圆的方程.ppt
合集下载
圆的一般方程ppt课件

联立方程
,解得x 4,y 3.
2 x y 5 0
∴所求圆的圆心坐标为(4, 3),半径为r 5.
所求圆的方程为( x 4)2 ( y 3)2 25.
变式:已知一圆过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段长为4 3 ,求
圆的方程.
变式:已知一圆过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段长为4 3 ,求
解得D 8, E 6, F 0.
∴过O, M1, M2的圆方程为
圆心坐标为 (4 , 3),半径r 5 .
例1.求过三点 O(0, 0), M1(1, 1), M2(4, 2) 的圆的方程及圆
的半径和圆心坐标.
解2:(待定系数法) 设过O, M1, M2的圆方程为
则
a 2 b2 r 2
.
.O
.M(x,y)
.B(4,3)
x
例2.已知线段AB的端点B的坐标是(4,3),端点A在圆(x+1)2+y2=4
上运动,求线段AB的中点M的轨迹方程.
定点: B(4,3) ,
定圆:( x 1) 2 y 2 4 .
A (主动点)
M (从动点)
x0 4
y0 3
x
,y
.
2
2
x0 2 x 4, y0 2 y 3.
而方程 x 2 y 2 2 x 4 y 6 0 配方后得 ( x 1)2 ( y 2)2 1 ,
方程无意义,不表示任何图形.
形成概念
一般地,把方程 x 2 y 2 Dx Fy E 0 配方可得:
2
2
,解得x 4,y 3.
2 x y 5 0
∴所求圆的圆心坐标为(4, 3),半径为r 5.
所求圆的方程为( x 4)2 ( y 3)2 25.
变式:已知一圆过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段长为4 3 ,求
圆的方程.
变式:已知一圆过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段长为4 3 ,求
解得D 8, E 6, F 0.
∴过O, M1, M2的圆方程为
圆心坐标为 (4 , 3),半径r 5 .
例1.求过三点 O(0, 0), M1(1, 1), M2(4, 2) 的圆的方程及圆
的半径和圆心坐标.
解2:(待定系数法) 设过O, M1, M2的圆方程为
则
a 2 b2 r 2
.
.O
.M(x,y)
.B(4,3)
x
例2.已知线段AB的端点B的坐标是(4,3),端点A在圆(x+1)2+y2=4
上运动,求线段AB的中点M的轨迹方程.
定点: B(4,3) ,
定圆:( x 1) 2 y 2 4 .
A (主动点)
M (从动点)
x0 4
y0 3
x
,y
.
2
2
x0 2 x 4, y0 2 y 3.
而方程 x 2 y 2 2 x 4 y 6 0 配方后得 ( x 1)2 ( y 2)2 1 ,
方程无意义,不表示任何图形.
形成概念
一般地,把方程 x 2 y 2 Dx Fy E 0 配方可得:
2
2
圆的一般方程ppt课件

( − ) +( − ) =
点 在圆外
| | >
( − ) +( − ) >
点 在圆内
| | <
( − ) +( − ) <
圆的标准方程的方法:
(1)几何法,数形结合
(2)待定系数法,计算上必须仔细。
直线的方程中有标准方程与一般式方程。在圆的方程表达式中
,半径长为
8
2 4
8
课本P88 习题2.4
3.已知圆 C 经过原点和点 A 2,1 ,并且圆心在直线 l : x 2 y 1 0 上,求圆 C 的标准方程.
【详解】设圆 C 的标准方程为 x a y b r 2 ,
2
2
6
a
0 a 2 0 b 2 r 2
课本P88 练习
3.如图,在四边形 ABCD 中, AB 6 , CD 3 ,且 AB / /CD , AD BC ,AB 与 CD 间的距
离为 3.求等腰梯形 ABCD 的外接圆的方程,并求这个圆的圆心坐标和半径.
3
【详解】由题意可知 A (-3,0),B (3,0),C ,3 设所求圆的方程为 x2 y 2 Dx Ey F 0 ,
+ + + + = ()
+
+ +
=
+ −
()
当2 + 2 − 4 > 0时,比较方程(2)和圆的标准方程,可以看出方程(1)
2-4-1圆的标准方程 课件(共28张PPT)

题型二 判断点与圆的位置关系
例 2 (1)已知圆心为点 C(-3,-4),且圆经过原点,求该 圆的标准方程,并判断点 P1(-1,0),P2(1,-1),P3(3,-4)和 圆的位置关系.
