概率非常小,说明这种试验方案合理.6.【2018年高考全国Ⅰ卷理数】某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为)10(<<p p ,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为)(p f ,求)(p f 的最大值点0p . (2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用. (i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ; (ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验? 【答案】(1)0.1;(2)(i )490,(ii )应该对余下的产品作检验.【解析】(1)20件产品中恰有2件不合格品的概率为221820()C (1)f p p p =-. 因此2182172172020()C [2(1)18(1)]2C (1)(110)f p p p p p p p p '=---=--.令()0f p '=,得0.1p =,当(0,0.1)p ∈时,()0f p '>;当(0.1,1)p ∈时,()0f p '<. 所以()f p 的最大值点为00.1p =. (2)由(1)知,0.1p =.(i )令Y 表示余下的180件产品中的不合格品件数,依题意知(180,0.1)Y B :,20225X Y =⨯+,即4025X Y =+. 所以(4025)4025490EX E Y EY =+=+=.(ii )如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. 由于400EX >,故应该对余下的产品作检验.7.【2018年高考全国Ⅱ卷理数】下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1217,,…,)建立模型①:ˆ30.413.5y t =-+;根据2010年至2016年的数据(时间变量t 的值依次为127,,…,)建立模型②:ˆ9917.5y t =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.【答案】(1)模型①:226.1亿元,模型②:256.5亿元;(2)利用模型②得到的预测值更可靠,理由见解析.【解析】(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为ˆ30.413.519226.1y=-+⨯=(亿元). 利用模型②,该地区2018年的环境基础设施投资额的预测值为ˆ9917.59256.5y=+⨯=(亿元). (2)利用模型②得到的预测值更可靠. 理由如下:(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线30.413.5y t =-+上下.这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型ˆ9917.5yt =+可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ⅰ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理.说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.8.【2018年高考全国Ⅲ卷理数】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m 的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:()()()()()22n ad bcKa b c d a c b d-=++++,【答案】(1)第二种生产方式的效率更高,理由见解析;(2)列联表见解析;(3)有99%的把握认为两种生产方式的效率有差异.【解析】(1)第二种生产方式的效率更高.理由如下:(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高. (iii )由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分. (2)由茎叶图知7981802m +==. 列联表如下:(3)由于2240(151555)10 6.63520202020K ⨯-⨯==>⨯⨯⨯,所以有99%的把握认为两种生产方式的效率有差异. 9.【2018年高考北京卷理数】电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“1k ξ=”表示第类电影得到人们喜欢,“0k ξ=”表示第类电影没有得到人们喜欢(=1,2,3,4,5,6).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系.【答案】(1)0.025;(2)0.35;(3)1D ξ>4D ξ>2D ξ=5D ξ>3D ξ>6D ξ. 【解析】(1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000, 第四类电影中获得好评的电影部数是200×0.25=50. 故所求概率为500.0252000=. (2)设事件A 为“从第四类电影中随机选出的电影获得好评”, 事件B 为“从第五类电影中随机选出的电影获得好评”. 故所求概率为P (AB AB +)=P (AB )+P (AB ) =P (A )(1–P (B ))+(1–P (A ))P (B ). 由题意知:P (A )估计为0.25,P (B )估计为0.2. 故所求概率估计为0.25×0.8+0.75×0.2=0.35. (3)1D ξ>4D ξ>2D ξ=5D ξ>3D ξ>6D ξ.10.【2018年高考天津卷理数】已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查. (1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i )用表示抽取的3人中睡眠不足的员工人数,求随机变量的分布列与数学期望;(ii )设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率.【答案】(1)分别抽取3人,2人,2人;(2)(i )分布列见解析,12()7E X =,(ii )67. 【解析】(1)由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2, 由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人. (2)(i )随机变量的所有可能取值为0,1,2,3.P (=)=34337C C C k k-⋅(=0,1,2,3). 所以,随机变量的分布列为随机变量的数学期望()0123353535357E X =⨯+⨯+⨯+⨯=. (ii )设事件B 为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”; 事件C 为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”, 则A =B ∪C ,且B 与C 互斥, 由(i )知,P (B )=P (=2),P (C )=P (=1), 故P (A )=P (B ∪C )=P (=2)+P (=1)=67. 所以,事件A 发生的概率为67. 11.【2017年高考全国Ⅰ卷理数】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性;(ⅰ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得16119.9716i i x x ===∑,0.212s ==≈,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2≈0.09≈.【答案】(1)(1)0.0408P X ≥≈,0.0416EX =;(2)(ⅰ)见解析,(ⅰ)μ的估计值为10.02,σ的估计值为0.09.【分析】(1)根据题设条件知一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,则零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,而~(16,0.0026)X B ,进而可以求出X 的数学期望.(2)(i )判断监控生产过程的方法的合理性,重点是考虑一天内抽取的16个零件中,出现尺寸在(3,3)μσμσ-+之外的零件的概率是大还是小,若小即合理;(ii )根据题设条件算出μ的估计值和σ的估计值,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,算出剩下数据的平均数,即为μ的估计值,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的样本方差,即为σ的估计值. 【解析】(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974, 从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B . 