山东省济南市历下区数学中考一轮复习学案:图形与坐标(无答案)

合集下载

2020年济南市历下区初三一轮复习学案:解直角三角形及其应用

2020年济南市历下区初三一轮复习学案:解直角三角形及其应用

第27课时解直角三角形及其应用山大附中王道远一、考试大纲要求1.掌握锐角三角函数(sinA,cosA,tanA)的概念,知道30°,45°,60°角的三角函数值.2.据三角函数定义求某些已知锐角的三角函数值。

3.运用三角函数解决与直角三角形有关的简单实际问题.二、重点、易错点分析:1.重点:特殊角三角函数值;应用三角函数解决实际问题;2.易错点:三角函数的定义;实际问题中三角函数的选取及计算;三、考题集锦1.在Rt△ABC中,∠C=90°,CA=CB=6,D是边AC上一点,若tan∠DBA=,则AD的长为()A.B.2C.D.32.如图,在△ABC中,∠A=30°,∠B=45°,AC=,则AB的长为_________.3.1)①.②2)如图所示,把一张长方形卡片ABCD放在每格宽度为12mm的横格纸中,恰好四个顶点都在横格线上,已知∠α=36°,求长方形卡片的周长.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)四、典型例题:考点一 锐角三角函数的概念例1、正方形网格中,AOB ∠如图放置,则sin AOB ∠=( )(A )55 (B ) 55 (C )12(D )2本题涉及的知识点:三角函数的概念;勾股定理本题需注意的事项:解决问题的关键是将sin AOB ∠放在直角三角形中——先观察有没有格点围成的直角三角形,如果没有,过格点利用方格纸做垂直,构造直角三角形。

考点二 特殊角的三角函数值 例2、0033602458+本题设计知识点:特殊角的三角函数;二次根式的运算; 考点三 解直角三角形 例3、 如图,已知AC=1,求BD.本题涉及知识点:特殊角的三角函数;方程思想;二次根式的运算; 考点四 解直角三角形的应用AB O例4、如图,小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东60°方向上,在A 处东500米的B 处,测得海中灯塔P 在北偏东30°方向上,则灯塔P 到环海路的距离PC = 米(用根号表示).本题涉及知识点:特殊角的三角函数;方程思想;二次根式的运算; 本题需要注意的事项:将已知角转化到三角形内部;可以仿照例3解题,也可以根据角度得到△ABP 为等腰三角形,从而得解。

山东2016届中考数学一轮复习三角形学案无解答

山东2016届中考数学一轮复习三角形学案无解答
二:【经典考题剖析】
1.三角形中,最多有一个锐角,至少有_____个锐角,最多有______个钝角(或直角),三角形外角中,最多有______个钝角,最多有______个锐角.
2.两根木棒的长分别为7cm和10cm,要选择第三根棒,将它钉成一个三角形框架,那么第三根木棒长xcm的范围是__________
3.等腰三角形的两边长分别为5 cm和10 cm,则此三角形的周长是()
A.15cmB.20cmC.25 cmD.20 cm或25 cm
4.一个三角形三个内角之比为1:1:2,则这个三角形的三边比为_______.
5.如图,四边形ABCD中,AB=3,BC=6,AC=3 ,AD=2,∠D=90○,
求CD的长和四边形ABCD的面积.
3.如图,OE是∠AOB的平分线,CD∥OB交OA于C,交OE于D,
∠ACD=50o,则∠CDE的度数是()
A.175°B.130°C.140°D.155°
4.如图,△ABC中,∠C=90○,点E在AC上,ED⊥AB,垂足
为D,且ED平分△ABC的面积,则AD:Aቤተ መጻሕፍቲ ባይዱ等于()
A.1:1 B.1: C.1:2 D.1:4
教学重点
三角形分类,特殊三角形有关性质及其应用
教学难点
三角形有关性质、判定的综合运用
教学媒体
学案
教学过程
一:【课前预习】
(一):【知识梳理】
1.三角形中的主要线段
(1)三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的
顶点和交点之间的线段叫做三角形的角平分线.
(2)三角形的中线:连结三角形的一个顶点和它的对边中点的线段叫做三角形的中线.
(二):【课前练习】

中考数学一轮复习第10讲 函数与平面直角坐标系(讲练案)(解析版)

中考数学一轮复习第10讲 函数与平面直角坐标系(讲练案)(解析版)

第三单元函数第10讲函数与平面直角坐标系知识点名师点晴一、平面直角坐标系的有关概念1.平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系.其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面.x轴和y轴上的点,不属于任何象限[来为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限.2、点的坐标的概念点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒.平面内点的坐标是有序实数对,当ba 时,(a,b)和(b,a)是两个不同点的坐标.二、不同位置的点的坐标的特征1、各象限内点的坐标的特征点P(x,y)在第一象限0,0>>⇔yx点P(x,y)在第二象限0,0><⇔yx点P(x,y)在第三象限0,0<<⇔yx点P(x,y)在第四象限0,0<>⇔yx2、坐标轴上的点的特征点P(x,y)在x轴上0=⇔y,x为任意实数点P(x,y)在y轴上0=⇔x,y为任意实数点P(x,y)既在x轴上,又在y轴上⇔x,y同时为零,即点P坐标为(0,0)3、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x与y相等点P(x,y)在第二、四象限夹角平分线上⇔x与y互为相反数4、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同.位于平行于y轴的直线上的各点的横坐标相同.5、关于x轴、y轴或远点对称的点的坐标的特征点P与点p′关于x轴对称⇔横坐标相等,纵坐标互为相反数点P与点p′关于y轴对称⇔纵坐标相等,横坐标互为相反数点P与点p′关于原点对称⇔横、纵坐标均互为相反数6、点到坐标轴及原点的距离 点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于y (2)点P(x,y)到y 轴的距离等于x (3)点P(x,y)到原点的距离等于22y x三、函数及其相关概念1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量.一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数. 要明确变量,常量的概念.2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式.使函数有意义的自变量的取值的全体,叫做自变量的取值范围.确定自变量取值范围的原则:(1)使代数式有意义;(2)使实际问题有意义3、函数的三种表示法 (1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法. (2)列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法. (3)图象法用图象表示函数关系的方法叫做图象法.4、由函数解析式画其图象的一般步骤(1)列表:列表给出自变量与函数的一些对应值 (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.1.平面直角坐标系内有一点A(2,﹣2),则点A位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】点A坐标为(2,−2),则它位于第四象限,故选:D.2.点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(﹣2,1)【答案】C【解析】P(1,−2)关于y轴对称的点的坐标是(−1,−2),故选:C.3.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器,然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是()A.B.C.D.【答案】D【解析】一注水管向小玻璃杯内注水,水面在逐渐升高,当小杯中水满时,开始向鱼缸内流,这时水位高度不变,当鱼缸水面高度与小杯一样后,再继续注水,水面高度在升高,升高的比开始慢.故选:D.»BD表示一条以A为圆心,以AB为半4.如图1,有一正方形广场ABCD,图形中的线段均表示直行道路,径的圆弧形道路.如图2,在该广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x(m)时,相应影子的长度为y(m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C 【答案】D【解析】根据图3可得,函数图象的中间一部分为水平方向的线段,故影子的长度不变,即沿着弧形道路步行,因为函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,故中间一段图象对应的路径为»BD,又因为第一段和第三段图象都从左往右上升,所以第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC,故行走的路线是A→B→D→C(或A→D→B→C),故选:D.5.我国魏晋时期数学家刘徽首创“割圆术”计算圆周率.随着时代发展,现在人们依据频率估计概率这一原理,常用随机模拟的方法对圆周率π进行估计,用计算机随机产生m个有序数对(x,y)(x,y是实数,且0≤x≤1,0≤y≤1),它们对应的点在平面直角坐标系中全部在某一个正方形的边界及其内部.如果统计出这些点中到原点的距离小于或等于1的点有n个,则据此可估计π的值为.(用含m,n的式子表示)【答案】4n m【解析】根据题意,点的分布如图所示:则有141nm π⋅=,∴π=4nm,故答案为:4n m6.某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准,该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元?(2)求当x>18时,y关于x的函数表达式,若小敏家某月交水费81元,则这个月用水量为多少立方米?【解析】(1)由纵坐标看出,某月用水量为18立方米,则应交水费45元;(2)由81元>45元,得用水量超过18立方米,设函数解析式为y=kx+b (x>18),∵直线经过点(18,45)(28,75),∴1845 2875k bk b⎧⎨⎩+=+=,解得39 kb-⎧⎨⎩==,∴函数的解析式为y=3x−9(x>18),当y=81时,3x−9=81,解得x=30.答:这个月用水量为30立方米.1.理解平面直角坐标系及点的坐标的概念,了解每一象限内点的坐标特征和坐标轴上点的坐标特征,认识并能画出平面直角坐标系,并由点的位置写出它的坐标。

