基本不等式12种题型
基本不等式知识点和基本题型

基本不等式知识点和基本题型基本不等式专题辅导一、知识点总结1、基本不等式原始形式若$a,b\in R$,则$a+b\geq 2ab$,其中$a^2+b^2$为定值。
2、基本不等式一般形式(均值不等式)若$a,b\in R$,则$\frac{a+b}{2}\geq \sqrt{ab}$。
3、基本不等式的两个重要变形若$a,b\in R$,则$a+b\geq 2\sqrt{ab}$,其中$\frac{a+b}{2}\leq \sqrt{\frac{a^2+b^2}{2}}$。
总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最小值。
特别说明:以上不等式中,当且仅当$a=b$时取“=”。
4、求最值的条件:“一正,二定,三相等”。
5、常用结论若$x>1$,则$\frac{x+1}{2}>\sqrt{x}$(当且仅当$x=1$时取“=”)。
若$x<1$,则$\frac{x+1}{2}<-\frac{1}{x}$(当且仅当$x=-1$时取“=”)。
若$ab>0$,则$\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当$a=b$时取“=”)。
若$a,b\in R$,则$a^2+b^2\geq 2ab$,$\frac{a+b}{2}\geq \frac{2ab}{a+b}$,$\frac{a+b}{2}\leq \sqrt{a^2+b^2}$。
6、柯西不等式若$a,b\in R$,则$(a^2+b^2)(1+1)\geq (a+b)^2$。
题型分析题型一:利用基本不等式证明不等式1、设$a,b$均为正数,证明不等式:$ab\geq\frac{a^2+b^2}{2}$。
2、已知$a,b,c$为两两不相等的实数,求证:$a^2+b^2+c^2\geq ab+bc+ca$。
3、已知$a+b+c=1$,求证:$a^2+b^2+c^2+\frac{9}{4}\geq 2(ab+bc+ca)$。
基本不等式专题 ---完整版(非常全面)

基本不等式专题辅导之阿布丰王创作一、知识点总结1、基本不等式原始形式(1(22、基本不等式一般形式(均值不等式)3、基本不等式的两个重要变形(1(2总结:当两个正数的积为定植时,它们的和有最小值;当两个正数的和为定植时,它们的积4、求最值的条件:“一正,二定,三相等”5、经常使用结论(1当且仅那时=”)(2当且仅那时=”)(3当且仅那=”)(4(5)若,则6、柯西不等式 (1)若,则(2则有:(3两组实数,则有题型一:利用基本不等式证明不等式1、设均为正数,证明不等2,求3、已知,求证:4求证:abc c b a 8)1)(1)(1(≥---5、已知,,a b c R +∈,且1a b c ++=,求证:1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭6、(2013年新课标Ⅱ卷数学(理)选修4—5:不等式选讲设,,a b c 均为正数,且1a b c ++=,证明: (Ⅰ)13ab bc ca ++≤;(Ⅱ)2221a b c b c a++≥.7、(2013年江苏卷(数学)选修4—5:不等式选讲 已知>≥b a ,求证:b a ab b a 223322-≥-题型二:利用不等式求函数值域1、求下列函数的值域(1)22213x x y += (2))4(x x y -=(3))0(1>+=x x x y (4))0(1<+=x x x y题型三:利用不等式求最值 (一)(凑项) 1、已知2>x ,求函数42442-+-=x x y 的最小值; 变式1:已知2>x ,求函数4242-+=x x y 的最小值;变式2:已知2<x ,求函数4242-+=x x y 的最年夜值;练习:1、已知54x >,求函数14245y x x =-+-的最小值;2、已知54x <,求函数14245y x x =-+-的最年夜值;题型四:利用不等式求最值 (二)(凑系数)1、那时,求(82)y x x =-的最年夜值; 变式1:那时,求4(82)y x x =-的最年夜值;变式2:设230<<x ,求函数)23(4x x y -=的最年夜值.202<<x ,y x x =-()63的最年夜值;变式40<<x ,)28(x x y -=的最年夜值;3、求函数)2521(2512<<-+-=x x x y 的最年夜值;(提示:平方,利用基本不等式) 变式:求函数)41143(41134<<-+-=x x x y 的最年夜值;题型五:巧用“1”的代换求最值问题1最小值; 法一: 法二:变式1:已知,求变式2最小值;变式3:已求.