2018高考数学复习不等式7.1不等关系与不等式撬题理
2018年高考数学核按钮考点突破课标版高中理科数学7.1

2 2
(2016·贵州模拟)若 a,b 都是实数,则“ a- b>0” 2 2 是“a -b >0”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
点拨: 解决有关不等关系的实际问题 ,应抓住关键字词,例如 “要”“必须”“不少于”“大于”等,从而建立相应的方程或 不等式模型.本例[x]表示不超过 x 的最大整数,故由[x]=k,可 得 k≤x<k+1,再由多个不等式结合不等式的性质找到正整数 n 的最大值.
)
解:根据幂函数性质,选项 A 中的不等式不成立;选项 B 中的不等 -1 -1 式可化为 bc <ac ,此时-1<c-1<0,根据幂函数性质,该不等式不成 a logac logcb a 立;选项 C 中的不等式可以化为 > = = logab ,此时 >1 , b logbc logca b lgc lgc 0<logab<1,故此不等式成立;选项 D 中的不等式可以化为 < ,进 lga lgb 1 1 而 > ,进而 lga<lgb,即 a<b,故在已知条件下选项 D 中的不等式 lga lgb 不成立.故选 C.
解:a1b1+a2b2-(a1b2+a2b1)=(a1-a2)(b1-b2),因为 a1 ≤a2,b1≥b2,所以 a1-a2≤0,b1-b2≥0,于是(a1-a2)(b1 -b2)≤0,故 a1b1+a2b2≤a1b2+a2b1.故填 a1b1+a2b2≤a1b2+ a2b1.
高中数学高考复习:第六章第1讲 不等关系与不等式

知识点 考纲下载 不等关系与不等式 了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.
二元一次不等式(组)与 简单的线性规划问题
1.会从实际情境中抽象出二元一次不等式组. 2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组. 3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决. 基本不等式 a+b2≥ab(a≥0,b≥0)
1.了解基本不等式的证明过程.
2.会用基本不等式解决简单的最大(小)值问题.
第1讲 不等关系与不等式
1.实数大小顺序与运算性质之间的关系 a-b>0⇔a>b;a-b=0⇔a=b;a-b<0⇔a2.不等式的基本性质 (1)对称性:a>b⇔b<a; (2)传递性:a>b,b>c⇒a>c; (3)可加性:a>b⇒a+c>b+c;a>b,c>d⇒a+c>b+d; (4)可乘性:a>b,c>0⇒ac>bc, a>b>0,c>d>0⇒ac>bd; (5)可乘方:a>b>0⇒an>bn(n∈N,n≥1); (6)可开方:a>b>0⇒na>nb(n∈N,n≥2). 1.辨明两个易误点 (1)在应用传递性时,注意等号是否传递下去,如a≤b,b(2)在乘法法则中,要特别注意“乘数c的符号”,例如当c≠0时,有a>b⇒ac2>bc2;若无c≠0这个条件,a>b⇒ac2>bc2就是错误结论(当c=0时,取“=”). 2.不等式中的倒数性质 (1)a>b,ab>0⇒1a<1b; (2)a<0(3)a>b>0,0bd; (4)0
1.教材习题改编 设A=(x-3)2,B=(x-2)·(x-4),则A与B的大小关系为( ) A.A≥B B.A>B C.A≤B D.A<B B [解析] A-B=(x2-6x+9)-(x2-6x+8)=1>0,所以A>B.故选B. 2.已知a,b是实数,则“a>0且b>0”是“a+b>0且ab>0”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 C [解析] a>0,b>0⇒a+b>0,ab>0.又当ab>0时,a与b同号,由a+b>0知a>0,且b>0. 3.教材习题改编 下列四个结论,正确的是( ) ①a>b,cb-d; ②a>b>0,cbd;
高考数学一轮复习 第七章 不等式 7.1 不等关系与不等

【步步高】(江苏专用)2017版高考数学一轮复习 第七章 不等式 7.1不等关系与不等式 理1.两个实数比较大小的方法(1)作差法⎩⎪⎨⎪⎧a -b >0⇔a > b a -b =0⇔a = ba -b <0⇔a < b(a ,b ∈R );(2)作商法⎩⎪⎨⎪⎧ab>1⇔a > b ab =1⇔a = ba b <1⇔a < b(a ∈R ,b >0).2.不等式的基本性质性质 性质内容 特别提醒 对称性 a >b ⇔b <a ⇔ 传递性 a >b ,b >c ⇒a >c ⇒ 可加性a >b ⇔a +c >b +c⇔可乘性⎭⎪⎬⎪⎫a >b c >0⇒ac >bc 注意c 的符号⎭⎪⎬⎪⎫a >b c <0⇒ac <bc同向可加性⎭⎪⎬⎪⎫a >b c >d ⇒a +c >b +d ⇒同向同正可乘性⎭⎪⎬⎪⎫a >b >0c >d >0⇒ac >bd ⇒可乘方性 a >b >0⇒a n >b n (n ∈N ,n ≥1) a ,b 同为正数可开方性a >b >0⇒na >nb (n ∈N ,n ≥2)3.(1)倒数的性质 ①a >b ,ab >0⇒1a <1b.②a <0<b ⇒1a <1b.③a >b >0,0<c <d ⇒a c >b d. ④0<a <x <b 或a <x <b <0⇒1b <1x <1a.(2)有关分数的性质 若a >b >0,m >0,则 ①b a <b +m a +m ;b a >b -ma -m(b -m >0). ②a b >a +mb +m ;a b <a -mb -m(b -m >0). 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)a >b ⇔ac 2>bc 2.( × ) (2)1a >1b⇔a <b (ab ≠0).( × )(3)a >b ,c >d ⇒ac >bd .( × ) (4)若1a <1b<0,则|a |>|b |.( × )(5)若a 3>b 3且ab <0,则1a >1b.( √ )1若x >y ,a >b ,则在①a -x >b -y ,②a +x >b +y ,③ax >by ,④x -b >y -a ,⑤a y >b x这五个式子中,恒成立的所有不等式的序号是________. 答案 ②④解析 令x =-2,y =-3,a =3,b =2, 符合题设条件x >y ,a >b .∵a -x =3-(-2)=5,b -y =2-(-3)=5, ∴a -x =b -y .因此①不恒成立.又∵ax =-6,by =-6,∴ax =by .因此③也不恒成立.又∵a y =3-3=-1,b x =2-2=-1,∴a y =b x.因此⑤不恒成立.由不等式的性质可推出②④恒成立. 2.下列四个结论,正确的是________. ①a >b ,c <d ⇒a -c >b -d ; ②a >b >0,c <d <0⇒ac >bd ; ③a >b >0⇒3a >3b ;④a >b >0⇒1a 2>1b2.答案 ①③3.若a ,b ∈R ,若a +|b |<0,则下列不等式中正确的是________. ①a -b >0 ②a 3+b 3>0 ③a 2-b 2<0 ④a +b <0 答案 ④解析 由a +|b |<0知,a <0,且|a |>|b |, 当b ≥0时,a +b <0成立,当b <0时,a +b <0成立,∴a +b <0成立. 4.下列各组代数式的关系正确的是________. ①x 2+5x +6<2x 2+5x +9; ②(x -3)2<(x -2)(x -4); ③当x >1时,x 3>x 2-x +1; ④x 2+y 2+1>2(x +y -1). 答案 ①③④解析 ①2x 2+5x +9-(x 2+5x +6)=x 2+3>0, 即x 2+5x +6<2x 2+5x +9.②(x -2)(x -4)-(x -3)2=x 2-6x +8-(x 2-6x +9)=-1<0, 即(x -2)(x -4)<(x -3)2.③当x >1时,x 3-x 2+x -1=x 2(x -1)+(x -1) =(x -1)(x 2+1)>0, 即x 3>x 2-x +1.④x 2+y 2+1-2(x +y -1)=(x 2-2x +1)+(y 2-2y +1)+1=(x -1)2+(y -1)2+1>0,即x 2+y 2+1>2(x +y -1).5.若0<a <b ,且a +b =1,则将a ,b ,12,2ab ,a 2+b 2从小到大排列为____________________.答案 a <2ab <12<a 2+b 2<b解析 ∵0<a <b 且a +b =1, ∴a <12<b <1,∴2b >1且2a <1,∴a <2b ·a =2a (1-a )=-2a 2+2a =-2⎝ ⎛⎭⎪⎫a -122+12<12.即a <2ab <12,又a 2+b 2=(a +b )2-2ab =1-2ab >1-12=12,即a 2+b 2>12,a 2+b 2-b =(1-b )2+b 2-b =(2b -1)(b -1),又2b -1>0,b -1<0,∴a 2+b 2-b <0, ∴a 2+b 2<b ,综上,a <2ab <12<a 2+b 2<b .题型一 比较两个数(式)的大小例1 (1)已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是__________.(2)若a =ln 33,b =ln 44,c =ln 55,则a ,b ,c 的大小关系为__________.答案 (1)c ≥b >a (2)c <b <a解析 (1)∵c -b =4-4a +a 2=(a -2)2≥0,∴c ≥b . 又b +c =6-4a +3a 2,∴2b =2+2a 2,∴b =a 2+1, ∴b -a =a 2-a +1=(a -12)2+34>0,∴b >a ,∴c ≥b >a .(2)方法一 易知a ,b ,c 都是正数,b a =3ln 44ln 3=log 8164<1, 所以a >b ;b c =5ln 44ln 5=log 6251 024>1, 所以b >c .即c <b <a .