统计学第六版第6章演示精品PPT课件
合集下载
6教育统计学第六章

S
n
(3)总体非正态分布条件下平均数的显著性检验
① 当 n≥30 时,尽管总体分布非正态,对于平均数的显 著性检验仍可用Z 检验。
Z
X
0(σ
已知)或
Z
X 0( σ 未知)
S
n
n
② 当 n<30 时,若总体分布非正态,对于平均数的显著 性检验不符合近似 Z 检验的条件,严格讲此时也不符合t 检验 的条件。
计算其置信区间:
X t SX (其X 中 t SX
2
2
)
SX
S n
小样本的情况
例如,从某小学二年级随机抽取12名学生,其阅读能 力得分为28、32、36、22、34、30、33、25、31、33、 29、26.试估计该校二年级阅读能力总体平均数95%和 99%的置信区间。
X 29.917 , S 4.100 , X 3.926
三、样本平均数与总体平均数离差统计量的形态
从正态总体中随机抽取样本容量为n的一切可 能样本平均数以总体平均数为中心呈正态分布。
当总体标准差已知时:
Z
X
X
X
n
当总体标准差未知时:
N (0,1)
总体标准差 的无偏估计量为
S (X X )2 n 1
S S X
X 2 ( X )2 / n
抽样分布是统计推断的理论依据。实际中只能抽取一个 随机样本根据一定的概率来推断总体的参数。即使是抽取一 切可能样本,计算出的某种统计量与总体相应参数的真值, 大多也是不相同的,这是由于抽样误差的缘故。抽样误差用 抽样分布的标准差来表示。因此,某种统计量在抽样分布上 的标准差称为该种统计量的标准误。
标准误越小,表明样本统计量与总体参数的值越接近, 样本对总体越有代表性,用样本统计量推断总体参数的可靠 度越大,所以标准误是统计推断可靠性的指标。
n
(3)总体非正态分布条件下平均数的显著性检验
① 当 n≥30 时,尽管总体分布非正态,对于平均数的显 著性检验仍可用Z 检验。
Z
X
0(σ
已知)或
Z
X 0( σ 未知)
S
n
n
② 当 n<30 时,若总体分布非正态,对于平均数的显著 性检验不符合近似 Z 检验的条件,严格讲此时也不符合t 检验 的条件。
计算其置信区间:
X t SX (其X 中 t SX
2
2
)
SX
S n
小样本的情况
例如,从某小学二年级随机抽取12名学生,其阅读能 力得分为28、32、36、22、34、30、33、25、31、33、 29、26.试估计该校二年级阅读能力总体平均数95%和 99%的置信区间。
X 29.917 , S 4.100 , X 3.926
三、样本平均数与总体平均数离差统计量的形态
从正态总体中随机抽取样本容量为n的一切可 能样本平均数以总体平均数为中心呈正态分布。
当总体标准差已知时:
Z
X
X
X
n
当总体标准差未知时:
N (0,1)
总体标准差 的无偏估计量为
S (X X )2 n 1
S S X
X 2 ( X )2 / n
抽样分布是统计推断的理论依据。实际中只能抽取一个 随机样本根据一定的概率来推断总体的参数。即使是抽取一 切可能样本,计算出的某种统计量与总体相应参数的真值, 大多也是不相同的,这是由于抽样误差的缘故。抽样误差用 抽样分布的标准差来表示。因此,某种统计量在抽样分布上 的标准差称为该种统计量的标准误。
标准误越小,表明样本统计量与总体参数的值越接近, 样本对总体越有代表性,用样本统计量推断总体参数的可靠 度越大,所以标准误是统计推断可靠性的指标。
《统计学》完整袁卫-贾俊平PPT课件

定比数据
定距测定的量可以进行加或减的运算,但 却不能进行乘或除的运算。
也称比率数据,是比定距数据更高一级的 定量数据。它不仅可以进行加减运算,而 且还可以作乘除运算。
如产量、产值、固定资产投资额、居民
货币收入和支出、银行存款余额等。
精品ppt
11
统计数据四个层次的概括