变式4:已求变式5:(1最小值;(2)求变式6:使得题型六:分离换元法求最值(了解)1域;变式:2、示:换元法)变式:题型七:基本不等式的综合应用1小值2、(2009天津)已知,求变式1:(2010求小值;变式2:(2012湖北武汉诊断)已知,那时像恒过定点,若点在直线,3、已,求变式1:变式2:(2010山东)已知值;(提示:通分或三角换元)变式3:(2011浙江)已知年夜值;4、(2013年山东(理))取得最年夜值时值为()()A(提示:代入换元,利用基本不等式以及函数求最值)变式:设是正数,满足题型八:利用基本不等式求参数范围1、(2012且,最小值;2、已知且,4)(提示:分离参数,换元法)变式:已若,题型九:利用柯西不等式求最值1、二维柯西不等式若,则2、二维形式的柯西不等式的变式3、二维形式的柯西不等式的向量形式4、三维柯西不等式则有:5,。
《基本不等式》17种题型高一

基本不等式是高中数学中非常重要且基础的一部分。
它在高一数学中占据着重要的地位,对于学生的数学基础和逻辑推理能力的培养起着至关重要的作用。
在高一数学教学中,基本不等式的学习也是一个重要的环节,不仅需要掌握它的概念和性质,还需要学会运用它解决实际问题。
本文将从基本不等式的概念入手,详细介绍其性质和运用方法,并列举17种题型,帮助学生全面理解和掌握基本不等式的相关知识。
一、基本不等式的概念基本不等式是指在任意三个实数a、b、c之间,必有以下基本不等式成立:1)正数的不等式:a >b ⟹ a +c > b + ca > 0,b > 0 ⟹ ac > bca > b, c > 0 ⟹ ac > bca > b, c < 0 ⟹ ac < bc2)负数的不等式:a <b ⟹ a +c < b + ca < 0,b < 0 ⟹ ac > bca < b, c > 0 ⟹ ac < bca < b, c < 0 ⟹ ac > bc以上基本不等式是学习基本不等式的基础,对于解决实际问题是非常重要的。
二、基本不等式的性质基本不等式还具有一些重要的性质,包括:1)传递性:若a > b,b > c,则a > c2)对称性:若a > b,则-b > -a3)倒置性:若a > b,则1/a < 1/b,且a/b > 0这些性质对于运用基本不等式解决实际问题时起着重要的作用,可以帮助学生更好地理解和运用基本不等式。
三、基本不等式的运用方法基本不等式在解决实际问题时有着广泛的应用,其运用方法主要包括:1)利用基本不等式的性质化简题目;2)利用基本不等式构造等式或方程组,进而求解问题;3)利用基本不等式证明不等式关系,讨论最值等问题。
学生在解决实际问题时,可以根据具体情况选择不同的运用方法,灵活运用基本不等式,解决各种复杂的问题。
基本不等式题型及常用方法总结

基本不等式题型及常用方法总结基本不等式题型包括一元一次不等式、一元二次不等式、绝对值不等式和有理不等式等。
1. 一元一次不等式:- 解法1:通过移项和化简来求解,确保不等号方向的正确性。
- 解法2:将不等式转化为等价的集合表示,再通过集合的交、并运算求解。
2. 一元二次不等式:- 解法1:将不等式化为一元二次函数的图像,通过观察图像求解或者利用函数的性质来求解。
- 解法2:通过移项和配方法将不等式转化为二次函数的标准形式,再判断二次函数图像的位置与不等号关系来求解。
3. 绝对值不等式:- 解法1:将绝对值不等式分段求解,分别讨论绝对值内部是正数还是负数的情况。
- 解法2:通过绝对值的定义和不等式的性质,将绝对值不等式转化为两个简单的不等式来求解。
4. 有理不等式:- 解法1:将有理不等式化为分式的形式,然后通过分式的性质来求解。
- 解法2:通过变量的替换来将有理不等式转化为一元二次不等式或者一元一次不等式,再利用对应的方法来求解。
常用方法总结:1. 对于一元一次不等式和一元二次不等式,常用的方法是移项和化简、画函数图像和利用函数的性质来求解。
2. 对于绝对值不等式,常用的方法是分段求解和利用绝对值的性质来求解。
3. 对于有理不等式,常用的方法是化为分式形式和利用分式的性质来求解。
4. 在求解不等式的过程中,经常需要进行合并同类项、开方、取倒数、乘除等基本运算,需要注意运算法则和符号的变化。
5. 在不等式的求解过程中,需要注意不等式两边的平方值是否相等,以及是否存在不等式的等价变换等。
同时,在进行运算过程中,需要根据不等式的符号关系来选择合适的方式。
基本不等式题型大全