方法二 对于函数y =f (x )=ln x x ,y ′=1-ln xx2, 易知当x >e 时,函数f (x )单调递减. 因为e<3<4<5,所以f (3)>f (4)>f (5), 即c <b <a .思维升华 比较大小的常用方法 (1)作差法:一般步骤:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差. (2)作商法:一般步骤:①作商;②变形;③判断商与1的大小;④结论.(3)函数的单调性法:将要比较的两个数作为一个函数的两个函数值,根据函数的单调性得出大小关系.(1)已知x ∈R ,m =(x +1)(x 2+x 2+1),n =(x +12)(x 2+x +1),则m ,n 的大小关系为__________.(2)若a =1816,b =1618,则a 与b 的大小关系为_______________________________. 答案 (1)m >n (2)a <b 解析 (1)m =(x +1)(x 2+x2+1)=(x +1)(x 2+x -x2+1)=(x +1)(x 2+x +1)-x2(x +1),n =(x +12)(x 2+x +1)=(x +1-12)(x 2+x +1)=(x +1)(x 2+x +1)-12(x 2+x +1),∴m -n =(x +1)(x 2+x 2+1)-(x +12)(x 2+x +1)=12(x 2+x +1)-12x (x +1) =12>0. 则有x ∈R 时,m >n 恒成立.(2)a b =18161618=(1816)161162 =(98)16(12)16=(982)16, ∵982∈(0,1),∴(982)16<1, ∵1816>0,1618>0, ∴1816<1618.即a <b . 题型二 不等式的性质例2 已知a ,b ,c 满足c <b <a ,且ac <0,那么下列关系式中一定成立的是________. ①ab >ac ②c (b -a )<0 ③cb 2<ab 2④ac (a -c )>0 答案 ①解析 由c <b <a 且ac <0知c <0且a >0. 由b >c 得ab >ac 一定成立.思维升华 解决此类问题常用两种方法:一是直接使用不等式的性质逐个验证;二是利用特殊值法排除.利用不等式的性质判断不等式是否成立时要特别注意前提条件.若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +bc<0;③a -c >b -d ;④a (d-c )>b (d -c )中成立的个数是________. 答案 3解析 方法一 ∵a >0>b ,c <d <0, ∴ad <0,bc >0, ∴ad <bc ,故①错误. ∵a >0>b >-a ,∴a >-b >0, ∵c <d <0,∴-c >-d >0, ∴a (-c )>(-b )(-d ), ∴ac +bd <0,∴a d +b c =ac +bdcd<0,故②正确.∵c<d,∴-c>-d,∵a>b,∴a+(-c)>b+(-d),a-c>b-d,故③正确.∵a>b,d-c>0,∴a(d-c)>b(d-c),故④正确.方法二取特殊值.题型三不等式性质的应用例3 已知a>b>0,给出下列四个不等式:①a2>b2;②2a>2b-1;③a-b>a-b;④a3+b3>2a2b.其中一定成立的不等式为__________.答案①②③解析方法一由a>b>0可得a2>b2,①成立;由a>b>0可得a>b-1,而函数f(x)=2x在R上是增函数,∴f(a)>f(b-1),即2a>2b-1,②成立;∵a>b>0,∴a>b,∴(a-b)2-(a-b)2=2ab-2b=2b(a-b)>0,∴a-b>a-b,③成立;若a=3,b=2,则a3+b3=35,2a2b=36,a3+b3<2a2b,④不成立.方法二令a=3,b=2,可以得到①a2>b2,②2a>2b-1,③a-b>a-b均成立,而④a3+b3>2a2b不成立.思维升华(1)判断不等式是否成立,需要逐一给出推理判断或反例说明.常用的推理判断需要利用不等式的性质.(2)在判断一个关于不等式的命题真假时,先把要判断的命题和不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题真假,当然判断的同时还要用到其他知识,比如对数函数、指数函数的性质等.(1)若a<b<0,则下列不等式一定成立的是________.①1a-b>1b②a2<ab③|b||a|<|b|+1|a|+1④a n>b n(2)设a>b>1,c<0,给出下列三个结论:①c a >c b;②a c <b c;③log b (a -c )>log a (b -c ). 其中所有正确结论的序号是________. 答案 (1)③ (2)①②③解析 (1)(特值法)取a =-2,b =-1,逐个检验,可知①,②,④均不正确; ③中,|b ||a |<|b |+1|a |+1⇔|b |(|a |+1)<|a |(|b |+1)⇔|a ||b |+|b |<|a ||b |+|a |⇔|b |<|a |, ∵a <b <0,∴|b |<|a |成立. (2)由不等式性质及a >b >1知1a <1b,又c <0,∴c a >cb,知①正确; 构造函数y =x c,∵c <0,∴y =x c在(0,+∞)上是减函数, 又a >b >1,∴a c <b c,知②正确; ∵a >b >1,c <0,∴a -c >b -c >1,∴log b (a -c )>log a (a -c )>log a (b -c ),知③正确.7.不等式变形中扩大变量范围致误典例 设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4,则f (-2)的取值范围是________. 易错分析 解题中多次使用同向不等式的可加性,先求出a ,b 的范围,再求f (-2)=4a -2b 的范围,导致变量范围扩大.解析 方法一 设f (-2)=mf (-1)+nf (1) (m 、n 为待定系数),则4a -2b =m (a -b )+n (a +b ),即4a -2b =(m +n )a +(n -m )b ,于是得⎩⎪⎨⎪⎧m +n =4,n -m =-2,解得⎩⎪⎨⎪⎧m =3,n =1.∴f (-2)=3f (-1)+f (1). 又∵1≤f (-1)≤2,2≤f (1)≤4, ∴5≤3f (-1)+f (1)≤10, 即5≤f (-2)≤10.方法二 由⎩⎪⎨⎪⎧f-1=a -b ,f 1=a +b ,得⎩⎪⎨⎪⎧a =12[f -1+f 1],b =12[f1-f -1].∴f (-2)=4a -2b =3f (-1)+f (1). 又∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.方法三 由⎩⎪⎨⎪⎧1≤a -b ≤2,2≤a +b ≤4确定的平面区域如图阴影部分, 当f (-2)=4a -2b 过点A (32,12)时,取得最小值4×32-2×12=5,当f (-2)=4a -2b 过点B (3,1)时, 取得最大值4×3-2×1=10, ∴5≤f (-2)≤10. 答案 [5,10]温馨提醒 (1)此类问题的一般解法:先建立待求整体与已知范围的整体的关系,最后通过“一次性”使用不等式的运算求得整体范围.(2)求范围问题如果多次利用不等式有可能扩大变量取值范围.[方法与技巧]1.用同向不等式求差的范围.⎩⎪⎨⎪⎧a <x <b ,c <y <d ⇒⎩⎪⎨⎪⎧a <x <b ,-d <-y <-c ⇒a -d <x -y <b -c .这种方法在三角函数中求角的范围时经常用到. 2.倒数关系在不等式中的作用.⎩⎪⎨⎪⎧ab >0,a >b ⇒1a <1b ;⎩⎪⎨⎪⎧ab >0,a <b⇒1a >1b.3.比较法是不等式性质证明的理论依据,是不等式证明的主要方法之一.比差法的主要步骤:作差—变形—判断正负.在所给不等式完全是积、商、幂的形式时,可考虑比商.4.求某些代数式的范围可考虑采用整体代入的方法. [失误与防范]1.a >b ⇒ac >bc 或a <b ⇒ac <bc ,当c ≤0时不成立. 2.a >b ⇒1a <1b或a <b ⇒1a >1b,当ab ≤0时不成立.3.a >b ⇒a n>b n对于正数a 、b 才成立. 4.ab>1⇔a >b ,对于正数a 、b 才成立.5.注意不等式性质中“⇒”与“⇔”的区别,如:a >b ,b >c ⇒a >c ,其中a >c 不能推出⎩⎪⎨⎪⎧a >b ,b >c .6.比商法比较大小时,要注意两式的符号.A 组 专项基础训练 (时间:40分钟)1.若x >y >z >1,则xyz ,xy ,yz ,zx 从大到小依次排列为______________. 答案xyz >xy >zx >yz解析 取特殊值法,由x >y >z >1, 可取x =4,y =3,z =2,分别代入得xyz =26,xy =23,yz =6,zx =2 2.故xyz >xy >zx >yz .2.设a >2,A =a +1+a ,B =a +2+a -2,则A ,B 的大小关系是________. 答案 A >B解析 A 2=2a +1+2a 2+a ,B 2=2a +a 2-4,显然A 2>B 2,即A >B . 3.若1a <1b<0,则下列结论正确的是________.①a 2<b 2②ab <b 2③a +b <0 ④|a |+|b |>|a +b | 答案 ①②③解析 ∵1a <1b<0,∴b <a <0.∴a 2<b 2,ab <b 2,a +b <0,|a |+|b |=|a +b |. 4.设a ,b 是非零实数,若a <b ,则下列不等式成立的是________.①a 2<b 2 ②ab 2<a 2b③1ab 2<1a 2b ④b a <ab答案 ③解析 当a <0时,a 2<b 2不一定成立,故①错.因为ab 2-a 2b =ab (b -a ), b -a >0,ab 符号不确定,所以ab 2与a 2b 的大小不能确定,故②错.因为1ab 2-1a 2b =a -b a 2b 2<0, 所以1ab 2<1a 2b,故③正确. ④中b a 与ab 的大小不能确定.5.设α∈(0,π2),β∈[0,π2],那么2α-β3的取值范围是____________. 