2014年湖北省 高考理科数学试题(真题与答案解析)

合集下载

数学_2014年湖北省某校高考数学临门一脚试卷(理科)(含答案)

数学_2014年湖北省某校高考数学临门一脚试卷(理科)(含答案)

2014年湖北省某校高考数学临门一脚试卷(理科)一、选择题:每小题5分,10小题共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡上对应题号后的框内,答在试卷上无效. 1. 已知z¯1−i =2−i ,则在复平面内,复数z 对应的点位于( )A 第一象限B 第二象限C 第三象限D 第四象限 2. “2a >2b ”是“log 2a >log 2b”的( )A 充分不必要条件B 既不充分也不必要条件C 充要条件D 必要不充分条件 3. 已知空间不共面的四点A ,B ,C ,D ,则到这四点距离相等的平面有( )个. A 4 B 6 C 7 D 54. 两个变量y 与x 的回归模型中,分别选择了4个不同模型,计算出它们的相关指数R 2如下,其中拟合效果最好的模型是( )A 模型1(相关指数2为0.97)B 模型2(相关指数R 2为0.89)C 模型3(相关指数R 2为0.56 )D 模型4(相关指数R 2为0.45) 5. 已知f(x)=2−|x|,则∫f 2−1(x)dx =( )A 3B 4C 3.5D 4.56. 阅读如图所示的程序框图,输出结果s 的值为( )A 12 B √316 C 116 D 187. 已知AB →,AC →是非零向量,且满足(AB →−2AC →)⊥AB →,(AC →−2AB →)⊥AC →,则△ABC 的形状是( )A 等腰三角形B 直角三角形C 等边三角形D 等腰直角三角形 8. 已知不等式x−2ax+b>0的解集为(−1, 2),m 是二项式(ax −b x 2)6的展开式的常数项,那么ma a 7+2b 7=( )A −15B −5C −5aD 59. 已知F 1、F 2分别是双曲线x 2a 2−y 2b 2=1(a >0, b >0)的左、右焦点,P 为双曲线上的一点,若∠F 1PF 2=90∘,且△F 1PF 2的三边长成等差数列,则双曲线的离心率是( ) A 2 B 3 C 4 D 510. 设f(x)={x 2|x|≥1x|x|<1,g(x)是二次函数,若f (g(x))的值域是[0, +∞),则g(x)的值域是( )A (−∞, −1]∪[1, +∞)B (−∞, −1]∪[0, +∞)C [0, +∞)D [1, +∞)二、填空题:本大题共个6小题,考生共需作答5个小题,每小题5分,共25分.把答案填在答题卡上对应题号后的横线上.答错位置,书写不清,模棱两可不得分.(一)必做题(11-14题)11. 某几何体的三视图如图所示,则其表面积为________.12. 南北朝时,张邱建写了一部算经,即《张邱建算经》,在这本算经中,张邱建对等差数列的研究做出了一定的贡献.例如算经中有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下四人后入得金三斤,持出,中间三人未到者,亦依等次更给”,则某一等人比其下一等人多得________斤金.(不作近似计算)13. 设x ,y ,z ∈R ,2x +2y +z +8=0,则(x −1)2+(y +2)2+(z −3)2之最小值为________. 14.x 2a+y 2b=1(a, b ∈{1, 2, 3, 4, ..., 100})的曲线中,所有圆面积的和等于________,离心率最小的椭圆方程为________.选做题(请考生在15,16两题中任选一题作答,如果全做,则按15题作答结果计分.)15.如图,AB 是⊙O 的直径,C 是AB 延长线上一点,CD 与⊙O 相切于点E ,∠C =π6,则∠AED =________.16. (坐标系与参数方程选做题).