基本不等式题型大全知识点:1.几个重要不等式①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤ ②(基本不等式)2a b+≥()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: a b +≥ 2.2a b ab +⎛⎫≤ ⎪⎝⎭用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号). ⑤3333(0,0,0)a b c abc a b c ++≥>>>(当且仅当a b c ==时取到等号).⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b aab a b<+≤-若则(当仅当a=b 时取等号)⑦ban b n a m a m b a b <++<<++<1,其中(000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小.⑧220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<<⑨绝对值三角不等式.a b a b a b -≤±≤+2.几个著名不等式①平均不等式:1122a b a b --+≤≤≤+()a b R +∈,,(当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n+++≥+++1122(,,,).x y x y R ∈④二维形式的柯西不等式: 22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a a b b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++ ⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.板块一 基本不等式及其变换一、“配、凑、拆”的技巧 ①基本不等式及变形1.函数f (x )=x +1x (x >0)值域为________;函数f (x )=x +1x (x ∈R )值域为________;2.函数f (x )=x 2+1x 2+1的值域为________.2.若x >1,则x +4x -1的最小值为________. 解:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:53.已知x <0,则f (x )=2+4x +x 的最大值为________. 解:∵x <0,∴-x >0,∴f (x )=2+4x +x =2-⎣⎢⎡⎦⎥⎤4-x+-x .∵-4x +(-x )≥24=4,当且仅当-x =4-x ,即x =-2时等号成立.∴f (x )=2-⎣⎢⎡⎦⎥⎤4-x+-x ≤2-4=-2,∴f (x )的最大值为-2..54124,45.1的最大值求函数已知-+-=<x x y x 答案:1.,)0(312)(.2的值并求取最值时的最值求x x x xx f ≠+=答案:略223.,,()().a b y x a x b =-+-(三星)为实常数求的最小值解:(1)方法一:方法二:(1)函数f (x )=x (1-x )(0<x <1)的值域为____________; (2)函数f (x )=x (1-2x )⎝ ⎛⎭⎪⎫0<x <12的值域为____________.解:(1)∵0<x <1,∴1-x >0, x (1-x )≤⎣⎢⎡⎦⎥⎤x +1-x 22=14, ∴f (x ) 值域为⎝ ⎛⎭⎪⎫0,14.(2)∵0<x <12,∴1-2x >0.x (1-2x )=12×2x (1-2x )≤12·⎣⎢⎡⎦⎥⎤2x +1-2x 22=18,∴f (x ) 值域为⎝ ⎛⎭⎪⎫0,18.8.已知0<x <1,则x (3-3x )取得最大值时x 的值为________. 解:由x (3-3x )=13×3x (3-3x )≤13×94=34,当且仅当3x =3-3x ,即x =12时等号成立.9.函数y =x 1-x 2的最大值为________.解:x 1-x 2=x 21-x 2≤x 2+1-x 22=12..)2)(12(,523.42222的最大值求已知++==+b a y b a答案:147162223.,1,1.2y x y R x x y +∈+=+(三星)设且求的最大值221y+≤2210.1,.x yx y xyx y+>=-(二星)若且求的最小值答案:23.