答案 (-π6,π) 解析 由题设得0<2α<π,0≤β3≤π6, ∴-π6≤-β3≤0,∴-π6<2α-β3<π. 6.已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是__________. 答案 M >N解析 M -N =a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1=a 1(a 2-1)-(a 2-1)=(a 1-1)(a 2-1),又∵a 1∈(0,1),a 2∈(0,1),∴a 1-1<0,a 2-1<0,∴(a 1-1)(a 2-1)>0,即M -N >0.∴M >N .7.设a >b >c >0,x =a 2+b +c 2,y =b 2+c +a 2,z =c 2+a +b 2,则x ,y ,z 的大小关系是________.(用“>”连接)答案 z >y >x解析 方法一 y 2-x 2=2c (a -b )>0,∴y >x .同理,z >y ,∴z >y >x .方法二 令a =3,b =2,c =1,则x =18,y =20, z =26,故z >y >x .8.已知a ,b ,c ,d 均为实数,有下列命题①若ab >0,bc -ad >0,则c a -d b >0;②若ab >0,c a -d b >0,则bc -ad >0;③若bc -ad >0,c a -d b >0,则ab >0.其中正确的命题是________.答案 ①②③解析 ∵ab >0,bc -ad >0,∴c a -d b =bc -ad ab>0,∴①正确; ∵ab >0,又c a -db >0,即bc -ad ab >0, ∴bc -ad >0,∴②正确;∵bc -ad >0,又c a -db >0,即bc -ad ab>0, ∴ab >0,∴③正确.故①②③都正确.9.设x <y <0,试比较(x 2+y 2)(x -y )与(x 2-y 2)(x +y )的大小.解 (x 2+y 2)(x -y )-(x 2-y 2)(x +y )=(x -y )[(x 2+y 2)-(x +y )2]=-2xy (x -y ).∵x <y <0,∴xy >0,x -y <0,∴-2xy (x -y )>0,∴(x 2+y 2)(x -y )>(x 2-y 2)(x +y ).10.甲乙两人同时从宿舍到教室,甲一半路程步行,一半路程跑步;乙一半时间步行,一半时间跑步;如果两人步行、跑步速度均相同,则谁先到教室?解 设路程为s ,跑步速度为v 1,步行速度为v 2, t 甲=s 2v 1+s 2v 2=s v 1+v 22v 1v 2, s =t 乙2·v 1+t 乙2·v 2⇒t 乙=2s v 1+v 2,∴t 甲t 乙=v 1+v 224v 1v 2≥2v 1v 224v 1v 2=1.∴t 甲≥t 乙,当且仅当v 1=v 2时“=”成立.由实际情况知v 1>v 2,∴t 甲>t 乙.∴乙先到教室.B 组 专项能力提升(时间:20分钟)11.已知a ,b ,c ∈R ,那么下列命题中正确的是________.①若a >b ,则ac 2>bc 2;②若a c >b c ,则a >b ;③若a 3>b 3且ab <0,则1a >1b; ④若a 2>b 2且ab >0,则1a <1b .答案 ③解析 当c =0时,可知①不正确;当c <0时,可知②不正确;对于③,由a 3>b 3且ab <0知a >0且b <0,所以1a >1b成立,③正确; 当a <0且b <0时,可知④不正确.12.若存在实数x =x 0,使得不等式ax >a -1不成立,则实数a 的取值范围是__________. 答案 (-∞,0)∪(0,+∞)解析 不妨将命题否定,转化为:若对任意的x ,有ax >a -1恒成立,则a (x -1)>-1.当x >1时有a >-1x -1,则a ≥0;当x <1时有a <-1x -1,则a ≤0;当x =1时,则a ∈R .因此对任意的x ,a =0,再对a 的取值进行否定,可得实数a 的取值范围为a ≠0.13.设[x ]表示不超过x 的最大整数,x ,y 满足方程组⎩⎪⎨⎪⎧ y =3[x ]+13,y =4[x -3]+5,如果x 不是整数,那么x +y 的取值范围是__________.答案 (93,94)解析 ⎩⎪⎨⎪⎧ y =3[x ]+13,y =4[x -3]+5化为:⎩⎪⎨⎪⎧ y =3[x ]+13,y =4[x ]-12+5,解得[x ]=20,y =73.∵x 不是整数,∴20<x <21.∴93<x +y <94.14.已知0<a <b <1,则下列关系正确的是________.①1b >1a ②(12)a <(12)b ③(lg a )2<(lg b )2 ④1lg a >1lg b答案 ④解析 因为0<a <b <1,所以1b -1a =a -b ab<0. 可得1b <1a ,(12)a >(12)b ,(lg a )2>(lg b )2, lg a <lg b <0.由lg a <lg b <0得1lg a >1lg b, 因此只有④正确.15.某单位组织职工去某地参观学习需包车前往.甲车队说:“如果领队买一张全票,其余人可享受7.5折优惠”.乙车队说:“你们属团体票,按原价的8折优惠”.这两个车队的原价、车型都是一样的,试根据单位去的人数比较两车队的收费哪家更优惠.解 设该单位职工有n 人(n ∈N *),全票价为x 元/人,坐甲车需花y 1元,坐乙车需花y 2元,则y 1=x +34x ·(n -1) =14x +34nx , y 2=45nx .所以y 1-y 2=14x +34nx -45nx =14x -120nx =14x (1-n 5). 当n =5时,y 1=y 2;当n >5时,y 1<y 2;当n <5时,y 1>y 2.因此当单位去的人数为5人时,两车队收费同等优惠;当单位去的人数多于5人时,甲车队收费更优惠;当单位去的人数少于5人时,乙车队收费更优惠.。
数学(文)一轮复习:第六章 不等式 第讲不等关系与不等式

知识点考纲下载不等关系与不等式了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.二元一次不等式(组)与简单的线性规划问题1。
会从实际情境中抽象出二元一次不等式组.2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.基本不等式错误!≤错误! (a≥0,b≥0)1。
了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.第1讲不等关系与不等式,)1.实数大小顺序与运算性质之间的关系a-b〉0⇔a〉b;a-b=0⇔a=b;a-b〈0⇔a<b.2.不等式的基本性质(1)对称性:a>b⇔b<a;(2)传递性:a>b,b>c⇒a>c;(3)可加性:a>b⇒a+c>b+c;a>b,c>d⇒a+c>b+d;(4)可乘性:a>b,c>0⇒ac>bc,a>b>0,c>d>0⇒ac>bd;(5)可乘方:a>b>0⇒a n>b n(n∈N,n≥2);(6)可开方:a>b>0⇒na>错误!(n∈N,n≥2).1.辨明两个易误点(1)在应用传递性时,注意等号是否传递下去,如a≤b,b〈c⇒a〈c;(2)在乘法法则中,要特别注意“乘数c的符号”,例如当c≠0时,有a〉b⇒ac2〉bc2;若无c≠0这个条件,a>b⇒ac2〉bc2就是错误结论(当c=0时,取“=”).2.不等式中的倒数性质(1)a〉b,ab>0⇒错误!<错误!;(2)a〈0<b⇒错误!〈错误!;(3)a〉b〉0,0<c〈d⇒错误!>错误!;(4)0〈a〈x〈b或a<x〈b<0⇒错误!〈错误!<错误!。
3.不等式恒成立的条件(1)不等式ax2+bx+c〉0对任意实数x恒成立⇔错误!或错误!(2)不等式ax2+bx+c〈0对任意实数x恒成立⇔错误!或错误!1。
错误!若a<b〈0,则下列不等式不成立的是( )A.错误!〉错误!B.错误!〉错误!C.|a|>|b| D.a2>b2A 由a<b<0,可用特殊值法,取a=-2,b=-1,则错误!〉错误!不成立.2.错误!设A=(x-3)2,B=(x-2)(x-4),则A与B的大小为( )A.A≥B B.A〉BC.A≤B D.A〈BB A-B=(x2-6x+9)-(x2-6x+8)=1〉0,所以A〉B.故选B.3.错误!若a〉b,则下列不等式一定成立的是( )A.ac2>bc2B.错误!<错误!C.ac2≥bc2D.错误!≤错误!C 当c=0时,A、B错误;当a〉0,b<0时,D错误,故选C.4.错误!下列四个结论,正确的是()①a〉b,c〈d⇒a-c>b-d;②a>b〉0,c<d〈0⇒ac>bd;③a〉b〉0⇒错误!>错误!;④a〉b>0⇒错误!>错误!.A.①②B.②③C.①④D.①③D 对于①,因为a〉b,c<d,所以-c>-d,所以a-c>b-d。
高考数学一轮复习第七章不等式7.1不等关系与不等式课件

4.(2013浙江文,10,5分)设a,b∈R,定义运算“∧”和“∨”如下:
a∧b=
a, a b, a
b, b,
a∨b=
b, a a, a
b, b.
若正数a,b,c,d满足ab≥4,c+d≤4,则 ( )
A.a∧b≥2,c∧d≤2 B.a∧b≥2,c∨d≥2
C.a∨b≥2,c∧d≤2 D.a∨b≥2,c∨d≥2
答案
A
当x∈[0,1]时,若f(x)>0,则满足
f f
(0) b 0, (1) a b
0,
所以a+2b>0,故充分性成立;取a=4,b=-1,
则a+2b>0,但不满足f(x)>0在区间[0,1]上恒成立,故必要性不成立,故选A.
2.(2017浙江“七彩阳光”新高考研究联盟测试,2)若a,b为实数,则“3a<3b”是“a<b+1”的 () A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
答案 C 由0<f(-1)=f(-2)=f(-3)≤3,得 0<-1+a-b+c=-8+4a-2b+c=-27+9a-3b+c≤3, 由-1+a-b+c=-8+4a-2b+c,得3a-b-7=0①, 由-1+a-b+c=-27+9a-3b+c,得4a-b-13=0②, 由①②,解得a=6,b=11,∴0<c-6≤3, 即6<c≤9,故选C.