2024年山东省济南市历下区中考数学一模试卷(含解析)

2024年山东省济南市历下区中考数学一模试卷(含解析)

2024年山东省济南市历下区中考数学一模试卷一、选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)2024的绝对值是( )A.﹣2024B.2024C.D.2.(4分)如图是由5个完全相同的小正方体摆成的几何体,则这个几何体的俯视图是( )A.B.C.D.3.(4分)海水淡化是解决全球水资源危机的战略手段,根据《海水淡化利用发展行动计划(2021﹣2025年)》,到2025年我国海水淡化总规模将达到2900000吨/日以上.数字2900000用科学记数法表示为( )A.0.29×107B.2.9×106C.29×105D.290×104 4.(4分)将直角三角板和直尺按照如图位置摆放,若∠1=56°,则∠2的度数是( )A.26°B.30°C.36°D.56°5.(4分)我国民间建筑装饰图案中,蕴含着丰富的数学之美.下列图案中既是轴对称图形又是中心对称图形的是( )A.B.C.D.6.(4分)实数a,b在数轴上对应点的位置如图所示.若a+b=0,则下列结论中正确的是( )A.|a|<|b|B.2a>2b C.ab>0D.a<﹣17.(4分)有四张大小和背面完全相同的不透明卡片,正面分别印有“前”、“程”、“朤(lǎng)”、“朤(lǎng)”四个汉字,将这四张卡片背面朝上洗匀,甲随机抽出一张并放回,洗匀后,乙再随机抽出一张,则两人抽到汉字可以组成“朤朤”的概率是( )A.B.C.D.8.(4分)某小区内的消防车道有一段弯道,如图,弯道的内外边缘均为圆弧,,所在圆的圆心为点O,点C,D分别在OA,OB上,已知消防车道半径OC=12m,消防车道宽AC=4m,∠AOB=120°,则弯道外边缘的长与内边缘的长的差为( )A.B.C.D.9.(4分)如图,在△ABC中,AB=AC,∠BAC=108°,分别以点A,C为圆心,以大于的长为半径作弧,两弧相交于M,N两点,作直线MN分别交BC,AC于点D,E,连接AD,以下结论不正确的是( )A.∠BDA=72°B.BD=2AE C.D.CA2=CD•CB 10.(4分)定义:函数图象上到两坐标轴的距离都不大于n(n≥0)的点叫做这个函数图象的“n阶方点”.例如,点(1,3)与点(,2)都是函数y=2x+1图象的“3阶方点”.若y关于x的二次函数y=(x﹣n)2+n2﹣6的图象存在“n阶方点”,则n的取值范围是( )A.B.C.2≤n≤3D.1≤n≤3二、填空题(本大题共6个小题,每小题4分,共24分.)11.(4分)分解因式:xy﹣y2= .12.(4分)若分式有意义,则x的值可以是 .(写出一个即可)13.(4分)如图,矩形ABCD内的图形来自中国古代的太极图,已知AB长为6,BC长为8.一小球在矩形ABCD内自由地滚动,并随机停留在某区域,它最终停留在黑色区域的概率为 .(结果保留π)14.(4分)如图所示,在△ABC中,AB=AC=4,∠A=90°,以点A为圆心,以AB的长为半径作,以BC为直径作半圆,则阴影部分的面积为 .15.(4分)如图,Rt△ABC中,∠ABC=90°,AB=6cm,AC=10cm,点D为AC的中点,过点B作EB⊥BD,连接EC,若EB=EC,连接ED交BC于点F,则EF= cm.16.(4分)如图,已知矩形ABCD,AB=6,AD=8,点E为边BC上一点,连接DE,以DE为一边在与点C的同侧作正方形DEFG,连接AF.当点E在边BC上运动时,AF的最小值是 .三、解答题(本大题共10个小题,共86分,请写出文字说明、证明过程或演算步骤.)17.(6分)计算:|﹣2|﹣(π﹣2)0+()﹣1﹣4tan45°.18.(6分)解不等式组:,并写出它的所有整数解.19.(6分)如图,矩形ABCD中,AC与BD交于点O,BE⊥AC,CF⊥BD,垂足分别为E,F.求证:BE=CF.20.(8分)为增强同学们的环保意识,某校八年级举办“垃圾分类知识竞赛”活动,分为笔试和展演两个阶段.已知年级所有学生都参加了两个阶段的活动,首先将成绩分为以下六组(满分100分,实际得分用x表示):A:70≤x<75,B:75≤x<80,C:80≤x<85,D:85≤x<90,E:90≤x<95,F:95≤x<100随机抽取n名学生,将他们两个阶段的成绩均按以上六组进行整理,相关信息如下:已知笔试成绩中,D组的数据如下:85,85,85,85,86,87,87,88,89.请根据以上信息,完成下列问题:(1)在扇形统计图中,“E组”所对应的扇形的圆心角是 °;(2)n= ,并补全图2中的频数分布直方图;(3)在笔试阶段中,n名学生成绩的中位数是 分;(4)已知笔试和展演两个阶段的成绩是按照2:3的权重计入总成绩,总成绩在91分以上的将获得“环保之星”称号,以下为甲、乙两位同学的成绩,最终谁能获得“环保之星”称号?请通过计算说明理由.笔试展演甲9289乙909521.(8分)数学兴趣小组用所学的数学知识来解决实际问题,实践报告如下:活动课题遮阳篷前挡板的设计问题背景我们所在的社区服务中心在境外安装了遮阳篷,结果发现夏日正午时纳凉面积不够,现在为使房前的纳凉区域增加到2.76m 宽,计划在遮阳篷前端加装一块前挡板(前挡板垂直于地面),如图1,现在要计算所需前挡板的宽度BC 的长.测量数据抽象模型我们实地测量了相关数据,并画出了侧面示意图,如图2,遮阳篷AB 长为4m ,其与墙面的夹角∠BAD =70°,其靠墙端离地高AD为3.5m .通过查阅资料,了解到本地夏日正午的太阳高度角(太阳光线与地面夹角∠CFE )最小为60°,若假设此时房前恰好有2.76m 宽的阴影DF ,如图3,求出BC 的长即可.解决思路经过讨论,我们准备按照如下步骤解决问题:(1)运用所学的三角函数的相关知识,构造直角三角形,先求出遮阳篷前端B 到墙面AD 的距离;(2)继续构造直角三角形,求出∠CFE为60°时,BC的长度.运算过程…该报告运算过程还没有完成,请按照解决思路,帮助兴趣小组完成该部分.(结果精确到0.01m,参考数据:sin70°≈0.940,cos70°≈0.342,tan70°≈2.747,≈1.732)22.(8分)如图,AB为⊙O的直径,点D为⊙O上一点,点E是的中点,连接BE,AE,过点A的切线与BE的延长线交于点C,弦BE,AD相交于点F.(1)求证:∠ADE=∠CAE;(2)若∠ADE=30°,AE=,求BF的长.23.(10分)“体育承载着国家强盛、民族振兴的梦想,体育强则中国强,国运兴则体育兴.”为引导学生在体育锻炼中享受乐趣、增强体质,学校开展大课间活动,七年级五班拟组织学生参加跳绳活动,需购买A,B两种跳绳若干,已知购买3根A种跳绳和1根B种跳绳共需105元;购买5根A种跳绳和3根B种跳绳共需215元.(1)求A,B两种跳绳的单价;(2)如果班级计划购买A,B两型跳绳共48根,B型跳绳个数不少于A型跳绳个数的2倍,那么购买跳绳所需最少费用是多少元?24.(10分)如图,在平面直角坐标系xOy中,△ABC的顶点B,C在x轴上,顶点A在y轴上,AB=AC.反比例函数的图象与边AC交于点E (1,4)和点F(2,n).点M为边AB上的动点,过点M作直线MN∥x轴,与反比例函数的图象交于点N.连接OE,OF,OM和ON.(1)求反比例函数的表达式和点A的坐标;(2)求△OEF的面积;(3)求△OMN面积的最大值.25.(12分)【问题情境】如图1,在四边形ABCD中,AD=DC=4cm,∠ADC=60°,AB=BC,点E 是线段AB上一动点,连接DE.将线段DE绕点D逆时针旋转30°,且长度变为原来的m倍,得到线段DF,作直线CF交直线AB于点H.数学兴趣小组着手研究m为何值时,HF+mBE的值是定值.【探究实践】老师引导同学们可以先通过边、角的特殊化,发现m的取值与HF+mBE为定值的关系,再探究图1中的问题,这体现了从特殊到一般的数学思想.经过思考和讨论,小明、小华分享了自己的发现.(1)如图2,小明发现:“当∠DAB=90°,m=时,点H与点A恰好重合,的值是定值”.小华给出了解题思路,连接BD,易证△DEB∽△DFC,得到CF与BE的数量关系是 ,的值是 .