设x,y∈R,且xy≠0,则⎝ ⎛⎭⎪⎫x2+1y2·⎝⎛⎭⎪⎫1x2+4y2的最小值为________.解:⎝⎛⎭⎪⎫x2+1y2⎝⎛⎭⎪⎫1x2+4y2=5+1x2y2+4x2y2≥5+21x2y2·4x2y2=9,当且仅当x2y2=12时“=”成立.14.在各项都为正数的等比数列{}n a中,若2018a=,则2017201912a a+的最小值为________.4 14.已知正数x y,满足2230x xy+-=,则2x y+的最小值是___________.3②二次分式有关12.已知t>0,则函数y=t2-4t+1t的最小值为________.答案-2解:∵t>0,∴y=t2-4t+1t=t+1t-4≥2-4=-2,且在t=1时取等号.13.当x>0时,则f(x)=2xx2+1的最大值为________.解:∵x>0,∴f(x)=2xx2+1=2x+1x≤22=1,当且仅当x=1x,即x=1时取等号.14.(1)求函数f(x)=1x-3+x(x>3)的最小值;(2)求函数f(x)=x2-3x+1x-3(x>3)的最小值;解:(1)∵x>3,∴x-3>0.∴f(x)=1x-3+(x-3)+3≥21x-3·x-3+3=5.当且仅当1x-3=x-3,即x=4时取等号,∴f(x)的最小值是5.(2)令x-3=t,则x=t+3,且t>0.∴f(x)=t+32-3t+3+1t=t+1t+3≥2t·1t+3=5.当且仅当t=1t,即t=1时取等号,此时x=4,∴当x=4时,f(x)有最小值为5.15.设x>-1,求函数y=x+4x+1+6的最小值;解:∵x>-1,∴x+1>0.∴y=x+4x+1+6=x+1+4x+1+5≥2x+1·4x+1+5=9,当且仅当x+1=4x+1,即x=1时,取等号.∴当x=1时,函数y的最小值是9.4.当x>0时,则f(x)=2xx2+1的最大值为________.解:(1)∵x >0,∴f(x)=2xx2+1=2x+1x≤22=1,当且仅当x=1x,即x=1时取等号.5.函数y=x2+2x-1(x>1)的最小值是________.解:∵x>1,∴x-1>0.∴y=x2+2x-1=x2-2x+2x+2x-1=x2-2x+1+2x-1+3x-1=x-12+2x-1+3x-1=x-1+3x-1+2≥2 x-13x-1+2=23+2.当且仅当x-1=3x-1,即x=1+3时,取等号.答案:23+2③平方平均数的应用228.,1,.x y R x y x y +∈+=+(一星)已知且求的最大值解:使用不等式变形2a b +≤.11.()0,0,1,.a b a b >>+=二星设答案:7.(三星)设,0,5,a b a b >+= _________. 解:因为,0,5,a b a b >+=所以()()139a b +++=由不等式2x y+≤2≤=,13.(四星)已知实数a b c ,,满足22201a b c a b c ++=++=,,则a 的最大值是 ____________. 解:∵222b c bc +≥,即()()2222222b c b c bc b c +++=+≥,∴()2222b c b c++≥,由0a b c ++=,得b c a +=-,由2221a b c ++=,得()22222122b c a a b c +-=+=≥,∴223a ≤,∴a ,故a .9.(三星)已知R k ∈,点(),P a b 是直线2x y k +=与圆22223x y k k +=-+的公共点,则ab 的最大值为( )BA .15B .9C .1D .53-1.(二星)若0,0x y >>的最小值为_________.2.)510)(51(.52的最值求函数≤≤-=x x x y答案:4675.cos sin ,.62的最大值求为锐角设θθθ=y答案:9二、附条件求最值:“1”的代换5:已知正数a ,b 满足a +2b =1,则1a +1b 的最小值是____. 解:1a +1b =a +2b a +a +2b b =3+2b a +ab ≥3+22b a ·ab =3+2 2.36.已知x >0,y >0,且2x +y =1,则1x +2y 的最小值是_________. 解 因为1x +2y =(2x +y )⎝ ⎛⎭⎪⎫1x +2y=4+y x +4x y ≥4+2y x ·4x y =8,等号当且仅当y =12,x =14时成立.37.已知x >0,y >0,且2x +y =1,则1x +1y 的最小值为________; 解 ∵x >0,y >0,且2x +y =1,∴1x +1y =2x +y x +2x +y y=3+y x +2xy ≥3+2 2.