高考数学 (浙江专用)
第七章 不等式
§7.1 不等关系与不等式
高考数学第一轮复习:《不等关系与不等式》

高考数学第一轮复习:《不等关系与不等式》最新考纲1.了解现实世界和日常生活中的不等关系.2.了解不等式(组)的实际背景.3.掌握不等式的性质及应用.【教材导读】1.若a>b,c>d,则a-c>b-d是否成立?提示:不成立,同向不等式不能相减,如3>2,4>1,但3-4<2-1. 2.若a>b>0,则ac>bc是否成立?提示:不成立.当c=0时,ac=bc,当c<0时,ac<bc.3.若a>b,则a n>b n,na>nb是否成立?提示:不一定.当a>b>0,n∈N,n≥2时才成立.1.实数的大小顺序与运算性质之间的关系设a,b∈R,则(1)a>b⇔a-b>0;(2)a=b⇔a-b=0;(3)a<b⇔a-b<0.2.不等式的基本性质性质性质内容注意对称性a>b⇔b<a ⇔传递性a>b,b>c⇒a>c ⇒可加性a>b⇔a+c>b+c ⇔可乘性⎭⎪⎬⎪⎫a>bc>0⇒ac>bcc的符号⎭⎪⎬⎪⎫a>bc<0⇒ac<bc同向可加性⎭⎪⎬⎪⎫a >b c >d ⇒a +c >b +d ⇒同向同正可乘性⎭⎪⎬⎪⎫a >b >0c >d >0⇒ac >bd ⇒可乘方性a >b >0⇒a n >b n (n ∈N ,n ≥2)a ,b 同为正数可开方性a >b >0⇒n a >nb (n ∈N ,n ≥2)(1)倒数性质 ①a >b ,ab >0⇒1a <1b . ②a <0<b ⇒1a <1b . (2)有关分数的性质 若a >b >0,m >0,则 ①真分数的性质b a <b +m a +m ;b a >b -ma -m (b -m >0). ②假分数的性质a b >a +m b +m ;a b <a -mb -m (b -m >0).1.设a +b <0,且b >0,则( ) (A)b 2>a 2>ab (B)b 2<a 2<-ab (C)a 2<-ab <b 2 (D)a 2>-ab >b 2答案:D2.若b <a <0,则下列结论不正确...的是( ) (A)a 2<b 2 (B)ab <b 2 (C)b a +ab >2 (D)|a |-|b |=|a -b | 答案:D3.设a=2,b=7-3,c=6-2,则a,b,c的大小关系是() (A)a>b>c(B)a>c>b(C)b>a>c(D)b>c>aB解析:b=7-3=47+3,c=6-2=46+2.因为7+3>6+2,所以47+3<46+2,所以b<c.因为2(6+2)=23+2>4,所以46+2< 2.即c<a.综上可得b<c<a.故选B.4.若P=a+2+a+5,Q=a+3+a+4(a≥0),则P,Q的大小关系为() (A)P>Q(B)P=Q(C)P<Q(D)由a的取值确定C解析:因为a≥0,P>0,Q>0,所以Q2-P2=2a+7+2a2+7a+12-(2a+7+2a2+7a+10)=2(a2+7a+12-a2+7a+10)>0.所以P<Q.5.已知a>b,ab≠0,则下列不等式中:①1a<1b;②a3>b3;③a2+b2>2ab,恒成立的不等式的个数是________.解析:①取a=2,b=-1,则1a<1b不成立;②函数y=x3在R上单调递增,a>b,所以a3>b3成立;③因为a>b,ab≠0,所以a2+b2-2ab=(a-b)2>0,所以a2+b2>2ab成立.综上可得:恒成立的不等式有两个.答案:2考点一 用不等式(组)表示不等关系(1)某种杂志原以每本2.5元的价格销售,可以售出8万本.根据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后杂志的定价设为x 元,用不等式表示销售的总收入仍不低于20万元为________.(2)已知4枝郁金香和5枝丁香的价格最多22元,而6枝郁金香和3枝丁香的价格不小于24元,则满足上述所有不等关系的不等式组为________.答案:(1)(8-x -2.50.1×0.2)x ≥20 (2)⎩⎨⎧4x +5y ≤226x +3y ≥24,x ≥0y ≥0【反思归纳】 用不等式(组)表示不等关系 (1)分析题中有哪些未知量.(2)选择其中起关键作用的未知量,设为x 或x ,y 再用x 或x ,y 来表示其他未知量. (3)根据题目中的不等关系列出不等式(组). 提醒:在列不等式(组)时要注意变量自身的范围.【即时训练】 已知甲、乙两种食物的维生素A ,B 含量如表:甲 乙 维生素A(单位/kg) 600 700 维生素B(单位/kg)800400设用甲、乙两种食物各有56 000单位维生素A 和62 000单位维生素B ,则x ,y 应满足的所有不等关系为________.解析:x ,y 所满足的关系为⎩⎪⎨⎪⎧x +y ≤100,600x +700y ≥56 000,800x +400y ≥62 000,x ≥0,y ≥0,即⎩⎪⎨⎪⎧x +y ≤100,6x +7y ≥560,2x +y ≥155,x ≥0,y ≥0.答案:⎩⎨⎧x +y ≤1006x +7y ≥5602x +y ≥155x ≥0,y ≥0考点二 不等式的性质若a >b >0,且ab =1,则下列不等式成立的是( ) (A)a +1b <b2a <log 2(a +b ) (B)b 2a <log 2(a +b )<a +1b (C)a +1b <log 2(a +b )<b 2a (D)log 2(a +b )<a +1b <b2a【命题意图】本题考查不等式的应用,同时考查对数的运算.B 解析:根据题意,令a =2,b =12进行验证,易知a +1b =4,b 2a =18,log 2(a +b )=log 252>1,因此a +1b >log 2(a +b )>b2a .【反思归纳】 判断多个不等式是否成立,需要逐一给出推理判断或反例说明.常用的推理判断需要利用不等式的性质,常见的反例构成方式可从以下几个方面思考:①不等式两边都乘以一个代数式时,所乘的代数式是正数、负数或0;②不等式左边是正数,右边是负数,当两边同时平方后不等号方向不一定保持不变;③不等式左边是正数,右边是负数,当两边同时取倒数后不等号方向不变.【即时训练】 (1)已知a ,b 为非零实数,且a <b ,则下列命题成立的是( ) (A)a 2<b 2 (B)ab 2<a 2b(C)1ab2<1ba2(D)ba<ab(2)若a,b∈R则1a3>1b3成立的一个充分不必要条件是()(A)ab>0 (B)b>a(C)a<b<0 (D)a>b>0答案:(1)C(2)C考点三比较大小(1)比较x6+1与x4+x2的大小,其中x∈R;(2)比较a a b b与a b b a(a,b为不相等的正数)的大小.解析:(1)(x6+1)-(x4+x2)=x6-x4-x2+1=x4(x2-1)-(x2-1)=(x2-1)(x4-1)=(x2-1)(x2-1)(x2+1)=(x2-1)2(x2+1).当x=±1时,x6+1=x4+x2;当x≠±1时,x6+1>x4+x2.(2)a a b ba b b a=a a-b b b-a=⎝⎛⎭⎪⎫aba-b,当a>b>0时,ab >1,a-b>0,∴⎝⎛⎭⎪⎫aba-b>1;当0<a<b时,ab <1,a-b<0,∴⎝⎛⎭⎪⎫aba-b>1.综上所述,总有a a b b>a b b a.【反思归纳】比较大小常用的方法(1)作差法一般步骤是①作差;②变形;③判号;④定论.其中变形是关键,常采用因式分解、配方等方法把差变成积或者完全平方的形式.当两个式子都含有开方运算时,可以先乘方再作差.(2)作商法一般步骤是:①作商;②变形;③判断商与1的大小;④结论.作商比较大小时,要注意分母的符号避免得出错误结论.(3)特值法对于选择题可以用特值法比较大小.【即时训练】(1)(2017崇明县一模)若a<0,b<0,则p=b2a+a2b与q=a+b的大小关系为()(A)p<q(B)p≤q(C)p>q(D)p≥q(2)若a=1816,b=1618,则a与b的大小关系为________.解析:(1)p-q=b2a+a2b-a-b=b2-a2a+a2-b2b=(b2-a2)·1a-1b=(b2-a2)(b-a)ab=(b-a)2(a+b)ab,因为a<0,b<0,所以a+b<0,ab>0,若a=b,则p-q=0,此时p=q,若a≠b,则p-q<0,此时p<q,综上p≤q.故选B.(2)ab=18161618=1816161162=98161216=98216,因为982∈(0,1),所以98216<1,因为1816>0,1618>0,所以1816<1618.即a<b.答案:(1)B(2)a<b不等式变形中扩大变量范围致误设f(x)=ax2+bx,若1≤f(-1)≤2,2≤f(1)≤4,则f(-2)的取值范围是________.解析:法一设f(-2)=mf(-1)+nf(1)(m,n为待定系数),则4a-2b=m(a-b)+n(a+b),即4a-2b=(m+n)a+(n-m)b,于是得⎩⎨⎧ m +n =4,n -m =-2,解得⎩⎨⎧m =3,n =1.所以f (-2)=3f (-1)+f (1). 又因为1≤f (-1)≤2,2≤f (1)≤4,所以5≤3f (-1)+f (1)≤10,即5≤f (-2)≤10. 法二 由⎩⎨⎧f (-1)=a -b ,f (1)=a +b ,得⎩⎪⎨⎪⎧a =12[f (-1)+f (1)],b =12[f (1)-f (-1)].所以f (-2)=4a -2b =3f (-1)+f (1). 又因为1≤f (-1)≤2,2≤f (1)≤4,所以5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10. 法三 由⎩⎨⎧1≤a -b ≤2,2≤a +b ≤4确定的平面区域如图阴影部分,当f (-2)=4a -2b 过点A 32,12时,取得最小值4×32-2×12=5,当f (-2)=4a -2b 过点B (3,1)时, 取得最大值4×3-2×1=10, 所以5≤f (-2)≤10. 