测定层次 特征
运算功能 举例
1. 定类测定 分类
计数
产业分类
2. 定序测定 分类;排序 计数;排序 企业等级
3. 定距测定 分类;排序; 计数;排序;温度
有基本测量单位 加减
4. 定比测定 分类;排序; 计数;排序;商品销售
有基本测量单位;加减
额
有绝对零点 乘除
精品ppt
12
4. 截面数据和时间序列数据
截面数据:所搜集的不同单位在同一时间的数据。例 如,所有上市公司公布的2004年年度的净利润。
(三)数据的类型
1. 定性数据和定量数据 定性数据:用文字描述的 。
如在本章的“统计引例”中消费者对永美所提供服 务的总体评价等都属于文字描述的定性数据。
精品ppt
8
定量数据:用数字描述的。
如企业的净资产额、净利润额等。 2. 离散型数据和连续型数据
变量 若我们所研究现象的属性和特征的具体表现在 不同时间、不同空间或不同单位之间可取不同 的数值,则可称这种数据为变量。
定序数据,也称序列数据,是对事物所具 有的属性顺序进行描述。
例如,对企业按经营管理的水平和取得 的效益划分为一级企业、二级企业等。
精品ppt
10
定距数据
也称间距数据,是比定序数据的描述功能 更好一些的定量数据。
如10℃、20℃等。它不仅有明确的高低 之分,而且可以计算差距,如20℃比 10℃高10℃,比5℃高15℃等。
统计学原理-第六章 抽样调查(复旦大学第六版)

全体。其单位数用N来表示。
2.样本总体:简称样本,是从全及总体中随机
抽取出来,代表全及总体部分单 位的集合体。单位数用n表示。
5
二.全及指标和抽样指标
(一)全及指标
X 总体平均数: X N 总体成数:P
2
XF 或X F Q=
2 2
N1 N N
(X-X) 总体方差: = 总体标准差:= (X-X)
(一)考虑顺序的不重复抽样数目
N! A N ( N 1)(N 2) ( N n 1) ( N n)! 4 3 2 1 2 例如A4 12 2 1
n N
(二)考虑顺序的重复抽样数目
B N
n N 2 4
n 2
例如 B 4 16
10
(三)不考虑顺序的不重复抽样数目
Ex X
28
2、一致性 当抽样单位数充分大时,抽样指标和未知 的总体指标之间的绝对离差为任意小的可能性 也趋于必然性。
x X 任意小
3、有效性
即用抽样指标估计总体指标,要求作为优良估 计量方差应该比其他估计量的方差小。
2
x X f
2
f
2
x X f
x
x E ( x)
2
18
说明:根据数理统计理论,在重复抽样条件下, 抽样平均误差与全及总体的标准差成正比例关系。 与抽样总体单位平方根成反比关系。
19
在不重复抽样情况下,抽样平均误差计算公式如下:
x x
N n 250 4-2 ( )= ( ) =9.13(件) n N 1 2 4-1
2
N
X X F 或 F X X F 或 F
2.样本总体:简称样本,是从全及总体中随机
抽取出来,代表全及总体部分单 位的集合体。单位数用n表示。
5
二.全及指标和抽样指标
(一)全及指标
X 总体平均数: X N 总体成数:P
2
XF 或X F Q=
2 2
N1 N N
(X-X) 总体方差: = 总体标准差:= (X-X)
(一)考虑顺序的不重复抽样数目
N! A N ( N 1)(N 2) ( N n 1) ( N n)! 4 3 2 1 2 例如A4 12 2 1
n N
(二)考虑顺序的重复抽样数目
B N
n N 2 4
n 2
例如 B 4 16
10
(三)不考虑顺序的不重复抽样数目
Ex X
28
2、一致性 当抽样单位数充分大时,抽样指标和未知 的总体指标之间的绝对离差为任意小的可能性 也趋于必然性。
x X 任意小
3、有效性
即用抽样指标估计总体指标,要求作为优良估 计量方差应该比其他估计量的方差小。
2
x X f
2
f
2
x X f