因此16(1)1(0)10.99740.0408P X P X ≥=-==-≈.X 的数学期望为160.00260.0416EX =⨯=.(2)(i )如果生产状态正常,一个零件尺寸在(3,3)μσμσ-+之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(3,3)μσμσ-+之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ii )由9.97,0.212x s =≈,得μ的估计值为ˆ9.97μ=,σ的估计值为ˆ0.212σ=, 由样本数据可以看出有一个零件的尺寸在ˆˆˆˆ(3,3)μσμσ-+之外, 因此需对当天的生产过程进行检查.剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的平均数为1(169.979.22)10.0215⨯-=, 因此μ的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈,因此σ0.09≈.【名师点睛】数学期望是离散型随机变量中重要的数学概念,反映随机变量取值的平均水平.求解离散型随机变量的分布列、数学期望时,首先要分清事件的构成与性质,确定离散型随机变量的所有取值,然后根据概率类型选择公式,计算每个变量取每个值的概率,列出对应的分布列,最后求出数学期望.正态分布是一种重要的分布,之前考过一次,尤其是正态分布的3σ原则.12.【2017年高考全国Ⅱ卷理数】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:g ).其频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A 表示事件:“旧养殖法的箱产量低于50g ,新养殖法的箱产量不低于50g ”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:,22()()()()()n ad bc K a b c d a c b d -=++++ 【答案】(1)0.4092;(2)有99%的把握认为箱产量与养殖方法有关;(3)52.35kg .【分析】(1)利用相互独立事件概率公式即可求得事件A 的概率估计值;(2)写出列联表计算2K 的观测值,即可确定有99%的把握认为箱产量与养殖方法有关;(3)结合频率分布直方图估计中位数为52.35kg .【解析】(1)记B 表示事件“旧养殖法的箱产量低于50kg ”,C 表示事件“新养殖法的箱产量不低于50kg ”,由题意知()()()()P A P BC P B P C ==,旧养殖法的箱产量低于50kg 的频率为(0.0120.0140.0240.0340.040)50.62++++⨯=, 故()P B 的估计值为0.62.新养殖法的箱产量不低于50kg 的频率为(0.0680.0460.0100.008)50.66+++⨯=, 故()P C 的估计值为0.66.因此,事件A 的概率估计值为0.620.660.4092⨯=. (2)根据箱产量的频率分布直方图得列联表:2K 的观测值2200(62663438)15.70510010096104k ⨯⨯-⨯=≈⨯⨯⨯, 由于15.705 6.635>,故有99%的把握认为箱产量与养殖方法有关.(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50kg 的直方图面积为(0.0040.0200.044)50.340.5++⨯=<,箱产量低于55kg 的直方图面积为(0.0040.0200.0440.068)50.680.5+++⨯=>, 故新养殖法箱产量的中位数的估计值为0.50.345052.35(kg)0.068-+≈.【名师点睛】(1)利用独立性检验,能够帮助我们对日常生活中的实际问题作出合理的推断和预测.独立性检验就是考察两个分类变量是否有关系,并能较为准确地给出这种判断的可信度,随机变量的观测值k 值越大,说明“两个变量有关系”的可能性越大.(2)利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.13.【2017年高考全国Ⅲ卷理数】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率. (1)求六月份这种酸奶一天的需求量(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?【答案】(1)分布列见解析;(2)n =300时,Y 的数学期望达到最大值,最大值为520元.【分析】(1)X 所有的可能取值为200,300,500,利用题意求得概率即可得到随机变量的分布列; (2)由题中所给条件分类讨论可得n =300时,Y 的数学期望达到最大值,为520元. 【解析】(1)由题意知,X 所有可能取值为200,300,500,由表格数据知216(200)0.290P X +===,36(300)0.490P X ===,2574(500)0.490P X ++===. 因此X 的分布列为(2)由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑200500n ≤≤. 当300500n ≤≤时,若最高气温不低于25,则642Y n n n =-=;若最高气温位于区间[20,25),则63002(300)412002Y n n n =⨯+--=-; 若最高气温低于20,则62002(200)48002Y n n n =⨯+--=-; 因此20.4(12002)0.48002()0.26400.4EY n n n n =⨯+-⨯+-⨯=-. 当200300n ≤<时,若最高气温不低于20,则642Y n n n =-=;若最高气温低于20,则62002(200)48002Y n n n =⨯+--=-;因此20.40.480()()020.2160 1.2EY n n n =⨯++-⨯=+. 所以n =300时,Y 的数学期望达到最大值,最大值为520元.【名师点睛】离散型随机变量的分布列指出了随机变量的取值以及取各值的概率;要理解两种特殊的概率分布——两点分布与超几何分布,并善于灵活运用两性质:一是p i ≥0(i =1,2,…);二是p 1+p 2+…+p n =1检验分布列的正误.14.【2017年高考天津卷理数】从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为111,,234. (1)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 【答案】(1)分布列见解析,13()12E X =;(2)1148. 【分析】(1)由题可得X 的所有可能取值为0,1,2,3,分别求出相应的概率,然后列出随机变量X 的分布列并计算其数学期望;(2))设Y 表示第1辆车遇到红灯的个数,Z 表示第2辆车遇到红灯的个数,这2辆车共遇到1个红灯包括:第1辆遇到1个红灯且第2辆没遇到红灯、第1辆没遇到红灯且第2辆遇到1个红灯,求这两个事件的概率的和即可. 【解析】(1)随机变量X 的所有可能取值为0,1,2,3.1111(0)(1)(1)(1)2344P X ==-⨯-⨯-=,11111111111(1)(1)(1)(1)(1)(1)(1)23423423424P X ==⨯-⨯-+-⨯⨯-+-⨯-⨯=,1111111111(2)(1)(1)(1)2342342344P X ==-⨯⨯+⨯-⨯+⨯⨯-=,1111(3)23424P X ==⨯⨯=.所以,随机变量X 的分布列为随机变量X 的数学期望()012342442412E X =⨯+⨯+⨯+⨯=. (2)设Y 表示第1辆车遇到红灯的个数,Z 表示第2辆车遇到红灯的个数,则所求事件的概率为(1)(0,1)(1,0)(0)(1)P Y Z P Y Z P Y Z P Y P Z +====+=====+11111111(1)(0)42424448P Y P Z ===⨯+⨯=.所以,这2辆车共遇到1个红灯的概率为1148.【名师点睛】求离散型随机变量概率分布列及数学期望是理科高考数学的必考题型.求离散型随机变量概率分布列问题时,首先要清楚离散型随机变量的所有可能取值,及随机变量取这些值时所对应的事件的概率,计算出概率值后即可列出离散型随机变量的概率分布列,最后按照数学期望的公式计算出数学期望.15.【2017年高考北京卷理数】为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标和y 的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y 的值小于60的概率;(2)从图中A ,B ,C ,D 四人中随机选出两人,记ξ为选出的两人中指标的值大于1.7的人数,求ξ的分布列和数学期望E (ξ);(3)试判断这100名患者中服药者指标y 数据的方差与未服药者指标y 数据的方差的大小.(只需写出结论)【答案】(1)0.3;(2)分布列见解析,()1E ξ=;(3)在这100名患者中,服药者指标y 数据的方差大于未服药者指标y 数据的方差.【分析】(1)根据所给图数出60y <的人数,再除以50就是概率;(2)由图可知A,C 两人的指标 1.7x >,根据超几何分布写出分布列,0,1,2ξ=,22224C C ()(0,1,2)C k kP k k ξ-===,并求数学期望;(3)方差表示数据的离散程度,波动越大,方差越大,波动小,方差小.。