(2)如图3,小华发现:“当AD=AB,m=时,的值是定值”.请判断小明的结论是否正确,若正确,请求出此定值,若不正确,请说明理由.【拓展应用】(3)如图1,小聪对比小明和小华的发现,经过进一步思考发现:“连接DB,只要确定AB的长,就能求出m的值,使得HF+mBE的值是定值”,老师肯定了小聪结论的准确性.若,请直接写出m的值及HF+mBE的定值.26.(12分)在平面直角坐标系xOy中,直线与y轴交于点A,与x轴交于点B,抛物线M:y=ax2+bx+c经过点A,且顶点在直线AB上.(1)如图,当抛物线的顶点在点B时,求抛物线M的表达式;(2)在(1)的条件下,抛物线M上是否存在点C,满足∠ABC=∠ABO.若存在,求点C的坐标;若不存在,请说明理由;(3)定义抛物线N:y=bx2+ax+c为抛物线M的换系抛物线,点P(t,p),点Q(t+3,q)在抛物线N上,若对于2≤t≤3,都有p<q<1,求a的取值范围.2024年山东省济南市历下区中考数学一模试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)2024的绝对值是( )A.﹣2024B.2024C.D.【分析】依据题意,根据绝对值的意义进行计算可以得解.【解答】解:由题意得,|2024|=2024.故选:B.2.(4分)如图是由5个完全相同的小正方体摆成的几何体,则这个几何体的俯视图是( )A.B.C.D.【分析】根据从上面看得到的图象是俯视图,可得答案.【解答】解:俯视图如选项C所示,故选:C.3.(4分)海水淡化是解决全球水资源危机的战略手段,根据《海水淡化利用发展行动计划(2021﹣2025年)》,到2025年我国海水淡化总规模将达到2900000吨/日以上.数字2900000用科学记数法表示为( )A.0.29×107B.2.9×106C.29×105D.290×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:2900000=2.9×106.故选:B.4.(4分)将直角三角板和直尺按照如图位置摆放,若∠1=56°,则∠2的度数是( )A.26°B.30°C.36°D.56°【分析】由平行线的性质可得∠ACD=∠1=56°,再由三角形的外角性质即可求解.【解答】解:如图,由题意得:AB∥CD,∴∠ACD=∠1=56°,∵△ACD是△CDE的外角,∠E=30°,∴∠2=∠ACD﹣∠E=26°.故选:A.5.(4分)我国民间建筑装饰图案中,蕴含着丰富的数学之美.下列图案中既是轴对称图形又是中心对称图形的是( )A.B.C.D.【分析】直接根据轴对称图形的定义和中心对称图形的定义逐项判断即可.【解答】解:A.该图形是轴对称图形,也是中心对称图形,故此选项符合题意;B.该图形不是轴对称图形,但是中心对称图形,故此选项不符合题意;C.该图形不是轴对称图形,也不是中心对称图形,故此选项不符合题意;D.该图形是轴对称图形,但不是中心对称图形,故此选项不符合题意.故选:A.6.(4分)实数a,b在数轴上对应点的位置如图所示.若a+b=0,则下列结论中正确的是( )A.|a|<|b|B.2a>2b C.ab>0D.a<﹣1【分析】由题可知,a=﹣b,从数轴上可知,a<0<1<b,据此逐一判断各选项.【解答】解:由题可知,a+b=0,∴a=﹣b,从数轴上可知,a<0<1<b,A、∵a=﹣b,∴|a|=|b|,故选项A不符合题意;B、∵a<b,∴2a<2b,故选项B不符合题意;C、∵a<0<b,∴ab<0,故选项C不符合题意;D、∵a=﹣b,a<0<1<b,∴﹣b<﹣1,∴a<﹣1,故选项D符合题意;故选:D.7.(4分)有四张大小和背面完全相同的不透明卡片,正面分别印有“前”、“程”、“朤(lǎng)”、“朤(lǎng)”四个汉字,将这四张卡片背面朝上洗匀,甲随机抽出一张并放回,洗匀后,乙再随机抽出一张,则两人抽到汉字可以组成“朤朤”的概率是( )A.B.C.D.【分析】利用列表法或树状图法解答即可.【解答】解:画树状图如下:一共有16种等可能的情况,其中两人抽到汉字可以组成“朤朤”有4中可能的结果,∴P(两人抽到汉字可以组成“朤朤”)==,故选:B.8.(4分)某小区内的消防车道有一段弯道,如图,弯道的内外边缘均为圆弧,,所在圆的圆心为点O,点C,D分别在OA,OB上,已知消防车道半径OC=12m,消防车道宽AC=4m,∠AOB=120°,则弯道外边缘的长与内边缘的长的差为( )A.B.C.D.【分析】根据线段的和差得到OA=OC+AC,然后根据弧长公式即可得到结论.【解答】解:∵OC=12m,AC=4m,∴OA=OC+AC=12+4=16(m),∵∠AOB=120°,∴弯道外边缘的长为=(m),内边缘的长为==(m),∴弯道外边缘的长与内边缘的长的差为=π(m),故选:B.9.(4分)如图,在△ABC中,AB=AC,∠BAC=108°,分别以点A,C为圆心,以大于的长为半径作弧,两弧相交于M,N两点,作直线MN分别交BC,AC于点D,E,连接AD,以下结论不正确的是( )A.∠BDA=72°B.BD=2AE C.D.CA2=CD•CB 【分析】先由AB=AC,∠BAC=108°得∠B=∠C=36°,由作图可知MN 为AC的垂直平分线,则AD=CD,进而得∠DAC=∠C=36°,由此可求出∠BAD的度数,进而可对选项A进行判断;由MN为AC的垂直平分线得AC=2AE,则AB=2AE,证∠BAD=∠BDA=72°得AB=BD,由此可对选项B进行判断;设CD=x,CB=a,则BD=CB﹣CD=a﹣x,AC=AB=BC=a﹣x,证△CDA和△CAB相似得CD:CA=CA:CB,即x:(a﹣x)=(a﹣x):a,整理得x2﹣3ax+a2=0,由此解出,则,由此可对选项C 进行判断;由△CDA∽△CAB得CD:CA=CA:CB,由此可对选项D进行判断,综上所述即可得出答案.【解答】解:∵AB=AC,∠BAC=108°,∴∠B=∠C=1/2(180°﹣∠BAC)=(180°﹣108°)=36°,由作图可知:MN为AC的垂直平分线,∴AD=CD,∴∠DAC=∠C=36°,∴∠BAD=∠BAC﹣∠DAC=108°﹣36°=72°,故选项A正确,不符合题意;∵MN为AC的垂直平分线,∴AC=2AE,∵AB=AC,∴AB=2AE,∵∠DAC=∠C=36°,∴∠BDA=∠DAC+∠C=72°,∵∠BAD=72°,∴∠BAD=∠BDA=72°,∴AB=BD,∴BD=2AE,故选项B正确,不符合题意;设CD=x,CB=a,则x<a则BD=CB﹣CD=a﹣x,∴AC=AB=BC=a﹣x,∵∠DAC=∠B=36°,∠DCA=∠ACB,∴△CDA∽△CAB,∴CD:CA=CA:CB,即x:(a﹣x)=(a﹣x):a,整理得:x2﹣3ax+a2=0,解得:x1=,x2=(不合题意,舍去),∴,∴,即,故选项C不正确,符合题意;∵△CDA∽△CAB,∴CD:CA=CA:CB,∴CA2=CD•CB,故选项D正确,不符合题意.故选:C.10.(4分)定义:函数图象上到两坐标轴的距离都不大于n(n≥0)的点叫做这个函数图象的“n 阶方点”.例如,点(1,3)与点(,2)都是函数y =2x +1图象的“3阶方点”.若y 关于x 的二次函数y =(x ﹣n )2+n 2﹣6的图象存在“n 阶方点”,则n 的取值范围是( )A .B .C .2≤n ≤3D .1≤n ≤3【分析】由二次函数解析式可知其顶点坐标在抛物线y =x 2﹣6上移动,作出简图,由函数图象可知,当二次函数图象过点 (n ,﹣n )和点(﹣n ,n )时为临界情况,求出此时n 的值,由图象可得n 的取值范围.