已知曲线C 的极坐标方程是ρ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是 {x =−1+4ty =3t (t 为参数),则直线l 与曲线C 相交所成的弦的弦长为________.三、解答题:本大题共6小题,共65分.解答应写出文字说明,证明过程或演算步骤.把答案填在答题卡上对应题号指定框内.17. 已知公比不为1的等比数列{a n }的首项a 1=12,前n 项和为S n ,且a 4+S 4,a 5+S 5,a 6+S 6成等差数列.(1)求等比数列{a n }的通项公式;(2)对n ∈N +,在a n 与a n+1之间插入3n 个数,使这3n +2个数成等差数列,记插入的这3n 个数的和为b n ,求数列{b n }的前n 项和T n .18. 在△ABC 中,已知AB →⋅AC →=9,sinB =cosAsinC ,面积S △ABC =6.(1)求△ABC 的三边的长;(2)设P 是△ABC (含边界)内一点,P 到三边AC ,BC ,AB 的距离分别为x ,y 和z ,求x +y +z 的取值范围.19. 如图,四棱锥P −ABCD 的底面ABCD 是平行四边形,PA ⊥底面ABCD ,PA =3,AD =2,AB =4,∠ABC =60∘. (1)求证:AD ⊥PC ;(2)E 是侧棱PB 上一点,记PE →=λPB →,是否存在实数λ,使PC ⊥平面ADE ?若存在,求λ的值;若不存在,说明理由.20. 黄山风景区某旅游超市销售不同价格的两种纪念品,一种单价10元,另一种单价15元, 超市计划将这两种纪念品共4件(两件10元,两件15元)在超市入口和出口处展出销售,假设光顾该超市的一位游客随机的从这两处选购纪念品,且选购单价10元和15元的纪念品是等可能的.(1)若每处各展出一件10元的纪念品和一件15元的纪念品,则该游客只选购了一件纪念品且单价为15 元的概率是多少?(2)若每处至少展出一件纪念品,记该游客只选购了一件纪念品且单价为15元的概率为P ,怎样分配展出能使P 的值最大?并求出P 的最大值;(3)若每处随机的各展出两件纪念品,该游客从这两处各选购了一件纪念品,记该游客选购纪念品的消费总金额为X 元,求随机变量X 的分布列,并求出X 的数学期望.21.如图,椭圆C 1:x 24+y 2=1和双曲线C 2:x 24−y 2=1有公共顶点A ,B ,P ,Q 分别在C 1,C 2且异于A ,B 点.直线AP ,BP ,AQ ,BQ 的斜率分别为k 1,k 2,k 3,k 4且k 1+k 2+k 3+k 4=0. (1)求证:O ,P ,Q 共线.(2)设F1,F2分别为C1,C2的右焦点,PF1 // QF2,求k12+k22+k32+k42的值.22. 设函数f(x)=x(e x−1)−ax2(e=2.71828…是自然对数的底数).(1)若a=12,求f(x)的单调区间;(2)若当x≥0时f(x)>0,求a的取值范围;(3)设n∈N∗,x>0,求证:e x>1+x1!+x22!+...+x nn!(其中ni=n×(n−1)× (2)1).2014年湖北省某校高考数学临门一脚试卷(理科)答案1. A2. D3. C4. A5. C6. C7. C8. D9. D10. C11. (√5+1)π2+2.12. 77813. 914. 5050π,x2100+y299=1或x299+y2100=115. π316. 8517. 解:(1)∵ a4+S4,a5+S5,a6+S6成等差数列,∴ 2(a5+S5)=(a4+S4)+(a6+S6),即2a6−3a5+a4=0,∴ 2q2−3q+1=0,∵ q≠1,∴ q=12,∴ 等比数列{a n}的通项公式为a n=12n.(2)b n=a n+a n+12⋅3n=34⋅(32)n,∴ 数列{b n}为等比数列,∴ T n =34⋅32−(32)n+11−32=94[(32)n −1].18. 解:设AB =c ,AC =b ,BC =a .