2018届高三理科数学二轮复习跟踪强化训练:8 Word版含解析
2018学高考理科数学通用版练酷专题二轮复习课时跟踪检测:(十三) 算法、推理与证明 Word版含解析

课时跟踪检测(十三) 算法、推理与证明1.下面几种推理是合情推理的是( )①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③教室内有一把椅子坏了,则猜想该教室内的所有椅子都坏了;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得出凸n 边形的内角和是(n -2)·180°(n ∈N *,且n ≥3).A .①②B .①③④C .①②④D .②④解析:选C ①是类比推理;②④是归纳推理, ∴①②④都是合情推理.2.(2017·山东高考)执行两次如图所示的程序框图,若第一次输入的x 的值为7,第二次输入的x 的值为9,则第一次、第二次输出的a 的值分别为( )A .0,0B .1,1C .0,1D .1,0解析:选D 当输入x =7时,b =2,因为b 2>x 不成立且x 不能被b 整除,故b =3,这时b 2>x 成立,故a =1,输出a 的值为1.当输入x =9时,b =2,因为b 2>x 不成立且x 不能被b 整除,故b =3,这时b 2>x 不成立且x 能被b 整除,故a =0,输出a 的值为0.3.(2017·惠州模拟)执行如图所示的程序框图,则输出的结果为( ) A .7 B .9 C .10D .11解析:选B 法一:i =1,S =lg 13=-lg 3>-1;i =3,S =lg 13+lg 35=lg15=-lg 5>-1;i =5,S =lg 15+lg 57=lg 17=-lg 7>-1;i =7,S =lg 17+lg 79=lg 19=-lg 9>-1;i =9,S =lg 19+lg 911=lg 111=-lg 11<-1,故输出的i =9. 法二:因为S =lg 13+lg 35+…+lg i i +2=lg 1-lg 3+lg 3-lg 5+…+lg i -lg(i +2)=-lg(i+2),当i =9时,S =-lg(9+2)<-lg 10=-1,所以输出的i =9.4.通过圆与球的类比,由结论“半径为r 的圆的内接四边形中,正方形的面积最大,最大值为2r 2”猜想关于球的相应结论为“半径为R 的球的内接六面体中,______”.( )A .长方体的体积最大,最大值为2R 3B .正方体的体积最大,最大值为3R 3C .长方体的体积最大,最大值为43R 39D .正方体的体积最大,最大值为83R 39解析:选D 类比可知半径为R 的球的内接六面体中,正方体的体积最大,设其棱长为a ,正方体体对角线的长度等于球的直径,即3a =2R ,得a =2R 3,体积V =a 3=83R 39.5.对于大于1的自然数m 的三次幂可用奇数进行以下方式的“分裂”:23=⎩⎪⎨⎪⎧3,5,33=⎩⎪⎨⎪⎧7,9,11,43=⎩⎪⎨⎪⎧13,15,17,19,……,若m 3的“分裂”中有一个数是2 017,则m =( )A .44B .45C .46D .47解析:选B 由题意不难找出规律,23=3+5,33=7+9+11,43=13+15+17+19,……,m 增加1,累加的奇数个数便多1,易得2 017是第1 009个奇数,由⎩⎪⎨⎪⎧1+2+3+…+(m -1)<1 009,1+2+3+…+(m -1)+m ≥1 009, 得⎩⎨⎧m (m -1)2<1 009,m (m +1)2≥1 009,又m ∈N *,所以m =45.6.若数列{a n }是等差数列,则数列{b n }⎝⎛⎭⎫b n =a 1+a 2+…+a n n也为等差数列.类比这一性质,可知若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( )A .d n =c 1+c 2+…+c nn B .d n =c 1·c 2·…·c nn C .d n = n c n 1+c n 2+…+c nnnD .d n =nc 1·c 2·…·c n解析:选D 若{a n }是等差数列,则a 1+a 2+…+a n =na 1+n (n -1)2d ,∴b n =a 1+n -12d=d 2n +a 1-d 2,即{b n }为等差数列;若{c n }是等比数列,则c 1·c 2·…·c n =c n 1·q 1+2+…+(n -1)=c n 1·q 12-n n (),∴d n =(c 1·c 2·…·c n )1n=c 1·q12-n ,即{d n }为等比数列,故选D.7.(2018届高三·湖北八校二联)有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( )A .甲B .乙C .丙D .丁解析:选D 根据题意,6名选手比赛结果甲、乙、丙、丁猜测如下表:由表知,只有丁猜对了比赛结果,故选D.8.在平面几何中,有“若△ABC 的三边长分别为a ,b ,c ,内切圆半径为r ,则三角形面积为S △ABC =12(a +b +c )r ”,拓展到空间,类比上述结论,若四面体A -BCD 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为R ,则四面体的体积为( )A.13(S 1+S 2+S 3)R B.14(S 1+S 2+S 3+S 4)R 2 C.13(S 1+S 2+S 3+S 4)R 2 D.13(S 1+S 2+S 3+S 4)R 解析:选D 三角形面积类比为四面体的体积,三角形的边长类比为四面体四个面的面积,内切圆半径类比为内切球的半径,二维图形中的12类比为三维图形中的13,从而得出结论.所以V A -BCD =13(S 1+S 2+S 3+S 4)R . 9.(2017·成都模拟)对于数25,规定第1次操作为23+53=133,第2次操作为13+33+33=55,如此反复操作,则第2 017次操作后得到的数是( )A .25B .250C .55D .133解析:选D 由规定:第1次操作为23+53=133,第2次操作为13+33+33=55,第3次操作为53+53=250,第4次操作为23+53+03=133,…,故操作得到的数值周期出现,且周期为3.又2 017=3×672+1,相当于操作了1次,故选D.10.定义运算a ⊗b 为执行如图所示的程序框图输出的S 值,则⎝⎛⎭⎫2cos 5π3⊗⎝⎛⎭⎫2tan 5π4的值为( )A .4B .3C .2D .-1解析:选A 由程序框图可知,S =⎩⎪⎨⎪⎧a (a -b ),a ≥b ,b (a +1),a <b ,因为2cos 5π3=1,2tan 5π4=2,1<2,所以⎝⎛⎭⎫2cos 5π3⊗⎝⎛⎭⎫2tan 5π4=2(1+1)=4.11.(2018届高三·西安八校联考)如图给出的是计算12+14+16+…+12 014+12 016的值的程序框图,其中判断框内应填入的是( )A .i ≤2 014?B .i ≤2 016?C .i ≤2 018?D .i ≤2 020?解析:选B 依题意得,S =0,i =2;S =0+12,i =4;…;S =0+12+14+…+12 014+12 016,i =2 018,输出的S =12+14+16+…+12 014+12 016,所以题中的判断框内应填入的是“i ≤2016”.12.(2018届高三·武汉调研)一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中有一人是罪犯,由此可判断罪犯是( )A .甲B .乙C .丙D .丁解析:选B 由题可知,乙、丁两人的观点一致,即同真同假,假设乙、丁说的是真话,那么甲、丙两人说的是假话,由乙说的是真话,推出丙是罪犯,由甲说假话,推出乙、丙、丁三人不是罪犯,显然两结论相互矛盾,所以乙、丁两人说的是假话,而甲、丙两人说的是真话,由甲、丙供述可得,乙是罪犯.13.(2018届高三·安溪三校联考)已知点A (x 1,ax 1),B (x 2,ax 2)是函数y =a x (a >1)的图象上任意不同两点,依据图象可知,线段AB 总是位于A ,B 两点之间函数图象的上方,因此有结论a 1x +a 2x 2>a12+2x x 成立.运用类比思想方法可知,若点A (x 1,sin x 1),B (x 2,sin x 2)是函数y =sin x (x ∈(0,π))的图象上任意不同两点,则类似地有________成立.