高等代数总复习

合集下载

北京大学数学系《高等代数》(第3版)(双线性函数与辛空间)笔记和课后习题(含考研真题)详解【圣才出品

北京大学数学系《高等代数》(第3版)(双线性函数与辛空间)笔记和课后习题(含考研真题)详解【圣才出品

第10章双线性函数与辛空间10.1复习笔记一、线性函数1.定义设V是数域P上的一个线性空间,f是V到P的一个映射,如果f满足(1)f(α+β)=f(α)+f(β),(2)f(kα)=kf(α),式中α、β是V中任意元素,k是P中任意数,则称f为V上的一个线性函数.2.性质(1)设f是V上的线性函数,则f(0)=0,f(-α)=-f(α).(2)如果β是α1,α2,…,αs的线性组合:β=k1α1+k2α2+…+k sαs.那么f(β)=k1f(α1)+k2f(α2)+…+k s f(αs).3.矩阵的迹A是数域P上一个n级矩阵.设则A的迹Tr(A)=a11+a22+…+a nn是P上全体n级矩阵构成的线性空间P n×n上的一个线性函数.4.定理设V是P上一个n维线性空间,ε1,ε2,…,εn是V的一组基,a1,a2,…,a n是P中任意n个数,存在唯一的V上线性函数f使f(εi)=a i,i=1,2,…,n.二、对偶空间1.L(V,P)的加法和数量乘法(1)设f,g是V的两个线性函数定义函数f+g如下:(f+g)(α)=f(α)+g(α),α∈V,f+g也是线性函数:f+g称为f与g的和.(2)设f是V上线性函数.对P中任意数k,定义函数kf如下:(kf)(α)=k(f(α)),α∈V,kf称为k与f的数量乘积,易证kf也是线性函数.2.L(V,P)的性质(1)对V中任意向量α,有而对L(V,P)中任意向量f,有(2)L(V,P)的维数等于V的维数,而且f1,f2,…,f n是L(V,P)的一组基.3.对偶空间(1)定义L(P,V)称为V的对偶空间.由决定的L(V,P)的基,称为ε1,ε2,…,εn的对偶基.V的对偶空间记作V*.(2)对偶基的性质(1)设ε1,ε2,…,εn及η1,η2,…,ηn是线性空间V的两组基,它们的对偶基分别为f1,f2,…,f n及g1,g2,…,g n.如果由ε1,ε2,…,εn到η1,η2,…,ηn的过渡矩阵为A,那么由f1,f2,…,f n到g1,g2,…,g n的过渡矩阵为(A')-1.(2)设V是P上一个线性空间,V*是其对偶空间.取定V中一个向量x,定义V*的一个函数x**如下:x**(f)=f(x),f∈V*.则x**是V*上的一个线性函数,因此是V*的对偶空间(V*)*=V**中的一个元素.(3)V是一个线性空间,V**是V的对偶空间的对偶空间.V到V**的映射x→x**是一个同构映射.结论:任一线性空间都可看成某个线性空间的线性函数所成的空间.三、双线性函数1.定义V是数域P上一个线性空间,f(α,β)是V上一个二元函数,即对V中任意两个向量α,β,根据f都唯一地对应于P中一个数f(α,β).如果f(α,β)有下列性质:(1)f(α,k1β1+k2β2)=k1f(α,β1)+k2f(α,β2);(2)f(k1α1+k2α2,β)=k1f(α1,β)+k2f(α2,β).其中α,α1,α2,β,β1,β2是V中任意向量,k1,k2是P中任意数,则称f(α,β)为V 上的一个双线性函数.2.常用结论(1)欧氏空间V的内积是V上双线性函数;(2)设f1(α),f2(α)都是线性空间V上的线性函数,则f(α,β)=f1(α)f2(β),α,β∈V是V上的一个双线性函数.(3)设P n是数域P上n维列向量构成的线性空间X,Y∈P n,再设A是P上一个n 级方阵.令f(X,Y)=X'AY,则f(X,Y)是P n上的一个双线性函数.3.度量矩阵(1)定义设f(α,β)是数域P上n维线性空间V上的一个双线性函数.ε1,ε2,…,εn是V的一组基,则矩阵称为f(α,β)在ε1,ε2,…,εn下的度量矩阵.(2)性质①度量矩阵被双线性函数及基唯一确定.②不同的双线性函数在同一组基下的度量矩阵一定是不同的.③在不同的基下,同一个双线性函数的度量矩阵一般是不同的,但是在不同基下的度量矩阵是合同的.4.非退化设f(α,β)是线性空间V上一个双线性函数,如果f(α,β)=0,对任意β∈V,可推出α=0,f就称为非退化的.双线性函数f(α,β)是非退化的充要条件为其度量矩阵A为非退化矩阵.5.对称双线性函数(1)定义f(α,β)是线性空间V上的一个双线性函数,如果对V中任意两个向量α,β都有f (α,β)=f(β,α),则称f(α,β)为对称双线性函数.如果对V中任意两个向量α,β都有f(α,β)=-f(β,α),则称f(α,β)为反对称双线性函数.这就是说,双线性函数是对称的,当且仅当它在任一组基下的度量矩阵是对称矩阵.同样地,双线性函数是反对称的当且仅当它在任一组基下的度量矩阵是反对称矩阵.(2)性质(1)设V是数域P上n维线性空间,f(α,β)是V上对称双线性函数,则存在V的一组基ε1,ε2,…,εn,使f(α,β)在这组基下的度量矩阵为对角矩阵.(2)设V是复数域上n维线性空间,f(α,β)是V上对称双线性函数,则存在V的一组基ε1,ε2,…,εn,对V中任意向量,有(3)设V是实数域上n维线性空间.f(α,β)是V上对称双线性函数.则存在V的一组基ε1,ε2,…,εn,对V中任意向量,有(4)V上的对称双线性函数f(α,β)如果是非退化的.则有V的一组基ε1,ε2,…,εn满足前面的不等式是非退化条件保证的,这样的基称为V的对于f(α,β)的正交基.6.二次齐次函数对称双线性函数与二次齐次函数是1-1对应的.设V是数域P上线性空间,f(α,β)是V上双线性函数.当α=β时,V上函数f(α,β)称为与f(α,β)对应的二次齐次函数.7.反对称双线性函数性质(1)设f(α,β)是n维线性空间V上的反对称线性函数,则存在V的一组基ε1,ε。