当且仅当y x =2xy 时,取等号.38.已知x >0,y >0,且9x +1y =1,求x +y 的最小值. 解:∵9x +1y =1,∴x +y =(x +y )⎝ ⎛⎭⎪⎫9x +1y =10+9y x +x y ≥10+29y x ·xy =16.当且仅当9y x =x y 且9x +1y =1,即x =12,y =4时取等号. ∴当x =12,y =4时,x +y 有最小值为16.39.已知x ,y 为正实数,且1x +16y =1,求x +y 的最小值. 解:∵1x +16y =1,∴x +y =(x +y )·⎝ ⎛⎭⎪⎫1x +16y =17+16x y +y x ≥17+216x y ·yx =25.当且仅当16x y =y x 且1x +16y =1时,等号成立. ∴x =5,y =20时,x +y 有最小值25.1.已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是________. 解: ∵a +b =2,∴a +b2=1.∴1a +4b =⎝ ⎛⎭⎪⎫1a +4b ⎝⎛⎭⎪⎫a +b 2 =52+⎝ ⎛⎭⎪⎫2a b +b 2a≥52+22a b ·b 2a=92⎝ ⎛⎭⎪⎫当且仅当2a b =b 2a ,即b =2a 时,等号成立. 故y =1a +4b 的最小值为92.40.若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( )A.245B.285 C .5 D .6解 ∵x >0,y >0,由x +3y =5xy 得15⎝ ⎛⎭⎪⎫1y +3x =1.∴3x +4y =15(3x +4y )⎝ ⎛⎭⎪⎫1y +3x=15⎝ ⎛⎭⎪⎫3xy +4+9+12y x =135+15⎝⎛⎭⎪⎫3x y +12y x ≥135+15×23x y ·12yx =5(当且仅当x =2y 时取等号),∴3x +4y 的最小值为5.41.正数x ,y 满足1x +9y =1. (1)求xy 的最小值; (2)求x +2y 的最小值. 解:(1)由1=1x +9y ≥2 1x ·9y 得xy ≥36,当且仅当1x =9y ,即y =9x =18时取等号,故xy 的最小值为36.(2)由题意可得x +2y =(x +2y )⎝ ⎛⎭⎪⎫1x +9y =19+2y x +9x y ≥19+22y x ·9xy =19+62,当且仅当2y x =9xy ,即9x 2=2y 2时取等号,故x +2y 的最小值为19+6 2.9.,,280,.x y R x y xy x y +∈+-=+(二星)已知且求的最小值答案:18227.()01,,,().1a b x a b f x x x<<=+-三星设为常数求的最小值答案:2()a b +2.(二星)若直线()10,0x ya b a b+=>>过点(1,1),则a b +的最小值等于( )A.2B.3C.4D.5解:因为直线过点(1,1),所以111=+b a ,所以ba ab b a a b b a b a b a ++=+++=++=+211)11)((,因为0,0>>b a ,所以4222=⨯+≥++baa b b a a b ,当且仅当“a=b=2”时等号成立.14.(二星)若()42log 34log a b +=则a b +的最小值是( )DA .6+B .7+C .6+D .7+112511.0,0,1,:.4a b a b a b a b ⎛⎫⎛⎫>>+=++≥ ⎪⎪⎝⎭⎝⎭(三星)设求证1.(四星)已知20x y >>,且满足181022x y x y++=-,求实数x 的最大值. 答案:[]2,181.已知,x y 都是正数,且1x y +=,则4121x y +++的最小值为__________.941.(三星)设,x y 是正实数,且1x y +=,则2221x y x y +++的最小值是___________.141.(三星)已知1,,(0,1)4ab a b =∈,则1211a b+--的最小值是__________.20.(四星)函数()22log 1log 1x f x x -=+,若()()1221f x f x +=(其中1x 、2x 均大于2),则()12f x x 的最小值为_______。
基本不等式的常见题型

12.已知x 0, y 0, x y 1, 则
13.已知2 x y 0,
1
1
的最小值是 _____.
1 x 1 2 y
1
1
1, 则x y的最小值是 _____.
