3.5质因数和分解质因数
质数与因数教案

质数与因数教案一、教学目标1. 知识目标:掌握质数的概念及判断,理解因数的定义和求解方法。
2. 能力目标:培养学生进行质数判断和因数求解的能力。
3. 情感目标:培养学生对数学的兴趣,激发学生解决问题的积极态度。
二、教学重难点1. 教学重点:质数的判断方法和因数的求解方法。
2. 教学难点:使学生正确理解质数和因数的概念,并能应用于实际问题的解决。
三、教学准备1. 教学工具:黑板、彩色粉笔、教师讲义、学生讲义、课件等。
2. 教学材料:习题集、实际问题案例等。
3. 学生素材:习题本、作业本等。
四、教学过程步骤一:引入质数和因数的概念(10分钟)教师通过简洁明了的语言向学生介绍质数和因数的概念,并通过实例引导学生理解:- 质数是指不能被除了1和本身以外的数整除的自然数。
如2、3、5、7等。
- 因数是指能够整除一个数的自然数。
如4的因数有1、2、4。
步骤二:质数判断方法(15分钟)教师通过示范和学生参与互动的方式,教授质数判断的方法:1. 除法判断法:将待判断的数从2开始逐一除以各个自然数,如果有能整除的数,则该数不是质数;如果所有自然数都无法整除该数,则该数是质数。
2. 试除法:将待判断的数从2开始到其平方根之间的所有自然数依次作为除数,如果能整除,则该数不是质数;如果都无法整除,则该数是质数。
步骤三:因数的求解方法(15分钟)教师通过示例和练习,引导学生掌握因数的求解方法:1. 因数树:从待求解的数开始,将其因数分支成多个数,再将这些数分别继续拆分,直到无法再分。
将得到的因数逐个列出,即是该数的所有因数。
2. 分解质因数:将待求解的数循环除以质数,得到的商再进行循环除以质数,直到商为1为止。
将所有被除数(质数)按照从小到大的顺序排列,即得到该数的质因数分解式。
步骤四:质数与因数的应用(20分钟)教师以实际问题为例,引导学生将质数和因数的知识应用于实际问题的解决:1. 问题一:某个农田的土地面积为3600平方米,农民希望将其均匀分成多个正方形的小块土地,每块土地面积相等,并且没有剩余的土地。
小五数学第13讲:质数和合数(教师版)——刘文静

第十三讲质数和合数1、自然数按因数的个数来分:质数、合数、1、0四类.(1)质数(或素数):只有1和它本身两个因数。
(2)合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。
(3)1:只有1个因数。
“1”既不是质数,也不是合数。
注:①最小的质数是2,最小的合数是4,连续的两个质数是2、3。
②每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
③ 20以内的质数:有8个(2、3、5、7、11、13、17、19)④ 100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、972、100以内找质数、合数的技巧:看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。
关系:奇数×奇数=奇数质数×质数=合数3、常见最大、最小A的最小因数是:1;最小的奇数是:1;A的最大因数是:本身;最小的偶数是:0;A的最小倍数是:本身;最小的质数是:2;最小的自然数是:0;最小的合数是:4;4、分解质因数:把一个合数分解成多个质数相乘的形式。
树状图例:分析:先把36写成两个因数相乘的形式,如果两个因数都是质数就不再进行分解了;如果两个因数中海油合数,那我们继续分解,一直分解到全部因数都是质数为止。
把36分解质因数是:36=2×2×3×35、用短除法分解质因数(一个合数写成几个质数相乘的形式)。
例:分析:看上面两个例子,分别是用短除法对18,30分解质因数,左边的数字表示“商”,竖折下面的表示余数,要注意步骤。
具体步骤是:6、互质数:公因数只有1的两个数,叫做互质数。
两个质数的互质数:5和7两个合数的互质数:8和9一质一合的互质数:7和87、两数互质的特殊情况:⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;⑷2和所有奇数互质;⑸质数与比它小的合数互质;教学重点:质数和合数的概念。
因数倍数、奇数偶数、质数合数概念

倍数和因数1、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
例:12是6的倍数,6是12的因数。
(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。
因数和倍数是相互依存的,不能单独存在。
(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的因数的求法:一前一后写,成对地按顺序找。
(3)一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘自然数(一般不考虑0)。