答案:[5,10]易错提醒:(1)解决此类问题的一般解法是,先建立待求整体与已知范围的整体关系,最后通过“一次性”使用不等式的运算求得整体范围;(2)此类求范围问题如果多次利用不等式的可加性,有可能扩大变量的取值范围而致误.课时作业基础对点练(时间:30分钟)1.设a ,b ∈R ,则“a >1且b >1”是“ab >1”的( ) (A)充分不必要条件 (B)必要不充分条件 (C)充要条件(D)既不充分也不必要条件A 解析:a >1且b >1⇒ab >1;但ab >1,则a >1且b >1不一定成立,如a =-2,b =-2时,ab =4>1.故选A.2.如果a >b ,则下列各式正确的是( ) (A)a ·lg x >b ·lg x (x >0) (B)ax 2>bx 2 (C)a 2>b 2(D)a ·2x >b ·2xD 解析:两边相乘的数lg x 不一定恒为正,选项A 错误;不等式两边都乘以x 2,它可能为0,选项B 错误;若a =-1,b =-2,不等式a 2>b 2不成立,选项C 错误.选项D 正确.3.已知1a <1b <0,给出下面四个不等式:①|a |>|b |;②a <b ;③a +b <ab ;④a 3>b 3.其中不正确的不等式的个数是( )(A)0 (B)1 (C)2 (D)3C 解析:由1a <1b <0可得b <a <0,从而|a |<|b |,①不正确;a >b ,②不正确;a +b <0,ab >0,则a +b <ab 成立,③正确;a 3>b 3,④正确.故不正确的不等式的个数为2.故选C.4.已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) (A)M <N (B)M >N (C)M =N (D)不确定答案:B5.设a <b <0,则下列不等式中不成立的是( ) (A)1a >1b (B)1a -b >1a (C)|a |>-b (D)-a >-b答案:B6.若1a <1b <0,给出下列不等式:①1a +b<1ab ;②|a |+b >0;③a -1a >b -1b ;④ln a 2>lnb 2.其中正确的不等式是( ) (A)①④ (B)②③ (C)①③ (D)②④答案:C7.设a >b >1,c <0,给出下列三个结论:①c a >cb ;②ac <b c ;③log b (a -c )>log a (b -c ).其中所有的正确结论的序号是( )(A)① (B)①② (C)②③ (D)①②③答案:D8.某种饮料分两次提价,提价方案有两种,方案甲:第一次提价p %,第二次提价q %;方案乙:每次都提价p +q2%.若p >q >0.则提价多的方案是________.解析:设原价为a ,方案甲提价后为a (1+p %)(1+q %),方案乙提价后为a ⎝ ⎛⎭⎪⎫1+p +q 2%2,∵⎝ ⎛⎭⎪⎫1+p +q 2%2=⎝⎛⎭⎪⎫1+p %+1+q %22≥((1+p %)(1+q %))2=(1+p %)(1+q %),又∵p >q >0,∴等号不成立,则提价多的为方案乙.答案:乙9.已知f (n )=n 2+1-n ,g (n )=n -n 2-1,φ(n )=12n (n ∈N +,n >2),则f (n ),g (n ),φ(n )的大小关系是________.解析:f (n )=n 2+1-n =1n 2+1+n<12n =φ(n ),g (n )=n -n 2-1=1n +n 2-1>12n =φ(n ),∴f (n )<φ(n )<g (n ).答案:f (n )<φ(n )<g (n )10.已知-1<a +b <3,且2<a -b <4,则2a +3b 的取值范围为____________. 解析:设2a +3b =x (a +b )+y (a -b ),则⎩⎪⎨⎪⎧ x +y =2,x -y =3,解得⎩⎪⎨⎪⎧ x =52,y =-12,因为-52<52(a +b )<152,-2<-12(a -b )<-1,所以-92<52(a +b )-12(a -b )<132,即-92<2a +3b <132.答案:-92,132能力提升练(时间:15分钟)11.有外表一样、重量不同的四个小球,它们的重量分别是a ,b ,c ,d ,已知a +b =c +d ,a +d >b +c ,a +c <b ,则这四个小球由重到轻的排列顺序是( )(A)d >b >a >c(B)b >c >d >a (C)d >b >c >a (D)c >a >d >bA 解析:∵a +b =c +d ,a +d >b +c ,∴2a >2c ,即a >c .因此b <d .∵a +c <b ,∴a <b ,综上可得,c <a <b <d .12.若不等式(-1)n a <2+(-1)n +1n 对于任意正整数n 都成立,则实数a 的取值范围是( )(A)⎣⎢⎡⎭⎪⎫-2,32 (B)⎣⎢⎡⎭⎪⎫-2,32 (C)⎣⎢⎡⎭⎪⎫-3,32 (D)⎝ ⎛⎭⎪⎫-3,32 A 解析:当n 取奇数时,-a <2+1n ,因为n ≥1,故2<2+1n ≤3,所以-a ≤2,所以a ≥-2;当n 取偶数时,a <2-1n ,因为n ≥2,所以32≤2-1n <2,所以a <32,综上,实数a 的取值范围是⎣⎢⎡⎭⎪⎫-2,32,故选A.13.若a ,b ,c ,d 均为正实数,且a >b ,那么四个数b a ,a b ,b +c a +c ,a +d b +d由小到大的顺序是________.解析:∵a >b >0,∴a b >1,a +d b +d >1,b a <1,b +c a +c <1,则a b -a +d b +d =d (a -b )b (b +d )>0, 即a b >a +c b +c ,b a -b +c a +c =c (b -a )a (a +d )<0,即b a <b +c a +c ,所以由小到大的顺序是b a <b +c a +c <a +d b +d <a b答案:b a <b +c a +c <a +d b +d <a b14.某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒),平均车长l (单位:米)的值有关,其公式为F =76000v v 2+18v +20l. ①如果不限定车型,l =6.05,则最大车流量为______辆/时;②如果限定车型,l =5,则最大车流量比①中的最大车流量增加______辆/时.解析:①当l =6.05时,F =76000v v 2+18v +121=76000v +121v +18≤760002v ·121v+18=7600022+18=1900. 当且仅当v =11米/秒时等号成立,此时车流量最大为1900辆/时.②当l =5时,F =76000v v 2+18v +100=76000v +100v +18≤760002v ·100v +18=7600020+18=2000. 当且仅当v =10米/秒时,车流量最大为2000辆/时比①中最大车流量增加100辆/时.15.建筑学规定,民用住宅的窗户面积必须小于地板面积,但按采光标准,窗户面积与地板面积的比不应小于10%,并且这个比值越大,住宅的采光条件越好,同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了?请说明理由.解:设原来的窗户面积与地板面积分别为a 、b ,且a b ≥10%,窗户面积和地板面积同时增加的面积为c ,则现有的窗户面积与地板面积分别为a +c ,b +c .于是原来窗户面积与地板面积之比为a b ,面积均增加c 以后,窗户面积与地板面积之比为a +c b +c,因此要确定采光条件的好坏,就转化成比较a b 与a +c b +c的大小,采用作差比较法. a +c b +c -a b =c (b -a )(b +c )b. 因为a >0,b >0,c >0,又由题设条件可知a <b ,故有a b <a +c b +c 成立,即a +c b +c >a b≥10%. 所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.。
高考数学总复习7.1不等关系与不等式课件文新人教B版

②(x-2)(x-4)-(x-3)2=x2-6x+8-(x2-6x+9)
=-1<0, 即(x-2)(x-4)<(x-3)2. ③当x>1时,x3-x2+x-1=x2(x-1)+(x-1) =(x-1)(x2+1)>0, 即x3>x2-x+1. ④x2+y2+1-2(x+y-1)=(x2-2x+1)+(y2-2y+1)+1
【答案】 (1)A
(2)B
【方法规律】 比较大小的常用方法
(1)作差法:
一般步骤:①作差;②变形;③定号;④结论.其中关 键是变形,常采用配方、因式分解、有理化等方法把差式 变成积式或者完全平方式.当两个式子都为正数时,有时 也可以先平方再作差.
(2)作商法:
一般步骤:①作商;②变形;③判断商与 1的大小;④
ln 3 ln 4 ln 5 (2)若 a= 3 ,b= 4 ,c= 5 ,则( A.a<b<c C.c<a<b B.c<b<a D.b<a<c
)
【解析】 (1)∵c-b=4-4a+a2=(a-2)2≥0,∴c≥b. 又 b+c=6-4a+3a2,∴2b=2+2a2,∴b=a2+1, ∴b-a=a
1 【答案】 a<2ab<2<a2+b2<b
题型一
比较两个数(式)的大小
【例1】 (1)(2016· 长春模拟 )已知实数 a, b,c满足 b+c
= 6- 4a+ 3a2 , c - b= 4- 4a+ a2 ,则 a, b, Байду номын сангаас 的大小关系
是( ) B.a>c≥b D.a>c>b
A.c≥b>a C.c>b>a
12 1 1 =-2a-2 +2<2.