解析:对于函数y =sin x (x ∈(0,π))的图象上任意不同的两点A (x 1,sin x 1),B (x 2,sin x 2),线段AB 总是位于A ,B 两点之间函数图象的下方,类比可知应有sin x 1+sin x 22<sin x 1+x 22成立.答案:sin x 1+sin x 22<sin x 1+x 2214.(2017·合肥模拟)观察下列等式: S 1=12n 2+12n ,S 2=13n 3+12n 2+16n ,S 3=14n 4+12n 3+14n 2,S 4=15n 5+12n 4+13n 3-130n ,S 5=An 6+12n 5+512n 4+Bn 2,…可以推测,A -B =________.解析:由S 1,S 2,S 3,S 4,S 5的特征,推测A =16.又S k 的各项系数的和为1,∴A +12+512+B =1,∴B =-112.故推测A -B =16+112=14. 答案:1415.(2017·江西师大附中期末考试)对于集合{a 1,a 2,…,a n }和常数a 0,定义: ω=sin 2(a 1-a 0)+sin 2(a 2-a 0)+…+sin 2(a n -a 0)n为集合{a 1,a 2,…,a n }相对a 0的“正弦方差”,则集合⎩⎨⎧⎭⎬⎫π2,5π6,7π6相对a 0的“正弦方差”为________.解析:由题意,得集合⎩⎨⎧⎭⎬⎫π2,5π6,7π6相对a 0的“正弦方差”为ω=sin 2⎝⎛⎭⎫π2-a 0+sin 2⎝⎛⎭⎫5π6-a 0+sin 2⎝⎛⎭⎫7π6-a 03.即3ω=cos 2a 0+1-cos ⎝⎛⎭⎫5π3-2a 02+1-cos ⎝⎛⎭⎫7π3-2a 02,所以6ω=2cos 2a 0+1-cos ⎝⎛⎭⎫π3+2a 0+1-cos π3-2a 0,即6ω=2cos 2a 0+2-2cos π3cos 2a 0, 所以6ω=2cos 2a 0+2-(2cos 2a 0-1),于是ω=12.答案:1216.执行如图所示的程序框图,输出的S 的值为________.解析:S =sin1×π3+sin 2×π3+sin 3×π3+sin 4×π3+sin 5×π3+sin 6×π3+…+sin 2 017×π3=sin 1×π3+sin 2×π3+sin 3×π3+sin 4×π3+sin 5×π3+sin 6×π3×336+sin 1×π3=32. 答案:32。
2018届高三理科数学二轮复习跟踪强化训练19 含解析 精

跟踪强化训练(十九)1.(2017·沈阳质检)已知数列{a n }是公差不为0的等差数列,首项a 1=1,且a 1,a 2,a 4成等比数列.(1)求数列{a n }的通项公式; (2)设数列{b n }满足b n =a n +,求数列{b n }的前n 项和T n .[解] (1)设数列{a n }的公差为d ,由已知得,a 22=a 1a 4,即(1+d )2=1+3d ,解得d =0或d =1. 又d ≠0,∴d =1,可得a n =n . (2)由(1)得b n =n +2n ,∴T n =(1+21)+(2+22)+(3+23)+…+(n +2n ) =(1+2+3+…+n )+(2+22+23+…+2n ) =n (n +1)2+2n +1-2.[解](1)由题意得,⎩⎪⎨⎪⎧S 1=a 2-2,a 1+a 2=2a 3-6,a 1+a 2+a 3=9,解得⎩⎪⎨⎪⎧a 1=1,a 2=3,a 3=5,当n ≥2时,S n -1=(n -1)a n -(n -1)n , 所以a n =na n +1-n (n +1)-(n -1)a n +(n -1)n , 即a n +1-a n =2.又a 2-a 1=2,因而数列{a n }是首项为1,公差为2的等差数列,从而a n =2n -1.T n =1×21+3×22+5×23+…+(2n -3)×2n -1+(2n -1)×2n , 2T n =1×22+3×23+5×24+…+(2n -3)×2n +(2n -1)×2n +1. 两式相减得-T n =1×21+2×22+2×23+…+2×2n -(2n -1)×2n +1 =-2+2×(21+22+23+…+2n )-(2n -1)×2n +1 =-2+2×2×(1-2n )1-2-(2n -1)×2n +1=-2+2n +2-4-(2n -1)×2n +1=-6-(2n -3)×2n +1. 所以T n =6+(2n -3)×2n +1.3.数列{a n }的前n 项和为S n ,且首项a 1≠3,a n +1=S n +3n (n ∈N *).(1)求证:{S n -3n }是等比数列;(2)若{a n }为递增数列,求a 1的取值范围. [解] (1)证明:∵a n +1=S n +3n ,(n ∈N *) ∴S n +1=2S n +3n ,∴S n +1-3n +1=2(S n -3n ),∵a 1≠3. ∴S n +1-3n +1S n -3n=2,∴数列{S n -3n }是公比为2,首项为a 1-3的等比数列. (2)由(1)得S n -3n =(a 1-3)×2n -1,∴S n =(a 1-3)×2n -1+3n , ∴当n ≥2时,a n =S n -S n -1=(a 1-3)×2n -2+2×3n -1,∵{a n }为递增数列,∴n ≥2时,(a 1-3)×2n -1+2×3n >(a 1-3)×2n -2+2×3n -1,∴n ≥2时,2n -2⎣⎢⎡⎦⎥⎤12×⎝ ⎛⎭⎪⎫32n -2+a 1-3>0, 可得n ≥2时,a 1>3-12×⎝ ⎛⎭⎪⎫32n -2,又当n =2时,3-12×⎝ ⎛⎭⎪⎫32n -2有最大值为-9,∴a 1>-9,又a 2=a 1+3满足a 2>a 1, ∴a 1的取值范围是(-9,+∞).4.(2017·昆明模拟)设数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,a n =2a n S n -2S 2n .(1)求数列{a n }的通项公式;(2)是否存在正数k ,使(1+S 1)(1+S 2)…(1+S n )≥k 2n +1对一切正整数n 都成立?若存在,求k 的取值范围;若不存在,请说明理由.[解] (1)∵当n ≥2时,a n =S n -S n -1,a n =2a n S n -2S 2n ,∴S n -S n -1=2(S n -S n -1)S n -2S 2n .∴S n -1-S n =2S n S n -1. ∴1S n-1S n -1=2.∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列, 即1S n=1+(n -1)×2=2n -1.∴S n =12n -1.当n ≥2时,a n =S n -S n -1=12n -1-12(n -1)-1=-2(2n -1)(2n -3).∴数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,-2(2n -1)(2n -3),n ≥2.(2)设b n =(1+S 1)(1+S 2)…(1+S n )2n +1,则b n +1=(1+S 1)(1+S 2)…(1+S n )(1+S n +1)2n +3.由(1)知S n =12n -1,S n +1=12n +1,∴b n +1b n =(1+S n +1)2n +12n +3=2n +2(2n +1)(2n +3)=4n 2+8n +44n 2+8n +3>1.又b n >0,∴数列{b n }是单调递增数列. 由(1+S 1)(1+S 2)…(1+S n )≥k 2n +1,得b n ≥k . ∴k ≤b 1=23=233.∴存在正数k ,使(1+S 1)(1+S 2)…(1+S n )≥k 2n +1对一切正整数n 都成立,且k 的取值范围为⎝ ⎛⎦⎥⎤0,233.。
2018届高三理科数学二轮复习跟踪强化训练:14Word版含解析

则 cosA=( )
3 10
10
10
3 10
A. 10 B. 10 C.- 10 D.- 10
[ 解析 ] 设△ ABC 中角 A,B,C 的对边分别是 a,b,c,由题意
可得
1 3a=
csinπ4=
2 2 c,则
32 a= 2 c.在△ ABC 中,由余弦定理可得
b2
= a2+ c2-
2ac=92c2+ c2- 3c2= 52c2,则
7sinα- 2=0,
解得 sinα=- 2(舍去 )或 sinα=14,
15 又由 α为锐角,可得 cosα= 4 ,
∴ sin α+π3 =21sinα+ 23cosα=1+83 5,故选 A.