(4)2、3、5的倍数特征2的倍数:个位上是0,2,4,6,8的数都是2的倍数。
3的倍数:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
5的倍数:个位上是0或5的数,是5的倍数。
2和5的倍数:个位上是0的数,既是2的倍数又是5的倍数能同时被2、3、5整除(也就是2、3、5的倍数)的最小的两位数是30,最大的两位数是90,最小的三位数是120。
奇数和偶数2、自然数按能不能被2整除来分:奇数、偶数。
奇数:不能被2整除的数。
叫奇数。
也就是个位上是1、3、5、7、9的数。
偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。
自然数中最小的偶数是0,最小的奇数是1。
关系:奇数±偶数=奇数奇数±奇数=偶数偶数±偶数=偶数无论多少个偶数相加,结果都是偶数奇数个奇数相加,结果是奇数偶数个奇数相加,结果是偶数合数和质数(素数)3、质数(或素数):只有1和它本身两个因数。
合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。
既不是质数,也不是合数。
1:只有1个因数。
“1”最小的质数是2,最小的合数是4,连续的两个质数是2、3。
每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
20以内的质数:有8个(2、3、5、7、11、13、17、19)100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、974、100以内的质数口诀2、3、5、7和11,13后面是17,19、23、29,(十九、二三、二十九)31、37、41,(三一、三七、四十一)43、47、53,(四三、四七、五十三)59、61、67,(五九、六一、六十七)71、73、79,(七一、七三、七十九)83、89、97。
新苏教版五年级数学下册第三单元因数和倍数

2.判断。 (1)相邻的两个自然数,一定是一个奇数和一个偶数。 ( ) (2)偶数加1一定得到奇数。 ( ) (3)3的倍数的个数比2的倍数的个数少。 ( ) (4)一个数的个位上是0,这个数一定不是3的倍数。 ( ) (5)两个奇数的和一定是偶数。 ( ) (6)一个数是6的倍数,这个数一定是2和3的倍数。 ( )
О知识达标
1.在横线上填上合适的数。
14 23 39 35 48 2 20 34 43 1
(1)奇数有_____________________;
(2)偶数有______________________;
(3)质数有______________________; (4)合数有______________________。
2.填空。
(1)在1~20中,既是奇数又是质数的有( ), 既是奇数又是合数的有( ),既是偶数又是质数 的是( ),既是偶数又是合数的有( ),既不是质 数也不是合数的是( )。 (2)自然数中,最小的质数是( ),最小的合数是 ( ),它们之间相差( )。
3.判断。
(1)1是奇数,也是质数。 ( )
分析 求符合要求的最小三位数,百位上的数最小应是1;个位上的数 较容易判断,可通过5,2的倍数的特征来确定,这个三位数个位上的数 应是0;3的倍数需要这个三位数各位上数的和是3的倍数,所有十位 上的数可由此特征确定,要满足这个三位数最小的条件,十位上的数 应是2.
解答 这个三位数最小是120。
提示 同时考虑5,2和3的倍数的特征和“最小三位数” 是解决此题的关键。
2、1既不是质数,也不是合数。
【知识点二】 判断一个数是质数还是合数的方法
判断一个数是质数还是合数,只需要看这个数除了1和它本 身两个因数外,是否还有其他因数。如果没有,这个数就是 质数;如果有,这个数就是合数。
整理求最大公因数和最小公倍数的方法

整理求最大公因数和最小公倍数的方法最大公因数和最小公倍数是数学中常见的两个概念。
它们分别表示给定一组数字中能够整除全部数字的最大公因数和能够被全部数字整除的最小公倍数。
求最大公因数和最小公倍数的方法有多种,下面将对常见的几种方法进行整理。
一、质因数分解法:1.对于给定的数,先将其进行质因数分解,即将其写成质数的乘积的形式。
2.找出所有数的质因数分解结果中的最小指数,这些质因数的乘积即为最大公因数。
3.将所有数的质因数分解结果中的最大指数和最小指数分别相乘,得到的结果即为最小公倍数。
例如,对于数15和25:15=3×525=5×5最大公因数是5,最小公倍数是3×5×5=75二、辗转相除法:1.对于给定的两个数a和b,首先比较它们的大小。
2.如果a大于b,则将a除以b得到余数c,然后将b赋值为原先的a,将c赋值为原先的b,然后重复步骤23.如果b等于0,则a即为最大公因数。
4.最小公倍数为a和b的乘积除以最大公因数。