1 即 a<2ab<2, 1 1 又 a2+b2=(a+b)2-2ab=1-2ab>1-2=2, 1 即 a2+b2>2, a2+b2-b=(1-b)2+b2-b=(2b-1)(b-1), 又 2b-1>0,b-1<0,∴a2+b2-b<0, ∴a2+b2<b, 1 综上,a<2ab<2<a2+b2<b.
新高考数学复习知识点讲解与练习2---不等关系与不等式、一元二次不等式及其解法

新高考数学复习知识点讲解与练习不等关系与不等式、一元二次不等式及其解法知识梳理1.两个实数比较大小的方法 (1)作差法⎩⎪⎨⎪⎧a -b >0⇔a >b ,a -b =0⇔a =b ,a -b <0⇔a <b ;(2)作商法⎩⎪⎨⎪⎧ab>1⇔a >b (a ∈R ,b >0),ab =1⇔a =b (a ∈R ,b ≠0),a b<1⇔a <b (a ∈R ,b >0).2.不等式的性质(1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇒a >c ;(3)可加性:a >b ⇔a +c >b +c ;a >b ,c >d ⇒a +c >b +d ; (4)可乘性:a >b ,c >0⇒ac >bc ;a >b >0,c >d >0⇒ac >bd ; (5)可乘方:a >b >0⇒a n >b n (n ∈N ,n ≥1); (6)可开方:a >b >0⇒n a >nb (n ∈N ,n ≥2).3.三个“二次”间的关系判别式Δ=b 2-4acΔ>0Δ=0Δ<0二次函数y =ax 2+bx+c (a >0)的图象 一元二次方程ax 2+bx +c =0 (a >0)的根 有两相异实根x 1,x 2(x 1<x 2)有两相等实根x 1=x 2=-b 2a没有实数根ax 2+bx +c >0 (a >0)的解集{x |x >x 2或x <x 1}⎩⎨⎧⎭⎬⎫x |x ≠-b 2aRax 2+bx +c <0 (a >0)的解集{x |x 1<x <x 2}∅∅1.有关分数的性质 若a >b >0,m >0,则 (1)真分数的性质b a <b +m a +m ;b a >b -m a -m (a -m >0). (2)假分数的性质a b >a +m b +m ;a b <a -m b -m(b -m >0). 2.对于不等式ax 2+bx +c >0,求解时不要忘记讨论a =0时的情形. 3.当Δ<0时,ax 2+bx +c >0(a ≠0)的解集为R 还是∅,要注意区别.诊断自测1.判断下列说法的正误. (1)a >b ⇔ac 2>bc2.()(2)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.()(3)若方程ax 2+bx +c =0(a <0)没有实数根,则不等式ax 2+bx +c >0的解集为R .() (4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.()答案(1)×(2)√(3)×(4)×解析 (1)由不等式的性质,ac 2>bc 2⇒a >b ;反之,c =0时,a >b ⇒/ ac 2>bc 2. (3)若方程ax 2+bx +c =0(a <0)没有实根.则不等式ax 2+bx +c >0的解集为∅. (4)当a =b =0,c ≤0时,不等式ax 2+bx +c ≤0也在R 上恒成立. 2.若a >b >0,c <d <0,则一定有() A.a d >b c B.a d <b c C.a c >b d D.a c <b d 答案B解析 因为c <d <0,所以0>1c >1d ,两边同乘-1得-1d >-1c >0,又a >b >0,故由不等式的性质可知-a d >-b c >0.两边同乘-1得a d <bc.故选B.3.设a ,b ∈[0,+∞),A =a +b ,B =a +b ,则A ,B 的大小关系是() A.A ≤B B.A ≥B C.A <B D.A >B 答案B解析∵a ,b ∈[0,+∞),∴A ≥0,B ≥0,又A 2-B 2=(a +2ab +b )-(a +b )=2ab ≥0,∴A ≥B . 4.已知函数f (x )=x 3+ax 2+bx +c .且0<f (-1)=f (-2)=f (-3)≤3,则() A.c ≤3 B.3<c ≤6 C.6<c ≤9 D.c >9 答案 C解析 由f (-1)=f (-2)=f (-3)得⎩⎪⎨⎪⎧-1+a -b +c =-8+4a -2b +c ,-1+a -b +c =-27+9a -3b +c ,解得⎩⎪⎨⎪⎧a =6,b =11, 则f (x )=x 3+6x 2+11x +c ,由0<f (-1)≤3,得0<-1+6-11+c ≤3,即6<c ≤9.5.已知角α,β满足-π2<α<β<π2,则α-β的取值范围是________.答案(-π,0)解析 因为-π2<α<β<π2,所以-π<α-β<π,且α-β<0,所以-π<α-β<0.所以α-β的取值范围是(-π,0).6.(必修5P80A3改编)若关于x 的一元二次方程x 2-(m +1)x -m =0有两个不相等的实数根,则m 的取值范围是________.解析 由题意知Δ=[-(m +1)]2+4m >0.即m 2+6m +1>0, 解得m >-3+22或m <-3-2 2. 答案(-∞,-3-22)∪(-3+22,+∞)考点一 比较大小及不等式的性质的应用【例1】 (1)已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是()A.c ≥b >aB.a >c ≥bC.c >b >aD.a >c >b(2)已知非负实数a ,b ,c 满足a +b +c =1,则(c -a )(c -b )的取值范围为________. 答案(1)A(2)⎣⎡⎦⎤-18,1 解析 (1)∵c -b =4-4a +a 2=(2-a )2≥0,∴c ≥b . 又b +c =6-4a +3a 2,∴2b =2+2a 2,∴b =a 2+1, ∴b -a =a 2-a +1=⎝⎛⎭⎫a -122+34>0,∴b >a ,∴c ≥b >a .(2)因为a ,b ,c 为非负实数,且a +b +c =1,则a +b =1-c ,0≤c ≤1,故|(c -a )(c -b )|=|c -a ||c -b |≤1,即-1≤(c -a )(c -b )≤1;又(c -a )(c -b )=c 2-(1-c )c +ab ≥2⎝⎛⎭⎫c -142-18≥-18.综上,有-18≤(c -a )(c -b )≤1.感悟升华(1)比较大小常用的方法: ①作差法;②作商法;③函数的单调性法.(2)判断多个不等式是否成立,常用方法:一是直接使用不等式性质,逐个验证;二是用特殊法排除或特殊值法验证.【训练1】 (1)(2020·浙江卷)已知a ,b ∈R 且ab ≠0,对于任意x ≥0均有(x -a )(x -b )(x -2a -b )≥0,则()A.a <0B.a >0C.b <0D.b >0(2)若a >b >0,且ab =1,则下列不等式成立的是() A.a +1b <b2a <log 2(a +b )B.b 2a <log 2(a +b )<a +1bC.a +1b <log 2(a +b )<b 2aD.log 2(a +b )<a +1b <b 2a答案(1)C(2)B解析 (1)法一 由题意,知a ≠0,b ≠0,则方程 (x -a )(x -b )(x -2a -b )=0的根为a ,b ,2a +b .①a ,b ,2a +b 均为不同的根,则不等式可标根为图(1), 此时应满足⎩⎪⎨⎪⎧a <0,b <0,2a +b <0,可得a <0,b <0.②a ,b ,2a +b 中有两个根为相等的根,则 (ⅰ)a =2a +b >0,即b =-a <0, 此时(x -a )2(x +a )≥0,符合图(2).(ⅱ)a =b <0,此时(x -a )2(x -3a )≥0,符合图(3). 综合①②,可知b <0符合题意.故选C.法二(特殊值法) 当b =-1,a =1时,(x -1)(x +1)(x -1)≥0在x ≥0时恒成立;当b =-1,a =-1时,(x +1)(x +1)(x +3)≥0在x ≥0时恒成立;当b =1,a =-1时,(x +1)(x -1)(x +1)≥0在x ≥0时不一定成立.故选C.(2)令a =2,b =12,则a +1b =4,b 2a =18,log 2(a +b )=log 252∈(1,2),则b 2a <log 2(a +b )<a +1b .考点二 一元二次不等式的解法角度1 不含参的不等式【例2-1】求不等式-2x 2+x +3<0的解集. 解 化-2x 2+x +3<0为2x 2-x -3>0, 解方程2x 2-x -3=0得x 1=-1,x 2=32,∴不等式2x 2-x -3>0的解集为(-∞,-1)∪⎝⎛⎭⎫32,+∞,即原不等式的解集为(-∞,-1)∪⎝⎛⎭⎫32,+∞. 角度2含参不等式【例2-2】解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 解 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1. ②当a >0时,原不等式化为⎝⎛⎭⎫x -2a (x +1)≥0, 解得x ≥2a或x ≤-1.③当a <0时,原不等式化为⎝⎛⎭⎫x -2a (x +1)≤0. 当2a >-1,即a <-2时,解得-1≤x ≤2a ; 当2a =-1,即a =-2时,解得x =-1满足题意; 当2a <-1,即-2<a <0,解得2a≤x ≤-1. 综上所述,当a =0时,不等式的解集为{x |x ≤-1}; 当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≥2a ,或x ≤-1;当-2<a <0时,不等式的解集为⎩⎨⎧x ⎪⎪⎭⎬⎫2a≤x ≤-1; 当a =-2时,不等式的解集为{-1}; 当a <-2时,不等式的解集为⎩⎨⎧⎭⎬⎫x |-1≤x ≤2a .感悟升华 含有参数的不等式的求解,往往需要比较(相应方程)根的大小,对参数进行分类讨论: (1)若二次项系数为常数,可先考虑分解因式,再对参数进行讨论;若不易分解因式,则可对判别式进行分类讨论;(2)若二次项系数为参数,则应先考虑二次项系数是否为零,然后再讨论二次项系数不为零的情形,以便确定解集的形式;(3)其次对相应方程的根进行讨论,比较大小,以便正确写出解集.【训练2】 (1)(2019·天津卷)设x ∈R ,使不等式3x 2+x -2<0成立的x 的取值范围为________. (2)已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集为A ∩B ,则a +b =() A.-3 B.1 C.