复变函数3
复变函数第3章

§3.1 复变函数积分的概念
主要内容
一 积分的定义 二 可积的条件及计算法 三 积分的性质
要求: 要求:
理解复变函数积分的概念, 理解复变函数积分的概念,掌握计算方法及性质
§3.1 复变函数积分的概念
一 积分的概念
1 有向曲线: 有向曲线: 为平面上给定的一条光滑( 设 C为平面上给定的一条光滑 ( 按段光滑 ) 曲线 . 如果选 为平面上给定的一条光滑 按段光滑) 曲线. 的两个可能方向中的一个作为正方向, 定C的两个可能方向中的一个作为正方向,那么我们就把 的两个可能方向中的一个作为正方向 C理解为带有方向的曲线,称为有向曲线 理解为带有方向的曲线, 理解为带有方向的曲线 称为有向曲线
k =1
n
+ i ∑ [v (ξ k ,η k )∆x k + u(ξ k ,η k )∆y k ]
k =1
n
§3.1 复变函数积分的概念
二 积分存在的条件及计算法
1 积分存在的条件 是连续函数C是光滑曲线 若f(z)是连续函数 是光滑曲线,则积分∫ f (z)dz一定存在 是连续函数 是光滑曲线, C 【证】∑ f (ζ k ) ⋅∆z k = ∑ [u(ξ k ,η k )∆x k − v (ξ k ,η k )∆y k ]
udx − vdy + i ∫ vdx + udy
C
C
udx + ivdx + iudy − vdy
§3.1 复变函数积分的概念
二 积分存在的条件及计算法
2 积分计算法 设连续函数f(z)= u(x,y)+iv(x,y),光滑曲线 的方程为 设连续函数 ,光滑曲线C的方程为
z = z(t) = x(t) + i y(t), α ≤ t ≤ β
复变函数第3篇习题课

y
C2
解 设C1 : z x, x : 1 1
C1 1 O
|z|z dz C1
0 1
1
x
|x|x dx
1
C2 : z ei t , t : 0 d z eit i d t
|z|z dz
C2
ei
t
e i
t
i d t
idt i
0
0
i 原式= | z | z d z | z | z d z
解(C解3i1C)Cg自C22C:1CC:1z原C11zz2z::C22点d1dzzCz3沿xz2虚3ix•iy3iy轴,,0,1,03yx(至(i3yx::x::0i0,00i再yi))1水223dd13平((x3C至1 zCi3i21y)zd)2izd6z3019(ii原y032原)3式x62 式d2i=(d=i6yx)6232962363ii i
故 被积函数 在 | z | 1 上 处处解析
积分结果为0. 6
49页8 直接得到下列积分的结果,并说明理由
Ñ (3) ez (z2 1) d z |z|1
解 结果为 0 , 因为 被积函数 ez (z2 1) 在 | z | 1上 处处解析, 所以 积分结果为0.
Ñ (4)
|z| 1 2
1 (z2 1) (z3 1)
dz
解 结果为 0 , 由 (z2 1) (z3 1) 0 得到
z 1, z 1 3 i
2 这2些点都在圆 | z | 1 的外部。
故
被积函数
在
|
z
|
1
上
2
处处解析
2
积分结果为0. 7
49页9 沿指定曲线的正向计算下列积分
复变函数 第三章 复变函数的积分

{ u [ x ( t ), y ( t )] i [ v [ x ( t ), y ( t )]]}( x ' ( t ) iy ' ( t )) dt
i v x t,y () t) xt ' () u (()() x ty t) yt ' () } d t {(()
f[ z ( t)] z '( t) dt fz ( ) d z f [ z ( t ) ] zt ' ( ) d t
C
( 3 . 6 )
用(3.6)式计算复变函数的积分,是从积分路径的 参数方程着手,称为参数方程法.