(1){bccosA =9bcsinA =12⇒tanA =43,sinA =45,cosA =35,bc =15,sinB sinC =cosA ⇒b c =35, 由{bc =15b c =35⇒{b =3c =5,用余弦定理得:a =4…(2)2S △ABC =3x +4y +5z =12⇒x +y +z =125+15(2x +y)设t =2x +y ,{3x +4y ≤12x ≥0y ≥0由线性规划得0≤t ≤8. ∴125≤x +y +z ≤4.…19. (1)连接AC ,AC =√AB 2+BC 2−2AB ⋅BCcos60∘=√16+4−2×4×2×12=2√3, ∴ PC =√AC 2+PA 2=√12+9=√21, ∵ PB =√AB 2+PA 2=√16+9=5, ∴ PC 2+BC 2=PB 2, ∴ PC ⊥BC , ∵ BC // AD , ∴ AD ⊥PC . (2)存在,作DF ⊥PC 与F ,作FE // BC ,交PB 于E ,连接AE ,∵ AD ⊥PC ,DF ⊂平面ADE ,AD ⊂平面ADE ,AD ∩DF =D ,∴ PC⊥平面ADE,PD=√PA2+AD2=√13,PC=√21,CD=AB=4,∴ 在△PDC中,cos∠PDC=2×√13×4=√1313,∴ sin∠PDC=√1−113=√3√13,∴ S△PDC=12PD⋅DC⋅sin∠PDC=12√13×4×√3√13=4√3,∴ DF=2S△PDCPC =√3√21=8√77,∴ PF=√PD2−DF2=√13−647=3√217,∴ PFPC =√217×√21=37,∵ EF // BC,∴ PEPB =PFPC=37.∴ λ=37.20. 解:(1)选购单价10元和15元的纪念品是等可能的,故其概率均为12∴ 该游客只选购了一件纪念品且单价为15元的概率是P=12×12+12×12=12…(2)a:当一处展出1件单价为10元的纪念品,另一处展出另外3件纪念品时P=12×0+1 2×23=13b:当一处展出1件单价为15元的纪念品,另一处展出另外3件纪念品时P=12×1+12×13=23c:当一处展出2件单价为10元的纪念品,另一处展出2件单价为15元的纪念品时P=1 2×0+12×1=12d:当每处各展出一件单价为10元的纪念品和一件单价为15元的纪念品时P=12所以,当一处展出1件单价为15元的纪念品,另一处展出另外3件纪念品时P的值最大,最大值为23…(3)记该游客选购单价为15元的纪念品数为Y,则Y的可能取值为0,1,2.且X=15Y+10(2−Y)=5Y+20P(Y=0)=23×12×12=16,P(Y=1)=13×1+23×(12×12+12×12)=23,P(Y=2)=2 3×12×12=16EY=0×16+1×23+2×16=1,所以随机变量X的分布列为21. 解:(1)设P(x 1, y 1),Q(x 2, y 2),则 k 1+k 2+k 3+k 4=y 1x1+2+y 1x 1−2+y 2x 2+2+y 2x 2−2=2y 1y 1x 12−4+2x 2y 2x 22−4 …又x 12−4=−4y 12,x 22−4=−4y 22,所以k 1+k 2+k 3+k 4=2x 1y 2−4y 12+2x 2y 24y 22=x 22y 2−x 12y 1=y 1x 2−y 2x 12y 1y 2…由k 1+k 2+k 3+k 4=0得y 1x 2−y 2x 1=0 即OP → // OQ →,所以O 、P 、Q 三点共线 …(2)由题意得F 1(√3, 0),F 2(√5, 0),由PF 1 // QF 2知|OP|:|OQ|=√3:√5, 因为O 、P 、Q 三点共线,所以x 12x 22=35…①…设直线PQ 的斜率为k ,则{x 124+k 2x 12=1x 224−k 2x 22=1得(14+k 2)x 12=(14−k 2)x 22,…②由①②得k 2=116…,又k 1k 2=y 12x 12−4=y 12−4y 12=−14,k 3k 4=y 22x 22−4=y 224y 22=14…从而k 12+k 22+k 32+k 42=(k 1+k 2)2+(k 3+k 4)2−2(k 1k 2+k 3k 4)=2(k 1+k 2)2=2×(2x 2y 2−4y 12)2=12×(x 1y 1)2=12×1k 2=8…22. 