第六章习题与复习题(二次型)----高等代数

第六章习题与复习题(二次型)----高等代数

习题6.11.写出下列二次型的矩阵.(1)222123123121323(,,)f x x x x x x x x x x x x =+++++(2)12341223(,,,)f x x x x x x x x =-(3)1234135(,,,)246785T f x x x x X X ⎛⎫⎪= ⎪ ⎪⎝⎭2.将二次型2221231231223(,,)32810f x x x x x x x x x x =+-+-表成矩阵形式,并求该二次型的秩.3.设A = ⎪⎪⎪⎭⎫ ⎝⎛321000000a a a ,B = ⎪⎪⎪⎭⎫ ⎝⎛13200000a a a 证明A 与B 合同,并求可逆矩阵C ,使得B =TC A C .4.如果n 阶实对称矩阵A 与B 合同,C 与D 合同,证明A O B O O C O D ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭与合同.习题6.21.用正交变换法化下列实二次型为标准形,并求出所用的正交变换.(1)22212312323(,,)2334f x x x x x x x x =+++2.已知二次型2221231231223(,,)222f x x x x x x cx x x x =++++的秩为2.(1) 求c;(2) 求一正交变换化二次型为标准形.3.已知二次型2212323121323(,,)43248f x x x x x ax x x x x x =-+-+经正交变换化为标准形2221236,,f y y by a b =++求的值与所用正交变换.22224. 222444,,.x x ay z bxy xy yz y Q z a b Q ξηζηζ⎛⎫⎛⎫⎪ ⎪+++++== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭+=2已知二次曲面方程可经正交变换化为椭圆柱面方程求的值与正交矩阵5.用配方法化下列二次型为标准形,并求出所用的可逆线性变换.(1)222123123121323(,,)25228f x x x x x x x x x x x x =+++++6.在二次型f (x 1,x 2,x 3 )=213232221)()()(x x x x x x -+-+-中,令⎪⎩⎪⎨⎧-=-=-=133322211xx y x x y x x y 得f =232221y y y ++可否由此认定上式为原二次型f 的标准形且原二次型的秩为3 ?为什么?若结论是否定的,请你将f 化为标准形并确定f 的秩.7.判断矩阵01111213A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭与是否合同.习题6.31.判定下列实二次型的正定性.(1)2221231231223(,,)23442f x x x x x x x x x x =++-- (2)222123123121323(,,)23222f x x x x x x x x x x x x =---+-+(3)123121323(,,)5f x x x x x x x x x =+- (4)∑∑≤<≤=+nj i jini ixx x1122. a 为何值时,实二次型222123123121323(,,)(2)22f x x x x a x ax x x x x x x =++++--是正定的.21013. 020,(),101A B kE A k B k B ⎛⎫ ⎪==+ ⎪ ⎪⎝⎭ΛΛ设矩阵其中为实数.(1)求对角阵,使与相似;(2)求参数的值,使为正定矩阵.习题六 (A)一、填空题1.二次型222123123121323(,,)23246f x x x x x x x x x x x x =+-+-+的矩阵为 .2.2123123(,,)()f x x x ax bx cx =++二次型的矩阵为.3.已知二次型的矩阵为124214447-⎛⎫⎪- ⎪ ⎪--⎝⎭,则该二次型为.4.二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩为.5.化二次型222123123(,,)43f x x x x x x =+-为规范形,所用的可逆线性变换矩阵为. 6.