【解答】解:∵二次函数y =(x ﹣n )2+n 2﹣6的顶点坐标为(n ,n 2﹣6),∴二次函数n 2﹣6的顶点在抛物线y =x 2﹣6上移动,∵y 关于x 的二次函数y =(x ﹣n )2+n 2﹣6的图象存在“n 阶方点”,∴二次函数二次函数y =(x ﹣n )2+n 2﹣6的图象与以顶点坐标为(n ,n ),(n ,﹣n ),(﹣n ,n ),(﹣n ,﹣n )的正方形有交点,如图,当y =(x ﹣n )2+n 2﹣6过点(﹣n ,n ) 时,将(﹣n ,n )代入y =(x ﹣n )2+n 2﹣6得:4n 2+n 2﹣6=n ,解得:n =或n =﹣1(舍去),当y =(x ﹣n )2+n 2﹣6过点(n ,﹣n ) 时,将(﹣n ,n )代入y =(x ﹣n )2+n 2﹣6得:4n 2+n 2﹣6=﹣n ,解得:n=1,n=﹣(舍去),由图可知,由图象可得n的取值范围是:1.故选:A.二、填空题(本大题共6个小题,每小题4分,共24分.)11.(4分)分解因式:xy﹣y2= y(x﹣y) .【分析】直接提取公因式y,进而得出答案.【解答】解:xy﹣y2=y(x﹣y).故答案为:y(x﹣y).12.(4分)若分式有意义,则x的值可以是 2(答案不唯一) .(写出一个即可)【分析】根据分母不为0可得x+1≠0,然后进行计算即可解答.【解答】解:∵分式有意义,∴x+1≠0,∴x≠﹣1,∴x的值可以是2,故答案为:2(答案不唯一).13.(4分)如图,矩形ABCD内的图形来自中国古代的太极图,已知AB长为6,BC长为8.一小球在矩形ABCD内自由地滚动,并随机停留在某区域,它最终停留在黑色区域的概率为 .(结果保留π)【分析】根据几何概率的计算方法解答即可.【解答】解:由题意,可知:黑色区域的面积=圆面积的一半,∴P(最终停留在黑色区域)==.故答案为:.14.(4分)如图所示,在△ABC中,AB=AC=4,∠A=90°,以点A为圆心,以AB的长为半径作,以BC为直径作半圆,则阴影部分的面积为 8 .【分析】由图可知:图案的面积=半圆CBF的面积+△ABC的面积﹣扇形ABC的面积,可根据各自的面积计算方法求出图案的面积.【解答】解:在△ABC中,AB=AC=4,∠A=90°,∴BC==4,∴S扇形ACB==4π,S半圆CBF=π×(2)2=4π,S△ABC=×4×4=8;所以阴影面积=S半圆CBF+S△ABC﹣S扇形ACB=4π+8﹣4π=8,故答案为:8.15.(4分)如图,Rt△ABC中,∠ABC=90°,AB=6cm,AC=10cm,点D为AC的中点,过点B作EB⊥BD,连接EC,若EB=EC,连接ED交BC于点F,则EF= cm.【分析】根据勾股定理得出BC=8cm,进而利用直角三角形的性质得出BD=5cm,进而利用勾股定理得出BE,进而解答即可.【解答】解;∵∠ABC=90°,AB=6cm,AC=10cm,∴BC=(cm),∵点D为AC的中点,∴BD=AC=5cm,∵EB=EC,∴BF=BC=4cm,DF=(cm),设EF=x,在Rt△EBF中,BE2=EF2+BF2,∵EB⊥BD,在Rt△BED中,BE2=ED2﹣BD2,即x2+42=(x+3)2﹣52,解得:x=,∴EF=cm,故答案为:.16.(4分)如图,已知矩形ABCD,AB=6,AD=8,点E为边BC上一点,连接DE,以DE为一边在与点C的同侧作正方形DEFG,连接AF.当点E在边BC上运动时,AF的最小值是 10 .【分析】过点E作EH⊥AD于点H,过点F作FK⊥BE,交BE的延长线于点K,交AB的延长线于点M,利用矩形的判定与性质,正方形的性质,直角三角形的性质和全等三角形的判定与性质得到KF=EH=6,KE=HD,设AH=x,则HD=EK=8﹣x,MH=x,利用勾股定理,配方法以及非负数的意义解答即可得出结论.【解答】解:过点E作EH⊥AD于点H,过点F作FK⊥BE,交BE的延长线于点K,交AB的延长线于点M,如图,∵四边形ABCD为矩形,∴AB=CD=6,AD=BC=8,∠C=∠ADC=90°,∵EH⊥AD,∴四边形CDHE为矩形,∴EH=CD=6,∵四边形DEFG为正方形,∴EF=ED,∠FED=90°.∴∠KEF+∠HED=90°.∵FK⊥BE,∴∠KFE+∠KEF=90°,∴∠KFE=∠HED.在△KFE和△HED中,,∴△KFE≌△HED(AAS),∴KF=EH=6,KE=HD.∵∠BAH=∠AHE=∠MKH=90°,∴四边形AHKM为矩形,∴AH=MK,AM=HK,∠M=90°,设AH=x,则HD=EK=8﹣x,MH=x,∴AM=HK=HE+EK=14﹣x,MF=KF+MK=6+x,在Rt△AFM中,∵AM2+MF2=AF2,∴AF==,∵2(x﹣4)2≥0,∴当x=4时,AF取得最小值为=10.∴AF的最小值是10.故答案为:10.三、解答题(本大题共10个小题,共86分,请写出文字说明、证明过程或演算步骤.)17.(6分)计算:|﹣2|﹣(π﹣2)0+()﹣1﹣4tan45°.【分析】直接利用零指数幂的性质以及负整数指数幂的性质、特殊角的三角函数值、绝对值的性质分别化简得出答案.【解答】解:原式=2﹣1+3﹣4×1=2﹣1+3﹣4=0.18.(6分)解不等式组:,并写出它的所有整数解.【分析】分别求出各不等式的解集,再求出其公共解集即可得出答案.【解答】解:解不等式3(x+2)>x+4得x>﹣1,解不等式得,x<3,∴不等式组的解集为﹣1<x<3.∴不等式组的整数解为0,1,2.19.(6分)如图,矩形ABCD中,AC与BD交于点O,BE⊥AC,CF⊥BD,垂足分别为E,F.求证:BE=CF.【分析】要证BE=CF,可运用矩形的性质结合已知条件证BE、CF所在的三角形全等.【解答】证明:∵四边形ABCD为矩形,∴AC=BD,则BO=CO.∵BE⊥AC于E,CF⊥BD于F,∴∠BEO=∠CFO=90°.又∵∠BOE=∠COF,∴△BOE≌△COF.∴BE=CF.20.(8分)为增强同学们的环保意识,某校八年级举办“垃圾分类知识竞赛”活动,分为笔试和展演两个阶段.已知年级所有学生都参加了两个阶段的活动,首先将成绩分为以下六组(满分100分,实际得分用x表示):A:70≤x<75,B:75≤x<80,C:80≤x<85,D:85≤x<90,E:90≤x<95,F:95≤x<100随机抽取n名学生,将他们两个阶段的成绩均按以上六组进行整理,相关信息如下:已知笔试成绩中,D组的数据如下:85,85,85,85,86,87,87,88,89.请根据以上信息,完成下列问题:(1)在扇形统计图中,“E组”所对应的扇形的圆心角是 54 °;(2)n= 20 ,并补全图2中的频数分布直方图;(3)在笔试阶段中,n名学生成绩的中位数是 85.5 分;(4)已知笔试和展演两个阶段的成绩是按照2:3的权重计入总成绩,总成绩在91分以上的将获得“环保之星”称号,以下为甲、乙两位同学的成绩,最终谁能获得“环保之星”称号?请通过计算说明理由.笔试展演甲9289乙9095【分析】(1)根据E组的人数所占的百分比进行计算即可;(2)由笔试成绩D组的人数及所占的百分比可得n的值,即可补全图2中的频数分布直方图;(3)根据中位数的定义即可求解;(4)根据加权平均数的计算方法即可得出答案.【解答】解:(1)在扇形统计图中,“E组”所对应的扇形的圆心角是360°×(1﹣5%﹣5%﹣20%﹣45%﹣10%)=54°,故答案为:54;(2)n=9÷45%=20,展演成绩中B:75≤x<80的人数为20﹣2﹣6﹣4﹣3﹣1=4,补全图2中的频数分布直方图:故答案为:20;(2)将抽取的20名学生的笔试成绩从小到大排列,处在中间位置的两个数的平均数为=85.5,故答案为:85.5;(3)乙同学能获得“环保之星”称号,理由如下:甲同学的总成绩为=90.2(分),乙同学的总成绩为=93(分),93>90.2,∴乙同学能获得“环保之星”称号.21.(8分)数学兴趣小组用所学的数学知识来解决实际问题,实践报告如下:活动课题遮阳篷前挡板的设计问题背景我们所在的社区服务中心在境外安装了遮阳篷,结果发现夏日正午时纳凉面积不够,现在为使房前的纳凉区域增加到2.76m 宽,计划在遮阳篷前端加装一块前挡板(前挡板垂直于地面),如图1,现在要计算所需前挡板的宽度BC 的长.测量数据抽象模型我们实地测量了相关数据,并画出了侧面示意图,如图2,遮阳篷AB 长为4m ,其与墙面的夹角∠BAD =70°,其靠墙端离地高AD为3.5m .通过查阅资料,了解到本地夏日正午的太阳高度角(太阳光线与地面夹角∠CFE )最小为60°,若假设此时房前恰好有2.76m 宽的阴影DF ,如图3,求出BC 的长即可.