[ 答案 ] A
2.(2017 ·湖北武汉模拟 )在△ ABC 中,a= 2,b= 3,B=π3,则
A 等于 ( )
由正弦定理得
AC sin60
=°siAn4M5
,°因此
AM=
200 3
2 m.
在Rt△MBiblioteka A中,AM=
200 3
2 m,∠ MAN=45°,得
200 MN= 3 m.
200 [ 答案 ] 3
三、解答题
10.(2017 ·天津卷 )在△ ABC 中,内角 A,B,C 所对的边分别为
a2-b2= 3bc,得 a= 7b,再由余弦定理可得 cosA= 23,所以 A=π6.
故选 A.
[ 答案 ] A
6.(2017 ·福建漳州二模 )在△ ABC 中,角 A,B,C 所对的边分别
为
a,b, c,且
2ccosB=2a+b,若△ ABC
的面积为
【高考数学】2018-2019学年高三理科数学二轮复习跟踪强化训练:24 Word版含解析

)
3 3 B.8,4 3 D.4,1
[解析] 椭圆的左顶点为 A1(-2,0)、 右顶点为 A2(2,0), 设点 P(x0, x2 y2 y2 3 y0 y0 0 0 0 y0),则 + =1,得 2 =- .而 kPA = ,kPA1= ,所以 4 3 4 x0-4 x0-2 x0+2
A.1 B. 2 C.2 2 D.4 [解析] 双曲线的两条渐近线方程为 y=± 2x, 抛物线的准线方程
p p p,|AB|=2p,所以 S△OAB 为 x=- ,故 A,B 两点的坐标为-2,± 2
1 p p2 = · 2p· = =1,解得 p= 2,故选 B. 2 2 2 [答案] B
[解析] 易知抛物线 y2=8x 的焦点为(2,0), 所以双曲线的右顶点 3 是(2,0),所以 a=2.又双曲线的离心率 e= ,所以 c=3,b2=c2-a2 2 x 2 y2 =5,所以双曲线的方程为 - =1,选 A. 4 5 [答案] A
x 2 y2 4.(2017· 武汉调研)椭圆 C: + =1 的左、右顶点分别为 A1、 4 3 A2,点 P 在 C 上且直线 PA2 斜率的取值范围是[-2,-1],那么直线 PA1 斜率的取值范围是(
7. (2017· 长沙一模)A 是抛物线 y2=2px(p>0)上一点, F 是抛物线 的焦点,O 为坐标原点,当|AF|=4 时,∠OFA=120° ,则抛物线的 准线方程是( A.x=-1 C.x=-2 ) B.y=-1 D.y=-2
[解析] 过 A 向准线作垂线,设垂足为 B,准线与 x 轴的交点为
x 2 y2 6.已知椭圆 + 2=1(0<b<2),左,右焦点分别为 F1,F2,过 4 b F1 的直线 l 交椭圆于 A,B 两点,若|BF2|+|AF2|的最大值为 5,则 b 的值是( )
2019-2020学年度高三理科数学二轮复习跟踪强化训练:8 Word版含解析

——教学资料参考参考范本——2019-2020学年度高三理科数学二轮复习跟踪强化训练:8Word版含解析______年______月______日____________________部门一、选择题1.(20xx·河南濮阳检测)函数f(x)=log2(1-2x)+的定义域为( )A.B.⎝⎛⎭⎪⎫-∞,12C .(-1,0)∪D .(-∞,-1)∪⎝⎛⎭⎪⎫-1,12[解析] 要使函数有意义,需满足解得x<且x≠-1,故函数的定义域为(-∞,-1)∪.[答案] D2.(20xx·山东潍坊质检)下列函数中,既是偶函数,又在(0,1)上单调递增的是( )A .y =|log3x|B .y =x3C .y =e|x|D .y =cos|x|[解析] A 中函数是非奇非偶函数,B 中函数是奇函数,D 中函数在(0,1)上单调递减,均不符合要求,只有C 正确.[答案] C3.(20xx·湖北襄阳三模)已知函数f(x)=则f(2)=( ) A. B .- C .-3 D .3[解析] 由题意,知f(2)=f(1)+1=f(0)+2=cos0+2=3,故选D.[答案] D4.(20xx·太原阶段测评)函数y=x+1的图象关于直线y=x对称的图象大致是( )[解析] 因为y=x+1的图象过点(0,2),且在R上单调递减,所以该函数关于直线y=x对称的图象恒过点(2,0),且在定义域内单调递减,故选A.[答案] A5.(20xx·石家庄高三检测)若函数y=f(2x+1)是偶函数,则函数y=f(x)的图象的对称轴方程是( )A.x=1 B.x=-1C.x=2 D.x=-2[解析] ∵f(2x+1)是偶函数,∴f(2x+1)=f(-2x+1)⇒f(x)=f(2-x),∴f(x)图象的对称轴为直线x=1,故选A.[答案] A6.(20xx·天津卷)已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(-log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为( )A.a<b<c B.c<b<aC.b<a<c D.b<c<a[解析] 奇函数f(x)在R上是增函数,当x>0时,f(x)>f(0)=0,当x1>x2>0时,f(x1)>f(x2)>0,∴x1f(x1)>x2f(x2),∴g(x)在(0,+∞)上单调递增,且g(x)=xf(x)是偶函数,∴a=g(-log25.1)=g(log25.1),2<log25.1<3,1<20.8<2,由g(x)在(0,+∞)上单调递增,得g(20.8)<g(log25.1)<g(3),∴b<a<c,故选C.[答案] C7.(20xx·山西四校二次联考)“a≤0”是“函数f(x)=|(ax-1)x|在(0,+∞)内单调递增”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件[解析] 本题考查充要条件的判定、函数的图象与性质.当a=0时,f(x)=|x|在(0,+∞)上单调递增;当a<0时,由f(x)=|(ax-1)x|=0得x=0或x=<0,结合图象知f(x)在(0,+∞)上单调递增,所以充分性成立,反之必要性也成立.综上所述,“a≤0”是“f(x)=|(ax-1)x|在(0,+∞)上单调递增”的充要条件,故选C.[答案] C8.(20xx·山西太原二模)函数f(x)=的图象大致为( )[解析] 函数f(x)=的定义域为(-∞,1)∪(1,+∞),且图象关于x=1对称,排除B,C.取特殊值,当x=时,f(x)=2ln<0,故选D.[答案] D9.(20xx·福建漳州质检)已知函数f(x)=有最小值,则实数a 的取值范围是( )A.(4,+∞) B.[4,+∞)C.(-∞,4] D.(-∞,4)[解析] 由题意,知当x>0时,f(x)=x+≥2 =4,当且仅当x =2时取等号;当x≤0时,f(x)=2x+a∈(a,1+a],因此要使f(x)有最小值,则必须有a≥4,故选B.[答案] B10.(20xx·浙江杭州一模)已知定义在R上的函数f(x),对任意x∈R,都有f(x+4)=f(x)+f(2)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(20xx)的值为( )A.20xx B.-20xx C.0 D.4[解析] 依题意得,函数y=f(x)的图象关于直线x=0对称,因此函数y=f(x)是偶函数,且f(-2+4)=f(-2)+f(2),即f(2)=f(2)+f(2),所以f(2)=0,所以f(x+4)=f(x),即函数y=f(x)是以4为周期的函数,f(20xx)=f(4×504+2)=f(2)=0.[答案] C11.