-1 D.3答案(1)⎝⎛⎭⎫-1,23(2)A 解析 (1)3x 2+x -2<0变形为(x +1)(3x -2)<0,解得-1<x <23,故使不等式成立的x 的取值范围为⎝⎛⎭⎫-1,23.(2)由题意得A ={x |-1<x <3},B ={x |-3<x <2},所以A ∩B ={x |-1<x <2},由题意知-1,2为方程x 2+ax +b =0的两根,由根与系数的关系可知a =-1,b =-2,则a +b =-3.考点三 一元二次不等式的恒成立问题角度1 在R 上恒成立【例3-1】若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为()A.(-3,0]B.[-3,0)C.[-3,0]D.(-3,0) 答案D解析一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,∴k ≠0,则必有⎩⎪⎨⎪⎧2k <0,Δ=k 2-4×2k ×⎝⎛⎭⎫-38<0, 解之得-3<k <0.角度2 在给定区间上恒成立【例3-2】设函数f (x )=mx 2-mx -1(m ≠0),若对于x ∈[1,3],f (x )<-m +5恒成立,则m 的取值范围是________. 答案⎩⎨⎧⎭⎬⎫m |0<m <67或m <0解析 要使f (x )<-m +5在[1,3]上恒成立, 则mx 2-mx +m -6<0,即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 有以下两种方法:法一 令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)=7m -6<0. 所以m <67,则0<m <67.当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1)=m -6<0. 所以m <6,所以m <0.综上所述,m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪0<m <67或m <0. 法二 因为x 2-x +1=⎝⎛⎭⎫x -122+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 因为m ≠0,所以m 的取值范围是 ⎩⎨⎧⎭⎬⎫m |0<m <67或m <0.角度3 给定参数范围的恒成立问题【例3-3】已知a ∈[-1,1]时,不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值范围为() A.(-∞,2)∪(3,+∞) B.(-∞,1)∪(2,+∞) C.(-∞,1)∪(3,+∞) D.(1,3) 答案C解析 把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +x 2-4x +4, 则由f (a )>0对于任意的a ∈[-1,1]恒成立, 所以f (-1)=x 2-5x +6>0,且f (1)=x 2-3x +2>0即可,解不等式组⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0,得x <1或x >3. 感悟升华恒成立问题求解思路(1)一元二次不等式在R 上恒成立确定参数的范围时,结合一元二次方程,利用判别式来求解. (2)一元二次不等式f (x )≥0在x ∈[a ,b ]上恒成立确定参数范围时,要根据函数的单调性求其最小值,让最小值大于等于0,从而求参数的范围.(3)一元二次不等式对于参数m ∈[a ,b ]恒成立确定x 的范围,要注意变换主元,一般地,知道谁的范围就选谁当主元,求谁的范围谁就是参数.【训练3】 (1)若不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围是() A.[-1,4] B.(-∞,-2]∪[5,+∞) C.(-∞,-1]∪[4,+∞) D.[-2,5](2)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.(3)若不等式x 2+(a -6)x +9-3a >0在|a |≤1时恒成立,则x 的取值范围是________.答案(1)A(2)⎝⎛⎭⎫-22,0(3)(-∞,2)∪(4,+∞) 解析(1)由于x 2-2x +5=(x -1)2+4的最小值为4,所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立,只需a 2-3a ≤4,解得-1≤a ≤4.(2)二次函数f (x )对于任意x ∈[m ,m +1],都有f (x )<0成立,则⎩⎪⎨⎪⎧f (m )=m 2+m 2-1<0,f (m +1)=(m +1)2+m (m +1)-1<0,解得-22<m <0. (3)将原不等式整理成关于a 的不等式(x -3)a +x 2-6x +9>0.令f (a )=(x -3)a +x 2-6x +9.因为f (a )>0在|a |≤1时恒成立,所以①若x =3,则f (a )=0,不符合题意,应舍去.②若x ≠3,则由一次函数的单调性,可得⎩⎪⎨⎪⎧f (-1)>0,f (1)>0, 即⎩⎪⎨⎪⎧x 2-7x +12>0,x 2-5x +6>0,解得x <2或x >4. 故x 的取值范围是(-∞,2)∪(4,+∞).基础巩固题组一、选择题1.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x ),g (x )的大小关系是()A.f (x )=g (x )B.f (x )>g (x )C.f (x )<g (x )D.随x 的值变化而变化答案B解析f (x )-g (x )=x 2-2x +2=(x -1)2+1>0⇒f (x )>g (x ).2.已知下列四个条件:①b >0>a ,②0>a >b ,③a >0>b ,④a >b >0,能推出1a <1b成立的有() A.1个 B.2个 C.3个 D.4个答案C解析 运用倒数性质,由a >b ,ab >0可得1a <1b,②、④正确.又正数大于负数,①正确,③错误,故选C.3.已知a ,b >0,且P =a +b 2,Q =a 2+b 22,则P ,Q 的大小关系是() A.P ≥Q B.P >Q C.P ≤Q D.P <Q答案C解析 因为a ,b >0,所以P 2-Q 2=(a +b )24-a 2+b 22=-(a -b )24≤0,当且仅当a =b 时取等号.故选C.4.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是()A.{a |0<a <4}B.{a |0≤a <4}C.{a |0<a ≤4}D.{a |0≤a ≤4}答案D解析 由题意知a =0时,满足条件.a ≠0时,由⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0,得0<a ≤4,所以0≤a ≤4. 5.已知函数f (x )=-x 2+ax +b 2-b +1,对任意实数x 都有f (1-x )=f (1+x )成立,若当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是()A.(-1,0)B.(2,+∞)C.(-∞,-1)∪(2,+∞)D.不能确定答案C解析 由f (1-x )=f (1+x )知f (x )的图象关于直线x =1对称,即a 2=1,解得a =2. 又因为f (x )开口向下,所以当x ∈[-1,1]时,f (x )为增函数,所以f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2,f (x )>0恒成立,即b 2-b -2>0恒成立,解得b <-1或b >2.6.若实数a ,b ,c 满足对任意实数x ,y 有3x +4y -5≤ax +by +c ≤3x +4y +5,则()A.a +b -c 的最小值为2B.a -b +c 的最小值为-4C.a +b -c 的最大值为4D.a -b +c 的最大值为6答案A解析 由题意可得-5≤(a -3)x +(b -4)y +c ≤5恒成立,所以a =3,b =4,-5≤c ≤5,则2≤a +b -c ≤12,即a +b -c 的最小值是2,最大值是12,A 正确,C 错误;-6≤a -b +c ≤4,则a -b +c 的最小值是-6,最大值是4,B 错误,D 错误,故选A.二、填空题7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,则不等式f (x )>3的解集为________. 答案{x |x >1}解析 由题意知⎩⎪⎨⎪⎧x ≥0,x 2+2x >3或⎩⎪⎨⎪⎧x <0,-x 2+2x >3,解得x >1.故原不等式的解集为{x |x >1}. 8.若关于x 的不等式ax >b 的解集为⎝⎛⎭⎫-∞,15,则关于x 的不等式ax 2+bx -45a >0的解集为________.答案⎝⎛⎭⎫-1,45 解析 由已知ax >b 的解集为⎝⎛⎭⎫-∞,15,可知a <0,且b a =15,将不等式ax 2+bx -45a >0两边同除以a 得x 2+b a x -45<0,即x 2+15x -45<0,解得-1<x <45,故不等式ax 2+bx -45a >0的解集为⎝⎛⎭⎫-1,45. 9.当x >0时,若不等式x 2+ax +1≥0恒成立,则a 的最小值为________.答案 -2解析 当Δ=a 2-4≤0,即-2≤a ≤2时,不等式x 2+ax +1≥0对任意x >0恒成立,当Δ=a 2-4>0,则需⎩⎪⎨⎪⎧a 2-4>0,-a 2<0,解得a >2,所以使不等式x 2+ax +1≥0对任意x >0恒成立的实数a 的最小值是-2.10.下面四个条件中,使a >b 成立的充分而不必要的条件是________.①a >b +1;②a >b -1;③a 2>b 2;④a 3>b 3答案①解析 ①中,若a >b +1,则必有a >b ,反之,当a =2,b =1时,满足a >b ,但不能推出a >b +1,故a >b +1是a >b 成立的充分而不必要条件;②中,当a =b =1时,满足a >b -1,反之,由a >b -1不能推出a >b ;③中,当a =-2,b =1时,满足a 2>b 2,但a >b 不成立;④中,a >b 是a 3>b 3的充要条件,综上所述答案为①.三、解答题11.已知f (x )=-3x 2+a (6-a )x +6.(1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值.解(1)由题意知f (1)=-3+a (6-a )+6=-a 2+6a +3>0,即a 2-6a -3<0,解得3-23<a <3+2 3. 所以不等式的解集为{a |3-23<a <3+23}.