例如,对于数15和25:15÷25=0余1525÷15=1余1015÷10=1余510÷5=2余0最大公因数是5,最小公倍数是15×25÷5=75三、连续整数倍法:1.对于给定的两个数a和b,先找到其中较大的数,然后将其不断增加直到找到一个数能够同时整除a和b。
这个数即为最小公倍数。
2.最大公因数则是能够同时整除a和b的最小的正整数。
例如15的倍数为15、30、45、60、75、90、105、120…25的倍数为25、50、75、100、125、150、175、200…因此,最小公倍数是75,最大公因数是5除了上述三种常用的方法,还有其他一些求最大公因数和最小公倍数的方法,例如分解质因数法、公式法等。
总之,求最大公因数和最小公倍数的方法有多种,每种方法都有其适用的场景。
在实际问题中,选择合适的方法能够更高效地求解最大公因数和最小公倍数。
数的认识(因数与倍数)

7、A和B都是自然数,且A÷B=7,那么A与B的最大 公因数是( ),最小公倍数是( )。 8、A、B两个数分解质因数分别是A=2×3×7, B=2×5×7。A、B的最大公因数是( ),最小公 倍数是( )。 9、8个连续自然数的和是284,这8个自然数分别是 ( )。 10、9个连续偶数的和是90,这9个连续偶数分别是 ( )。 11、7个连续自然数的和为35,这7个自然数分别是 ( )。
因数和倍数知识点:
1、整除与除尽。 2、因数与倍数。 3、能被2、3、5整除的数的特征。 4、奇数和偶数。 5、质数与和数。 6、分解质因数。 7、最大公因数和最小公倍数。
1. 整除与除尽
整除: 整数a除以整数b(b≠0),除得的商是整数而没有余数, 我们就说数a能被数b整除,或数b能整除a.
1不是质数 书写格式不符
2
30 3 15 5
30=2×3×5
7. 最大公因数和最小公倍数
公因数,最大公因数: 几个数公有的因数,叫做这几个数的公因数; 其中最大的一个叫做这几个数的最大公因数.
例:( 1,2,4 )是8和12的公因数,( 4 )是8和12的最大公因数.
公倍数,最小公倍数: 几个数公有的倍数,叫做这几个数的 公倍数,其中最小的一个叫做这几个 数的最小公倍数.
短除法
2 24 36 2 12 18 3 6 2 9 3 商互质
24和36的最大公约数是:2×2×3=12
除数相乘
24和36的最小公倍数是: 2×2×3×2×3=72 所有的除数和商相乘
求最大公约数和最小公倍数 4和28 最大公约数是( ); 4 最小公倍数是( ) 28
⑴.如果较小数是较大数的约数,那么较小数 就是这两个数的最大公约数;较大数就是这两 个数的最小公倍数.
分解质因数教学反思
分解质因数教学反思
本节课的教学目标有三点:
1、在自主写算式、小组合作验证等学习活动中,经历认识质因数、分解质因数的过程。
2、知道质因数,会把一个数分解质因数。
3、在小组合作中积极与他人交流,体验合作学习的收获和乐趣。
认识质因数、会分解质因数是本节课知识技能目标的重点和难点。
而自主探究、合作交流恰恰是突破难点的有效手段,在突破难点的过程中有效地落实过程性目标和情感目标。
在认识质因数的教学中,利用课前学生猜老师的年龄、身高、体重的数据,选取其中具有代表性的数据开展研究。
如先研究老师的年龄(36),通过学生自主写算式、比较、分析、交流得出36=2×2×3×3是与众不同的,从而引出“质因数”的概念,而此时学生对质因数的概念并不是真正了解。
因为概念的形成大致要经过以下几个过程:展示大量的感性材料——分析、比较、综合、抽象——得出一类事物的本质属性——初步形成概念的表象——试误辨析充分理解
概念的内涵和外延——形成概念——付诸实践应用——加深概念的
理解。
而上述过程中学生只是初步形成了概念的表象。
所以,此时,充分利用黑板上板书的大量数据,让学上按要求把他们写成几个质数相乘的形式,使学生在实际的操作过程中、在自我试误辨析中、在同学间的交流中形成质因数的概念。
在质因数概念的形成过程中,对分解质因数的基本方法也已基本形成。
下面关于分解质因数的教学主要
是指导学生书写方法和格式方面的问题了。
水到渠成,迎刃而解。
西师大版五年级数学下册全册单元知识点
西师大版五年级数学下册全册单元知识点因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。
整数与自然数的关系:整数包括自然数。
因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
例:12是6的倍数,6是12的因数。
(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。
因数和倍数是相互依存的,不能单独存在。
(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的因数的求法:成对地按顺序找。