如图,过单位圆O上一点P作圆O的切线MN,点Q为圆O上一动点,当点Q由点P逆时针方向运动时,设∠POQ=x,弓形PRQ的面积为S,则S=f(x)在x∈[0,2π]上的大致图象是( ) [解析] 解法一:S=f(x)=S扇形PRQ+S△POQ=(2π-x)·12+sinx=π-x+sinx,则f′(x)=(cosx-1)≤0,所以函数S=f(x)在[0,2π]上为减函数,当x=0和x=2π时,分别取得最大值与最小值.又当x从0逐渐增大到π时,cosx逐渐减小,切线斜率逐渐减小,曲线越来越陡;当x从π逐渐增大到2π时,cosx逐渐增大,切线斜率逐渐增大,曲线越来越平缓.结合选项可知,B正确.解法二:特值法:x=π时,f(x)=,排除C、D,x=时,f(x)=+>,选B.[答案] B12.(20xx·大连模拟)已知函数f(x)=x2+ex-(x<0)与g(x)=x2+ln(x+a)的图象上存在关于y轴对称的点,则a的取值范围是( )A. B .(-∞,)C.D.⎝ ⎛⎭⎪⎪⎫-e ,1e [解析] 由题意知,设x0∈(-∞,0),使得f(x0)=g(-x0), 即x +ex0-=(-x0)2+ln(-x0+a), ∴ex0-ln(-x0+a)-=0.令y1=ex -,y2=ln(-x +a),要使得函数图象的交点A 在y 轴左侧,如图,则lna<=lne ,∴a<e.[答案] B 二、填空题13.(20xx·石家庄质检)函数y =3x -1)的定义域为________. [解析] 本题考查函数的定义域.由题意得3x -1≥0,,3x -1>0,))解得<x≤,即函数的定义域为.[答案] ⎝ ⎛⎦⎥⎤13,2314.(20xx·安徽蚌埠二模)函数f(x)=是奇函数,则实数a =________.[解析] 解法一:函数的定义域为{x|x≠0},f(x)==x ++a +2. 因函数f(x)是奇函数,则f(-x)=-f(x), 即-x -+a +2=-=-x --(a +2), 则a +2=-(a +2),即a +2=0,则a =-2.解法二:由题意知f(1)=-f(-1),即3(a +1)=a -1,得a =-2,将a =-2代入f(x)的解析式,得f(x)=,经检验,对任意x∈(-∞,0)∪(0,+∞),都满足f(-x)=-f(x),故a =-2.[答案] -215.(20xx·全国卷Ⅲ)设函数f(x)=则满足f(x)+f>1的x 的取值范围是________.[解析] ①当x>时,x ->0, ∴f(x)+f =2x +2x ->2, ∴f(x)+f>1恒成立. ②当0<x ≤时,x -≤0,f(x)+f =2x +x -+1=2x +x +>1恒成立.③当x ≤0时,f(x)=x +1,f =x -+1=x +, ∵f(x)+f>1, ∴x +1+x +>1, 解得x>-,即-<x≤0. 综上,x>-.[答案] ⎝ ⎛⎭⎪⎫-14,+∞16.(20xx·河南许昌二模)已知函数f(x)=的最大值为M ,最小值为m ,则M +m 等于________.[解析] f(x)==2+,设g(x)=,则g(-x)=-g(x)(x∈R), ∴g(x)为奇函数,∴g(x)max +g(x)min =0. ∵M =f(x)max =2+g(x)max ,m =f(x)min =2+g(x)min ,∴M+m=2+g(x)max+2+g(x)min=4. [答案] 4。
2018届高三理科数学二轮复习跟踪强化训练:24 Word版含解析

跟踪强化训练(二十四)一、选择题1.(2017·广西三市第一次联合调研)若抛物线y 2=2px (p >0)上的点A (x 0,2)到其焦点的距离是A 到y 轴距离的3倍,则p 等于( )A.12 B .1 C.32 D .2[解析] 由题意3x 0=x 0+p 2,x 0=p 4,则p 22=2,∵p >0,∴p =2.故选D.[答案] D2.(2017·深圳一模)过点(3,2)且与椭圆3x 2+8y 2=24有相同焦点的椭圆方程为( )A.x 25+y 210=1 B.x 210+y 215=1 C.x 215+y 210=1D.x 210+y 25=1[解析] 椭圆3x 2+8y 2=24的焦点为(±5,0),可得c =5,设所求椭圆的方程为x 2a 2+y 2b 2=1,可得9a 2+4b 2=1,又a 2-b 2=5,得b 2=10,a 2=15,所以所求的椭圆方程为x 215+y 210=1.故选C.[答案] C3.(2017·福州模拟)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右顶点与抛物线y 2=8x 的焦点重合,且其离心率e =32,则该双曲线的方程为( )A.x 24-y 25=1B.x 25-y 24=1C.y 24-x 25=1 D.y 25-x 24=1[解析] 易知抛物线y 2=8x 的焦点为(2,0),所以双曲线的右顶点是(2,0),所以a =2.又双曲线的离心率e =32,所以c =3,b 2=c 2-a 2=5,所以双曲线的方程为x 24-y 25=1,选A.[答案] A4.(2017·武汉调研)椭圆C :x 24+y 23=1的左、右顶点分别为A 1、A 2,点P 在C 上且直线P A 2斜率的取值范围是[-2,-1],那么直线P A 1斜率的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,34B.⎣⎢⎡⎦⎥⎤38,34 C.⎣⎢⎡⎦⎥⎤12,1 D.⎣⎢⎡⎦⎥⎤34,1 [解析] 椭圆的左顶点为A 1(-2,0)、右顶点为A 2(2,0),设点P (x 0,y 0),则x 204+y 203=1,得y 20x 20-4=-34.而k P A 2=y 0x 0-2,k P A 1=y 0x 0+2,所以k P A 2·k P A 1=y 20x 20-4=-34.又k P A 2∈[-2,-1],所以k P A 1∈⎣⎢⎡⎦⎥⎤38,34.故选B.[答案] B5.(2017·合肥质检)已知双曲线y 24-x 2=1的两条渐近线分别与抛物线y 2=2px (p >0)的准线交于A ,B 两点.O 为坐标原点.若△OAB 的面积为1,则p 的值为( )A .1 B. 2 C .2 2 D .4[解析] 双曲线的两条渐近线方程为y =±2x ,抛物线的准线方程为x =-p2,故A ,B 两点的坐标为⎝ ⎛⎭⎪⎫-p 2,±p ,|AB |=2p ,所以S △OAB=12·2p ·p 2=p 22=1,解得p =2,故选B.[答案] B6.已知椭圆x 24+y 2b 2=1(0<b <2),左,右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是( )A .1 B. 2 C.32 D. 3[解析] 由椭圆的方程,可知长半轴长a =2;由椭圆的定义,可知|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质,可知过椭圆焦点的弦中,通径最短,即2b 2a =3,可求得b 2=3,即b =3,故选D.[答案] D7.(2017·长沙一模)A 是抛物线y 2=2px (p >0)上一点,F 是抛物线的焦点,O 为坐标原点,当|AF |=4时,∠OF A =120°,则抛物线的准线方程是( )A .x =-1B .y =-1C .x =-2D .y =-2[解析] 过A 向准线作垂线,设垂足为B ,准线与x 轴的交点为D .因为∠OF A =120°,所以△ABF 为等边三角形,∠DBF =30°,从而p =|DF |=2,因此抛物线的准线方程为x =-1.