解:(1)a =12时,f(x)=x(e x −1)−12x 2,f′(x)=(e x −1)+xe x −x =(e x −1)(x +1),则当x ∈(−∞, −1)时,f′(x)>0, 当x ∈(−1, 0)时,f′(x)<0, 当x ∈(0, +∞)时,f′(x)>0,故f(x)在(−∞, −1),(0, +∞)上单调递增,在(−1, 0)上单调递减;(2)f(x)=x(e x −1−ax),令g(x)=e x −1−ax ,g′(x)=e x −a , 若a ≤1,则g(x)在[0, +∞)上是增函数, 而g(0)=0,从而f(x)≥0;若a >1,则g(x)在(0, lna)上是减函数, 且g(0)=0,故当x ∈(0, lna)时,f(x)<0; 综上可得,a 的取值范围为(−∞, 1];(3)证明:①当n =1时,令ℎ(x)=e x −x −1, ℎ′(x)=e x −1>0,ℎ(0)=0; 故ℎ(x)>ℎ(0)=0, 故e x >x +1;②假设当n=k时不等式成立,即e x>1+x1!+x22!+...+x kk!,当n=k+1时,令m(x)=e x−(1+x1!+x22!+...+x kk!+x k+1(k+1)!),显然m(0)=0,m′(x)=e x−(1+x1!+x22!+...+x kk!)>0,故m(x)>m(0)=0,即e x>1+x1!+x22!+...+x kk!+x k+1(k+1)!成立,综上所述,e x>1+x1!+x22!+...+x nn!.。

2014年全国高考理科数学试题分类汇编七、排列组合和二项式定理(逐题详解)

2014年全国高考理科数学试题分类汇编七、排列组合和二项式定理(逐题详解)

2
A.60 种 B.70 种 C.75 种 D.150 种
【答案】C
【解析】根据题意,先从 6 名男医生中选 2 人,有 C62=15 种选法, 再从 5 名女医生中选出 1 人,有 C51=5 种选法, 则不同的选法共有 15×5=75 种;故选 C
(2x 7.【2014 年湖北卷(理 02)】若二项式
而红球篮球是无区别,黑球是有区别的, 根据分布计数原理,第一步取红球,红球的取法有(1+a+a2+a3+a4+a5), 第二步取蓝球,有(1+b5), 第三步取黑球,有(1+c)5, 所以所有的蓝球都取出或都不取出的所有取法有(1+a+a2+a3+a4+a5)(1+b5)(1+c)5,
4.【2014
D.210 =20.f(3,0)=20;
含 x2y1 的系数是
=60,f(2,1)=60;
含 x1y2 的系数是
=36,f(1,2)=36;
含 x0y3 的系数是
=4,f(0,3)=4;
∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=120.故选:C
11.【2014 年浙江卷(理 14)】在 8 张奖券中有一、二、三等奖各 1 张,其余 5 张无奖.将这 8 张奖券分配给 4 个人,每人 2 张,不同的获奖情况有_____种(用数字作答).
不同的摆法有_______种.
【答案】36 【解析】根据题意,分 3 步进行分析: ①、产品 A 与产品 B 相邻,将 AB 看成一个整体,考虑 AB 之间的顺序,有 A22=2 种情况, ②、将 AB 与剩余的 2 件产品全排列,有 A33=6 种情况, ③、产品 A 与产品 C 不相邻,C 有 3 个空位可选,即有 3 种情况, 故不同的摆法有 12×3=36 种

2014年(大纲全国卷)数学(理科) 高考真题及答案解析

2014年(大纲全国卷)数学(理科) 高考真题及答案解析

函数是( ).