(2017-2019)最新高考文科数学真题总结归类专题(含解析)

(2017-2019)最新高考文科数学真题总结归类专题(含解析)

(2017-2019)最新高考文科数学真题总结归类专题(含解析)专题01集合与常用逻辑用语1.【2019年高考全国Ⅰ卷文数】已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A =I ð A .{}1,6 B .{}1,7 C .{}6,7D .{}1,6,7【答案】C【解析】由已知得{}1,6,7U A =ð, 所以U B A =I ð{6,7}. 故选C .【名师点睛】本题主要考查交集、补集的运算,根据交集、补集的定义即可求解. 2.【2019年高考全国Ⅱ卷文数】已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(-1,+∞) B .(-∞,2)C .(-1,2)D .∅【答案】C【解析】由题知,(1,2)A B =-I . 故选C .【名师点睛】本题主要考查交集运算,是容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题.3.【2019年高考全国Ⅲ卷文数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B =I A .{}1,0,1- B .{}0,1 C .{}1,1-D .{}0,1,2【答案】A【解析】∵21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤,又{1,0,1,2}A =-,∴{}1,0,1A B =-I . 故选A .【名师点睛】本题考查了集合交集的求法,是基础题.4.【2019年高考北京文数】已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B = A .(–1,1) B .(1,2) C .(–1,+∞)D .(1,+∞)【答案】C【解析】∵{|12},{|1}A x x B x =-<<=>, ∴(1,)A B =-+∞U . 故选C.【名师点睛】本题考查并集的求法,属于基础题.5.【2019年高考浙江】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B I ð=A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-【答案】A【解析】∵{1,3}U A =-ð,∴(){1}U A B =-I ð. 故选A.【名师点睛】注意理解补集、交集的运算.6.【2019年高考天津文数】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =I UA .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,4【答案】D【解析】因为{1,2}A C =I ,所以(){1,2,3,4}A C B =I U . 故选D.【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算. 7.【2019年高考天津文数】设x ∈R ,则“05x <<”是“|1|1x -<”的 A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由|1|1x -<可得02x <<, 易知由05x <<推不出02x <<, 由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件, 即“05x <<”是“|1|1x -<”的必要而不充分条件. 故选B.【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到x 的取值范围. 8.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是“ab ≤4”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立, 综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 故选A.【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取,a b 的特殊值,从假设情况下推出合理结果或矛盾结果. 9.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件; 由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件.故α∥β的充要条件是α内有两条相交直线与β平行. 故选B .【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断.10.【2019年高考北京文数】设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】当0b =时,()cos sin cos f x x b x x =+=,()f x 为偶函数; 当()f x 为偶函数时,()()f x f x -=对任意的x 恒成立,由()cos()sin()cos sin f x x b x x b x -=-+-=-,得cos sin cos sin x b x x b x +=-, 则sin 0b x =对任意的x 恒成立, 从而0b =.故“0b =”是“()f x 为偶函数”的充分必要条件. 故选C.【名师点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查. 11.【2018年高考浙江】已知全集U ={1,2,3,4,5},A ={1,3},则=U A ðA .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}【答案】C【解析】因为全集U ={1,2,3,4,5},U ={1,3}, 所以根据补集的定义得∁U U ={2,4,5}. 故选C .【名师点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.12.【2018年高考全国Ⅰ卷文数】已知集合{}02A =,,{}21012B =--,,,,,则A B =I A .{}02, B .{}12,C .{}0D .{}21012--,,,, 【答案】A【解析】根据集合的交集中元素的特征,可以求得U ∩U ={0,2}. 故选A.【名师点睛】该题考查的是有关集合的运算问题,在解题的过程中,需要明确交集中元素的特征,从而求得结果.13.【2018年高考全国Ⅱ卷文数】已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B =IA .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,7【答案】C【解析】∵U ={1,3,5,7},U ={2,3,4,5},∴U ∩U ={3,5}. 故选C.【名师点睛】集合题是每年高考的必考内容,一般以客观题的形式出现,解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn 图法解决,若是“连续型”集合则可借助不等式进行运算.14.【2018年高考全国Ⅲ卷文数】已知集合{|10}A x x =-≥,{0,1,2}B =,则A B =IA .{0}B .{1}C .{1,2}D .{0,1,2}【答案】C【解析】易得集合{|1}A x x =≥,所以{}1,2A B =I . 故选C.【名师点睛】本题主要考查交集的运算,属于基础题.15.【2018年高考北京文数】已知集合A ={x ||x |<2},B ={–2,0,1,2},则A I B =A.{0,1} B.{–1,0,1}C.{–2,0,1,2} D.{–1,0,1,2}【答案】A【解析】∵|U|<2,∴−2<U<2,因此A∩B=(−2,2)∩{−2,0,1,2}={0,1}.故选A.【名师点睛】解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.16.【2018年高考天津文数】设集合{1,2,3,4}A=,{1,0,2,3}=∈-≤<R,B=-,{|12}C x x则()A B C=U IA.{1,1}-B.{0,1}C.{1,0,1}-D.{2,3,4}【答案】C【解析】由并集的定义可得:U∪U={−1,0,1,2,3,4},结合交集的定义可知:(U∪U)∩U={−1,0,1}.故选C.【名师点睛】本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力. 17.【2018年高考浙江】已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】因为U⊄U,U⊂U,U//U,所以根据线面平行的判定定理得U//U.由U//U不能得出U与U内任一直线平行,所以U//U是U//U的充分不必要条件.故选A.【名师点睛】充分、必要条件的三种判断方法:(1)定义法:直接判断“若U则U”、“若U则U”的真假.并注意和图示相结合,例如“U ⇒U ”为真,则U 是U 的充分条件.(2)等价法:利用U ⇒U 与非U ⇒非U ,U ⇒U 与非U ⇒非U ,U ⇔U 与非U ⇔非U 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若U ⊆U ,则U 是U 的充分条件或U 是U 的必要条件;若U =U ,则U 是U 的充要条件.18.【2018年高考天津文数】设x ∈R ,则“38x >”是“||2x >”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】求解不等式U 3>8可得U >2, 求解绝对值不等式|U |>2可得U >2或U <−2,据此可知:“U 3>8”是“|U |>2” 的充分而不必要条件. 故选A.【名师点睛】本题主要考查绝对值不等式的解法、充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.19.