解决思路经过讨论,我们准备按照如下步骤解决问题:(1)运用所学的三角函数的相关知识,构造直角三角形,先求出遮阳篷前端B到墙面AD的距离;(2)继续构造直角三角形,求出∠CFE为60°时,BC的长度.运算过程…该报告运算过程还没有完成,请按照解决思路,帮助兴趣小组完成该部分.(结果精确到0.01m,参考数据:sin70°≈0.940,cos70°≈0.342,tan70°≈2.747,≈1.732)【分析】过点B作BG⊥AD,垂足为G,延长BC交DE于点H,根据题意可得:BG=DH,BH=DG,BH⊥DE,然后在Rt△ABG中,利用锐角三角函数的定义求出AG和BG的长,从而求出DG和FH的长,最后在Rt△CFH中,利用锐角三角函数的定义求出CH的长,从而利用线段的和差关系进行计算,即可解答.【解答】解:过点B作BG⊥AD,垂足为G,延长BC交DE于点H,由题意得:BG=DH,BH=DG,BH⊥DE,在Rt△ABG中,AB=4m,∠BAG=70°,∴AG=AB•cos70°≈4×0.342=1.368(m),BG=AB•sin70°≈4×0.94=3.76(m),∴BG=DH=3.76(m),∵AD=3.5m,∴DG=BH=AD﹣AG=3.5﹣1.368=2.132(m),∵DF=2.76m,∴FH=DH﹣DF=3.76﹣2.76=1(m),在Rt△CFH中,∠CFH=60°,∴CH=FH•tan60°=(m),∴BC=BH﹣CH=2.132﹣1.732=0.40(m),∴BC的长度约为0.40m.22.(8分)如图,AB为⊙O的直径,点D为⊙O上一点,点E是的中点,连接BE,AE,过点A的切线与BE的延长线交于点C,弦BE,AD相交于点F.(1)求证:∠ADE=∠CAE;(2)若∠ADE=30°,AE=,求BF的长.【分析】(1)根据切线的性质可得∠OAC=90°,从而可得∠CAE+∠BAE=90°,再利用直径所对的圆周角是直角可得∠AEB=90°,从而可得∠BAE+∠B=90°,然后利用同角的余角相等可得∠B=∠CAE,再根据同弧所对的圆周角相等可得∠B=∠D,从而利用等量代换可得∠D=∠CAE,即可解答;(2)利用(1)的结论可得∠ADE=∠B=30°,然后在Rt△ABE中,利用锐角三角函数的定义求出BE的长,再根据已知易得=,从而可得AE=DE,然后利用等腰三角形的性质可得∠EAD=∠D=30°,最后在Rt△AEF 中,利用锐角三角函数的定义求出EF的长,从而利用线段的和差关系进行计算,即可解答.【解答】(1)证明:∵AC与⊙O相切于点A,∴∠OAC=90°,∴∠CAE+∠BAE=90°,∵AB为⊙O的直径,∴∠AEB=90°,∴∠BAE+∠B=90°,∴∠B=∠CAE,∵∠B=∠D,∴∠D=∠CAE;(2)解:∵∠ADE=30°,∴∠ADE=∠B=30°,在Rt△ABE中,AE=,∴BE===3,∵点E是的中点,∴=,∴AE=DE,∴∠EAD=∠D=30°,在Rt△AEF中,EF=AE•tan30°=×=1,∴BF=BE﹣EF=3﹣1=2,∴BF的长为2.23.(10分)“体育承载着国家强盛、民族振兴的梦想,体育强则中国强,国运兴则体育兴.”为引导学生在体育锻炼中享受乐趣、增强体质,学校开展大课间活动,七年级五班拟组织学生参加跳绳活动,需购买A,B两种跳绳若干,已知购买3根A种跳绳和1根B种跳绳共需105元;购买5根A种跳绳和3根B种跳绳共需215元.(1)求A,B两种跳绳的单价;(2)如果班级计划购买A,B两型跳绳共48根,B型跳绳个数不少于A型跳绳个数的2倍,那么购买跳绳所需最少费用是多少元?【分析】(1)设A种跳绳的单价为x元,B种跳绳的单价为y元,根据题意列出二元一次方程组,解方程组即可得到答案;(2)设购进A种跳绳a件,总费用为w元,根据B种跳绳个数不少于A型跳绳个数的2倍,求出a的取值,再根据一次函数的性质,即可得到答案.【解答】解:(1)设A种跳绳的单价为x元,B种跳绳的单价为y元,,解得:,答:A种跳绳的单价为25元,B种跳绳的单价为30元;(2)设购进A种跳a件,总费用为w元,∵B种跳绳个数不少于A型跳绳个数的2倍,则2a≤48﹣a,解得:a≤16,w=25a+30(48﹣a)=﹣5a+1440,∵﹣5<0,∴w随a的增大而减小,当a=16时,w有最小值为1360元,答:购买跳绳所需最少费用是1360元.24.(10分)如图,在平面直角坐标系xOy中,△ABC的顶点B,C在x轴上,顶点A在y轴上,AB=AC.反比例函数的图象与边AC交于点E (1,4)和点F(2,n).点M为边AB上的动点,过点M作直线MN∥x轴,与反比例函数的图象交于点N.连接OE,OF,OM和ON.(1)求反比例函数的表达式和点A的坐标;(2)求△OEF的面积;(3)求△OMN面积的最大值.【分析】(1)根据反比例函数的图象与边AC交于点E(1,4)和点F(2,n),得到k=1×4=4,于是得到反比例函数的解析式为y=,把F(2,n)代入y=,得到F(2,2),设直线AC的解析式为y=mx+n,解方程组得到直线AC的解析式为y=﹣2x+6,于是得到A(0,6);(2)根据三角形的面积公式即可得到结论;(3)根据等腰三角形的性质得到OB=OC=3,求得B((﹣3,0),得到直线AB的解析式为y=2x+6,设M(m,2m+6),N(n,),根据三角形的面积公式和二次函数的性质即可得到结论.【解答】解:(1)∵反比例函数的图象与边AC交于点E(1,4)和点F(2,n),∴k=1×4=4,∴反比例函数的解析式为y=,把F(2,n)代入y=,得n==2,∴F(2,2),设直线AC的解析式为y=mx+n,∴,解得,∴直线AC的解析式为y=﹣2x+6,当x=0时,y=6,∴A(0,6);(2)△OEF的面积=△AOF的面积﹣△AOE的面积==3;(3)在y=﹣2x+6中,当y=0时,x=3,∴C(3,0),∵AB=AC,AO⊥BC,∴OB=OC=3,∴B((﹣3,0),∴直线AB的解析式为y=2x+6,设M(m,2m+6),N(n,),∵MN∥x轴,∴2m+6=,∴n=,∴△OMN面积=(n﹣m)×(2m+6)=(﹣m)(2m+6)=﹣m2﹣3m+2=﹣(m+)2+,∴△OMN面积的最大值为.25.(12分)【问题情境】如图1,在四边形ABCD中,AD=DC=4cm,∠ADC=60°,AB=BC,点E 是线段AB上一动点,连接DE.将线段DE绕点D逆时针旋转30°,且长度变为原来的m倍,得到线段DF,作直线CF交直线AB于点H.数学兴趣小组着手研究m为何值时,HF+mBE的值是定值.【探究实践】老师引导同学们可以先通过边、角的特殊化,发现m的取值与HF+mBE为定值的关系,再探究图1中的问题,这体现了从特殊到一般的数学思想.经过思考和讨论,小明、小华分享了自己的发现.(1)如图2,小明发现:“当∠DAB=90°,m=时,点H与点A恰好重合,的值是定值”.小华给出了解题思路,连接BD,易证△DEB∽△DFC,得到CF与BE的数量关系是 CF=BE ,的值是 4 .(2)如图3,小华发现:“当AD=AB,m=时,的值是定值”.请判断小明的结论是否正确,若正确,请求出此定值,若不正确,请说明理由.【拓展应用】(3)如图1,小聪对比小明和小华的发现,经过进一步思考发现:“连接DB,只要确定AB的长,就能求出m的值,使得HF+mBE的值是定值”,老师肯定了小聪结论的准确性.若,请直接写出m的值及HF+mBE的定值.【分析】(1)根据已知条件得出BD为AC垂直平分线,再根据相似三角形的判定得出△DFC∽△DEB,从而得出CF=BE,最后根据HF+BE=HF+CF=HC=AC,即可得出答案;(2)连接AC,BD交于O点,根据已知先得出四边形ABCD为菱形,得出∠BDC=∠ADC=30°,在等腰△DCB中,根据BD=CD,得出=,再根据DF=DE,得出==,再证出△DEB∽△DFC,得出HF+ BE=HF+CF=HC,∠HCB=90°,在Rt△HCB中,再根据已知条件得出HC=4,从而得出答案;(3)连接BD,交AC于O,交HC于,由(1)得出△ADC为等边三角形,得出AD=CD=AC=4,再根据勾股定理得出OB和DO得的值,再根据△。