A.y=g(x) B.y=g(-x) C.y=-g(x) D.y=-g(-x)
【答案】D
【解析】因为函数 y=f(x)的图像与函数 y=g(x)的图像关于直线 x+y=0 对称,
而函数图像与其反函数的图像关于直线 y=x 对称,
所以这两个函数的反函数图像也关于直线 x+y=0 对称.
设函数 y=f(x)的反函数图像上任一点 P(x,y),
62

.
【答案】(-∞,2]
4
【解析】f(x)=cos 2x+asin x=1-2sin2x+asin x.
令 t=sin x,∵x∈
π,π
62
,∴t∈
1 2
,1
,
∴g(t)=1-2t2+at=-2t2+at+1
1 2
<
t
<
1
,
由题意知2×(-2)

1 ,∴a≤2,
2
∴a 的取值范围为(-∞,2].
11.(2014 大纲全国,理 11)已知二面角α-l-β为 60°,AB⊂α,AB⊥l,A 为垂足,CD⊂β,C∈l,∠ACD=135°,则
异面直线 AB 与 CD 所成角的余弦值为( ).
A.1
B. 2
C. 3
D.1
4
4
4
2
【答案】B
【解析】如图,在平面α内过 C 作 CE∥AB,
则∠ECD 为异面直线 AB 与 CD 所成的角或其补角,
【答案】C
【解析】∵a=sin 33°,b=cos 55°=sin 35°,c=tan 35°=csoins3355°°, ∴csoins3355°°>sin 35°>sin 33°. ∴c>b>a,选 C.

2014年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2014年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2014年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题,每小题5分)1.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2)B.[﹣1,1]C.[﹣1,2)D.[﹣2,﹣1]2.(5分)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数4.(5分)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A .B.3C .m D.3m5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A .B .C .D .6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A .B .C.D.7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A .B .C .D.8.(5分)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=9.(5分)不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p310.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A .B.3C .D.211.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A .(1,+∞)B .(2,+∞)C .(﹣∞,﹣1)D .(﹣∞,﹣2)12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A .6B .6C .4D .4二、填空题(共4小题,每小题5分)13.(5分)(x ﹣y )(x +y )8的展开式中x 2y 7的系数为.(用数字填写答案)14.(5分)甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)已知A ,B ,C 为圆O 上的三点,若=(+),则与的夹角为.16.(5分)已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,a=2且(2+b )(sinA ﹣sinB )=(c ﹣b )sinC ,则△ABC 面积的最大值为.三、解答题17.(12分)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n ﹣1,其中λ为常数.(Ⅰ)证明:a n +2﹣a n =λ(Ⅱ)是否存在λ,使得{a n }为等差数列?并说明理由.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s 2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z 服从正态分布N (μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s 2.(i )利用该正态分布,求P (187.8<Z <212.2);(ii )某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i )的结果,求EX .