【思路分析】 关键是找到点与圆心的距离和半径的关系.
【解析】 因为圆心是 C(-3,-4),且圆经过原点, 所以圆的半径 r= (-3-0)2+(-4-0)2=5. 所以圆的标准方程为(x+3)2+(y+4)2=25. 因 为 (-1+3)2+(0+4)2 = 4+16 = 2 5 <5 , 所 以 P1(-1,0)在圆内; 因为 (1+3)2+(-1+4)2=5,所以 P2(1,-1)在圆上; 因为 (3+3)2+(-4+4)2=6>5,所以 P3(3,-4)在圆 外.
(2)由已知得圆心坐标为 M(2,-1),半径 r=12|AB|=1,
∴圆的方程为(x-2)2+(y+1)2=1.
(3)方法一:设所求圆的方程为(x-a)2+(y-b)2=r2,
∴( (2--2a-)a2)+2(+-(3--5b-)b2)=2r=2,r2, a-2b-3=0,
即aa22- +44aa+ +bb22+ +61b0+ b+132= 9=r2r,2, ②
要点 3 几种特殊位置的圆的标准方程
条件
方程形式
(x-a)2+(y- 过原点,圆心(a,b),半径 r= a2+b2
b)2=a2+b2
圆心在原点,即 a=0,b=0,半径 为 r,r>0
x2+y2=r2
圆心在 x 轴上,即 b=0,半径为 r, (x-a)2+y2=r2
r>0
圆心在 y 轴上,即 a=0,半径为 r, x2+(y-b)2=r2
(2)已知 A(1,2),B(0,1),C(7,-6),D(4,3),判断这四 点是否在同一个圆上.
圆的标准方程ppt课件

_____5______.
解析:圆 C : x2 y2 25 的圆心为C(0,0) ,半径r = 5 , 因为 AC (8 0)2 (6 0)2 10 5 ,所以点 A 在圆外, 所以 AP 的最小值为 AC r 10 5 5 ,故答案为:5.
总结一下
圆的标准方程
6.已知 A2,2、 B2,6 ,则以 AB 为直径的圆的标准方程为_x_2____.y4 2 8
解析:线段 AB 的中点坐标为0, 4 , AB 2 22 2 62 4 2 ,
所以,所求圆的半径为 2 2 ,故所求圆的标准方程为 x2 y 42 8 .
7.已知点 A(8, 6) 与圆C : x2 y2 25 ,P 是圆 C 上任意一点,则 AP 的最小值是
求圆的标准方程的两种方法
1.待定系数法.先设圆的标准方法 x a 2 y b 2 r2 ,再根据条件列出关于 a, b,r 的三个独立方程,通过解方程组求出 a,b,r 的值,从而得到圆的标准方程, 如例题 2 的解法.这是一种代数解法. 2.直接求解法.先根据题目条件求出圆心和半径,直接写出圆的标准方程,如例 3 的解法,这种解法往往需要圆的几何性质.
例 3 已知圆心为 C 的圆经过 A(1,1) ,B(2 ,2) 两点,且圆心 C 在直线l : x y 1 0 上, 求此圆的标准方程.
分析:设圆心 C 的坐标为 a,b .由已知条件可知, CA CB ,且a b 1 0 , 由此可以求出圆心坐标和坐标.
解:解法1:
设圆心 C 的坐标为 (a ,b) . 因为圆心 C 在直线 l : x y 1 0 上,所以 a b 1 0 .① 因为 A,B 是圆上两点,所以| CA| | CB | . 根据两点间距离公式,有 (a 1)2 (b 1)2 (a 2)2 (b 2)2 , 即 a 3b 3 0 .② 由①②可得 a 3,b 2 . 所以圆心 C 的坐标是 (3, 2) . 圆的半径 r | AC | (1 3)2 (1 2)2 5 .
解析:圆 C : x2 y2 25 的圆心为C(0,0) ,半径r = 5 , 因为 AC (8 0)2 (6 0)2 10 5 ,所以点 A 在圆外, 所以 AP 的最小值为 AC r 10 5 5 ,故答案为:5.
总结一下
圆的标准方程
6.已知 A2,2、 B2,6 ,则以 AB 为直径的圆的标准方程为_x_2____.y4 2 8
解析:线段 AB 的中点坐标为0, 4 , AB 2 22 2 62 4 2 ,
所以,所求圆的半径为 2 2 ,故所求圆的标准方程为 x2 y 42 8 .