例3.1 计算 z d z ,C : 从原点到点 3 4 i 的直线 . C y x3 t, 0t 1 , 解 直线方程为 A y 4 t ,
C C
u ( x , y ) d x v ( x , y ) d y iv ( x , y ) d x u ( x , y ) d y
C C
C
f ( z )d z
结 论 1 : 当是 fz () 连 续 函 数 , C 是 光 滑 曲 线 时 , () d z 一 定 存 在 。 fz 结 论 2 : () d z 可 以 通 过 两 个 二 元 实 函 数 的 fz
k k
证明 令 z x iy x x x y y y k k k k k k 1 k k k 1
n
k n k k k k k k
n
u (k, x v(k, y k) k k) k
k 1 k 1 n n
k 1 n
复变函数3-3

不相交的正向圆周
z 0,
y
根据复合闭路定理,
2z 1
z 2 z dz z 2 z dz z 2 z dz
C1 C2
2z 1
2z 1
C1
C2
o
1
x
C1
z 1 dz z dz z 1 dz z dz
B
3
设函数
f ( z ) 在多连通域
D 内解析 ,
C 及 C 1 为 D 内 的 任 意 两 条 简 单 闭 曲 线 ( 正 向 为 逆 时 针 方 向 ),
以 C 及 C 1 为 边 界 的 区 域 D1 全 含 于 D .
作两段不相交的弧段
︵ 和 B B , ︵ AA
C
C1
A
A
B
B
D
由 得
C
f ( z )d z
C1
f ( z )d z 0 ,
C C1
f ( z )d z 0
那末
f ( z )d z 0
若 把 这 两 条 简 单 闭 曲 线 C 及 C1
看 成 一 条 复 合 闭 路 , C C1 ,
的 正 方 向 为:
B E
E
C1
或
B
C
f ( z )d z
C1
f ( z )d z .
D
6
由
C
f ( z )d z
C1
f ( z )d z
复变函数论第三版PPT课件

导数具有线性、可加性、可乘性和链式法则等性质。这些性质在计算复杂函数 的导数时非常有用。
导数的计算方法
基本初等函数的导数
隐函数的导数
对于常数、幂函数、指数函数、三角 函数等基本初等函数,其导数都有固 定的公式可以查询和使用。
如果一个函数$F(x, y) = 0$,我们可 以通过对$F$求关于$x$或$y$的偏导 数来找到隐函数的导数。
傅里叶级数与傅里叶变换
傅里叶级数
将周期函数表示为无穷级数,通过正 弦和余弦函数的线性组合来逼近原函 数。
傅里叶变换
将函数从时间域转换到频率域,通过 积分形式实现。
傅里叶变换的性质与应用
线性性质
若 $f(t)$ 和 $g(t)$ 是 可傅里叶变换的,$a, b$ 是常数,则 $af(t) + bg(t)$ 也可进行傅里叶 变换。
复数的几何意义
复数可以用平面上的点来 表示,实部为横坐标,虚 部为纵坐标。
复数的运算
复数可以进行加法、减法、 乘法和除法等运算,满足 交换律、结合律和分配律。
02 复数与复变函数
复数及其运算
复数
由实部和虚部构成的数, 表示为 a + bi,其中 a 和 b 是实数,i 是虚数单位。
复数的运算
加法、减法、乘法和除法 等。
共轭复数
如果一个复数的虚部变号, 则得到该复数的共轭复数。
复变函数及其定义域
复变函数
从复平面到复平面的映射。
定义域
复变函数的输入值的集合。
单值函数和多值函数
根据定义域和值域的关系进行分类。
复变函数的极限与连续性
极限
描述函数值随自变量变化的行为。
连续性
函数在某一点处的极限值等于该 点的函数值。
复变函数习题答案第3章习题详解.docx

第三章习题详解1・沿下列路线计算积分J;' z2dz o1)自原点至3 + i的直线段;解:连接自原点至34-1的直线段的参数方程为:z =(3+》0<r<l dz =(3 + i)dt2)自原点沿实轴至3,再由3铅直向上至3 +八解:连接自原点沿实轴至3的参数方程为:z = t 0</<1 dz = dt3 1=-33 «3连接自3铅直向上至3 +,的参数方程为:z = 3 + ir O<Z<1 dz = idt J J z2dz = £(3 + it)2 idt = -(34-17)3=-(3 + i)3彳" 3 n 3・・・ f z2dz = £t2dt 4- £(3 + it)2id/ = 133 4-1(3 4-1)3 - i33 = |(3 + i)33)自原点沿虚轴至i,再由i沿水平方向向右至3+i。