选A.[答案] A8.(2017·广州综合测试)已知F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆C 上存在点P 使∠F 1PF 2为钝角,则椭圆C 的离心率的取值范围是( )A.⎝ ⎛⎭⎪⎫22,1B.⎝ ⎛⎭⎪⎫12,1 C.⎝⎛⎭⎪⎫0,22D.⎝ ⎛⎭⎪⎫0,12 [解析] 解法一:设P (x 0,y 0),由题易知|x 0|<a ,因为∠F 1PF 2为钝角,所以PF 1→·PF 2→<0有解,即c 2>x 20+y 20有解,即c 2>(x 20+y 20)min ,又y 20=b 2-b 2a 2x 20,x 20<a 2,故x 20+y 20=b 2+c 2a2x 20∈[b 2,a 2),所以(x 20+y 20)min=b 2,故c 2>b 2,又b 2=a 2-c 2,所以e 2=c 2a 2>12,解得e >22,又0<e <1,故椭圆C 的离心率的取值范围是⎝ ⎛⎭⎪⎫22,1,选A.解法二:椭圆上存在点P 使∠F 1PF 2为钝角⇔以原点O 为圆点,以c 为半径的圆与椭圆有四个不同的交点⇔b <c ,如图,由b <c ,得a 2-c 2<c 2,即a 2<2c 2,解得e =c a >22,又0<e <1,故椭圆C 的离心率的取值范围是⎝ ⎛⎭⎪⎫22,1,选A. [答案] A9.(2017·杭州第一次质检)设双曲线x 24-y 23=1的左、右焦点分别为F 1,F 2,过F 1的直线l 交双曲线左支于A ,B 两点,则|BF 2|+|AF 2|的最小值为( )A.192 B .11 C .12 D .16[解析] 由双曲线定义可得|AF 2|-|AF 1|=2a =4,|BF 2|-|BF 1|=2a =4,两式相加可得|AF 2|+|BF 2|=|AB |+8,由于AB 为经过双曲线的左焦点与左支相交的弦,而|AB |min =2b 2a =3,故|AF 2|+|BF 2|=|AB |+8≥3+8=11.故选B.[答案] B10.(2017·武汉市武昌区高三三调)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别为l 1,l 2,经过右焦点F 垂直于l 1的直线分别交l 1,l 2于A ,B 两点.若|OA |,|AB |,|OB |成等差数列,且AF →与FB →反向,则该双曲线的离心率为( )A.52B. 3C. 5D.52[解析] 设实轴长为2a ,虚轴长为2b ,令∠AOF =α,则由题意知tan α=ba ,在△AOB 中,∠AOB =180°-2α,tan ∠AOB =-tan2α=ABOA ,∵|OA |,|AB |,|OB |成等差数列,∴设|OA |=m -d ,|AB |=m ,|OB |=m +d ,∵OA ⊥BF ,∴(m -d )2+m 2=(m +d )2,整理,得d =14m ,∴-tan2α=-2tan α1-tan 2α=AB OA =m 34m =43,解得b a =2或b a =-12(舍去),∴b =2a ,c =4a 2+a 2=5a ,∴e =ca = 5.故选C.[答案] C11.(2017·济宁模拟)如图,椭圆的中心在坐标原点O ,顶点分别是A 1,A 2,B 1,B 2,焦点分别为F 1,F 2,延长B 1F 2与A 2B 2交于P 点,若∠B 1P A 2为钝角,则此椭圆的离心率的取值范围为()A.⎝ ⎛⎭⎪⎫0,5+14 B.⎝ ⎛⎭⎪⎫5+14,1 C.⎝ ⎛⎭⎪⎫0,5-12 D.⎝ ⎛⎭⎪⎫5-12,1 [解析] 设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),∠B 1P A 2为钝角可转化为B 2A 2→,F 2B 1→所夹的角为钝角,则(a ,-b )·(-c ,-b )<0,得b 2<ac ,即a 2-c 2<ac ,故⎝ ⎛⎭⎪⎫c a 2+c a -1>0,即e 2+e -1>0,e >5-12或e <-5-12,又0<e <1,∴5-12<e <1,故选D.[答案] D12.(2017·兰州模拟)已知F 1,F 2为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,以F 1F 2为直径的圆与双曲线右支的一个交点为P ,PF 1与双曲线相交于点Q ,且|PQ |=2|QF 1|,则该双曲线的离心率为( )A. 5 B .2 C. 3 D.52[解析] 如图,连接PF 2,QF 2.由|PQ |=2|QF 1|,可设|QF 1|=m ,则|PQ |=2m ,|PF 1|=3m ;由|PF 1|-|PF 2|=2a ,得|PF 2|=|PF 1|-2a =3m-2a ;由|QF 2|-|QF 1|=2a ,得|QF 2|=|QF 1|+2a =m +2a .∵点P 在以F 1F 2为直径的圆上,∴PF 1⊥PF 2,∴|PF 1|2+|PF 2|2=|F 1F 2|2.由|PQ |2+|PF 2|2=|QF 2|2,得(2m )2+(3m -2a )2=(m +2a )2,解得m =43a ,∴|PF 1|=3m =4a ,|PF 2|=3m -2a =2a .∵|PF 1|2+|PF 2|2=|F 1F 2|2,|F 1F 2|=2c ,∴(4a )2+(2a )2=(2c )2,化简得c 2=5a 2,∴双曲线的离心率e =c 2a 2=5,故选A.[答案] A 二、填空题13.(2017·洛阳统考)已知F 1、F 2分别是双曲线3x 2-y 2=3a 2(a >0)的左、右焦点,P 是抛物线y 2=8ax 与双曲线的一个交点,若|PF 1|+|PF 2|=12,则抛物线的准线方程为__________________.[解析] 将双曲线方程化为标准方程得x 2a 2-y 23a 2=1,∴其焦点坐标为(±2a,0),(2a,0)与抛物线的焦点重合,联立抛物线与双曲线方程得⎩⎨⎧x 2a 2-y 23a2=1,y 2=8ax⇒x =3a ,而由⎩⎪⎨⎪⎧|PF 1|+|PF 2|=12,|PF 1|-|PF 2|=2a ⇒|PF 2|=6-a ,∴|PF 2|=3a +2a =6-a ,得a =1,∴抛物线的方程为y 2=8x ,其准线方程为x =-2.[答案] x =-214.(2017·海口模拟)椭圆x 2a 2+y 2b 2=1(a >b >0)的焦距为23,左、右焦点分别为F 1,F 2,点P 是椭圆上一点,∠F 1PF 2=60°,△PF 1F 2的面积为23,则椭圆的标准方程为__________________.[解析] 由题意,得c =3, ∴a 2-b 2=c 2=3.∵∠F 1PF 2=60°, △PF 1F 2的面积为23,∴12|PF 1|·|PF 2|·sin ∠F 1PF 2=34|PF 1|·|PF 2|=23, ∴|PF 1|·|PF 2|=8.又∵|PF 1|+|PF 2|=2a ,由余弦定理得4c 2=12=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos60°=(|PF 1|+|PF 2|)2-3|PF 1|·|PF 2|=4a 2-3×8,解得a 2=9,故b 2=6,因此椭圆的方程为x 29+y26=1.[答案] x 29+y 26=115.(2017·全国卷Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为________.[解析] ∵AM =AN =b ,∠MAN =60°,∴△MAN 是等边三角形, ∴在△MAN 中,MN 上的高h =32b .∵点A (a,0)到渐近线bx -ay =0的距离d =ab a 2+b 2=ab c ,∴abc =32b ,∴e =c a =23=233.[答案]23 316.(2017·西安四校联考)已知双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,过F1的直线分别交双曲线的两条渐近线于P、Q两点,若P恰为线段F1Q的中点,且QF1⊥QF2,则此双曲线的渐近线方程为____________.[解析]根据题意,P是线段F1Q的中点,QF1⊥QF2,且O是线段F1F2的中点,故OP⊥F1Q,而两条渐近线关于y轴对称,故∠POF1=∠QOF2,又∠POF1=∠POQ,所以∠QOF2=60°,渐近线的斜率为±3,故渐近线方程为y=±3x.[答案]y=±3x。