7.已知点 A(8, 6) 与圆C : x2 y2 25 ,P 是圆 C 上任意一点,则 AP 的最小值是
求圆的标准方程的两种方法
1.待定系数法.先设圆的标准方法 x a 2 y b 2 r2 ,再根据条件列出关于 a, b,r 的三个独立方程,通过解方程组求出 a,b,r 的值,从而得到圆的标准方程, 如例题 2 的解法.这是一种代数解法. 2.直接求解法.先根据题目条件求出圆心和半径,直接写出圆的标准方程,如例 3 的解法,这种解法往往需要圆的几何性质.
例 3 已知圆心为 C 的圆经过 A(1,1) ,B(2 ,2) 两点,且圆心 C 在直线l : x y 1 0 上, 求此圆的标准方程.
分析:设圆心 C 的坐标为 a,b .由已知条件可知, CA CB ,且a b 1 0 , 由此可以求出圆心坐标和坐标.
解:解法1:
设圆心 C 的坐标为 (a ,b) . 因为圆心 C 在直线 l : x y 1 0 上,所以 a b 1 0 .① 因为 A,B 是圆上两点,所以| CA| | CB | . 根据两点间距离公式,有 (a 1)2 (b 1)2 (a 2)2 (b 2)2 , 即 a 3b 3 0 .② 由①②可得 a 3,b 2 . 所以圆心 C 的坐标是 (3, 2) . 圆的半径 r | AC | (1 3)2 (1 2)2 5 .
圆的一般方程 课件

1(x≠3,且x≠1).
[类题通法] 用代入法求轨迹方程的一般步骤
[类题通法] 形如x2+y2+Dx+Ey+F=0的二元二次方程,判定其是否 表示圆时可有如下两种方法: (1)由圆的一般方程的定义令D2+E2-4F>0,成立则表示圆, 否则不表示圆. (2)将方程配方后,根据圆的标准方程的特征求解. 应用这两种方法时,要注意所给方程是不是x2+y2+Dx+Ey +F=0这种标准形式,若不是,则要化为这种形式再求解.
示的圆的圆心为
-D,-E 22
,半径长为1 2
D2+E 2-4F .
所有形如 x2+y2+Dx+Ey+F =0 的二元二次方程都表示圆 吗?
提示:不是,只有当D2+E2-4F>0时才表示圆.
探究点一 圆的一般方程 [思考探究] 已知圆心(2,3),半径为 2,其标准方程为(x-2)2+(y-3)2=4. (1)上述方程能否化为二元二次方程的形式?
[典例精析]
求过三点O(0,0),M1(1,1),M2(4,2)的圆的方程,并求这
个圆的半径和圆心坐标. [解] 设所求圆的方程为x2+y2+Dx+Ey+F=0,
∵所求圆过点O(0,0),M1(1,1),M2(4,2),
∴FD=+0E,+F+2=0, 4D+2E+F+20=0,
解得DE==6-,8, F=0.
法二:同法一得x≠3,且x≠-1.
由勾股定理得|AC|2+|BC|2=|AB|2,
即(x+1)2+y2+(x-3)2+y2=16,
化简得x2+y2-2x-3=0.
因此,直角顶点C的轨迹方程为x2+y2-2x-3=0(x≠3,
且x≠-1).
法三:设AB中点为D,由中点坐标公式得D(1,0),由直
圆的标准方程ppt课件

通过配方,可以将其 转化为标准形式,进 而确定圆心和半径。
一般形式下圆的方程 为 $x^2+y^2+Dx+Ey +F=0$,其中 $D^2+E^2-4F>0$。
拓展延伸
与直线方程联立,可以求解交点。
极坐标形式下圆的方程及其求解 方法
极坐标形式下圆的方程为 $rho=a(1+costheta)$或 $rho=a(1+sintheta)$,其中
圆的面积
S = πr²。
弧长与扇形面积计算
ห้องสมุดไป่ตู้弧长公式
l = θ/360° × 2πr,其中θ 为圆心角的度数。
扇形面积公式
S = θ/360° × πr²,其中θ 为圆心角的度数。
弓形面积计算
弓形面积 = 扇形面积 - 三 角形面积,其中三角形面 积可通过底和高计算得出。
02 圆的标准方程及其推导
数学建模竞赛
在数学建模竞赛中,圆的方程常常作为数学模型的基础,用于解决 各种实际问题,如城市规划、交通流量分析等。
06 总结回顾与拓展延伸
总结回顾本次课程重点内容
01
圆的标准方程的定义和形式
02
圆心和半径的确定方法
03
圆的方程与直线方程联立求解交点
04
圆的方程在实际问题中的应用
拓展延伸
一般形式下圆的方程 及其求解方法
圆的要素
圆心、半径。
03
圆的表示方法
一般用圆心和半径表示,如圆O(r)。
圆心、半径与直径
01
02
03
圆心
圆的中心,用字母O表示。
半径
连接圆心和圆上任意一点 的线段,用字母r表示。
圆的一般方程 课件
①由圆的一般方程的定义令 D2+E2-4F>0,成立则表示圆, 否则不表示圆;②将方程配方后,根据圆的标准方程的特征求解.应 用这两种方法时,要注意所给方程是不是 x2+y2+Dx+Ey+F=0 这种标准形式,若不是,则要化为这种形式再求解.