x
x E ( x)
2
18
说明:根据数理统计理论,在重复抽样条件下, 抽样平均误差与全及总体的标准差成正比例关系。 与抽样总体单位平方根成反比关系。
19
在不重复抽样情况下,抽样平均误差计算公式如下:
x x
N n 250 4-2 ( )= ( ) =9.13(件) n N 1 2 4-1
2
N
X X F 或 F X X F 或 F
统计学完整全套PPT课件

介绍非线性回归模型的基本形式 、特点以及常见的非线性回归模 型,如指数模型、对数模型等。
模型的参数估计
阐述非线性回归模型的参数估计方 法,如最小二乘法、极大似然法等 ,并探讨其计算过程和注意事项。
模型的检验与诊断
介绍非线性回归模型的检验方法, 如拟合优度检验、参数的显著性检 验等,以及模型的诊断方法,如残 差分析、异常值识别等。
方差
各数据与平均数之差的平方的 平均数
03
标准差
方差的平方根04四源自位数间距上四分位数与下四分位数之差
偏态与峰态分析
01
02
03
偏态系数
描述数据分布偏斜程度的 统计量
峰态系数
描述数据分布尖峭或扁平 程度的统计量
正态性检验
如Jarque-Bera检验等, 用于判断数据是否服从正 态分布
03
推论性统计方法
模型评估与优化
预测结果展示与应用
通过比较模型的预测结果与实际股票价格 的差异,评估模型的预测性能,并进行优 化和改进。
将模型的预测结果进行可视化展示,为投资 者提供决策参考。
THANKS
感谢观看
统计学完整全套PPT课件
目录
• 统计学基本概念与原理 • 描述性统计方法 • 推论性统计方法 • 非参数统计方法 • 回归分析及其应用 • 时间序列分析与预测
01
统计学基本概念与原理
Chapter
统计学的定义及作用
统计学定义
统计学是一门研究如何收集、整理、分析和解释数 据的科学,它使用数学方法对数据进行建模和预测 ,以揭示数据背后的规律和趋势。
游程检验
游程检验的基本原理
以上内容仅供参考,具体细节和扩展内 容需要根据实际需求和背景知识进行补 充和完善。
模型的参数估计
阐述非线性回归模型的参数估计方 法,如最小二乘法、极大似然法等 ,并探讨其计算过程和注意事项。
模型的检验与诊断
介绍非线性回归模型的检验方法, 如拟合优度检验、参数的显著性检 验等,以及模型的诊断方法,如残 差分析、异常值识别等。
方差
各数据与平均数之差的平方的 平均数
03
标准差
方差的平方根04四源自位数间距上四分位数与下四分位数之差
偏态与峰态分析
01
02
03
偏态系数
描述数据分布偏斜程度的 统计量
峰态系数
描述数据分布尖峭或扁平 程度的统计量
正态性检验
如Jarque-Bera检验等, 用于判断数据是否服从正 态分布
03
推论性统计方法
模型评估与优化
预测结果展示与应用
通过比较模型的预测结果与实际股票价格 的差异,评估模型的预测性能,并进行优 化和改进。
将模型的预测结果进行可视化展示,为投资 者提供决策参考。
THANKS
感谢观看
统计学完整全套PPT课件
目录
• 统计学基本概念与原理 • 描述性统计方法 • 推论性统计方法 • 非参数统计方法 • 回归分析及其应用 • 时间序列分析与预测
01
统计学基本概念与原理
Chapter
统计学的定义及作用
统计学定义
统计学是一门研究如何收集、整理、分析和解释数 据的科学,它使用数学方法对数据进行建模和预测 ,以揭示数据背后的规律和趋势。
游程检验
游程检验的基本原理
以上内容仅供参考,具体细节和扩展内 容需要根据实际需求和背景知识进行补 充和完善。
管理统计学第6章PPT课件

具
体
参
样
的
假
数
本
统
设
假
观
计
检
设
察
方
验
法
2
6.1 假设检验的一般问题
例如:
某种大量生产的袋装食品,按规定每袋重量 不得少于250g。 今从一批该种食品中任意抽 取50袋,发现有6袋低于250g 。若规定不符 合标准的比例达到5%,食品就不得出厂,问 该批食品能否出厂。
➢从2000年的新生儿中随机抽取30个,测得 其平均体重为3210g,而根据1999年的统计资 料,新生儿的平均体重为3190g,问2000年的 新生儿与1999年相比,体重有无显著差异。
H0:μ≤8000(产品寿命不超过8000小时) H1:μ>8000(产品寿命超过8000小时)
因:该批产品的使用寿命超过了8000小时是
我们想通过收集数据予以支持的观点。
13
确定原假设和备择假设的 一些原则和注意事项:
(1)原假设与备择假设互斥。 (2)假设检验是概率意义下的反证法,
一般情况下把“不能轻易否定的命题”作 为原假设,而把希望得到的结果或想收集 数据予以支持的假设作为备择假设。
3
6.1.1 假设检验的基本概念
4
6.1.2 假设检验的基本形式
假设基本形式
H0 :原假设,H1 :备择假设
H 0 : m = m 0 , H 1 : m m 0 (双侧备择假设)
H 0
:m
m ,H
01
:m
>
m 0 (右单侧备择假设)
H 0
:
m
m
0
,H 1
:
m
<
m
管理统计学第6章相关与回归PPT课件

2
4
6
8
10
12
30.09.2020
14
● (4)从变量相关的程度看 完全相关 不相关 不完全相关
30.09.2020
25
20
15
10
5
0
0
2
4
6
8
10
12
35 30 25 20 15 10
5 0
0
5
10
15
25
20
15
10
5
0
0
2
4
6
8
10
12
15
3. 相关关系的描述
对现象变量之间是否存在相关关系以及存 在怎样的相关关系进行分析、作出判断,这是进 行相关分析的前提。通过编制相关表和相关图, 可以直观地、大致地判断现象变量之间是否存在 相关关系以及关系的类型。
第六章 相关与回归分析
30.09.2020
1
第一节 相关分析 第二节 一元线性回归分析
30.09.2020
2
相关分析和回归分析有什么用?
▪ 一个国家香烟的消费量与癌症的发病率有关系吗? ▪ 父母的身高是否影响其子女的身高? ▪ 公司股票的市盈率与老总的薪酬有关联吗? ▪ 接受高学历教育的人是否比低学历的人有更高的薪水?…… ▪ 现实世界中存在着大量诸如此类的问题,用统计语言来概况,
30.09.2020
8
2)相关关系(correlation)
✓ 当一个或几个相互联系的变量取一定数值时,与之 相对应的另一变量的值虽然不确定,但它仍按某种 规律在一定的范围内变化。变量间的这种相互关系, 称为具有不确定性的相关关系。
✓ 用相关与回归分析方法研究
统计学完整ppt课件完整版
假设检验的基本思想:小概率事件原 理
假设检验中的两类错误:第一类错误 、第二类错误
假设检验的步骤:建立假设、选择检 验统计量、确定拒绝域、计算p值、 作出决策
假设检验的实例分析:单样本t检验 、双样本t检验等
方差分析(ANOVA)方法介绍
方差分析的基本原理:F分布与 方差分析的关系
多因素方差分析的实现方法: 析因设计、随机区组设计等
通过观察数据的峰度,判 断是否存在尖峰或平峰分 布
03
推论性统计方法
参数估计原理及应用
01
参数估计的基本概念: 点估计、区间估计
02
估计量的评价标准:无 偏性、有效性、一致性
03
参数估计的方法:矩估 计法、最大似然估计法
04
参数估计的应用:总体 均值的区间估计、总体 比例的区间估计等
假设检验流程与实例分析
ABCD
数据筛选与排序
介绍如何使用Excel进行数据筛选和排序,以便 更好地查看和分析数据。
函数与公式应用
分享一些常用的Excel函数和公式,以便更高效 地处理和分析数据。
案例分享:使用统计软件解决实际问题
案例一
使用SPSS进行市场调研数据分析,包 括描述性统计、交叉表分析、回归分析