附:≈12.2.若Z ~N (μ,σ2)则P (μ﹣σ<Z <μ+σ)=0.6826,P (μ﹣2σ<Z <μ+2σ)=0.9544.19.(12分)如图,三棱柱ABC ﹣A 1B 1C 1中,侧面BB 1C 1C 为菱形,AB ⊥B 1C .(Ⅰ)证明:AC=AB 1;(Ⅱ)若AC ⊥AB 1,∠CBB 1=60°,AB=BC ,求二面角A ﹣A 1B 1﹣C 1的余弦值.20.(12分)已知点A(0,﹣2),椭圆E :+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF 的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.21.(12分)设函数f(x)=ae x lnx +,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.选修4-4:坐标系与参数方程23.已知曲线C :+=1,直线l :(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.2014年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分)1.【考点】集及其运算.【分析】求出A中不等式的解集确定出A,找出A与B的交集即可.【解答】解:由A中不等式变形得:(x﹣3)(x+1)≥0,解得:x≥3或x≤﹣1,即A=(﹣∞,﹣1]∪[3,+∞),∵B=[﹣2,2),∴A∩B=[﹣2,﹣1].故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.【考点】复数的运算.【分析】由条件利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.【解答】解:==﹣(1+i)=﹣1﹣i,故选:D.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.3.【考点】函数奇偶性的性质与判断.【分析】根据函数奇偶性的性质即可得到结论.【解答】解:∵f(x)是奇函数,g(x)是偶函数,∴f(﹣x)=﹣f(x),g(﹣x)=g(x),f(﹣x)•g(﹣x)=﹣f(x)•g(x),故函数是奇函数,故A错误,|f(﹣x)|•g(﹣x)=|f(x)|•g(x)为偶函数,故B错误,f(﹣x)•|g(﹣x)|=﹣f(x)•|g(x)|是奇函数,故C正确.|f(﹣x)•g(﹣x)|=|f(x)•g(x)|为偶函数,故D错误,故选:C.【点评】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.4.【考点】双曲线的性质.【分析】双曲线方程化为标准方程,求出焦点坐标,一条渐近线方程,利用点到直线的距离公式,可得结论.【解答】解:双曲线C:x2﹣my2=3m(m>0)可化为,∴一个焦点为(,0),一条渐近线方程为=0,∴点F到C 的一条渐近线的距离为=.故选:A.【点评】本题考查双曲线的方程与性质,考查点到直线的距离公式,属于基础题.5.【考点】等可能事件和等可能事件的概率.【分析】求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.【解答】解:4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为=.故选:D.【点评】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.6.【考点】抽象函数及其应用.【分析】在直角三角形OMP中,求出OM,注意长度、距离为正,再根据直角三角形的锐角三角函数的定义即可得到f(x)的表达式,然后化简,分析周期和最值,结合图象正确选择.【解答】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx|•|sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选:C.【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.7.【考点】程序框图.【分析】根据框图的流程模拟运行程序,直到不满足条件,计算输出M的值.【解答】解:由程序框图知:第一次循环M=1+=,a=2,b=,n=2;第二次循环M=2+=,a=,b=,n=3;第三次循环M=+=,a=,b=,n=4.不满足条件n≤3,跳出循环体,输出M=.故选:D.【点评】本题考查了当型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.8.【考点】三角函数的恒等变换及化简求值.【分析】化切为弦,整理后得到sin(α﹣β)=cosα,由该等式左右两边角的关系可排除选项A,B,然后验证C满足等式sin(α﹣β)=cosα,则答案可求.【解答】解:由tanα=,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα=sin (),∵α∈(0,),β∈(0,),∴当时,sin(α﹣β)=sin ()=cosα成立.