二次型123121323(,,)f x x x x x x x x x =++的规范形为 .7.已知实对称矩阵A 与矩阵100012022T X AX ⎛⎫⎪- ⎪ ⎪⎝⎭合同,则二次型的规范形为.8.已知2221231231223(,,)22f x x x x x x x x ax x =++++正定,则a =. 9.当t 满足, 2221231231213(,,)4242f x x x x x x tx x x x =---++是负定的. 10.已知二次型222123123121323(,,)222f x x x x ax x x x ax x x x =+++--的正、负惯性指数均为1,则a =.二、单项选择题1. 已知二次型22212312312(,,)(1)(1)22(1)f x x x a x a x x a x x =-+-+++的秩为2,则a =( ).(A) 0 (B) 1 (C) 2 (D) 32. 设100020005A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭, 则下列矩阵中与A 合同的矩阵是( ).(A) ⎪⎪⎪⎭⎫ ⎝⎛-100010001 (B)100020001-⎛⎫⎪- ⎪ ⎪-⎝⎭ (C) ⎪⎪⎪⎭⎫ ⎝⎛--500010002 (D)⎪⎪⎪⎭⎫ ⎝⎛300010002 3. , T T Tn f X AX A A X CY f Y BY ====如果元二次型(其中)可经可逆线性变换化为则下列结论不正确的是().(A) A 与B 合同 (B) A 与B 等价 (C) A 与B 相似 (D) A 与B 的秩相等 4. 设A, B 都是正定阵, 则( ).(A) AB, A + B 一定都是正定阵 (B) AB 是正定阵, A + B 不是正定阵 (C) AB 不一定是正定阵, A + B 是正定阵 (D) AB, A + B 都不是正定阵 5. 下列条件不能保证n 阶实对称矩阵A 为正定的是( ). (A) 1A -正定(B) 二次型f=X T AX 的负惯性指数为零 (C) 二次型f=X T AX 的正惯性指数为n (D) A 合同于单位矩阵22212312323123 (,,)(2)(23)(3)( ).() 1 () 1 () 1 ()1f x x x x ax x x x x x ax A a B a C a D a =+-+++++<-≠-≠>6.二次型正定的充要条件是7. 已知实对称矩阵A 满足A 2-5A+6E=O ,则A ( ).(A) 正定 (B) 半正定 (C) 负定 (D) 不定8. 已知二次型222123123121323(,,)22248f x x x x x x ax x x x x x =--+++经正交变换化为 222123227f y y y =+-,则a =( ). (A)1 (B) -1 (C) 2 (D)-2 9. 下列矩阵合同于单位矩阵的是( ).(A) 121242363⎛⎫ ⎪⎪ ⎪⎝⎭ (B)101040101-⎛⎫⎪ ⎪ ⎪--⎝⎭(C) ⎪⎪⎪⎭⎫ ⎝⎛811172121 (D)212134244--⎛⎫ ⎪- ⎪ ⎪⎝⎭10. 设矩阵211112111120A B A B --⎛⎫⎛⎫⎪ ⎪=--= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭与矩阵,则与( ).(A) 合同且相似 (B) 合同但不相似(C) 不合同但相似 (D) 既不合同也不相似(B)1.已知22082006B a ⎛⎫ ⎪= ⎪ ⎪⎝⎭相似于对角阵.(1)求a 的值;(2)求正交变换使二次型X T BX 为标准形.222123123121323123(,,)55266 2.(1);(2)(,,)1f x x x x x cx x x x x x x c f x x x =++-+-=2. 已知二次型的秩为求和二次型矩阵的特征值指出方程表示哪种二次曲面.3. 已知实二次型f=X T AX 中矩阵A 的特征值为1,2,5,A 属于特征值1与2的特征向量分别为12(0,1,1),(1,0,0),TTαα=-=求该二次型. 4.设二次型123(,,)f x x x 经正交变换1123212331232221231(22)31 (22)31(22)342,x y y y x y y y x y y y f y y y ⎧=++⎪⎪⎪=-++⎨⎪⎪=-+⎪⎩=+-化为了标准形求该二次型。