类型二 待定系数法求圆的方程 [例 2] 已知△ABC 的三个顶点为 A(1,4),B(-2,3),C(4,-5), 求△ABC 的外接圆方程、外心坐标和外接圆半径.
又 kAC=x+y 1,kBC=x-y 3,且 kAC·kBC=-1,
所以x+y 1·x-y 3=-1,化简得 x2+y2-2x-3=0. 因此,直角顶点 C 的轨迹方程为 x2+y2-2x-3=0(x≠3 且 x≠ -1).
方法二:同法一得 x≠3 且 x≠-1. 由勾股定理得|AC|2+|BC|2=|AB|2,即(x+1)2+y2+(x-3)2+y2 =16,化简得 x2+y2-2x-3=0.因此,直角顶点 C 的轨迹方程为 x2 +y2-2x-3=0(x≠3 且 x≠-1). 方法三:设 AB 中点为 D,由中点坐标公式得 D(1,0),由直角
因此动点 M 的轨迹方程为(x-2)2+y2=1(x≠3 且 x≠1).
方法归纳
1.一般地,求轨迹方程就是求等式,就是找等量关系,把等 量关系用数学语言表达出来,再进行变形、化简,就会得到相应的 轨迹方程,所以找等量关系是解决问题的关键.
2.求曲线的轨迹方程要注意的三点 (1)根据题目条件,选用适当的求轨迹方程的方法. (2)看准是求轨迹,还是求轨迹方程,轨迹是轨迹方程所表示的 曲线(图形). (3)检查轨迹上是否有应去掉的点或漏掉的点.
【解析】 方法一:设△ABC 的外接圆方程为 x2+y2+Dx+Ey+F=0,
类型二 待定系数法求圆的方程 [例 2] 已知△ABC 的三个顶点为 A(1,4),B(-2,3),C(4,-5), 求△ABC 的外接圆方程、外心坐标和外接圆半径.
又 kAC=x+y 1,kBC=x-y 3,且 kAC·kBC=-1,
所以x+y 1·x-y 3=-1,化简得 x2+y2-2x-3=0. 因此,直角顶点 C 的轨迹方程为 x2+y2-2x-3=0(x≠3 且 x≠ -1).
方法二:同法一得 x≠3 且 x≠-1. 由勾股定理得|AC|2+|BC|2=|AB|2,即(x+1)2+y2+(x-3)2+y2 =16,化简得 x2+y2-2x-3=0.因此,直角顶点 C 的轨迹方程为 x2 +y2-2x-3=0(x≠3 且 x≠-1). 方法三:设 AB 中点为 D,由中点坐标公式得 D(1,0),由直角
因此动点 M 的轨迹方程为(x-2)2+y2=1(x≠3 且 x≠1).
方法归纳
1.一般地,求轨迹方程就是求等式,就是找等量关系,把等 量关系用数学语言表达出来,再进行变形、化简,就会得到相应的 轨迹方程,所以找等量关系是解决问题的关键.
2.求曲线的轨迹方程要注意的三点 (1)根据题目条件,选用适当的求轨迹方程的方法. (2)看准是求轨迹,还是求轨迹方程,轨迹是轨迹方程所表示的 曲线(图形). (3)检查轨迹上是否有应去掉的点或漏掉的点.
【解析】 方法一:设△ABC 的外接圆方程为 x2+y2+Dx+Ey+F=0,
人教B版高中数学必修二2.3.1《圆的标准方程》ppt课件
•直径的圆的方已程知,两并点判P断1(M4(,69,)9和)、P2(Q6(,53,)3,)是求在以圆P1上P2?为
圆外?圆内?
• [分析] (1)根据所给已知条件可得圆心坐标和半 径.