中考数学一轮复习 教学设计十三(平面直角坐标系与函数的概念) 鲁教版

中考数学一轮复习 教学设计十三(平面直角坐标系与函数的概念) 鲁教版

中考数学一轮复习教学设计十三(平面直角坐标系与函数的概念)鲁教版一. 教材分析平面直角坐标系与函数的概念是中考数学的重要内容,主要让学生掌握平面直角坐标系的性质,函数的定义及表示方法,函数的性质等。

本节课的内容是复习这一部分的知识,通过回顾和巩固,使学生能够熟练掌握并应用。

二. 学情分析学生在之前的学习中已经接触过平面直角坐标系和函数的概念,对本节课的内容有一定的了解。

但部分学生对一些概念的理解还不够深入,对函数的性质和解题方法的应用还不够熟练。

因此,在教学过程中,需要关注这部分学生的学习情况,通过例题和练习,帮助他们巩固和提高。

三. 教学目标1.知识与技能:使学生能够熟练掌握平面直角坐标系的性质,函数的定义及表示方法,函数的性质等基本概念;2.过程与方法:通过复习和巩固,提高学生解题的能力和思维水平;3.情感态度与价值观:激发学生学习数学的兴趣,培养他们的探究精神和合作意识。

四. 教学重难点1.重点:平面直角坐标系的性质,函数的定义及表示方法,函数的性质;2.难点:函数的性质和解题方法的应用。

五. 教学方法采用讲解法、例题解析法、小组讨论法等,以学生为主体,教师为主导,注重学生的参与和思考。

六. 教学准备1.教师准备:教材、教案、PPT、例题、练习题等;2.学生准备:课本、笔记本、文具等。

七. 教学过程1.导入(5分钟)教师通过复习平面直角坐标系的性质,引出函数的定义及表示方法,激发学生的学习兴趣。

2.呈现(10分钟)教师通过PPT展示函数的性质,包括单调性、奇偶性、周期性等,让学生对这些性质有更直观的认识。

3.操练(10分钟)教师给出一些例题,让学生独立解答,然后讲解答案,引导学生掌握解题方法。

4.巩固(10分钟)教师给出一些练习题,让学生分组讨论,共同完成,检查学生对知识点的掌握情况。

5.拓展(10分钟)教师引导学生思考函数性质在实际问题中的应用,让学生举例说明,提高他们的应用能力。

6.小结(5分钟)教师对本节课的内容进行总结,强调重点知识点,提醒学生注意一些易错点。

中考数学一轮复习 图形与坐标学案(无答案)(2021年整理)

中考数学一轮复习 图形与坐标学案(无答案)(2021年整理)

江苏省南京市溧水县2017届中考数学一轮复习图形与坐标学案(无答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省南京市溧水县2017届中考数学一轮复习图形与坐标学案(无答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省南京市溧水县2017届中考数学一轮复习图形与坐标学案(无答案)的全部内容。

图形与坐标姓名成绩【中考要求】1、结合实例进一步体会用有序实数对可以表示物体的位置2、理解平面直角坐标系的有关概念,能画出平面直角坐标系3、在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标4、在时间问题中,能建立适当的直角坐标系,描述物体的位置5、对给定的正方形,会选择适当的直角坐标系写出它的顶点坐标,体会可以用坐标刻画一个简单的图形6、在平面上,能用方位角和距离刻画两个物体的相对位置【基础训练】1、在平面直角坐标系中,描出下列各点:每个点3分)A(1,3) B(-3,4) C(-3,-5) D(4,-5) E(0,3) F(6,0)2、如图,点B 的坐标是(3,4),点A 在x 轴的正半轴上,OB=OA ,(1)求A 点的坐标(5分)(2)写出A 点关于Y 轴对称的点的坐标(5分)(3)求∠AOB 的正弦值(5分)3、M 的坐标是(x+1,2-x ),当点M 在x 轴上时,点M 的坐标是 ,当点M 在 y 轴上时,点M 的坐标是 (6分+6分)4、点A 在y 轴上,OA=2,则点A 的坐标是 (11分)5、点A 在第二象限,点A 到x 轴的距离为4,到y轴的距离是5,则点A 的坐标是 (11分)6、求一次函数y=x+2的图像与x 轴的交点M的坐标、与y 轴的交点坐标。

山东2016届中考数学一轮复习梯形及多边形学案无解答

梯形及多边形点叫做多边形的顶点,连接不相邻两个顶
②平移一腰,将等腰梯形化成一个平行四边形和一个等腰三角形.
发向前直走
的代数式表示,答案直接填在空格上,不要求证明
1600元,计划在一块上、下底分别为10m,20m的梯形空地上种植花木中阴影部分),共花了160元,请计算种满△
5 B
砖,与正三角形地砖在同一顶点处作平面镶嵌,则该学校不应该购买的地砖形状是(
A
是平行四边形、等腰梯形?
成了
形的个数,
所以+
解答此题后,某同学产生了如下猜测:对上述命题,若点
的延长线于。