考研408技巧

考研408技巧

考研408技巧
考研408是指考研数学中的数学分析和高等代数部分,以下是一些备考408的技巧:
1. 熟悉考纲:了解408考试的考纲,明确要求和重点,有针对性地进行备考。

2. 制定学习计划:根据自己的时间和能力,制定合理的学习计划,并且要有明确的目标和分阶段的计划。

3. 建立知识框架:408考试的题目通常是基于基本的数学概念和原理,建立起完整的知识框架,理清各个概念之间的联系,对于理解题目和解题都有很大的帮助。

4. 多做练习题:刷题是提高408成绩的关键,多做各类难度的题目,包括基础题、中等难度题和较难题,可以提高解题能力和对知识的理解程度。

5. 总结归纳:每做完一套练习题,要及时总结归纳,记录自己容易犯的错误和解题思路,通过总结经验来提高备考效果。

6. 查漏补缺:及时查漏补缺,对于自己不熟悉的知识点要及时复习和强化,不断完善知识体系。

7. 制定复习计划:在考试前的最后一个月,制定详细的复习计划,重点复习重要知识点和易错题型,练习模拟试题,提高解题速度和
应试能力。

8. 注意时间管理:408考试的时间较为紧张,要提前培养解题的速度和应对压力的能力,做到快速抓住题目的关键信息,合理安排时间。

9. 多参考教材和资料:除了教材之外,还可以参考一些复习资料和辅导书籍,多角度地理解和巩固知识点。

10. 考前冲刺:考前最后一周,进行集中冲刺,主要是做模拟题和真题,熟悉考试的形式和题型,提高应试能力。

408考试需要系统地掌握基础知识,并且要有一定的解题技巧和应试经验。

通过合理的学习计划、刷题和总结归纳,可以提高备考效果,取得好成绩。

线代(2)期末复习题集1706

线代(2)期末复习题集1706

σ 是正交变换当且仅当 AT GA = G ; σ 是自伴变换(对称变换)当且仅当 AT G = GA 。
关于镜面反射,课本上已经有一到较为完善的比较灵活的习题,这里给出。 【习题 21】*(镜面反射,正交变换的第一类与第二类) (课本习题 10.7)
= 若 η 是 n 维欧式空间 V 中的一个单位向量, 定义 σ (α )
G (α1 , , α n ) =
( α1 , α1 ) ( α1 , α 2 ) ( α 2 , α1 ) ( α 2 , α 2 ) ( α n , α1 ) ( α n , α 2 )