2 x-y x +2 y
1 1
4x
9y
14.已知x 0, y 0, 1, 则
2.基本不等式
一、知识点梳理
(1)基本不等式成立的条件:a≥0,b≥0.
(2)等号成立的条件:当且仅当 a=b 时取等号.
a+b
称为正数 a,b 的算术平均数, ab称为正数 a,b 的几何平均数.
2
(3)其中
1 a 2+b2 2ab, a,b R
(当且仅当 a= b时取等号 )
2
a+b
的最小值为_______.
xy
a2 1
的最小值为_______.
ab
x2 3y
的最小值为_______.
xy
[题组训练]
(�+1)(2�+1)
1. (2019 天津,13,5 分)设 x>0,y>0,x+2y=5,则
��
的最小值为
.
1 a
2.设a 0, b >0, 且a b 1, 则 的最小值为_______.
1 1
2.若 2m+n=1 上,且 m,n 为正数,则 + 的最小值为________.
m n
1
4
3.已知正数 x,y 满足 x+y=1,则�+1+�的最小值为________.
完整版本的不等式基本原理和基本题型

完整版本的不等式基本原理和基本题型一、不等式基本原理1.比较法则:不等式的传递性:若a>b,b>c,则a>c。
不等式的反对称性:若a>b且b>a,则a=b。
不等式的加法和减法法则:若a>b,则a+c>b+c,a-c>b-c。
2.乘法法则:不等式的乘法法则:若a>b且c>0,则ac>bc。
不等式的除法法则:若a>b且c>0,则a/c>b/c。
3.倒置法则:如果将不等式两侧的符号互相倒置,不等式的方向也将倒置,且不等式仍然成立。
例如若a>b,则-b>-a。
二、不等式基本题型1.一元一次不等式:基本形式:ax + b > 0 或 ax + b < 0。
解法:根据不等式的形式,将未知数x的系数a分类讨论解答。
2.一元二次不等式:常见形式:ax² + bx + c > 0 或 ax² + bx + c < 0。
解法:可以通过因式分解或配方法求关键点(二次方程的根),然后通过关键点的位置确定不等式的解集。
3.绝对值不等式:基本形式:|ax + b| > c 或 |ax + b| < c。
解法:根据不等式的形式,分四种情况讨论解答,并考虑绝对值的性质。
4.分式不等式:常见形式:f(x) > 0 或 f(x) < 0,其中f(x)是有理函数或无理函数。
解法:根据不等式的形式,可以通过求函数的零点,确定不等式的解集。
总结:不等式基本原理是解决不等式问题的基础,而不等式基本题型则是根据不同的不等式形式进行分类解答。
在解题过程中,需要注意使用不等式基本原理,并根据题目要求选择合适的方法进行求解。
最新基本不等式题型归纳

基本不等式题型归纳【重点知识梳理】1.基本不等式:2a b ab +≤ (1)基本不等式成立的条件:0a >,0b >.(2)等号成立的条件:当且仅当a b =时,等号成立.2.几个重要的不等式:(1)222a b ab +≥(,a b R ∈); (2)2b a a b +≥(0ab >); (3)2()2a b ab +≤(,a b R ∈); (4)2222()()a b a b +≥+(,a b R ∈). 3.算术平均数与几何平均数设0a >,0b >,则,a b 的算术平均数为2a b +,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题已知0a >,0b >,则(1)如果积ab 是定值p ,那么当且仅当a b =时,a b +有最小值是2p .(简记:积定和最小) (2)如果和a b +是定值p ,那么当且仅当a b =时,ab 有最大值是24p .(简记:和定积最大) 题型一览1、已知0a >,0b >,且41a b +=,则ab 的最大值为_______,则1ab 的最小值为_______; 2、已知21x y +=,则24x y +的最小值为_______ 3、设03x <<,则函数4(52)y x x =-的最大值为_______4、若0x >,则4x x +的最小值为_______;若0x <,则4x x +的最大值为_______ 5、若2x > ,则12x x +-的最小值为_______;若2x < ,则12x x +-的最大值为_______ 若函数1()(2)2f x x x x =+>-在 x a =处有最小值,则a =_______ 6、已知,a b R +∈,且22a b +=,则12a b +(2a b b a +)的最小值为_______,此时,a b 的值分别是_______ 7、已知0x >,0y >,212x y+=(22x y xy +=或220x