故选:C.【点评】本题考查三角函数的化简求值,训练了利用排除法及验证法求解选择题,是基础题.9.【考点】命题的真假判断与应用;7A:二元一次不等式的几何意义.【分析】作出不等式组的表示的区域D,对四个选项逐一分析即可.【解答】解:作出图形如下:由图知,区域D为直线x+y=1与x﹣2y=4相交的上部角型区域,p1:区域D在x+2y≥﹣2区域的上方,故:∀(x,y)∈D,x+2y≥﹣2成立;p2:在直线x+2y=2的右上方和区域D重叠的区域内,∃(x,y)∈D,x+2y≥2,故p2:∃(x,y)∈D,x+2y≥2正确;p3:由图知,区域D有部分在直线x+2y=3的上方,因此p3:∀(x,y)∈D,x+2y≤3错误;p4:x+2y≤﹣1的区域(左下方的虚线区域)恒在区域D下方,故p4:∃(x,y)∈D,x+2y≤﹣1错误;综上所述,p1、p2正确;故选:C.【点评】本题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于难题.10.【考点】抛物线的性质.【分析】求得直线PF的方程,与y2=8x联立可得x=1,利用|QF|=d可求.【解答】解:设Q到l的距离为d,则|QF|=d,∵=4,∴|PQ|=3d,∴不妨设直线PF 的斜率为﹣=﹣2,∵F(2,0),∴直线PF的方程为y=﹣2(x﹣2),与y2=8x联立可得x=1,∴|QF|=d=1+2=3,故选:B.【点评】本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.11.【考点】函数的零点与方程根的关系.【分析】由题意可得f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;分类讨论确定函数的零点的个数及位置即可.【解答】解:∵f(x)=ax3﹣3x2+1,∴f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;①当a=0时,f(x)=﹣3x2+1有两个零点,不成立;②当a>0时,f(x)=ax3﹣3x2+1在(﹣∞,0)上有零点,故不成立;③当a<0时,f(x)=ax3﹣3x2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3﹣3x2+1在(﹣∞,0)上没有零点;而当x=时,f(x)=ax3﹣3x2+1在(﹣∞,0)上取得最小值;故f ()=﹣3•+1>0;故a<﹣2;综上所述,实数a的取值范围是(﹣∞,﹣2);故选:D.【点评】本题考查了导数的综合应用及分类讨论的思想应用,同时考查了函数的零点的判定的应用,属于基础题.12.【考点】由三视图求面积、体积.【分析】画出图形,结合三视图的数据求出棱长,推出结果即可.【解答】解:几何体的直观图如图:AB=4,BD=4,C到BD的中点的距离为:4,∴.AC==6,AD=4,显然AC最长.长为6.故选:B.【点评】本题考查三视图求解几何体的棱长,考查计算能力.二、填空题(共4小题,每小题5分)13.﹣20.【考点】二项式定理.【分析】由题意依次求出(x+y)8中xy7,x2y6,项的系数,求和即可.【解答】解:(x+y)8的展开式中,含xy7的系数是:8.含x2y6的系数是28,∴(x﹣y)(x+y)8的展开式中x2y7的系数为:8﹣28=﹣20.故答案为:﹣20【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.14.A.【考点】进行简单的合情推理.【分析】可先由乙推出,可能去过A城市或B城市,再由甲推出只能是A,B中的一个,再由丙即可推出结论.【解答】解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A.故答案为:A.【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.15.90°.【考点】数量积表示两个向量的夹角.【分析】根据向量之间的关系,利用圆直径的性质,即可得到结论.【解答】解:在圆中若=(+),即2=+,即+的和向量是过A,O的直径,则以AB,AC为邻边的四边形是矩形,则⊥,即与的夹角为90°,故答案为:90°【点评】本题主要考查平面向量的夹角的计算,利用圆直径的性质是解决本题的关键,比较基础.16..【考点】HP:正弦定理;HR:余弦定理.【分析】由正弦定理化简已知可得2a﹣b2=c2﹣bc,结合余弦定理可求A的值,由基本不等式可求bc ≤4,再利用三角形面积公式即可计算得解.【解答】解:因为:(2+b)(sinA﹣sinB)=(c﹣b)sinC⇒(2+b)(a﹣b)=(c﹣b)c⇒2a﹣2b+ab﹣b2=c2﹣bc,又因为:a=2,所以:,△ABC 面积,而b2+c2﹣a2=bc⇒b2+c2﹣bc=a2⇒b2+c2﹣bc=4⇒bc≤4所以:,即△ABC面积的最大值为.故答案为:.【点评】本题主要考查了正弦定理,余弦定理,基本不等式,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.三、解答题17.【解答】(Ⅰ)证明:∵a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,∴a n+1(a n+2﹣a n)=λa n+1∵a n+1≠0,∴a n+2﹣a n=λ.