等。
案例三
使用Python进行电商数据分析,包 括用户行为分析、销售预测、推荐系
据的科学。
统计学的作用
描述数据特征
推断总体参数 预测未来趋势
评估决策效果
数据类型与来源
数据类型 定量数据(连续型与离散型)
定性数据(分类数据与顺序数据)
数据类型与来源
01
数据来源
02
03
04
观察数据(实验数据与观测数 据)
假设检验中的两类错误:第一类错误 、第二类错误
假设检验的步骤:建立假设、选择检 验统计量、确定拒绝域、计算p值、 作出决策
假设检验的实例分析:单样本t检验 、双样本t检验等
方差分析(ANOVA)方法介绍
方差分析的基本原理:F分布与 方差分析的关系
多因素方差分析的实现方法: 析因设计、随机区组设计等
通过观察数据的峰度,判 断是否存在尖峰或平峰分 布
03
推论性统计方法
参数估计原理及应用
01
参数估计的基本概念: 点估计、区间估计
02
估计量的评价标准:无 偏性、有效性、一致性
03
参数估计的方法:矩估 计法、最大似然估计法
04
参数估计的应用:总体 均值的区间估计、总体 比例的区间估计等
假设检验流程与实例分析
ABCD
数据筛选与排序
介绍如何使用Excel进行数据筛选和排序,以便 更好地查看和分析数据。
函数与公式应用
分享一些常用的Excel函数和公式,以便更高效 地处理和分析数据。
案例分享:使用统计软件解决实际问题
案例一
使用SPSS进行市场调研数据分析,包 括描述性统计、交叉表分析、回归分析
等。
案例三
使用Python进行电商数据分析,包 括用户行为分析、销售预测、推荐系
据的科学。
统计学的作用
描述数据特征
推断总体参数 预测未来趋势
评估决策效果
数据类型与来源
数据类型 定量数据(连续型与离散型)
定性数据(分类数据与顺序数据)
数据类型与来源
01
数据来源
02
03
04
观察数据(实验数据与观测数 据)
应用统计学第6章参数估计(置信区间)ppt课件
从中解得
P{(n1)S2 2(n1)S2 }1
22(n1)
(n1) 2
p1 p t精选版2
20
于是 所求置信区间为:
(n1)S2 (n1)S2
[2
, 2(n1)
2 1
] 2(n 的 95% 置
信解区:间由。例1,S2 =196.52,n =10,
(1)实用中应在保证足够可靠的前提 下,尽量使得区间的长度短一些 .
(2)增大样本容量n,可在保证足够可 靠的前提下,提高估计的精度.
n
n
L 2 z /2
n
ppt精选版
31
估计均值μ时的样本容量n确定
1.指定估计的精度:
dX dL2z/2
n
2.指定估计的可靠度1-α;
3.确定σ:
(1)由历史资料确定;
对给定的置信水平1,
查正态分布表得 z 2 ,
使 P{|Xn|z2}1
ppt精选版
6
从中解得:
P{X nz2
Xnz2}
1
于是所求的 置信区间为
[X nz2, X nz2]
也可简记为
X n z 2
ppt精选版
7
求置信区间的一般步骤(1-2):
给定置信水平1:
1. 寻找参数的一个良好的点估计
T (X1,X2,…Xn)
实用中应在保证足够可靠的前提下,尽
量使得区间的长度短一些 .
ppt精选版
28
置信度与置信区间长度的关系
考虑单个正态总体μ的置信区间: 当σ已知时,
Z X n
~N(0, 1)
例如,由 P(-1.96≤U≤1.96)=0.95
我们得到 均值 的置信水平为 1 的
P{(n1)S2 2(n1)S2 }1
22(n1)
(n1) 2
p1 p t精选版2
20
于是 所求置信区间为:
(n1)S2 (n1)S2
[2
, 2(n1)
2 1
] 2(n 的 95% 置
信解区:间由。例1,S2 =196.52,n =10,
(1)实用中应在保证足够可靠的前提 下,尽量使得区间的长度短一些 .