( α1 , α n ) (α 2 , α n ) (α n , α n )

上学期的一道作业已经证明了向量组的 Gram 矩阵正定当且仅当向量组线性无关 (线性 相关时为半正定,这是 10 年期末考题) 。我们这里看一些别 Gram 矩阵的性质。 【习题 19】*(Gram 矩阵与基变换) (姚慕生高代习题书) 设 {e1 , en } 及 { f1 , f n } 为 n 维欧式空间 V 的两个基底,并设 {e1 , en } 到 { f1 , f n } 的过渡矩阵为 C 。证明 G ( f1 , f n ) = C T G (e1 , en )C 。 利用习题 18,可以很方便地解出下面的题目(其中包括了 12 年期末考题) 。 【习题 20】*(线性变换的矩阵和 Gram 矩阵的关系) 设 n 维欧式空间 V 的基底 {α1 , , α n } 的 Gram 矩阵为 G , V 上的线性变换 σ 在该基下 的矩阵为 A ,证明下面的两条结论。 (1) (2)
【习题 13】 (Jordan 标准型的计算) (15 年期末考题)
1 2 1 的 Jordan 标准型 J 。 求矩阵 A = 2 1 1 5 1

高等代数习题课指导讲义

高等代数习题课指导讲义

高等代数习题课指导高等代数习题课是在各章小单元授课基础上,帮助学生疏理相应小单元基础知识而设立的以练为主、讲练结合的教学形式,使学生进一步理解已授知识的重点,帮助学生克服学习中的难点,因而是整个课程教学的基本环节之一。

教学中应明确目的,把握全局,突出练习,以提高习题课的教学质量。

习题课1 矩阵的运算与可逆矩阵(2学时)教学目的 通过2学时的习题课教学实践,使学生进一步理解、掌握矩阵运算及其可逆矩阵的基础知识与基本方法,把握矩阵证题的基本技巧。

基础提要 略述(结合课堂练习题的解释,点述主要概念、相关定理及其基本方法)。

课堂练习:1 计算AB ,BA ,AB -BA ,其中⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=a c b b c a B a b c c b a A 111,111. 2 设A ,B ,C ∈)(F M n .证明,若AB =BA ,AC =CA ,则A (B + C ) = (B + C ) A ;A (BC ) = (BC ) A .3 设A = )()(F M a n nn ij ∈,A 的主对角元素nn a a a ,,,2211 的和∑=ni ii a 1叫做A 的迹,记作A Tr .设A ,B )(F M n ∈,证明:1);Tr Tr )(Tr B A B A +=+ 2);,Tr )(Tr F k A k kA ∈=3));(Tr )(Tr BA AB = 4)AB -BA n I ≠.4 设A n M ∈(R ),且A '= A .证明,若2A = 0,则A = 0.5 设A = B +C 机遇)(F M n ∈,其中C C B B -='=',.证明下列命题彼此等价:1) A A A A '='; 2)BC = CB ; 3)CB 是反对称矩阵.6 设)(F M A n ∈,且A 2+A +I n =0.证明,A 可逆;并求A -17 设)(F M A n ∈是对合矩阵, 即n I A =2,且n I A ±≠.证明:1)A 是可逆矩阵, 并求1-A . 2)A I n +与A I n -都是奇异矩阵.8 设A ,B ,C )(F M n ∈.证明:1)若A 非奇异,则AB = AC ⇒B = C ;2)若A 奇异,则1)的结论未必成立(举例说明).9 设)(F M A n ∈可逆,且1-A =nn ij b )(,求,)(1-A P ij ,))((1-A k D i )((k T ij 1)-A .10 设n M A ∈(R ).证明若以下三命题有两个成立,则其第三个也成立:1) A 是对称矩阵; 2) A 是对合矩阵; 3) A 是正交矩阵.课外建议 结合练习讲评提出相应补缺、复习建议。

孟道骥《高等代数与解析几何》(第3版)(上册)复习笔记-线性空间(圣才出品)