山东省济南市历下区数学中考一轮复习学案:第3课时 代数式(2)分式(一轮)

课题:第3课时 代数式(2)---分式备课学校:济南十八中 执笔人:田敏一、考试大纲要求:1.了解分式和最简分式的概念,能利用分式的基本性质进行约分和通分。

2.能进行简单的分式的加、减、乘、除运算。

二、重点、易错点分析:1.重点:分式的基本性质和运算法则。

2.易错点:分式通分时最简公分母的确定,分式约分时分子分母公因式的确定。

三、考题集锦:1.(2015•衡阳, 第4题3分)若分式的值为0,则x 的值为( )A . 2或﹣1B . 0C . 2D . ﹣1 2 (2015江苏常州第2题2分)要使分式23-x 有意义,则x 的取值范围是( ) A .x >2 B .x <2 C .x ≠-2 D .x ≠2 3.(4分)(2015•黔南州)(第8题)函数y=+的自变量x 的取值范围是( )A . x ≤3B . x ≠4C . x ≥3且x ≠4D . x ≤3或x ≠4 4.(2015•济南,第10题3分)化简﹣的结果是( )A .m +3 B . m ﹣3C .D .5、(2015年浙江省义乌市中考,6,4分)化简xx x -+-1112的结果是( ) A. 1+x B.11+x C. 1-x D. 1-x x 6.(2015•山东泰安,第8题3分)化简:(a+)(1﹣)的结果等于( )A .a ﹣2B . a+2C .D .7.(2015•湖南湘西州,第6题,4分)要使分式有意义,则x 的取值范围是_____________________.8.(2015•江苏镇江,第5题,2分)当x= 时,分式的值为0.9.(2015•四川攀枝花第17题6分)先化简,再求值:÷(2+),其中a=.10.(2015•湖北, 第18题6分)先化简,再求值:(+)÷,其中x=,y=﹣.四、典型例题:例1.(2015•通辽,第13题3分)函数y=中,自变量x 的取值范围是考点: 函数自变量的取值范围.本题考查了函数自变量的取值范围,使得分式和根号有意义的知识.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数为非负数.例2、若分式xxx 2的值为0,则( )A . x=1B .x=0C . x=1或0D .x=-1知识点:分式的值为零的条件。

中考数学一轮复习第10讲平面直角坐标系与函数导学1案

中考数学一轮复习第10讲平面直角坐标系与函数导学1案第10讲 平面直角坐标系与函数一、知识梳理平面直角坐标系平 面 内 点P(x ,y)的 坐 标 的特征平面直角坐标系内点的坐标特征的直线上的点的坐标的特征 (2)平行于y 轴平行于y 轴(或垂直于x 轴)的直线上的点的横坐标 ,纵坐标为不相等的实数点到坐标轴的距离 到y 轴的距离平面直角坐标系中的平移与对称点的坐标变号 点P(x ,y)关于原点对称的点P 3的坐标为________用坐标表示地理位置函数的有关概念常量和变量是相对的,判断常量和变量的前提是:“在某一变化过程中”.同一个量在不同的变化过程中可以是常量,也可以是变量,这要根据问题的条件来确定函数的表示方法表示函数时,要根据具体情况选择适当的方法,有时为了全面认识问题,可同时使用几种方法函数图象的概念及画法一般地,对于一个函数,如果以自变量与因变量的每对对应值分别作为点的横坐标、纵坐标,那么平面直角坐标系内由这些点组成的图形,就是这个函数的图象二、题型、技巧归纳考点1与平面直角坐标系有关的问题例1 如图10-1,在平面直角坐标系中,矩形OABC的对角线AC平行于x轴,边OA与x轴正半轴的夹角为30°,OC=2,则点B的坐标是________.技巧归纳:利用1.平面直角坐标系的概念2.求坐标系中点的坐标考点2坐标平面内点的坐标特征例2 在平面直角坐标系中,点P(m,m-2)在第一象限,则m的取值范围是________.技巧归纳:1. 四个象限内点的坐标特征;2. 坐标轴上的点的坐标特征;3. 平行于x轴,平行于y轴的直线上的点的坐标特征;4. 第一、三,第二、四象限的平分线上的点的坐标特征.考点3关于x轴,y轴及原点对称的点的坐标特征例3平面直角坐标系中,点(-3, 4)关于y轴对称的点的坐标是________.技巧归纳:平面直角坐标系中,与点有关的对称关系常用的有3种:①关于x轴成轴对称的两点的坐标特点:横坐标相同,纵坐标互为相反数;②关于y轴成轴对称的两点的坐标特点:横坐标互为相反数,纵坐标相同;③关于原点成中心对称的两点的坐标特点:横坐标和纵坐标都互为相反数.考点4坐标系中的图形的平移与旋转例4 在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移2个单位长度称为1次变换.如图10-2,已知等边三角形ABC的顶点B、C的坐标分别是(-1,-1)、(-3,-1),把△ABC经过连续9次这样的变换得到△A′B′C′,则点A的对应点A′的坐标是________.技巧归纳:求一个图形旋转、平移后的图形上对应点的坐标,一般要把握三点:一是根据图形变换的性质,二是利用图形的全等关系;三是确定变换前后点所在的象限.考点5函数的概念及函数自变量的取值范围例5、函数y =1+2x -4中自变量x 的取值范围是__技巧归纳:函数自变量的取值范围一般从三个方面考虑:(1)当函数关系式是整式时,自变量可取全体实数;(2)当函数关系式是分式时,考虑分式的分母不能为0;(3)当函数关系式是二次根式时,被开方数为非负数.此题就是第三种情形,考虑被开方数必须大于等于0.三、随堂检测1.点P 在第二象限内,P 点到x 轴的距离为3,到y 轴的距离为4,则P 点坐标为________.2.平面上的点与______________是一一对应的.3.点(-3,-4)与坐标为________的点关于x 轴对称,点(-5,)与坐标为________的点关于y 轴对称.4.若<0,则A (a ,b )在第______象限内;若>0时,则点B (-2a ,3b )在第______象限内;点C (-2b ,-a )在第______象限内.5.过点(-,)且平行于y 轴的直线上的点A .横坐标都是-B .纵坐标都是2C .横坐标都是D .纵坐标都是-6.点A (-3,2)关于y 轴的对称点的坐标是21b a ba 32323A .(-3,-2)B .(3,2)C .(3,-2)D .(2,-3)7、看图说故事.请你编写一个故事,使故事情境中出现的一对变量x 、y 满足图示的函数关系,要求:①指出变量x 和y 的含义;②利用图中的数据说明这对变量变化过程的实际意义,其中必须涉及“速度”这个量.参考答案例1、(2,23)例2、m>2例3、(3,4)例4、(16,1+3)例5、x≥2随堂检测1.(-4,3)2.有序实数对3.(-3,4) (5,) 4.二或四 二或四 一或三5.A6.B7.小明的爷爷晚饭后出去散步,5分钟后到达离家2千米的公园,在公园里的健身器材处锻炼了6分钟,由于即将下雨,小明爷爷花了4分钟就赶回了家里.请问小明爷爷回家的速度比出去时的速度快多少?21。