(2)增大样本容量n,可在保证足够可 靠的前提下,提高估计的精度.
n
n
L 2 z /2
n
ppt精选版
31
估计均值μ时的样本容量n确定
1.指定估计的精度:
dX dL2z/2
n
2.指定估计的可靠度1-α;
3.确定σ:
(1)由历史资料确定;
对给定的置信水平1,
查正态分布表得 z 2 ,
使 P{|Xn|z2}1
ppt精选版
6
从中解得:
P{X nz2
Xnz2}
1
于是所求的 置信区间为
[X nz2, X nz2]
也可简记为
X n z 2
ppt精选版
7
求置信区间的一般步骤(1-2):
给定置信水平1:
1. 寻找参数的一个良好的点估计
T (X1,X2,…Xn)
实用中应在保证足够可靠的前提下,尽
量使得区间的长度短一些 .
ppt精选版
28
置信度与置信区间长度的关系
考虑单个正态总体μ的置信区间: 当σ已知时,
Z X n
~N(0, 1)
例如,由 P(-1.96≤U≤1.96)=0.95
我们得到 均值 的置信水平为 1 的
大学统计学 第6章 假设检验与方差分析
18
35%
16
30%
14
12
25%
10
20%
8
`
15%
6
10%
4
2
5%
0
0%
50-60
70-80
90-100
统计学导论
第六章 假设检验与方差分析
第一节 假设检验的基本原理 第二节 总体均值的假设检验 第三节 总体比例的假设检验 第四节 单因子方差分析 第五节 双因子方差分析 第六节 Excel在假设检验与方差分析
记为 H1:。150
整理课件
6-7
三、检验统计量
所谓检验统计量,就是根据所抽取的样本计 算的用于检验原假设是否成立的随机变量。
检验统计量中应当含有所要检验的总体参数, 以便在“总体参数等于某数值”的假定下研 究样本统计量的观测结果。
检验统计量还应该在“H0成立”的前提下有 已知的分布,从而便于计算出现某种特定的 观测结果的概率。
为 =x 149.8克,样本标准差s=0.872克。问该
生产线的装袋净重的期望值是否为150克(即 问生产线是否处于控制状态)?
整理课件
6-4
所谓假设检验,就是事先对总体的参数 或总体分布形式做出一个假设,然后利用抽 取的样本信息来判断这个假设(原假设)是 否合理,即判断总体的真实情况与原假设是 否存在显著的系统性差异,所以假设检验又 被称为显著性检验。
量所得结果落入接受域的概率。
问题,对于 和 大小的选择有
不同的考虑。例如,在例 6-1 中,如果检验者站在卖方 的立场上,他较为关心的是不要犯第一类错误,即不 要发生产品本来合格却被错误地拒收这样的事情,这
时, 要较小。反之,如果检验者站在买者的立场上,
35%
16
30%
14
12
25%
10
20%
8
`
15%
6
10%
4
2
5%
0
0%
50-60
70-80
90-100
统计学导论
第六章 假设检验与方差分析
第一节 假设检验的基本原理 第二节 总体均值的假设检验 第三节 总体比例的假设检验 第四节 单因子方差分析 第五节 双因子方差分析 第六节 Excel在假设检验与方差分析
记为 H1:。150
整理课件
6-7
三、检验统计量
所谓检验统计量,就是根据所抽取的样本计 算的用于检验原假设是否成立的随机变量。
检验统计量中应当含有所要检验的总体参数, 以便在“总体参数等于某数值”的假定下研 究样本统计量的观测结果。
检验统计量还应该在“H0成立”的前提下有 已知的分布,从而便于计算出现某种特定的 观测结果的概率。
为 =x 149.8克,样本标准差s=0.872克。问该
生产线的装袋净重的期望值是否为150克(即 问生产线是否处于控制状态)?