• (2)判断点在圆上、圆外、圆内的方法是:根据已 知点[到解析圆]心由的已距知离条与件半可径得圆的心大坐小标关为系M来(5,判6),断半.径为 r=12
• 3.以点A(-5,4)为圆心,且与y轴相切的圆的方程
是( )
• A.(x-5)2+(y+4)2=25 B.(x+5)2+(y-4)2=
25
• C.(x-5)2+(y+4)2=16 D.(x+5)2+(y-4)2=
16
• [答案] B
• [解析] ∵与y轴相切,∴r=5,方程为(x+5)2+(y
② 根据自己预习时理解过的逻辑结构抓住老师的思路。老师讲课在多数情况下是根据教材本身的知识结构展开的,若把自己预习时所理解过的知 识逻辑结构与老师的讲解过程进行比较,便可以抓住老师的思路。
③ 根据老师的提示抓住老师的思路。老师在教学中经常有一些提示用语,如“请注意”、“我再重复一遍”、“这个问题的关键是····”等 等,这些用语往往体现了老师的思路。来自:学习方法网
此求圆的方程必须具备三个独立条件.
• 3.圆心为(a,b)半径为r(r>0)的圆的方程为: (x_圆-_心_a_)2在_+_(原_y_-点_b_)、_2=_半_r_2 径__为__r_的,圆称方作程圆为的x标2+准y方2=程r.2. 特别地,
• 4.点P(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关
r2=5
故△ABC 的外接圆的标准方程为(x-4)2+(y-1)2=5.
编后语
老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何 抓住老师的思路。
圆外?圆内?
• [分析] (1)根据所给已知条件可得圆心坐标和半 径.
• (2)判断点在圆上、圆外、圆内的方法是:根据已 知点[到解析圆]心由的已距知离条与件半可径得圆的心大坐小标关为系M来(5,判6),断半.径为 r=12
• 3.以点A(-5,4)为圆心,且与y轴相切的圆的方程
是( )
• A.(x-5)2+(y+4)2=25 B.(x+5)2+(y-4)2=
25
• C.(x-5)2+(y+4)2=16 D.(x+5)2+(y-4)2=
16
• [答案] B
• [解析] ∵与y轴相切,∴r=5,方程为(x+5)2+(y
② 根据自己预习时理解过的逻辑结构抓住老师的思路。老师讲课在多数情况下是根据教材本身的知识结构展开的,若把自己预习时所理解过的知 识逻辑结构与老师的讲解过程进行比较,便可以抓住老师的思路。
③ 根据老师的提示抓住老师的思路。老师在教学中经常有一些提示用语,如“请注意”、“我再重复一遍”、“这个问题的关键是····”等 等,这些用语往往体现了老师的思路。来自:学习方法网
此求圆的方程必须具备三个独立条件.
• 3.圆心为(a,b)半径为r(r>0)的圆的方程为: (x_圆-_心_a_)2在_+_(原_y_-点_b_)、_2=_半_r_2 径__为__r_的,圆称方作程圆为的x标2+准y方2=程r.2. 特别地,
• 4.点P(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关
r2=5
故△ABC 的外接圆的标准方程为(x-4)2+(y-1)2=5.
编后语
老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何 抓住老师的思路。
圆的标准方程(ppt课件)
外三种情形.
思考2:在直角坐标系中,已知点M(x0,y0)和圆C: ,如何判断点M在圆外、圆上、
圆内?
提示: (x0-a)2+(y0-b)2>r2时,点M在圆C (x0-a)2+(y0-b)外2=;r2时,点M在圆C (x0-a)2+(y0-b)上2<; r2时,点M在圆C 内.
例5.已知两点P1(3,8)和P2(5,4),求以P1P2为直径的
(1,0)
6
(-1,2) 3
(-a,0) |a|
特殊位置的圆的标准方程
例1. 求以C(4,-6)为圆心,半径等于3的圆的方程. 解:将圆心C(4,-6)、半径等于3代入圆的标准
方程,可得所求圆的方程为
(x 4)2 ( y 6)2 9.
例2.已知两点M1(4, 9)和M2(6, 3),求以M1M2为直 径的圆的方程.
例4 求经过A(1,3),B(4,2)两点,且圆心C在直线l:x+y3=0上的圆的标准方程.
几何法 如图,连接AB,作AB的垂直平分线交AB于点 D,则圆心C是线段AB的垂直平分线与直线l 的交点.线段AB的垂直平分线的方程为3xy-5=0.