(2)∵f (x )>b 的解集为(-1,3),∴方程-3x 2+a (6-a )x +6-b =0的两根为-1,3,∴⎩⎪⎨⎪⎧(-1)+3=a (6-a )3,(-1)×3=-6-b 3,解得⎩⎨⎧a =3±3,b =-3. 即a 的值为3±3,b 的值为-3.12.已知-1<x +y <4且2<x -y <3,求z =2x -3y 的取值范围.解 设z =2x -3y =m (x +y )+n (x -y ),即2x -3y =(m +n )x +(m -n )y ,所以⎩⎪⎨⎪⎧m +n =2,m -n =-3,所以⎩⎨⎧m =-12,n =52,由-1<x +y <4知-2<-12(x +y )<12,① 由2<x -y <3知5<52(x -y )<152,② ①+②得3<-12(x +y )+52(x -y )<8,即3<z <8. 能力提升题组13.(2021·浙江十校联盟联考)已知a >b >0,给出下列命题: ①若a -b =1,则a -b <1;②若a 3-b 3=1,则a -b <1;③若e a -e b =1,则a -b <1;④若ln a -ln b =1,则a -b <1.其中真命题的个数是()A.1B.2C.3D.4答案B解析 对于①,当a >b >0,a -b =1时,a -b =(a +b )(a -b )=(1+b +b )(1+b -b )=1+2b >1,①错误;对于②,由a 3-b 3=(a -b )(a 2+ab +b 2)=1得a -b =1a 2+ab +b 2.又因为a >b >0,a 3-b 3=1,所以a 3=1+b 3>1,即a >1,所以a 2+ab +b 2>1,a -b =1a 2+ab +b 2<1,②正确;对于③,由e a -e b =1得e a -b =e a e b =e b +1e b =1+1e b <2,所以a -b <ln 2<1,③正确;对于④,由ln a -ln b =1得a =b e ,则a -b =(e -1)b ,当b >1e -1时,a -b =(e -1)b >1,④错误.综上所述,真命题的个数为2,故选B.14.(2020·湖州期末质检)已知实数a ,b ,c 满足a 2+b 2+2c 2=1,则2ab +c 的最小值是()A.-34B.-98C.-1D.-43答案B解析 由题意得1-2c 2=a 2+b 2≥-2ab ,所以2ab +c ≥2c 2+c -1=2⎝⎛⎭⎫c +142-98≥-98,当且仅当c =-14,ab =-716时等号成立,所以2ab +c 的最小值为-98,故选B. 15.若关于x 的不等式a ≤34x 2-3x +4≤b 的解集恰好是[a ,b ],则a =________,b =________. 答案04解析 令f (x )=34x 2-3x +4=34(x -2)2+1,其图象对称轴为x =2.①若a ≥2,则a ,b 是方程f (x )=x 的两个实根,解得a =43,b =4,矛盾; ②若b ≤2,则f (a )=b ,f (b )=a ,两式相减得a +b =83,代入f (a )=b 可得a =b =43,矛盾; ③若a <2<b ,则f (x )min =1,所以a ≤1(否则在顶点处不满足a ≤f (x )),所以此时a ≤f (x )的解集是R ,所以f (x )≤b 的解集是[a ,b ],所以f (a )=f (b )=b .由⎩⎪⎨⎪⎧f (b )=b ,b >2 解得b =4,由⎩⎪⎨⎪⎧f (a )=4,a <2解得a =0. 16.若实数x ,y 满足x 2+4y 2+4xy +4x 2y 2=32,则x +2y 的最小值为________,7(x +2y )+2xy 的最大值为________.答案 -4216解析 因为x 2+4y 2+4xy +4x 2y 2=32,所以(x +2y )2+4x 2y 2=32,则(x +2y )2≤32,-42≤x +2y ≤42,即x +2y 的最小值为-4 2.由(x +2y )2+4x 2y 2=32,不妨设⎩⎨⎧x +2y =42sin θ,2xy =42cos θ,则7(x +2y )+2xy =42(7sin θ+cos θ)=16sin(θ+φ),其中tan φ=77,所以当sin(θ+φ)=1时,7(x +2y )+2xy 取得最大值16. 17.解关于x 的不等式ax 2-(2a +1)x +2<0(a ∈R ).解 原不等式可化为(ax -1)(x -2)<0.(1)当a >0时,原不等式可以化为a (x -2)⎝⎛⎭⎫x -1a <0,根据不等式的性质,这个不等式等价于(x -2)·⎝⎛⎭⎫x -1a <0.因为方程(x -2)⎝⎛⎭⎫x -1a =0的两个根分别是2,1a ,所以当0<a <12时,2<1a,则原不等式的解集是⎩⎨⎧⎭⎬⎫x |2<x <1a ;当a =12时,原不等式的解集是∅; 当a >12时,1a <2,则原不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪1a <x <2. (2)当a =0时,原不等式为-(x -2)<0,解得x >2,即原不等式的解集是{x |x >2}.(3)当a <0时,原不等式可以化为a (x -2)⎝⎛⎭⎫x -1a <0, 根据不等式的性质,这个不等式等价于(x -2)·⎝⎛⎭⎫x -1a >0, 由于1a <2,故原不等式的解集是⎩⎨⎧x ⎪⎪⎭⎬⎫x <1a 或x >2. 综上所述,当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <1a 或x >2; 当a =0时,不等式的解集为{x |x >2};当0<a <12时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2<x <1a ;当a =12时,不等式的解集为∅;当a >12时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a <x <2. 18.(2016·浙江卷)设函数f (x )=x 3+11+x,x ∈[0,1],证明: (1)f (x )≥1-x +x 2; (2)34<f (x )≤32. 证明(1)因为1-x +x 2-x 3=1-(-x )41-(-x )=1-x 41+x ,由于x ∈[0,1],有1-x 41+x ≤1x +1, 即1-x +x 2-x 3≤1x +1, 所以f (x )≥1-x +x 2.(2)由0≤x ≤1得x 3≤x ,故f (x )=x 3+1x +1≤x +1x +1=x +1x +1-32+32=(x -1)(2x +1)2(x +1)+32≤32, 所以f (x )≤32.由(1)得f (x )≥1-x +x 2=⎝⎛⎭⎫x -122+34≥34,又因为f ⎝⎛⎭⎫12=1924>34,所以f (x )>34.综上,34<f (x )≤32.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018 高考数学异构异模复习考案
第七章 不等式
7.1
不等关系与不 等式撬题 理
1.设
x ∈R , [ x ] 表示不超出 x 的最大整数.若存在实数
t ,使得 [ t ] = 1, [ t 2] = 2, ,
[ t n ] =n 同时建立,则正整数
n 的最大值是 (
)
A . 3
B . 4
C . 5
D . 6
答案
B
分析
由 [ t ] = 1,得 1≤ t <2. 由 [ t 2] =2,得 2≤ t 2<3. 由 [ t 4] = 4,得 4≤ t 4<5,所以
2≤ t 2< 5.
由 [ t 3] = 3,得
3≤ t 3<4,所以
6≤ t 5 <4
5. 由 [ t 5] = 5,得
5≤t 5<6,与
6≤ t 5<4 5矛盾,故正
整数
n 的最大值是
4.
2.若
a >
b >0,
c <
d <0,则必定有 (
)
a b A. c >d
a b B. c <d
a b C. d >c
a b
D. d <c
答案
D
分析
∵ c <d <0,∴- c >- d >0,
1
1 ∴ 0<- c <- d .
1
1
又∵ a >b >0,∴ a b a b
则 - d >- c >0. - d >
- c
,∴
d <c
.
3.若对随意的 x ∈ [0,1] 1
恒建立,则必定有 ( )
,不等式 1- kx ≤
≤1- lx
1+ x
1
1
A . k ≤0, l ≥ 3
B . k ≤0, l ≤ 2+ 2
C . k ≥ 1
, l ≤ 1
D . k ≥ 1
, l ≤
1
4 3
2
2+ 2
答案 D
当 k =- 1 且 x ∈ [0,1] 时, 1- kx =1+ x ∈ [1,2] , 1
2
,不等式 1-
分析 1+ x ∈ 2 , 1
1 1
1
2 1
kx ≤ 1+ x 不恒建立,可清除 A 、B ;当 k = 3且 x ∈[0,1] 时, 1- kx = 1
-
3x ∈
, 1
, 1+ x
3
∈
2
, 1 ,不等式 1-kx ≤ 1
不恒建立,清除 C ,应选 D.
2
1+ x
2
2
1
4. 已知- 1<a <0, A =1+ a , B =1- a , C = 1+ a ,比较 A , B ,C 的大小关系为 (
)
A . A <
B <
C B . B <A <C
C . A <C <B
D . B <C <A 答案 B
分析 解法一 ( 作差法 ) :由- 1<a <0 得 1+ a >0,A -B = (1 + a 2) - (1 - a 2) = 2a 2>0 得 A >B ,
1
2
a a 2+ a +1
C - A =1+ a - (1 + a ) =-
1+ a
2
3
a a +2 + 4
1
=-
>0,得 C >A ,所以 B <A <C .
1+ a
解法二 ( 特别值法 ) :令 a
1
5 3
=- ,则
= , =,=2,
2
A 4
B 4
C
所以得 B <A <C ,应选 B.
1 1
1
1 ;② |
1
1
2
>ln
2
5.若 < <0,则以下不等式中:①
<
a
|+ >0;③ -
> - ;④ ln
a b
a b
a +
b ab
b
a a
b b
中,正确的不等式是 ________. ( 填正确不等式的序号 )
答案 ①③
1 1
分析 由a <b <0,得 b <a <0.
1
1
①∵ a + b <0, ab >0,∴ a + b <0, ab >0,
1
1
∴ a + b <ab 建立,即①正确;
②∵ b <a <0,∴- b >- a >0,则- b >| a | ,即 | a | + b <0,∴②错误;
11
1
1
③∵ b <a <0,且 a <b <0,∴ a -a >b - b ,故③正确;
④∵ < <0,∴
2
> 2,∴ ln
b 2
>ln
a 2
建立.
b a b a
∴④错误,故正确的选项是①③ .。