2018年高考数学二轮复习特色专题训练 专题04解密三角函数之给值求值问题理 Word版 含答案
专题04 解密三角函数之给值求值问题一、单选题1.若0,2πα⎛⎫∈ ⎪⎝⎭, cos 4παα⎛⎫-= ⎪⎝⎭,则sin2α等于( )A . 1516B . 78C . 16D . 1532 【答案】A2.已知π1sin 63α⎛⎫+= ⎪⎝⎭,则2πcos 23α⎛⎫- ⎪⎝⎭的值是 A . 59 B . 89- C . 13- D . 79- 【答案】D 【解析】∵π1sin 63α⎛⎫+= ⎪⎝⎭ ∴1cos cos 2633a a πππ⎛⎫⎛⎫--=-= ⎪ ⎪⎝⎭⎝⎭ ∴1cos 33a π⎛⎫-=- ⎪⎝⎭222π17cos 22cos 213339a πα⎛⎫⎛⎫⎛⎫-=-=⨯--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故选D二、填空题3.已知3sin 45πα⎛⎫-= ⎪⎝⎭, ,42ππα⎛⎫∈ ⎪⎝⎭,则tan α=__________. 【答案】7点睛:本题主要考查同角三角函数的基本关系、两角和差的三角公式、二倍角的正弦公式的应用,属于基础题.一般sin cos sin cos αααα+-,, sin *cos αα,这三者我们成为三姐妹,结合22sin cos 1αα+=,可以知一求三。
4.已知4sin 5α=, 2παπ<<,则cos 4πα⎛⎫-= ⎪⎝⎭__________.【答案】10【解析】4sin 5α=, 2παπ<<,所以3cos 5α=-.34cos 422252510πααα⎛⎫⎛⎫-=+=-+= ⎪ ⎪⎝⎭⎝⎭.答案为5.已知锐角,αβ满足()()tan 1tan 12αβ--=,则αβ+的值为________. 【答案】34π 【解析】因为()()tan 1tan 12αβ--=,所以tan tan tan tan 1αβαβ+=-因此()tan tan tan 11tan tan αβαβαβ++==-- 因为()30,4παβπαβ+∈∴+=6.若()sin cos 3,tan 2sin cos αααβαα+=-=-,则()tan 2βα-______. 【答案】43点睛:这个题目考查了三角函数中,两角和差的正切公式的应用,考查了给值求值的应用;一般这种题目是尽量用已知三角函数值的角表示要求的角;在这种题型中需要注意角的范围,已知三角函数值的角的范围是否能通过值缩小。
2018届高三理科数学二轮复习跟踪强化训练12 含解析 精品
跟踪强化训练(十二)1.已知函数f (x )=1x +a ln x (a ≠0,a ∈R ). (1)若a =1,求函数f (x )的极值和单调区间;(2)若在区间(0,e]上至少存在一点x 0,使得f (x 0)<0成立,求实数a 的取值范围.[解] (1)当a =1时, f ′(x )=-1x 2+1x =x -1x 2, 令f ′(x )=0,得x =1,又f (x )的定义域为(0,+∞),由f ′(x )<0得0<x <1,由f ′(x )>0得x >1,所以当x =1时,f (x )有极小值1,f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)f ′(x )=-1x 2+a x =ax -1x 2,且a ≠0,令f ′(x )=0,得到x =1a ,若在区间(0,e]上存在一点x 0,使得f (x 0)<0成立,即f (x )在区间(0,e]上的最小值小于0.当1a <0,即a <0时,f ′(x )<0在(0,e]上恒成立,即f (x )在区间(0,e]上单调递减,故f (x )在区间(0,e]上的最小值为f (e)=1e +a lne =1e +a ,由1e +a <0,得a <-1e ,即a ∈⎝⎛⎭⎪⎫-∞,-1e .当1a >0,即a >0时,①若e ≤1a ,则f ′(x )≤0对x ∈(0,e]成立,所以f (x )在区间(0,e]上单调递减,则f (x )在区间(0,e]上的最小值为f (e)=1e +a lne =1e +a >0, 显然f (x )在区间(0,e]上的最小值小于0不成立. ②若0<1a <e ,即a >1e 时,则所以f (x )在区间(0,e]上的最小值为f ⎝ ⎛⎭⎪⎫1a =a +a ln a , 由f ⎝ ⎛⎭⎪⎫1a =a +a ln 1a =a (1-ln a )<0,得1-ln a <0,解得a >e ,即a ∈(e ,+∞).综上可知,a ∈⎝ ⎛⎭⎪⎫-∞,-1e ∪(e ,+∞).2.(2017·北京西城区模拟)已知函数f (x )=2ln x -x 2+ax (a ∈R ). (1)当a =2时,求f (x )的图象在x =1处的切线方程;(2)若函数g (x )=f (x )-ax +m 在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点,求实数m的取值范围.[解] (1)当a =2时,f (x )=2ln x -x 2+2x ,f ′(x )=2x -2x +2,切点坐标为(1,1),切线的斜率k =f ′(1)=2,则切线方程为y -1=2(x -1),即y =2x -1. (2)g (x )=2ln x -x 2+m ,则g ′(x )=2x -2x =-2(x +1)(x -1)x.因为x ∈⎣⎢⎡⎦⎥⎤1e ,e ,所以当g ′(x )=0时,x =1. 当1e <x <1时,g ′(x )>0;当1<x <e 时,g ′(x )<0.所以g (x )在⎣⎢⎡⎦⎥⎤1e ,1上单调递增,在[1,e]上单调递减. 故g (x )在x =1处取得极大值g (1)=m -1.又g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2,g (e)=m +2-e 2, g (e)-g ⎝ ⎛⎭⎪⎫1e =4-e 2+1e 2<0, 则g (e)<g ⎝ ⎛⎭⎪⎫1e ,所以g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最小值是g (e). g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点的条件是⎩⎨⎧g (1)=m -1>0g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2≤0,解得1<m ≤2+1e 2,所以实数m 的取值范围是⎝ ⎛⎦⎥⎤1,2+1e 2.3.