解:连接自原点沿虚轴至i的参数方程为:z = it 0</<1 dz = idtJ:Z2dz = J;(it)2 idt = | (i/)3= * 尸连接自i沿水平方向向右至3 + i的参数方程为:z = t^i 0<^<1 dz = dtr*edz=jo edz+广eaz=y+敦+厅-|/3=|(1+厅2.分别沿y =兀与y =兀2算出积分J;'(兀2 + iy^dz的值。
解:•/ j = x x2 + iy = x2 + ix ••• dz = (1 + i)dx・・・『(x2 + iy)dz = (1+ (x2 + ix)dx = (1 +•/ y = x2A x2 + iy = x2 4- ix2 = (1 + i)x2:. rfz = (1 + ilx)dxf 衣=[(3+03&二(3+讥♦3+i0=(3 + 厅0 d^ed Z=[\2dt=护而(W 宙討…T + 一 11.1.11 5. i = 1—i3 3 2 26 6/(z) =1 _ 1 z 2+2z + 4~ (z + 2)2在c 内解析,根据柯西一古萨定理,$匹J z 2 + 2z + 4/. £1+,(x 2+ iy)dz = (1 + /)£ * (1 + ilx)dx = (14-彳+ 设/(z)在单连通域〃内处处解析,C 为B 内任何一条正向简单闭曲线。
复变函数3
∫= 1it2 (1+ i)dt = −1+ i t3 1 = −1+ i
0
30 3
∫ 2. 计算积分 ez dz ,其中 c 为
c
(1)从 0 到 1 再到1 + i 的折线 (2)从 0 到1 + i 的直线
解:(1)从 0 到 1 的线段 c1 方程为: z = x + iy = x, x : 0 → 1,
解:各积分的被积函数的奇点为:(1) z = −2 ,(2) (z + 1)2 + 3 = 0
即 z = −1± 3i ,(3) z = ± 2i (4) z = kπ + π , k 为任意整数, 2
(5)被积函数处处解析,无奇点
不难看出,上述奇点的模皆大于 1,即皆在积分曲线之外,从而在积分曲线内被
0
0
0
= e −1+ ei(sin1− i cos1+ i) = e(cos1+ i sin1) −1 = e1+i −1;
(2)从 0 到1 + i 的直线段的方程为 z = x + iy = t + ti ,t : 0 → 1,
代入积分表达式中,得
∫ ∫ ∫ ezdz = 1et+ti (t + ti)′dt = (1+ i) 1et (cos t + i sin t)dt ,
从 1 到1 + i 的线段 c2 方程为: z = x + iy = 1 + iy, y : 0 → 1,
代入积分表达式中,得
∫ ∫ ∫ ∫ ∫ ezdz = ezdz + ezdz = 1exdx + 1e1+yi (1+ yi)′dy
复变函数ppt第三章
移向得
∫C0 f ( z)dz = ∫C1 f ( z)dz + ∫C2 f ( z)dz + L+ ∫Cn f ( z)dz
完
27
例3 设C为一简单闭光滑曲线, a∈C.计算积分 ∫ C
page47
dz . z−a
参考解答 a
C
r
a
C
Cr
(1)
(2)
完
28
dz 例4 计算积分 ∫ C 2 . 积分按逆时针方向,沿曲线 逆 z −z C进行,C是包含单位圆周|z|=1的任意一条光
31
定理3 定理3 设w=f(z) 在单连通区域D内解析,则由
F(z) = ∫ f (ξ )dξ
z0
z
z ∈ D (Th3-1)
定义的函数F(z)在D内解析,且
F ′( z ) = f ( z )
参考证明
完
32
牛顿-莱布尼兹公式
定理4 定理4 设w=f(z) 在单连通区域 单连通区域D内解析, Φ ( z )是f(z) 单连通区域 的任一原函数,那么
都含在C0内部,这n+1条曲线围成了一个多连通区域 多连通区域 D,D的边界 ∂D 称为复闭路 复闭路. 复闭路 左手法则定正向: 左手法则定正向 沿着D的边界走, 区域D的点总在 左手边.