【2018年高考北京文数】设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】当U =4,U =1,U =1,U =14时,U ,U ,U ,U 不成等比数列,所以不是充分条件; 当U ,U ,U ,U 成等比数列时,则UU =UU ,所以是必要条件.综上所述,“UU =UU ”是“U ,U ,U ,U 成等比数列”的必要不充分条件. 故选B.【名师点睛】此题主要考查充分必要条件,实质是判断命题“U ⇒U ”以及“U ⇒U ”的真假.判断一个命题为真命题,要给出理论依据、推理证明;判断一个命题为假命题,只需举出反例即可,或者当一个命题正面很难判断真假时,可利用原命题与逆否命题同真同假的特点转化问题.20.【2017年高考全国Ⅰ卷文数】已知集合A ={}|2x x <,B ={}|320x x ->,则A .A IB =3|2x x ⎧⎫<⎨⎬⎩⎭B .A I B =∅C .A U B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A U B=R【答案】A【解析】由320x ->得32x <, 所以33{|2}{|}{|}22A B x x x x x x =<<=<I I .故选A .【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.21.【2017年高考全国Ⅱ卷文数】设集合{1,2,3},{2,3,4}A B ==,则A B =UA .{}123,4,,B .{}123,,C .{}234,,D .{}134,, 【答案】A【解析】由题意{1,2,3,4}A B =U . 故选A.【名师点睛】集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图. 22.【2017年高考北京文数】已知全集U =R ,集合{|22}A x x x =<->或,则U A =ðA .(2,2)-B .(,2)(2,)-∞-+∞UC .[2,2]-D .(,2][2,)-∞-+∞U【答案】C【解析】因为{2A x x =<-或2}x >,所以{}22U A x x =-≤≤ð. 故选C.【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示;若集合是无限集合就用描述法表示,并注意代表元素是什么.集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.23.【2017年高考全国Ⅲ卷文数】已知集合A ={1,2,3,4},B ={2,4,6,8},则A B I 中元素的个数为A .1B .2C .3D .4【答案】B【解析】由题意可得{}2,4A B =I , 故A B I 中元素的个数为2. 所以选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.24.【2017年高考天津文数】设集合{1,2,6},{2,4},{1,2,3,4}A B C ===,则()A B C =U IA .{2}B .{1,2,4}C .{1,2,4,6}D .{1,2,3,4,6}【答案】B【解析】由题意可得{}1,2,4,6A B =U , 所以{}()1,2,4A B C =U I . 故选B .【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.25.【2017年高考浙江】已知集合{|11}P x x =-<<,{02}Q x =<<,那么P Q =UA .(1,2)-B .(0,1)C .(1,0)-D .(1,2)【答案】A【解析】利用数轴,取,P Q 中的所有元素,得P Q =U (1,2)-. 故选A.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.26.【2017年高考山东文数】设集合{}11M x x =-<,{}2N x x =<,则M N =I A .()1,1- B .()1,2-C .()0,2D .()1,2【答案】C【解析】由|1|1x -<得02x <<,故={|02}{|2}{|02}M N x x x x x x <<<=<<I I . 故选C.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到,对离散的数集间的运算,或抽象集合间的运算,可借助Venn 图.27.【2017年高考浙江】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】由46511210212(510)S S S a d a d d +-=+-+=, 可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充分必要条件.故选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=,结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件.28.【2017年高考北京文数】设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】若0λ∃<,使λ=m n ,则两向量,m n 反向,夹角是180︒, 那么cos1800⋅=︒=-<m n m n m n ;若0⋅<m n ,那么两向量的夹角为(]90,180︒︒,并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分而不必要条件.故选A.【名师点睛】本题考查平面向量的知识及充分必要条件的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件.29.【2017年高考山东文数】已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a <b .下列命题为真命题的是A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝【答案】B【解析】由0x =时,210x x -+≥成立知p 是真命题;由221(2),12<->-可知q 是假命题,所以p q ∧⌝是真命题.故选B.【名师点睛】判断一个命题为真命题,要给出推理与证明;判断一个命题是假命题,只需举出反例.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.30.【2017年高考天津文数】设x ∈R ,则“20x -≥”是“|1|1x -≤”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由20x -≥,可得2x ≤,由|1|1x -≤,可得111x -≤-≤,即02x ≤≤, 因为{}{}022x x x x ≤≤⊂≤,所以“20x -≥”是“|1|1x -≤”的必要而不充分条件.故选B .【名师点睛】判断充要关系的的方法:①根据定义,若,/p q q p ⇒⇒,那么p 是q 的充分而不必要条件,同时q 是p 的必要而不充分条件,若p q ⇔,那么p 是q 的充要条件,若,//p q q p ⇒⇒,那那么p 是q 的既不充分也不必要条件;②当命题是以集合的形式给出时,那就看包含关系,若:p x A ∈,:q x B ∈,若A 是B 的真子集,那么p 是q 的充分而不必要条件,同时q 是p 的必要而不充分条件,若A B =,那么p 是q 的充要条件,若没有包含关系,那么p 是q 的既不充分也不必要条件;③命题的等价性,根据互为逆否命题的两个命题等价,将“p 是q ”的关系转化为“q ⌝是p ⌝”的关系进行判断.31.【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B =I ▲.【答案】{1,6}【解析】由题意利用交集的定义求解交集即可.由题意知,{1,6}A B =I .【名师点睛】本题主要考查交集的运算,属于基础题.32.【2018年高考江苏】已知集合U ={0,1,2,8},U ={−1,1,6,8},那么U ∩U =________.【答案】{1,8}【解析】由题设和交集的定义可知:U ∩U ={1,8}.【名师点睛】本题考查交集及其运算,考查基础知识,难度较小.33.【2017年高考江苏】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =I ,则实数a 的值为 ▲ .【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意.故答案为1.【名师点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,A B A B =∅⊆I 等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.34.【2018年高考北京文数】能说明“若a ﹥b ,则11a b<”为假命题的一组a ,b 的值依次为_________.【答案】1,−1(答案不唯一)【解析】使“若U >U ,则1U <1U ”为假命题,则使“若U >U ,则1U ≥1U ”为真命题即可,只需取U =1,U =−1即可满足,所以满足条件的一组U ,U 的值为1,−1(答案不唯一).【名师点睛】此题考查不等式的运算,解决本题的关键在于对原命题与命题的否定真假关系的灵活转换,对不等式性质及其等价变形的充分理解,只要多取几组数值,解决本题并不困难.35.【2017年高考北京文数】能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题的一组整数a ,b ,c 的值依次为______________________________.【答案】-1,-2,-3(答案不唯一)【解析】()123,1233->->--+-=->-,矛盾,所以−1,−2,−3可验证该命题是假命题.【名师点睛】对于判断不等式恒成立问题,一般采用举反例排除法.解答本题时利用赋值的方式举反例进行验证,答案不唯一.。