已知函数f (x )=a ln x +1(a >0). (1)当x >0时,求证:f (x )-1≥a ⎝ ⎛⎭⎪⎫1-1x ;(2)在区间(1,e)上f (x )>x 恒成立,求实数a 的取值范围. [解] (1)证明:设φ(x )=f (x )-1-a ⎝ ⎛⎭⎪⎫1-1x =a ln x -a ⎝ ⎛⎭⎪⎫1-1x (x >0),则φ′(x )=a x -ax 2.令φ′(x )=0,则x =1,当0<x <1时,φ′(x )<0,所以φ(x )在(0,1)上单调递减;当x >1时,φ′(x )>0,所以φ(x )在(1,+∞)上单调递增,故φ(x )在x =1处取到极小值也是最小值,故φ(x )≥φ(1)=0,即f (x )-1≥a ⎝⎛⎭⎪⎫1-1x .(2)由f (x )>x ,x ∈(1,e),得a ln x +1>x ,即a >x -1ln x . 令g (x )=x -1ln x (1<x <e),则g ′(x )=ln x -x -1x(ln x )2.令h (x )=ln x -x -1x (1<x <e),则h ′(x )=1x -1x 2>0, 故h (x )在区间(1,e)上单调递增,所以h (x )>h (1)=0.因为h (x )>0,所以g ′(x )>0,即g (x )在区间(1,e)上单调递增, 则g (x )<g (e)=e -1,即x -1ln x <e -1, 所以a 的取值范围为[e -1,+∞). 4.(2017·陕西西安三模)已知函数f (x )=e xx . (1)求曲线y =f (x )在点P ⎝ ⎛⎭⎪⎫2,e 22处的切线方程;(2)证明:f (x )>2(x -ln x ).[解] (1)因为f (x )=e xx ,所以f ′(x )=e x·x -e xx 2=e x(x -1)x 2, f ′(2)=e 24,又切点为⎝ ⎛⎭⎪⎫2,e 22,所以切线方程为y -e 22=e 24(x -2),即e 2x -4y =0.(2)设函数g (x )=f (x )-2(x -ln x )=e xx -2x +2ln x ,x ∈(0,+∞),则g ′(x )=e x (x -1)x 2-2+2x =(e x-2x )(x -1)x 2,x ∈(0,+∞). 设h (x )=e x -2x ,x ∈(0,+∞),则h ′(x )=e x -2,令h ′(x )=0,则x =ln2.当x ∈(0,ln2)时,h ′(x )<0;当x ∈(ln2,+∞)时,h ′(x )>0. 所以h (x )min =h (ln2)=2-2ln2>0,故h (x )=e x -2x >0. 令g ′(x )=(e x -2x )(x -1)x 2=0,则x =1. 当x ∈(0,1)时,g ′(x )<0;当x ∈(1,+∞)时,g ′(x )>0. 所以g (x )min =g (1)=e -2>0,故g (x )=f (x )-2(x -ln x )>0,从而有f (x )>2(x -ln x ).。
2018届高三理科数学二轮复习跟踪强化训练:13Word版含解析
若 f 58π= 2,f 181π=0,且 f(x)的最小正周期大于 2π,则 (
)
A .ω=23,φ=1π2
B.
ω=
23,
φ=-
11π 12
C.
1 ω=3,
φ=-
11π 24
D.ω=
1 3,φ=
7π 24
[ 解析 ]
∵f 58π=2,f 181π=0,f(x)的最小正周期大于
T 2π,∴4=
181π-58π=34π,得 T= 3π,则 ω= 2Tπ=23,
4
4
44
A .- 3或 0 B.3或 0 C.- 3 D.3
[ 解析 ] 把 2sinθ=1+cosθ两边平方,整理得,5cos2θ+2cosθ-3
=0,分解因式得 (5cosθ-3)(cosθ+1)=0,∴cosθ=- 1 或35.当 cosθ=
-1 时,θ=2kπ+ π,k∈Z ,∴tanθ=0;当 cosθ=35时,sinθ=45,∴tanθ
= ________.
[ 解析 ] 设点 P(a,2a)(a≠0)为角 θ终边上任意一点,根据三角函
y 数的定义有 tanθ=x=2,再根据诱导公式,得
sin 32π+θ+cos π-θ -cosθ- cosθ sin π2-θ-sin π- θ = cosθ-sinθ
-2 = 1-tanθ=2.
[ 答案 ] 2
B
错误;因为
f -712π=
sin
2×
-712π+π3 =-
1 2≠
±1,所以
C
错误;由- π2+2kπ≤2x+π3≤π2+
2kπ,k∈Z 得- 512π+kπ≤x≤1π2+ kπ,k∈Z ,即函数 f(x)的单调递增区
2018大二轮高考总复习理数文档第1板块 第2单元 数学思想方法 Word版含解析
第二单元数学思想方法高考数学以能力立意,一是考查数学的基础知识,基本技能;二是考查基本数学思想方法,考查数学思维的深度、广度和宽度,数学思想方法是指从数学的角度来认识、处理和解决问题,是数学意识,是数学技能的升华和提高,中学数学思想主要有函数与方程思想、数形结合思想、分类与整合思想、转化与化归思想.一、函数与方程思想已知数列{}是各项均为正数的等差数列()若=,且,,+成等比数列,求数列{}的通项公式;()在()的条件下,数列{}的前项和为,设=++…+,若对任意的∈*,不等式≤恒成立,求实数的最小值.【解】()因为=,=·(+),又因为{}是正项等差数列,故≥,所以(+)=(+)(+),(列出方程)解得=或=-(舍去),所以数列{}的通项公式=.()因为=(+),=++…+=++…+=-+-+…+-=-==,令()=+(≥),(构造函数)则′()=-,当≥时,′()>恒成立,所以()在[,+∞)上是增函数,故当=时,()=()=,即当=时,()=,要使对任意的正整数,不等式≤恒成立,则须使≥()=,所以实数的最小值为.本题完美体现了函数与方程思想的应用,第()问直接列方程求公差;第()问求出的表达式,说明要求≤恒成立时的最小值,只需求的最大值,从而构造函数()=+(≥),利用函数求解..如图是函数=(ω+φ)(其中>,ω>,-π<φ<π)在一个周期内的图象,则此函数的解析式是( ).=.=.=.=解析:依函数图象,知的最大值为,所以=.又=-=,所以=π,又=π,所以ω=,所以=(+φ).将代入可得=,故φ-=+π,∈,又-π<φ<π,所以φ=.所以函数的解析式为=,故选.答案:.()=-+对于∈[-]总有()≥成立,则=.解析:若=,则不论取何值,()≥显然成立;当>即∈(]时,()=-+≥可化为≥-.设()=-,则′()=,所以()在区间上单调递增,在区间上单调递减,因此()==,从而≥;当<即∈[-)时,()=-+≥可化为≤-,()=-在区间[-)上单调递增,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
跟踪强化训练(八) 一、选择题 1.(2017·河南濮阳检测)函数f(x)=log2(1-2x)+1x+1的定义域为( ) A.0,12 B.-∞,12
C.(-1,0)∪0,12 D.(-∞,-1)∪-1,12 [解析] 要使函数有意义,需满足 1-2x>0,x+1≠0,解得x<12且x≠-1,故函数的定义域为(-∞,-1)∪-1,12. [答案] D 2.(2017·山东潍坊质检)下列函数中,既是偶函数,又在(0,1)上单调递增的是( ) A.y=|log3x| B.y=x3 C.y=e|x| D.y=cos|x| [解析] A中函数是非奇非偶函数,B中函数是奇函数,D中函数在(0,1)上单调递减,均不符合要求,只有C正确. [答案] C