孟道骥《高等代数与解析几何》(第3版)(上册)复习笔记-线性空间(圣才出品)
圣才电子书

十万种考研考证电子书、题库视频学习平台
第 4 章 线性空间
4.1 复习笔记
一、向量及其线性运算
1.向量
向量(又称矢量)是既有长度又有方向的量.
2.零向量
长度为零的向量,即始点与终点重合的向量,零向量的方向不确定,可按需要取任意方
向.
3.向量相等
如果能将向量
平行移动到向量

为空间一点,直线 PQ 垂直于坐标平面 XOY,
为垂足.设
OX 到 OQ 的夹角为
,OZ 到 OP 的夹角为θ(0≤θ≤π),

4 / 25
圣才电子书 十万种考研考证电子书、题库视频学习平台

称为点 P 的球面坐标,O 称为极点,直线 OZ 称为极轴,半平面 称为极半平面,极点,极轴与极半平面合称球面坐标系.
6.向量共线与共面
如果几个向量平行于同一直线,则称它们共线.如果几个向量平行于同一平面,则称它
1 / 25
圣才电子书 十万种考研考证电子书、题库视频学习平台

们共面.任意两个向量一定共面.
7.向量的线性运算
(1)向量与向量的加法
设α,β为空间两个向量.在空间任取一点 O,作
架(坐标系).P 为空间一点,向量 在α,β,γ下的坐标 称为点 P 在标架
下的(仿射)坐标.此时,记 P 点为 P(x,y,z).
注:O 称为原点,O 的坐标为

3 / 25
圣才电子书

5.坐标轴与坐标系
十万种考研考证电子书、题库视频学习平台
通过 O 点,分别与α,β,γ同向的有向直线 OX,OY,OZ 称为坐标轴;平面 XOY,
2.坐标系 空间中三个不共面的向量α,β,γ称为空间的一个坐标系(或一组基). 3.坐标

高等数学公式定理(全)

·平方关系:sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边正切等于对边比邻边, ·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sin β·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sin β·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tan α·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1 =1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sin α/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A +B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin〔2kπ+α〕=sinαcos〔2kπ+α〕=cosαtan〔2kπ+α〕=tanαcot〔2kπ+α〕=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin〔π+α〕=-sinαcos〔π+α〕=-cosαtan〔π+α〕=tanαcot〔π+α〕=cotα公式三:任意角α与-α的三角函数值之间的关系:sin〔-α〕=-sinαcos〔-α〕=cosαtan〔-α〕=-tanαcot〔-α〕=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin〔π-α〕=sinαcos〔π-α〕=-cosαtan〔π-α〕=-tanαcot〔π-α〕=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin〔2π-α〕=-sinαcos〔2π-α〕=cosαtan〔2π-α〕=-tanαcot〔2π-α〕=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin〔π/2+α〕=cosαcos〔π/2+α〕=-sinαtan〔π/2+α〕=-cotαcot〔π/2+α〕=-tanαsin〔π/2-α〕=cosαcos〔π/2-α〕=sinαtan〔π/2-α〕=cotαcot〔π/2-α〕=tanαsin〔3π/2+α〕=-cosαcos〔3π/2+α〕=sinαtan〔3π/2+α〕=-cotαcot〔3π/2+α〕=-tanαsin〔3π/2-α〕=-cosαcos〔3π/2-α〕=-sinαtan〔3π/2-α〕=cotαcot〔3π/2-α〕=tanα(以上k∈Z)部分高等内容[编辑本段]勒级数易得):·高等代数中三角函数的指数表示(由泰sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。

高等代数第六章单元复习题

高等代数第六章单元复习题一、 选择题1. 下列集合中,是3R 的子空间的为( )A .{}1233(,,)0x x x x α=≥B .{}123123(,,)230x x x x x x α=++=C .{}1233(,,)1x x x x α==D .{}123123(,,)231x x x x x x α=++=2. 设321321,,,,βββααα与都是三维向量空间V 的基,且11212,,a ββαα==+3123βααα=++,则矩阵⎪⎪⎪⎭⎫ ⎝⎛=111001011P 是由基321,,ααα到( )的过渡矩阵。