(3)一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘以自然数。
(4)2、3、5的倍数特征1)个位上是0,2,4,6,8的数都是2的倍数。
2)一个数个位上的数的和是3的倍数,这个数就是3的倍数。
3)个位上是0或5的数,是5的倍数。
4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。
同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。
5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。
3、完全数:除了它本身以外所有的因数的和等于它本身的数叫做完全数。
如:6的因数有:1、2、3(6除外),刚好1+2+3=6,所以6是完全数,小的完全数有6、28等4:自然数按能不能被2整除来分:奇数、偶数。
奇数:不能被2整除的数。
叫奇数。
也就是个位上是1、3、5、7、9的数。
偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。
最小的奇数是1,最小的偶数是0.关系:奇数+偶数=奇数奇数+ 奇数=偶数偶数+偶数=偶数。
奇数-偶数=奇数奇数-奇数=偶数偶数-偶数=偶数4、自然数按因数的个数来分:质数、合数、1、0四类.质数(或素数):只有1和它本身两个因数。
合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。
1:只有1个因数。
“1”既不是质数,也不是合数。
第3讲 质数、合数与分解质因数(作业师)
北京大学附属小学 解答:因为271<217=289,17以内的素数有2,3,5,7,11,13,17。
根据2,3,5,11的整除特征,可以判断出289不能被这些数整除,经试验可以判断出271也不能被7,13和17整除,因此可以知道271是素数。
同理,因为493<223=529,23以内的素数有2,3,5,7,11,13,17,19和23,经实验很容易判断出493不能被2,3,5,7,11,13整除,用17和19和23试除493,得到493÷17=29。
所以可以判断出493是合数。
说明:利用平方数确定试除素数的范围,是判断素数的一种很好的方法。
2、从小到大写出5个质数,使后面的数都比前面的数大12.【分析与解】 我们知道12是2、3的倍数,如果开始的质数是2或3,那么后一个数即23或与12的和一定也是2或3的倍数,将是合数,所以从5开始尝试. 有5、17、29、41、53是满足条件的5个质数.3、用1,2,3,4,5,6,7,8,9这9个数字组成质数,如果每个数字都要用到并且只能用一次,那么这9个数字最多能组成多少个质数?【分析与解】要使质数个数最多,我们尽量组成一位的质数,有2、3、5、7均为一位质数,这样还剩下1、4、6、8、9这5个不是质数的数字未用.有1、4、8、9可以组成质数41、89,而6可以与7组合成质数67.所以这9个数字最多组成了2、3、5、41、67、89这6个质数.4、四个一位数的乘积是360,并且其中只有一个是合数,那么在这4个数字所组成的四位数中,最大的一个是多少?分析:将360分解质因数得360=2×2×2×3×3×5,它是6个质因数的乘积。
因为题述的四个数中只有一个是合数,所有该合数必至少为6-3=3个质因数的积,又只有3个2相乘才能是一位数,所以这4个乘数分别为3,3,5,8,所组成的最大四位数是8533。
人教版六年级数学下册第六单元数与代数ppt课件
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
1. 整除与除尽
整除: 整数a除以整数b(b≠0),除得的商是整数而没有余数, 我们就说数a能被数b整除,或数b能整除a.
除尽: 数a除以数b(b≠0),除得的商是整数或是有限小数, 这就叫做除尽.
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
1.分数的意义和分数单位
单位“1”---- 一个物体,一个计量单位或是许多物体组成的一个 整体,都可以用自然数1来表示,通常我们把它叫做 单位“1”
8.小数的性质
小数的末尾添上0或者去掉0,小数的大小不变.
运用小数的性质,可以在小数末尾添上0. 3.5=3.50 也可以把小数化简. 3.500=3.5
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
区别: 整除是除尽的一种特殊情况,整除也可以说是除尽, 但除尽不一定是整除.
除尽 整除
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
2. 约数和倍数
9.小数点数位移动引起小数大小的变化
小数点向右(左)移动一位、两位、三 位……原来的数就扩大(缩小)10倍、100倍、 1000倍……