整理课件
6-4
所谓假设检验,就是事先对总体的参数 或总体分布形式做出一个假设,然后利用抽 取的样本信息来判断这个假设(原假设)是 否合理,即判断总体的真实情况与原假设是 否存在显著的系统性差异,所以假设检验又 被称为显著性检验。
量所得结果落入接受域的概率。
问题,对于 和 大小的选择有
不同的考虑。例如,在例 6-1 中,如果检验者站在卖方 的立场上,他较为关心的是不要犯第一类错误,即不 要发生产品本来合格却被错误地拒收这样的事情,这
时, 要较小。反之,如果检验者站在买者的立场上,
统计学基础第六版课件
峰度
描述数据分布形态的指标,表示数据 分布的尖锐程度。峰度大于3的数据分 布比正态分布更尖,峰度小于3的数据 分布比正态分布更扁平。
04
概率与概率分布
概率的基本概念
概率的定义
概率的基本性质
概率是描述随机事件发生可能性大小 的数值,通常用P表示。
概率具有可加性、有限可加性、规范 性等基本性质。
概率的取值范围
02
数据收集与整理:根据实验设计收集数据,并进行必要的 数据整理和转换。
03
检验数据是否满足方差分析的前提条件:如正态性、方差 齐性等。
04
计算平方和与自由度:根据数据计算各组间和组内的平方 和以及对应的自由度。
05
计算均方并执行F检验:根据平方和和自由度计算均方, 并进行组间和组内的F检验。
06
推断统计结论:根据F检验的结果,判断各因素对总体变 异的贡献是否显著。
数据的类型和来源
数据的类型 性数据:描述事物的性质、类别、
属性等,如性别、国籍等。
定量数据:描述数量、大小、多少等 ,如年龄、身高、体重等。
数据的来源
直接来源:通过调查、实验等方式直 接获取的数据,如问卷调查、实地观 测等。
间接来源:通过文献资料、历史数据 等间接获取的数据,如政府统计数据 、行业报告等。
01
02
03
数据清洗
对数据进行清洗和整理, 去除无效、异常或不完整 的数据。
数据分类和编码
对数据进行分类和编码, 将定性数据转化为定量数 据,便于后续的数据分析 。
数据转换
对数据进行必要的转换, 如将连续变量转换为类别 变量,或将类别变量转换 为连续变量。
数据的图表展示
柱状图
用于展示分类数据和连续数据的 对比关系。
描述数据分布形态的指标,表示数据 分布的尖锐程度。峰度大于3的数据分 布比正态分布更尖,峰度小于3的数据 分布比正态分布更扁平。
04
概率与概率分布
概率的基本概念
概率的定义
概率的基本性质
概率是描述随机事件发生可能性大小 的数值,通常用P表示。
概率具有可加性、有限可加性、规范 性等基本性质。
概率的取值范围
02
数据收集与整理:根据实验设计收集数据,并进行必要的 数据整理和转换。
03
检验数据是否满足方差分析的前提条件:如正态性、方差 齐性等。
04
计算平方和与自由度:根据数据计算各组间和组内的平方 和以及对应的自由度。
05
计算均方并执行F检验:根据平方和和自由度计算均方, 并进行组间和组内的F检验。
06
推断统计结论:根据F检验的结果,判断各因素对总体变 异的贡献是否显著。
数据的类型和来源
数据的类型 性数据:描述事物的性质、类别、
属性等,如性别、国籍等。
定量数据:描述数量、大小、多少等 ,如年龄、身高、体重等。
数据的来源
直接来源:通过调查、实验等方式直 接获取的数据,如问卷调查、实地观 测等。
间接来源:通过文献资料、历史数据 等间接获取的数据,如政府统计数据 、行业报告等。
01
02
03
数据清洗
对数据进行清洗和整理, 去除无效、异常或不完整 的数据。
数据分类和编码
对数据进行分类和编码, 将定性数据转化为定量数 据,便于后续的数据分析 。
数据转换
对数据进行必要的转换, 如将连续变量转换为类别 变量,或将类别变量转换 为连续变量。
数据的图表展示
柱状图
用于展示分类数据和连续数据的 对比关系。