A .312,,βββB .3,21,βββC .132,,βββD .123,,βββ4. 设,,Q R C 分别为有理数域、实数域和复数域,按照通常数的加法和乘法,则下列结论正确的是( )A . Q 构成R 上的线性空间B . Q 构成C 上的线性空间C .R 构成C 上的线性空间D . C 构成Q 上的线性空间5. 数域P 上n 维线性空间的基的个数有 ( )。

A .1;B .n ;C .!n ;D .无穷多组6. 设12,W W 均为线性空间V 的子空间,则下列等式成立的是( )。

A .11212()W W W W W +=B .1121()W W W W +=C .11212()W W W W W +=+D .1122()W W W W +=7. 已知321,,ααα是AX = 0 的基础解系,则( )A .321,,ααα线性相关B .321,,ααα线性无关C .133221,,αααααα+++线性相关.D .133221,,αααααα+++不构成基础解系.二、填空题1. 复数域C 作为实数域R 上的向量空间,则=C dim _____,它的一个基为____。

2. 复数域C 作为复数域C 上的向量空间,则=C dim ____,它的一个基为_____。

3. 设12{,,}n ααα是向量空间V 的一个基,由该基到21{}n ααα,,, 的过渡矩阵为___________________。

高三知识点归纳总结大全

高三知识点归纳总结大全高三是全日制普通高级中学教育的最后一年,也是学生们备战高考的关键一年。

全年的学习重点是对所有学科知识点的系统梳理和总结,为高考做准备。

本文将为大家提供高三各学科的知识点归纳总结,帮助学生们更好地复习和备考。

一、语文知识点归纳总结1. 古诗文鉴赏- 包括古诗、古文、古乐府等鉴赏方法和技巧。

- 了解古代文化背景与历史事件对文学作品的影响。

2. 作文写作技巧- 包括各类作文的写作技巧,如记叙文、议论文、说明文等。

- 学习如何提出观点、运用修辞手法和组织文章结构。

3. 文言文阅读与翻译- 通过阅读和翻译文言文,在理解古代语言和文化的基础上,掌握文言文的阅读技巧和理解能力。

二、数学知识点归纳总结1. 高等代数与初等数论- 包括数列、立方差公式、二项定理等数论基础知识。

- 学习掌握高等代数中的多项式、函数、方程等概念。

2. 解析几何与空间几何- 通过学习与直线、平面相关的知识,提高解决几何问题的能力。

- 掌握点、线、面的坐标表示法及其相互关系。

3. 高等数学分析- 包括微积分、极限、导数等高等数学的基本概念。

- 学习掌握数学分析的运算技巧和应用方法。

三、英语知识点归纳总结1. 语法与词汇- 包括动词时态、名词、代词、冠词等基础语法知识点。

- 增加词汇量,积累常用短语和习惯用法。

2. 阅读理解与写作- 学习阅读英文文章、科技文献、小说和报纸等不同类型的文本。

- 提高阅读理解和写作的能力,包括写作结构、逻辑思维和语言表达。

3. 听力与口语- 提高听力理解能力,包括听取对话、短文和讲座等不同形式的听力材料。

- 提高口语表达能力,包括口头报告、演讲和自由对话等。

四、物理知识点归纳总结1. 物质结构和性质- 学习各种物质的结构特点和性质,掌握物质间的相互作用。

- 理解分子、原子和离子等微观结构与宏观特性之间的关系。

2. 力学- 学习运动学、动力学、静力学和弹性力学等力学的基本概念。

- 掌握力学定律和公式,理解物体的运动规律。

高数公式大全

高等数学公式·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1—tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ—cosα·sinβ·sinγ—sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ—tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)—1=1—2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1—cosα)/(1+cosα))=sinα/(1+cosα)=(1—cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1—cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1—tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α—β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α—β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α—β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α—β)/2]cosα—cosβ=—2sin[(α+β)/2]sin[(α—β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=—2cot2α1+cos2α=2cos^2α1—cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n—1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-s inαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π—α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(—ix)]/[ie^(ix)+ie^(—ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档