(2017-2019)高考理数真题分类汇编专题15 概率与统计(解答题)(教师版)

(2017-2019)高考理数真题分类汇编专题15 概率与统计(解答题)(教师版)

专题15 概率与统计(解答题)1.【2019年高考全国Ⅲ卷理数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【答案】(1)a=0.35,b=0.10;(2)甲、乙离子残留百分比的平均值的估计值分别为4.05,6.00.【解析】(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1–0.05–0.15–0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.2.【2019年高考全国Ⅱ卷理数】11分制乒乓球比赛,每赢一球得1分,当某局打成1010平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方1010平后,甲先发球,两人又打了个球该局比赛结束.(1)求P(=2);(2)求事件“=4且甲获胜”的概率.【答案】(1)0.5;(2)0.1.【解析】(1)=2就是10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分. 因此P (=2)=0.5×0.4+(1–0.5)×(1–0.4)=0.5.(2)=4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束, 且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分. 因此所求概率为[0.5×(1–0.4)+(1–0.5)×0.4]×0.5×0.4=0.1.3.【2019年高考天津卷理数】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望; (2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率. 【答案】(1)分布列见解析,()2E X =;(2)20243. 【分析】本小题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.【解析】(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故2~(3,)3X B ,从而3321()C ()(),0,1,2,333kkkP X k k -===.所以,随机变量X 的分布列为随机变量X 的数学期望()323E X =⨯=.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y , 则2~(3,)3Y B ,且{3,1}{2,0}M X Y X Y =====U . 由题意知事件{3,1}X Y ==与{2,0}X Y ==互斥,且事件{3}X =与{1}Y =,事件{2}X =与{0}Y =均相互独立, 从而由(1)知()({3,1}{2,0})P M P X Y X Y =====U(3,1)(2,0)P X Y P X Y ===+== (3)(1)(2)(0)P X P Y P X P Y ===+==824120279927243=⨯+⨯=. 4.【2019年高考北京卷理数】改革开放以,人们的支付方式发生了巨大转变.近年,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(1)从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率;(2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以表示这2人中上个月支付金额大于1000元的人数,求的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】(1)0.4;(2)分布列见解析,E ()=1;(3)见解析.【解析】(1)由题意知,样本中仅使用A 的学生有18+9+3=30人,仅使用B 的学生有10+14+1=25人,A ,B 两种支付方式都不使用的学生有5人.故样本中A ,B 两种支付方式都使用的学生有100−30−25−5=40人.所以从全校学生中随机抽取1人,该学生上个月A ,B 两种支付方式都使用的概率估计为400.4100=. (2)的所有可能值为0,1,2.记事件C 为“从样本仅使用A 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”,事件D 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于1000元”. 由题设知,事件C ,D 相互独立,且93141()0.4,()0.63025P C P D ++====. 所以(2)()()()0.24P X P CD P C P D ====,(1)()P X P CD CD ==U ()()()()P C P D P C P D =+0.4(10.6)(10.4)0.6=⨯-+-⨯0.52=,(0)()()()0.24P X P CD P C P D ====.所以的分布列为故的数学期望()00.2410.5220.241E X =⨯+⨯+⨯=.(3)记事件E 为“从样本仅使用A 的学生中随机抽查3人,他们本月的支付金额都大于2000元”. 假设样本仅使用A 的学生中,本月支付金额大于2000元的人数没有变化, 则由上个月的样本数据得33011()C 4060P E ==. 答案示例1:可以认为有变化. 理由如下:P (E )比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化,所以可以认为有变化. 答案示例2:无法确定有没有变化.理由如下: 事件E 是随机事件,P (E )比较小,一般不容易发生, 但还是有可能发生的,所以无法确定有没有变化.5.【2019年高考全国Ⅰ卷理数】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为. (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =L 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =L ,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =L 为等比数列; (ii)求4p ,并根据4p 的值解释这种试验方案的合理性. 【答案】(1)分布列见解析;(2)(i)证明见解析,(ii)45 127p =,解释见解析. 【解析】的所有可能取值为1,0,1-.(1)(1)P X αβ=-=-,(0)(1)(1)P X αβαβ==+--, (1)(1)P X αβ==-,所以X 的分布列为(2)(i )由(1)得0.4,0.5,0.1a b c ===.因此110.40.5 0.1i i i i p p p p -+=++,故110.1()0.4()i i i i p p p p +--=-, 即114()i i i i p p p p +--=-. 又因为1010p p p -=≠,所以1{}(0,1,2,,7)i i p p i +-=L 为公比为4,首项为1p 的等比数列. (ii )由(i )可得88776100p p p p p p p p =-+-++-+L877610()()()p p p p p p =-+-++-L81413p -=.由于8=1p ,故18341p =-, 所以44433221101( 411()327)(5())p p p p p p p p p p -=-+-+-+=-=. 4p 表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时, 认为甲药更有效的概率为410.0039257p =≈, 此时得出错误结论的概率非常小,说明这种试验方案合理.6.【2018年高考全国Ⅰ卷理数】某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为)10(<<p p ,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为)(p f ,求)(p f 的最大值点0p . (2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用. (i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ; (ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验? 【答案】(1)0.1;(2)(i )490,(ii )应该对余下的产品作检验.【解析】(1)20件产品中恰有2件不合格品的概率为221820()C (1)f p p p =-. 因此2182172172020()C [2(1)18(1)]2C (1)(110)f p p p p p p p p '=---=--.