C0
C3
C2 C1
∴当C0取逆时针, C1 , C2 ,L , Cn都取顺时针.
24
∂D = C 0 + C1 + C 2 +
第三章 复变函数的积分 复变函数
引言 复变函数积分的概念 柯西—古萨定理 柯西 古萨定理 柯西积分公式、 柯西积分公式、 解析函数的高阶导数公式 解析函数与调和函数的关系
工程数学《复变函数》(第四版)课件 3-1,2,3 西安交大
⑴
⑵
f z dz
C k 1
n
Ck
f z dz
C3
C1
C
f z dz
n
k 1 C
k
f z dz 0
C2
C
D
12
2z 1 在内的任何正 dz, 为包含圆周 z 1 例4 计算 2 z z
向简单闭曲线.
解 据复合闭路原理得
2z 1 2z 1 2z 1 dz 2 dz 2 dz 2 z z z z z z c1 c2
0
0 1
C1 C2
C3
z1
2 zdz zdz zdz
C C2 1 C3 1
1 1 tdt 1 it idt i 1 i 0 0 2 2
8
三、积分的性质
i ii iii
f z dz
C
C 1
f z dz
C
4
ux t , yt xt vx t , yt yt dt
i v x t , y t x t u x t , y t yt dt
uxt , yt ivxt , yt xt iyt dt
⑴ 当 f z 是 连 续 函 数 而C 是 光 滑 曲 线 时, ⑵
C C C
C
f z 第二型曲线积分 dz一 定 存 在.
C
f z dz u iv d x iy u dx vdy i v dx udy
f z dz可以通过两个二元实变函数的线积分来计算。
复变函数-第3章
切矢不为零
并且在[a,b]上, x′(t ), y′(t ) 存在连续且不同时为零, 则称 γ 为 光滑曲线; 若 z (a) = z (b), z ′(a) = z ′(b), 则称 γ 为光滑闭曲线.
光滑弧
光滑闭曲线
(3) 若 f (z ) 和 g (z ) 沿 γ 可积, 则
∫γ [ f ( z ) ± g ( z )]dz = ∫γ f ( z )dz ± ∫γ g ( z )dz.
定理 3.1.3
连续
可积
有界
设 f ( z ) = u ( x, y ) + iv( x, y ) 在逐段光滑曲线 Γ 上连续, 则
其中, l (Γ) = ∫ ds, ds =| dz |= (dx) 2 + (dy ) 2 . 特别,
∫
Γ
f ( z )dz ≤ max | f ( z ) | ⋅l (Γ).
z∈Γ
证明: (1) 设
z k = xk + iyk , Δxk = xk − xk −1 , Δyk = yk − yk −1 , ck = ξ k + iη k ,
0
∫
r3
′ z dz = ∫ z3 (t ) z3 (t )dt = ∫ [−t (1 − i )]2 [−1 − i ]dt
2 0 2 −2 −2
0
= −(1 + i )(1 − i )
2
∫
0
−2
t 2 dt = −(1 + i )(1 − i ) 2 8 . 3
r3
∫
Γ
z 2 dz = ∫ z 2 dz + ∫ z 2 dz + ∫ z 2 dz = 1 (16 + 32i ). 3