3.(2017·湖北襄阳三模)已知函数f(x)= cosπx2,x≤0,fx-1+1,x>0,则f(2)=( ) A.12 B.-12 C.-3 D.3 [解析] 由题意,知f(2)=f(1)+1=f(0)+2=cos0+2=3,故选D. [答案] D
4.(2017·太原阶段测评)函数y=12x+1的图象关于直线y=x对称的图象大致是( )
[解析] 因为y=12x+1的图象过点(0,2),且在R上单调递减,所以该函数关于直线y=x对称的图象恒过点(2,0),且在定义域内单调递减,故选A. [答案] A 5.(2017·石家庄高三检测)若函数y=f(2x+1)是偶函数,则函数y=f(x)的图象的对称轴方程是( ) A.x=1 B.x=-1 C.x=2 D.x=-2 [解析] ∵f(2x+1)是偶函数,∴f(2x+1)=f(-2x+1)⇒f(x)=f(2-x),∴f(x)图象的对称轴为直线x=1,故选A. [答案] A 6.(2017·天津卷)已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(-log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为( ) A.aC.b[解析] 奇函数f(x)在R上是增函数,当x>0时,f(x)>f(0)=0,当x1>x2>0时,f(x1)>f(x2)>0, ∴x1f(x1)>x2f(x2),∴g(x)在(0,+∞)上单调递增,且g(x)=xf(x)是偶函数,∴a=g(-log25.1)=g(log25.1),2g(x)在(0,+∞)上单调递增,得g(20.8)选C. [答案] C 7.(2017·山西四校二次联考)“ a≤0”是“函数f(x)=|(ax-1)x|在(0,+∞)内单调递增”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 [解析] 本题考查充要条件的判定、函数的图象与性质.当a=0时,f(x)=|x|在(0,+∞)上单调递增;当a<0时,由f(x)=|(ax-1)x|
=0得x=0或x=1a<0,结合图象知f(x)在(0,+∞)上单调递增,所以充分性成立,反之必要性也成立.综上所述,“a≤0”是“f(x)=|(ax-1)x|在(0,+∞)上单调递增”的充要条件,故选C. [答案] C
8.(2017·山西太原二模)函数f(x)=ln|x-1||1-x|的图象大致为( ) [解析] 函数f(x)=ln|x-1||1-x|的定义域为(-∞,1)∪(1,+∞),且图象关于x=1对称,排除B,C.取特殊值,当x=12时,f(x)=2ln12<0,故选D. [答案] D
9.(2017·福建漳州质检)已知函数f(x)= 2x+a,x≤0,x+4x,x>0有最小值,则实数a的取值范围是( ) A.(4,+∞) B.[4,+∞) C.(-∞,4] D.(-∞,4)
[解析] 由题意,知当x>0时,f(x)=x+4x≥2 x·4x=4,当且仅当x=2时取等号;当x≤0时,f(x)=2x+a∈(a,1+a],因此要使f(x)有最小值,则必须有a≥4,故选B. [答案] B 10.(2017·浙江杭州一模)已知定义在R上的函数f(x),对任意x∈R,都有f(x+4)=f(x)+f(2)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2018)的值为( ) A.2018 B.-2018 C.0 D.4 [解析] 依题意得,函数y=f(x)的图象关于直线x=0对称,因此函数y=f(x)是偶函数,且f(-2+4)=f(-2)+f(2),即f(2)=f(2)+f(2),所以f(2)=0,所以f(x+4)=f(x),即函数y=f(x)是以4为周期的函数,f(2018)=f(4×504+2)=f(2)=0. [答案] C 11.如图,过单位圆O上一点P作圆O的切线MN,点Q为圆O上一动点,当点Q由点P逆时针方向运动时,设∠POQ=x,弓形PRQ的面积为S,则S=f(x)在x∈[0,2π]上的大致图象是( ) [解析] 解法一:S=f(x)=S扇形PRQ+S△POQ=12(2π-x)·12+12sinx=
π-12x+12sinx,则f′(x)=12(cosx-1)≤0,所以函数S=f(x)在[0,2π]上
为减函数,当x=0和x=2π时,分别取得最大值与最小值.又当x从0逐渐增大到π时,cosx逐渐减小,切线斜率逐渐减小,曲线越来越陡;当x从π逐渐增大到2π时,cosx逐渐增大,切线斜率逐渐增大,曲线越来越平缓.结合选项可知,B正确.
解法二:特值法:x=π时,f(x)=π2,排除C、D,x=π2时,f(x)=3π4+12>3π4,选B. [答案] B 12.(2017·大连模拟)已知函数f(x)=x2+ex-12(x<0)与g(x)=x2+ln(x+a)的图象上存在关于y轴对称的点,则a的取值范围是( ) A.-∞,1e B.(-∞,e) C.-1e,e D.-e,1e [解析] 由题意知,设x0∈(-∞,0),使得f(x0)=g(-x0), 即x20+ex0-12=(-x0)2+ln(-x0+a), ∴ex0-ln(-x0+a)-12=0. 令y1=ex-12,y2=ln(-x+a),要使得函数图象的交点A在y轴左侧,如图,则lna<12=lne12,∴a[答案] B 二、填空题 13.(2017·石家庄质检)函数y=log23 3x-1的定义域为
________. [解析] 本题考查函数的定义域.由题意得
log23 3x-1≥0,
3x-1>0,解得13
[答案] 13,23 14.(2017·安徽蚌埠二模)函数f(x)=x+2x+ax是奇函数,则实数a=________. [解析] 解法一:函数的定义域为{x|x≠0},f(x)=x2+a+2x+2ax
=x+2ax+a+2. 因函数f(x)是奇函数,则f(-x)=-f(x), 即-x-2ax+a+2=-x+2ax+a+2=-x-2ax-(a+2), 则a+2=-(a+2),即a+2=0,则a=-2. 解法二:由题意知f(1)=-f(-1),即3(a+1)=a-1,得a=-2,
将a=-2代入f(x)的解析式,得f(x)=x+2x-2x,经检验,对任意x∈(-∞,0)∪(0,+∞),都满足f(-x)=-f(x),故a=-2. [答案] -2
15.(2017·全国卷Ⅲ)设函数f(x)= x+1,x≤0,2x,x>0,则满足f(x)+fx-12>1的x的取值范围是________. [解析] ①当x>12时,x-12>0, ∴f(x)+fx-12=2x+2x-12>2, ∴f(x)+fx-12>1恒成立. ②当0f(x)+fx-12=2x+x-12+1=2x+x+12>1恒成立. ③当x≤0时,f(x)=x+1,fx-12=x-12+1=x+12, ∵f(x)+fx-12>1, ∴x+1+x+12>1, 解得x>-14,即-14综上,x>-14. [答案] -14,+∞ 16.(2017·河南许昌二模)已知函数f(x)=2|x|+1+x3+22|x|+1的最大值为M,最小值为m,则M+m等于________. [解析] f(x)=2·2|x|+1+x32|x|+1=2+x32|x|+1, 设g(x)=x32|x|+1,则g(-x)=-g(x)(x∈R), ∴g(x)为奇函数,∴g(x)max+g(x)min=0. ∵M=f(x)max=2+g(x)max, m=f(x)min=2+g(x)min, ∴M+m=2+g(x)max+2+g(x)min=4. [答案] 4