山东省济南市中考数学一轮专题6 图形变换

山东省济南市中考数学一轮专题6 图形变换姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2019·南山模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分) (2016九上·岳池期末) 下列图形中,是轴对称图形但不是中心对称图形的是()A . 平行四边形B . 菱形C . 正三角形D . 圆3. (2分)在英文字母A,C,M,T中,轴对称图形的个数是()A . 1B . 2C . 3D . 44. (2分)下图是我国几家银行的标志,其中是中心对称图形的有()A . 1个B . 2个C . 3个D . 4个5. (2分) (2019八上·西安月考) 已知在平面直角坐标系中,AB 两点的坐标分别为 A(1,4),B(5,1),P,Q 分别是 x 轴,y 轴上两个动点,则四边形 ABPQ 的周长最小值为()A . 5B . 5 +C .D .6. (2分) (2018九上·江干期末) 如图,把边长为4的正方形ABCD绕A点顺时针旋转30°得到正方形AB′C′D′,边B′C′与DC交于点O,则四边形AB′OD的周长是().A . 12B . 8+C . 8+D . 8+7. (2分)如图,甲、乙两图是分别由五个棱长为“1”的立方块组成的两个几何体,它们的三视图中完全一致的是A . 主视图.B . 左视图.C . 俯视图.D . 三视图都一致.8. (2分)小明用如图所示的胶滚沿从左到右的方向将图案滚涂到墙上,下列给出的4个图案中,符合图示滚涂出的图案是()A .B .C .D .二、填空题 (共4题;共4分)9. (1分)点A(﹣3,2)关于x轴的对称点A′的坐标为________.10. (1分) (2019九上·淮阴期末) 如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点B'重合.若AB=2,BC=3,则△FCB'与△B'DG的面积比为________.11. (1分) (2019九下·瑞安月考) 在正方形ABCD中,AB=4 ,E为BC的中点,连接AE,点F为AE 上一点,且EF=2.FG⊥AE交DC于G,将FG绕着点G顺时针旋转,使得点F恰好落在AD上的点H处,过点H作HN⊥HG,交AB于N,交AE于M,则S△MNF=________.12. (1分) (2016八上·庆云期中) 如图所示,点P为∠AOB内一点,分别作出P点关于OA,OB的对称点P1 , P2 ,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为________.三、解答题 (共3题;共25分)13. (5分) (2016八上·吉安期中) 如图,在四边形ABCD中,AB= ,AD=1,BC=CD= ,且∠BCD=90°,试求四边形ABCD的面积.14. (10分) (2018七上·栾城期末) 如图,在方格纸中,三角形ABC的三个顶点和点P都在小方格的顶点上.(1)请在图1中,画出将三角形ABC绕点C旋转后的三角形A1B1C,使得点P落在三角形A1B1C内部,且三角形A1B1C的顶点也都落在方格的顶点上.(2)写出旋转角的度数________.(3)拓展延伸:如图2,将直角三角形ABC(其中∠C=90°)绕点A按顺时针方向选择115°得到△AB1C1,使得点C,A,B1在同一条直线上,那么∠BAC1等于________.15. (10分) (2015九上·汶上期末) 已知,如图,AB是⊙O的直径,C为⊙O上一点,AD垂直于经过点C 的直线DE,垂足为点D,AC平分∠DAB.(1)求证:直线DE是⊙O的切线;(2)连接BC,猜想:∠ECB与∠CAB的数量关系,并证明你的猜想.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共4题;共4分)9-1、10-1、11-1、12-1、三、解答题 (共3题;共25分)13-1、14-1、14-2、14-3、15-1、15-2、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题: 第23课时 图形与坐标
备课学校: 历元学校 执笔人:房方
一、考试大纲要求:

1.坐标与图形位置
(1)结合实例进一步体会用有序数对可以表示物体的位置.
(2)理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根
据坐标描出点的位置、由点的位置写出它的坐标.
(3)在实际问题中,能建立适当的直角坐标系,描述物体的位置.
(4)对给定的正方形,会选择合适的直角坐标系,写出它的顶点坐标,体会可以用坐标刻
画一个简单图形.
(5)在平面上,能用方位角和距离刻画两个物体的相对位置.
2.坐标与图形运动
(1)在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标的多边形的对称图形
的顶点坐标,并知道对应顶点坐标之间的关系.
(2)在直角坐标系中,能写出一个已知顶点坐标的多边形沿坐标轴方向平移后图形的顶点
坐标,并知道对应顶点坐标之间的关系.
(3)在直角坐标系中,探索并了解将一个多边形依次沿两个坐标轴方向平移后所得到的图
形与原来的图形具有平移关系,体会图形顶点坐标的变化.
(4)在直角坐标系中,探索并了解将一个多边形的顶点坐标(有一个顶点为原点、有一条
边在横坐标轴上)分别扩大或缩小相同倍数时所对应的图形与原图形是位似的
二、重点、易错点分析:
1、重点:
①用坐标刻画一个简单图形;
②将一个多边形依次沿两个坐标轴方向平移后所得到的图形与原来的图形具有平移关
系,体会图形顶点坐标的变化.
③在直角坐标系中,能写出一个已知顶点坐标的多边形沿坐标轴方向平移后图形的顶点
坐标,并知道对应顶点坐标之间的关系.
④在直角坐标系中,探索并了解将一个多边形的顶点坐标(有一个顶点为原点、有一条
边在横坐标轴上)分别扩大或缩小相同倍数时所对应的图形与原图形是位似的.
2、易错点: 每个象限点的符号;横纵坐标弄反
三、考题集锦:
1、选择:
(1) 若点 A(m,n)在第三象限,则点 B(-m,n),在( )
A、第一象限 B、第二象限 C、第三名象限 D、第四象限
(2) 若 P(m,2)与点 Q(3,n)关于 x轴的对称,则 m、n的值是( )
A、-3,2 B、3,-2 C、-3,-2 D、3,2

(3) A在B的北偏东 30°方向,则 B在A的( )
A、北偏东 30°B、北偏东 60°C、南偏西 30°D、南偏西 60°

(4) 如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O
1,O2,O3

,…

组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒2个
单位长度,则第2015秒时,点P的坐标是( )
A.(2014,0) B.(2015,-1) C. (2015,1) D. (2016,0)

2、填空题:
(1)(2013江苏淮安)点A(-3,0)关于y轴的对称点的坐标是
(2)(2015•青岛)如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横

坐标分别变为原来的,那么点A的对应点A′的坐标是 .

(3)(2015•海南)如图,在平面直角坐标系中,将点P(﹣4,2)绕原点顺时针旋转
90°,则其对应点Q的坐标为 .

P
O O
1

x

y
O
2

O
3
(4)(2015•青海)若将等腰直角三角形AOB按如图所示放置,OB=2,则点A关于原
点对称的点的坐标为 .

典型例题:
例1、(2015•泰安)如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,
0),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′A′B′的位置,此
时点A′的横坐标为3,则点B′的坐标为( )

A.(4,2) B. (3,3) C. (4,3) D.(3,2)
本题涉及的知识点:坐标与图形变化-平移;等边三角形的性质,也考查了等边三角形
的性质,含30°角的直角三角形的性质.
本题用到重要方法:本题考查了坐标与图形变化﹣平移,在平面直角坐标系中,图形的
平移与图形上某点的平移相同.平移中点的变化规律是:横坐标
右移加,左移减;纵坐标上移加,下移减.
本题需要注意的事项:求出点A′的坐标是解题的关键.

例2、(2015•菏泽)如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB
⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),
则点C的坐标为( )
A.(﹣1,) B.(﹣2,) C.(﹣,1) D.(﹣,2)
本题涉及的知识点:本题考查了坐标与图形变化﹣旋转:也考查了一次函数图象上点的
坐标特征和含30度的直角三角形三边的关系.
本题用到重要方法:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋
转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,
180°.
本题需要注意的事项:注意旋转方向。
例3(2015•聊城)在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△
ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).
(1)将△ABC沿y轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点

B
1

坐标;

(2)画出△A1B1C1关于y轴对称的△A2B2C2,并写出点C2的坐标.

本题涉及的知识点:作图-轴对称变换;作图-平移变换.
本题用到重要方法:(1)直接利用平移的性质得出平移后对应点位置进而得出答案;
(2)利用轴对称图形的性质得出对应点位置进而得出答案.
本题需要注意的事项:找对称图形时不要看错对称轴
五、随堂练习:
1. 在平面直角坐标系中,若点P(x-2,x)在第二象限,则x的取值范围为( )
A.0<x<2 B.x<2 C.x>0 D.x>2
2、(2015•宁夏)如图,将正六边形ABCDEF放在直角坐标系中,中心与坐标原点重合,
若A点的坐标为(﹣1,0),则点C的坐标为 .

3.(2015•滨州)如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在
边DC上),折叠后端点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则
点E的坐标为 .

4. (2015•吉林)如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点
D的坐标为(0,2),则点C的坐标为 .

六、本课小结:

相关文档
最新文档