探究 点与圆的位置关系
思考1:点与圆的位置关系有几种? 提示:三种.分别为点在圆内,点在圆上和点在圆
圆的方程,并判断M(6,3),Q(8,1)是在圆上,圆外 还是圆内?
解 所:以5圆由方P1程P2为为(直x-径4可)2知+圆(y心-的6)坐2=标5为,(4,6),半径为 ,
把M,Q两点坐标代入圆的方程 (6-4)2+(3-6)2=13>5 (8-4)2+(1-6)2=41>5 所以M,Q两点均在圆外.
(2)写出适合条件P的点M的集合 P={M | p(M)};
思考2:在直角坐标系中,已知点M(x0,y0)和圆C: ,如何判断点M在圆外、圆上、
圆内?
提示: (x0-a)2+(y0-b)2>r2时,点M在圆C (x0-a)2+(y0-b)外2=;r2时,点M在圆C (x0-a)2+(y0-b)上2<; r2时,点M在圆C 内.
例5.已知两点P1(3,8)和P2(5,4),求以P1P2为直径的
(1,0)
6
(-1,2) 3
(-a,0) |a|
特殊位置的圆的标准方程
例1. 求以C(4,-6)为圆心,半径等于3的圆的方程. 解:将圆心C(4,-6)、半径等于3代入圆的标准
方程,可得所求圆的方程为
(x 4)2 ( y 6)2 9.
例2.已知两点M1(4, 9)和M2(6, 3),求以M1M2为直 径的圆的方程.
例4 求经过A(1,3),B(4,2)两点,且圆心C在直线l:x+y3=0上的圆的标准方程.
几何法 如图,连接AB,作AB的垂直平分线交AB于点 D,则圆心C是线段AB的垂直平分线与直线l 的交点.线段AB的垂直平分线的方程为3xy-5=0.
探究 点与圆的位置关系
思考1:点与圆的位置关系有几种? 提示:三种.分别为点在圆内,点在圆上和点在圆
圆的方程,并判断M(6,3),Q(8,1)是在圆上,圆外 还是圆内?
解 所:以5圆由方P1程P2为为(直x-径4可)2知+圆(y心-的6)坐2=标5为,(4,6),半径为 ,
把M,Q两点坐标代入圆的方程 (6-4)2+(3-6)2=13>5 (8-4)2+(1-6)2=41>5 所以M,Q两点均在圆外.
(2)写出适合条件P的点M的集合 P={M | p(M)};
2.4.1 圆的标准方程(PPT)
探究题 2 已知圆心在 x 轴上的圆 C 与 x 轴交于 A(1,0),B(5, 0)两点.
(1)求此圆的标准方程; (2)设 P(x,y)为圆 C 上任意一点,求点 P(x,y)到直线 x-y+1 =0 的距离的最大值和最小值.
探究题 1 26+2 解析:理解 (x-1)2+(y-1)2的几何 意义,即为动点 P(x,y)到定点(1,1)的距离.因为点 P(x,y)是圆 x2+(y+4)2=4 上的任意一点,因此 (x-1)2+(y-1)2表示点 (1,1)与该圆上点的距离.
小题体验 判断(正确的打“√”,错误的打“×”). (1)方程(x-a)2+(y-b)2=m2 表示圆.( ) × 解析:当 m=0 时不表示圆,只表示点(a,b). (2) 若 圆 的 标 准 方 程 是 (x - a)2+ (y - b)2 = m2(m≠0) , 则 圆 心 为 (a,b),半径为 m.( )
解:(1)因为圆心(3,4),设半径为 r, 又圆过坐标原点,所以 r= (3-0)2+(4-0)2=5, 所以圆的标准方程为(x-3)2+(y-4)2=25. (2)设圆的半径为 r, 因为圆与 x+y=4 相切,所以 r=|1+121+-142|= 2. 故所求圆的标准方程为(x-1)2+(y-1)2=2.
必备知识 深化预习
1.圆的标准方程 (1) 以 C(a , b) 为 圆 心 , r(r>0) 为 半 径 的 圆 的 标 准 方 程 为 __(x_-__a_)_2_+__(y_-__b_)_2_=__r2___. (2)以原点为圆心,r 为半径的圆的标准方程为__x_2+__y_2_=__r_2 __.
联立方程组23xx- -yy= -02, =0,解得yx==42., 设圆心为 C,所以圆心坐标为(2,4). 又半径 r=|CA|= 10, 则所求圆的标准方程是(x-2)2+(y-4)2=10.