y xy +-=),则2x y +的最小值为_______8、已知0,0a b >>,如果不等式212m a b a b+≥+恒成立,那么m 的最大值等于_______ 9、几个分式的变形: (1)若0x >,则函数21x y x+=的最小值是_______ (2)已知 0t >,则函数241t t y t-+= 的最小值为_______ (3)函数2+5+15=(0)2x x y x x ≥+的最小值为_______ 分析:变形得22515(2)2922x x x x y x x ++++++==++9(2)1172x x =+++≥=+, 当且仅当9(2)2x x +=+,即1x =时取等号, 故函数2515(0)2x x y x x ++=≥+的最小值为7 (4)已知0b a >>,2ab =,则22a b a b+-的取值范围是_______ 解:2222()2()444()[()]4a b a b ab a b a b b a a b a b a b a b b a+-+-+===-+=--+≤------ (5)设22()4x f x x =+(0x >), 则()f x 的最大值为_______; (6)已知0,0a b >>,则222232a ab b a ab b++++的最小值是_______ (7)已知,a b 都是负实数,则2a b a b a b+++的最小值是_______10、(1)已知非负实数,x y 满足1x y +=,则11x y +++的最小值为_______ 分析:因为 1x y +=,所以 113x y +++=,即1[(1)(1)]13x y +++=,因为非负实数,x y ,所以 10,10x y +>+>,所以 11111()[(1)(1)]11113x y x y x y +=+⋅+++++++114(1)[14]311y x x y ++=+++++119[5(54)3333≥+=+== 当且仅当14(1)11y x x y ++=++,即12(1)y x +=+,0,1x y ==时取等号,所以 1411x y +++的最小值为3 (2)已知实数,x y 满足102x y x y >>+=,且,则213x y x y ++-的最小值为_______1[(3)()]2x y x y x y =+=++-,则(3)()1x y x y ++-= 21212()3()[(3)()]3()3333x y x y x y x y x y x y x y x y x y x y-++=+++-=++≥++-+-+-【法二】令x y t -=,3x y s +=(0,0t s >>)121212()()3()3t s s t x y s t s t s t+=+=++=++≥+-11、(1)已知,x y 均为正实数,且3xy x y =++,则xy 的最小值为_______解:因为,x y 均为正实数,所以x y +≥3xy x y =++可化为3xy ≥,即1)0≥3,9,xy ≥≥故当且仅当x y =时,xy 取得最小值9(2)已知,x y 均为正实数,39x y xy ++=,则3x y +的最小值为_______解:因为,x y 均为正实数,所以211393333()332x y x y xy x y x y x y +=++=++⋅≤++⋅, 12、(1)若正实数,x y 满足221x y xy ++=,则x y +的最大值是_______解:由221x y xy ++=,得21()x y xy =+-, 22()()114x y x y xy ++=+≤+,解得33x y -≤+≤,x y ∴+得最大值为3(2)设,x y 为实数,若2241x y xy ++=,则2x y +的最大值是_______ 解:由2241x y xy ++=得2222314(2)3(2)22x y xy x y xy x y x y =++=+-=+-⋅⋅ 2223251(2)()(2)228x y x y x y +≥+-⋅=+则255x y -≤+≤ 13、若,(0,2]x y ∈且2xy =,使不等式(2)(2)(4)a x y x y +≥--恒成立,则实数a 的取值范围为A .12a ≤B .2a ≤C .2a ≥D .12a ≥ 分析:由,(0,2]x y ∈,2xy =, 得()1022(2)(4)102222x y x y a x y x y x y -+--≥==-+++.又24x y +≥=由,∴12a ≥,选D . 