令()0f p '=,得0.1p =,当(0,0.1)p ∈时,()0f p '>;当(0.1,1)p ∈时,()0f p '<. 所以()f p 的最大值点为00.1p =. (2)由(1)知,0.1p =.(i )令Y 表示余下的180件产品中的不合格品件数,依题意知(180,0.1)Y B :,20225X Y =⨯+,即4025X Y =+. 所以(4025)4025490EX E Y EY =+=+=.(ii )如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. 由于400EX >,故应该对余下的产品作检验.7.【2018年高考全国Ⅱ卷理数】下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1217,,…,)建立模型①:ˆ30.413.5y t =-+;根据2010年至2016年的数据(时间变量t 的值依次为127,,…,)建立模型②:ˆ9917.5y t =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.【答案】(1)模型①:226.1亿元,模型②:256.5亿元;(2)利用模型②得到的预测值更可靠,理由见解析.【解析】(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为ˆ30.413.519226.1y=-+⨯=(亿元). 利用模型②,该地区2018年的环境基础设施投资额的预测值为ˆ9917.59256.5y=+⨯=(亿元). (2)利用模型②得到的预测值更可靠. 理由如下:(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线30.413.5y t =-+上下.这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型ˆ9917.5yt =+可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ⅰ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理.说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.8.【2018年高考全国Ⅲ卷理数】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m 的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:()()()()()22n ad bcKa b c d a c b d-=++++,【答案】(1)第二种生产方式的效率更高,理由见解析;(2)列联表见解析;(3)有99%的把握认为两种生产方式的效率有差异.【解析】(1)第二种生产方式的效率更高.理由如下:(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高. (iii )由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分. (2)由茎叶图知7981802m +==. 列联表如下:(3)由于2240(151555)10 6.63520202020K ⨯-⨯==>⨯⨯⨯,所以有99%的把握认为两种生产方式的效率有差异. 9.【2018年高考北京卷理数】电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“1k ξ=”表示第类电影得到人们喜欢,“0k ξ=”表示第类电影没有得到人们喜欢(=1,2,3,4,5,6).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系.【答案】(1)0.025;(2)0.35;(3)1D ξ>4D ξ>2D ξ=5D ξ>3D ξ>6D ξ. 【解析】(1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000, 第四类电影中获得好评的电影部数是200×0.25=50. 故所求概率为500.0252000=. (2)设事件A 为“从第四类电影中随机选出的电影获得好评”, 事件B 为“从第五类电影中随机选出的电影获得好评”. 故所求概率为P (AB AB +)=P (AB )+P (AB ) =P (A )(1–P (B ))+(1–P (A ))P (B ). 由题意知:P (A )估计为0.25,P (B )估计为0.2. 故所求概率估计为0.25×0.8+0.75×0.2=0.35. (3)1D ξ>4D ξ>2D ξ=5D ξ>3D ξ>6D ξ.10.【2018年高考天津卷理数】已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查. (1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i )用表示抽取的3人中睡眠不足的员工人数,求随机变量的分布列与数学期望;(ii )设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率.【答案】(1)分别抽取3人,2人,2人;(2)(i )分布列见解析,12()7E X =,(ii )67. 【解析】(1)由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2, 由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人. (2)(i )随机变量的所有可能取值为0,1,2,3.P (=)=34337C C C k k-⋅(=0,1,2,3). 所以,随机变量的分布列为随机变量的数学期望()0123353535357E X =⨯+⨯+⨯+⨯=. (ii )设事件B 为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”; 事件C 为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”, 则A =B ∪C ,且B 与C 互斥, 由(i )知,P (B )=P (=2),P (C )=P (=1), 故P (A )=P (B ∪C )=P (=2)+P (=1)=67. 所以,事件A 发生的概率为67. 11.【2017年高考全国Ⅰ卷理数】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性;(ⅰ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得16119.9716i i x x ===∑,0.212s ==≈,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2≈0.09≈.【答案】(1)(1)0.0408P X ≥≈,0.0416EX =;(2)(ⅰ)见解析,(ⅰ)μ的估计值为10.02,σ的估计值为0.09.【分析】(1)根据题设条件知一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,则零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,而~(16,0.0026)X B ,进而可以求出X 的数学期望.(2)(i )判断监控生产过程的方法的合理性,重点是考虑一天内抽取的16个零件中,出现尺寸在(3,3)μσμσ-+之外的零件的概率是大还是小,若小即合理;(ii )根据题设条件算出μ的估计值和σ的估计值,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,算出剩下数据的平均数,即为μ的估计值,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的样本方差,即为σ的估计值. 【解析】(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974, 从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B . 因此16(1)1(0)10.99740.0408P X P X ≥=-==-≈.X 的数学期望为160.00260.0416EX =⨯=.(2)(i )如果生产状态正常,一个零件尺寸在(3,3)μσμσ-+之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(3,3)μσμσ-+之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ii )由9.97,0.212x s =≈,得μ的估计值为ˆ9.97μ=,σ的估计值为ˆ0.212σ=, 由样本数据可以看出有一个零件的尺寸在ˆˆˆˆ(3,3)μσμσ-+之外, 因此需对当天的生产过程进行检查.剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的平均数为1(169.979.22)10.0215⨯-=, 因此μ的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈,因此σ0.09≈.【名师点睛】数学期望是离散型随机变量中重要的数学概念,反映随机变量取值的平均水平.求解离散型随机变量的分布列、数学期望时,首先要分清事件的构成与性质,确定离散型随机变量的所有取值,然后根据概率类型选择公式,计算每个变量取每个值的概率,列出对应的分布列,最后求出数学期望.正态分布是一种重要的分布,之前考过一次,尤其是正态分布的3σ原则.12.【2017年高考全国Ⅱ卷理数】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:g ).其频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A 表示事件:“旧养殖法的箱产量低于50g ,新养殖法的箱产量不低于50g ”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:,22()()()()()n ad bc K a b c d a c b d -=++++ 【答案】(1)0.4092;(2)有99%的把握认为箱产量与养殖方法有关;(3)52.35kg .【分析】(1)利用相互独立事件概率公式即可求得事件A 的概率估计值;(2)写出列联表计算2K 的观测值,即可确定有99%的把握认为箱产量与养殖方法有关;(3)结合频率分布直方图估计中位数为52.35kg .【解析】(1)记B 表示事件“旧养殖法的箱产量低于50kg ”,C 表示事件“新养殖法的箱产量不低于50kg ”,由题意知()()()()P A P BC P B P C ==,旧养殖法的箱产量低于50kg 的频率为(0.0120.0140.0240.0340.040)50.62++++⨯=, 故()P B 的估计值为0.62.新养殖法的箱产量不低于50kg 的频率为(0.0680.0460.0100.008)50.66+++⨯=, 故()P C 的估计值为0.66.因此,事件A 的概率估计值为0.620.660.4092⨯=. (2)根据箱产量的频率分布直方图得列联表:2K 的观测值2200(62663438)15.70510010096104k ⨯⨯-⨯=≈⨯⨯⨯, 由于15.705 6.635>,故有99%的把握认为箱产量与养殖方法有关.(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50kg 的直方图面积为(0.0040.0200.044)50.340.5++⨯=<,箱产量低于55kg 的直方图面积为(0.0040.0200.0440.068)50.680.5+++⨯=>, 故新养殖法箱产量的中位数的估计值为0.50.345052.35(kg)0.068-+≈.【名师点睛】(1)利用独立性检验,能够帮助我们对日常生活中的实际问题作出合理的推断和预测.独立性检验就是考察两个分类变量是否有关系,并能较为准确地给出这种判断的可信度,随机变量的观测值k 值越大,说明“两个变量有关系”的可能性越大.(2)利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.13.【2017年高考全国Ⅲ卷理数】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率. (1)求六月份这种酸奶一天的需求量(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?【答案】(1)分布列见解析;(2)n =300时,Y 的数学期望达到最大值,最大值为520元.【分析】(1)X 所有的可能取值为200,300,500,利用题意求得概率即可得到随机变量的分布列; (2)由题中所给条件分类讨论可得n =300时,Y 的数学期望达到最大值,为520元. 【解析】(1)由题意知,X 所有可能取值为200,300,500,由表格数据知216(200)0.290P X +===,36(300)0.490P X ===,2574(500)0.490P X ++===. 因此X 的分布列为(2)由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑200500n ≤≤. 当300500n ≤≤时,若最高气温不低于25,则642Y n n n =-=;若最高气温位于区间[20,25),则63002(300)412002Y n n n =⨯+--=-; 若最高气温低于20,则62002(200)48002Y n n n =⨯+--=-; 因此20.4(12002)0.48002()0.26400.4EY n n n n =⨯+-⨯+-⨯=-. 当200300n ≤<时,若最高气温不低于20,则642Y n n n =-=;若最高气温低于20,则62002(200)48002Y n n n =⨯+--=-;因此20.40.480()()020.2160 1.2EY n n n =⨯++-⨯=+. 所以n =300时,Y 的数学期望达到最大值,最大值为520元.【名师点睛】离散型随机变量的分布列指出了随机变量的取值以及取各值的概率;要理解两种特殊的概率分布——两点分布与超几何分布,并善于灵活运用两性质:一是p i ≥0(i =1,2,…);二是p 1+p 2+…+p n =1检验分布列的正误.14.【2017年高考天津卷理数】从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为111,,234. (1)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 【答案】(1)分布列见解析,13()12E X =;(2)1148. 【分析】(1)由题可得X 的所有可能取值为0,1,2,3,分别求出相应的概率,然后列出随机变量X 的分布列并计算其数学期望;(2))设Y 表示第1辆车遇到红灯的个数,Z 表示第2辆车遇到红灯的个数,这2辆车共遇到1个红灯包括:第1辆遇到1个红灯且第2辆没遇到红灯、第1辆没遇到红灯且第2辆遇到1个红灯,求这两个事件的概率的和即可. 【解析】(1)随机变量X 的所有可能取值为0,1,2,3.1111(0)(1)(1)(1)2344P X ==-⨯-⨯-=,11111111111(1)(1)(1)(1)(1)(1)(1)23423423424P X ==⨯-⨯-+-⨯⨯-+-⨯-⨯=,1111111111(2)(1)(1)(1)2342342344P X ==-⨯⨯+⨯-⨯+⨯⨯-=,1111(3)23424P X ==⨯⨯=.所以,随机变量X 的分布列为随机变量X 的数学期望()012342442412E X =⨯+⨯+⨯+⨯=. (2)设Y 表示第1辆车遇到红灯的个数,Z 表示第2辆车遇到红灯的个数,则所求事件的概率为(1)(0,1)(1,0)(0)(1)P Y Z P Y Z P Y Z P Y P Z +====+=====+11111111(1)(0)42424448P Y P Z ===⨯+⨯=.所以,这2辆车共遇到1个红灯的概率为1148.【名师点睛】求离散型随机变量概率分布列及数学期望是理科高考数学的必考题型.求离散型随机变量概率分布列问题时,首先要清楚离散型随机变量的所有可能取值,及随机变量取这些值时所对应的事件的概率,计算出概率值后即可列出离散型随机变量的概率分布列,最后按照数学期望的公式计算出数学期望.15.【2017年高考北京卷理数】为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标和y 的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y 的值小于60的概率;(2)从图中A ,B ,C ,D 四人中随机选出两人,记ξ为选出的两人中指标的值大于1.7的人数,求ξ的分布列和数学期望E (ξ);(3)试判断这100名患者中服药者指标y 数据的方差与未服药者指标y 数据的方差的大小.(只需写出结论)【答案】(1)0.3;(2)分布列见解析,()1E ξ=;(3)在这100名患者中,服药者指标y 数据的方差大于未服药者指标y 数据的方差.【分析】(1)根据所给图数出60y <的人数,再除以50就是概率;(2)由图可知A,C 两人的指标 1.7x >,根据超几何分布写出分布列,0,1,2ξ=,22224C C ()(0,1,2)C k kP k k ξ-===,并求数学期望;(3)方差表示数据的离散程度,波动越大,方差越大,波动小,方差小.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017——2019全国卷 概率与统计(解答题)
一、独立性检验
【2019年高考全国Ⅰ卷文数】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,
每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:

满意 不满意
男顾客
40 10
女顾客
30 20
(1)分别估计男、女顾客对该商场服务满意的概率;
(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?

附:22()()()()()nadbcKabcdacbd.

【2018年高考全国Ⅲ卷文数】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生
产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成
两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人
完成生产任务的工作时间(单位:min)绘制了如下茎叶图:

(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;
(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和
不超过m的工人数填入下面的列联表:

超过m 不超过
m

第一种生产方式
第二种生产方式
(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?

附:22()()()()()nadbcKabcdacbd,2()0.0500.0100.0013.8416.63510.828PKkk.

P(K2≥k)
0.050 0.010 0.001

k 3.841 6.635 10.828
二、频率分布直方图
【2018年高考全国Ⅰ卷文数】某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)
和使用了节水龙头50天的日用水量数据,得到频数分布表如下:
未使用节水龙头50天的日用水量频数分布表
日用
水量

00.1, 0.10.2, 0.20.3, 0.30.4, 0.40.5, 0.50.6, 

0.60.7,

频数
1 3 2 4 9 26 5
使用了节水龙头50天的日用水量频数分布表
日用水


00.1,

0.10.2, 

0.20.3,


0.30.4,
0.40.5, 

0.50.6,

频数
1 5 13 10 16 5
(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:

(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;
(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数
据以这组数据所在区间中点的值作代表.)

【2019年高考全国Ⅲ卷文数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:
将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠
给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科
学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:

记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值
为0.70.
(1)求乙离子残留百分比直方图中a,b的值;
(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).
【2019年高考全国Ⅱ卷文数】某行业主管部门为了解本行业中小企业的生产情况,随机调查了
100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.

y
的分组
[0.20,0) [0,0.20) [0.20,0.40) [0.40,0.60) [0.60,0.80)

企业数
2 24 53 14 7
(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;
(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点
值为代表).(精确到0.01)

附:748.602.

三、线性回归
【2018年高考全国Ⅱ卷文数】下图是某地区2000年至2016年环境基础设施投资额y(单位:亿
元)的折线图.

为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模
型.根据2000年至2016年的数据(时间变量t的值依次为1,2,,17)建立模型①:
ˆ
30.413.5yt

;根据2010年至2016年的数据(时间变量t的值依次为1,2,,7)建立模型

②:ˆ9917.5yt.
(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;
(2)你认为用哪个模型得到的预测值更可靠?并说明理由.
【2017年高考全国Ⅰ卷文数】为了监控某种零件的一条生产线的生产过程,检验员每隔
30 min
从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次
抽取的16个零件的尺寸:
抽取次序
1 2 3 4 5 6 7 8
零件尺寸
9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04
抽取次序
9 10 11 12 13 14 15 16
零件尺寸
10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95

经计算得16119.9716iixx,16162221111()(16)0.2121616iiiisxxxx,
16
2

1(8.5)18.439ii


,161()(8.5)2.78iixxi,其中ix为抽取的第i个零件的尺寸,1,2,,16i.

(1)求(,)ixi(1,2,,16)i的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生
产过程的进行而系统地变大或变小(若||0.25r,则可以认为零件的尺寸不随生产过程的进行
而系统地变大或变小).
(2)一天内抽检零件中,如果出现了尺寸在(3,3)xsxs之外的零件,就认为这条生产线在
这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?
(ⅰ)在(3,3)xsxs之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零
件尺寸的均值与标准差.(精确到0.01)

附:样本(,)iixy(1,2,,)in的相关系数12211()()()()niiinniiiixxyyrxxyy,0.0080.09.

四、频率分布直方图与独立性检验
【2017年高考全国Ⅱ卷文数】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收
获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如
下:

(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
箱产量<50 kg 箱产量
≥50 kg
旧养殖法
新养殖法

(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.

相关文档
最新文档