14、 若0,0ab >> ,且4a b += ,则下列不等式恒成立的是( )A .112ab > B .111a b +≤ C2≥ D .228a b +≥分析:因为0a >,0b >利用基本不等式有2a b ≤+=≤,当且仅当a b =时等号成立,C2得,114ab ≥,A 错;222()21688a b a b ab +=+-≥-=,当且仅当a b =时,等号成立,D 正确;11414a b a b ab ++=≥=,当且仅当a b =时等号成立,B 错;综上可知,选D .15、设正实数,,x y z 满足22340x xy y z -+-=,则当xy z 取得最大值时,212x y z +-的最大值为A .0B .1C .94 D .3答案:由22340x xy y z -+-=得2234z x xy y =-+,则22114343xy xy x y z x xy y y x ==≤=-++-,当且仅当2x y =时等号成立,此时22z y = 222122122111(2)122x y z y y y y y y y+-=+-=-=-≤.16、(2013天津理14)设2a b +=,0b >,则当a =_____时,1||2||a a b+取得最小值.解:因为2a b +=,所以1=2a b + 1||||||22||2||4||4||a ba a ab a a b a b a a b ++=+=+++14||4||a a a a ≥+=,当0a >时,5+1=4||4a a ,1||52||4a ab +≥; 当0a <时,3+1=4||4a a ,1||32||4a a b +≥,当且仅当2b a =时等号成立. 因为0b >,所以原式取最小值时2b a =-.又2a b +=,所以2a =-时,原式取得最小值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本不等式12种题型
在数学中,基本不等式是重要的一种运算表示方法,它涉及不同类型的数据,可以构成一系列不等式和等式,有助于理解形状、性质和变化规律的数学问题。
许多数学题的解决都离不开不等式的运用,不等式的题型也是考试题型中的重要类型,本文将简要介绍基本不等式12种常见题型。
1、比较不等式
比较不等式是一种两个不同数之间的大小比较,表示结果不等式,即大于、小于、大于等于或小于等于等。
例如:2a + b > 3,表示
2a + b大于3。
2、区间不等式
区间不等式是一种不等式,用于表示一个数字处于两个不同数字之间,即大于等于或小于等于的情况,例如:1 < x < 2。
即表示x
介于1和2之间,大于1小于2。
3、极值不等式
极值不等式用于表达某一数值在一系列数值中的位置,比如最大值、最小值和极值点,例如:f(x)<f(2),表示在函数f(x)中x=2处的值小于其他全部x处的值。
4、组合不等式
组合不等式是所有不等式的一个组合,即将几个不同的不等式进行合并,使得总的结果能够得到满足,例如2a + b > 2且b < 4,
表示2a + b大于2,并且b小于4。
5、不等关系不等式
不等关系不等式是指在有两个变量的不等式中,一个变量的取值存在一定的不等关系,即两个变量均存在大于、小于、大于等于或小于等于等关系,例如:x>2和x+2>y,表示x大于2,且x+2大于y。
6、方程不等式
方程不等式也叫不等式方程,是指一个方程中关于未知数的不等式,即未知数的取值存在一定的不等关系,例如:3x-2<7,表示3x-2小于7。
7、多项式不等式
多项式不等式是指多项式的不等式,即系数和未知数之间存在一定的不等关系,例如:3x^2+2x+1>0,表示3x^2+2x+1大于0。
8、指数不等式
指数不等式是指指数的不等式,即指数和未知数之间存在一定的不等关系,例如:2x > 8,表示2x大于8。
9、函数不等式
函数不等式是指函数的不等式,即函数和未知数之间存在一定的不等关系,例如:f(x)>2,表示函数f(x)大于2。
10、代数不等式
代数不等式是指利用代数计算求解的不等式,即求解者根据指定的关系式求出满足该式的不等式,例如:2x + 3 > 5,表示2x + 3大于5。
11、数值不等式
数值不等式是指将真数运用于不等式中,根据不等式的性质和特点,求出它的解,例如:2x - 1 > 0,表示2x - 1大于0。
12、几何不等式
几何不等式是指几何图形及其变换中的不等式,即研究几何图形上的线性、非线性变换,进而构成一系列不等式,例如:2a + b > 3,表示2a + b大于3。
综上所述,基本不等式涉及多种不同的类型,其中常见的有12种,即比较不等式、区间不等式、极值不等式、组合不等式、不等关系不等式、方程不等式、多项式不等式、指数不等式、函数不等式、代数不等式、数值不等式和几何不等式。
不等式的正确运用可以很轻松的解决许多数学题,更可以帮助人们更深刻的理解数学知识。