(Ⅱ)解:假设存在λ,使得{a n}为等差数列,设公差为d.则λ=a n+2﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,∴.∴,,∴λS n=1+=,根据{a n }为等差数列的充要条件是,解得λ=4.此时可得,a n=2n﹣1.因此存在λ=4,使得{a n}为等差数列.【点评】本题考查了递推式的意义、等差数列的通项公式及其前n项和公式、等差数列的充要条件等基础知识与基本技能方法,考查了推理能力和计算能力、分类讨论的思想方法,属于难题.18.【解答】解:(Ⅰ)抽取产品的质量指标值的样本平均数和样本方差s2分别为:=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(﹣30)2×0.02+(﹣20)2×0.09+(﹣10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而P(187.8<Z<212.2)=P(200﹣12.2<Z<200+12.2)=0.6826;(ii)由(i)知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知X~B(100,0.6826),所以EX=100×0.6826=68.26.【点评】本题主要考查离散型随机变量的期望和方差,以及正态分布的特点及概率求解,考查运算能力.19.【解答】解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO⊂平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O 为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y 轴的正方向,的方向为z轴的正方向建立空间直角坐标系,∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC,∴A(0,0,),B(1,0,0,),B1(0,,0),C(0,,0)∴=(0,,),==(1,0,),==(﹣1,,0),设向量=(x,y,z)是平面AA1B1的法向量,则,可取=(1,,),同理可得平面A1B1C1的一个法向量=(1,﹣,),∴cos <,>==,∴二面角A﹣A1B1﹣C1的余弦值为【点评】本题考查空间向量法解决立体几何问题,建立坐标系是解决问题的关键,属中档题.20.【解答】解:(Ⅰ)设F(c,0),由条件知,得又,所以a=2,b2=a2﹣c2=1,故E 的方程.….(5分)(Ⅱ)依题意当l⊥x轴不合题意,故设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,得(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0,即时,从而又点O到直线PQ 的距离,所以△OPQ的面积=,设,则t>0,,当且仅当t=2,k=±等号成立,且满足△>0,所以当△OPQ的面积最大时,l的方程为:y=x﹣2或y=﹣x﹣2.…(12分)【点评】本题考查直线与椭圆的位置关系的应用,椭圆的求法,基本不等式的应用,考查转化思想以及计算能力.21.【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=+,由题意可得f(1)=2,f′(1)=e,故a=1,b=2;(Ⅱ)由(Ⅰ)知,f(x)=e x lnx +,∵f(x)>1,∴e x lnx+>1,∴lnx >﹣,∴f(x)>1等价于xlnx>xe﹣x ﹣,设函数g(x)=xlnx,则g′(x)=1+lnx,∴当x∈(0,)时,g′(x)<0;当x∈(,+∞)时,g′(x)>0.故g(x)在(0,)上单调递减,在(,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g ()=﹣.设函数h(x)=xe﹣x ﹣,则h′(x)=e﹣x(1﹣x).∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=﹣.综上,当x>0时,g(x)>h(x),即f(x)>1.【点评】本题考查导数的几何意义、利用导数求函数的最值、证明不等式等,考查转化思想,考查学生分析解决问题的能力.选修4-1:几何证明选讲22.【解答】证明:(Ⅰ)∵四边形ABCD是⊙O的内接四边形,∴∠D=∠CBE,∵CB=CE,∴∠E=∠CBE,∴∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,∴O在直线MN上,∵AD不是⊙O的直径,AD的中点为M,∴OM⊥AD,∴AD∥BC,∴∠A=∠CBE,∵∠CBE=∠E,∴∠A=∠E,由(Ⅰ)知,∠D=∠E,∴△ADE为等边三角形.【点评】本题考查圆的内接四边形性质,考查学生分析解决问题的能力,属于中档题.选修4-4:坐标系与参数方程23.【解答】解:(Ⅰ)对于曲线C :+=1,可令x=2cosθ、y=3sinθ,故曲线C 的参数方程为,(θ为参数).对于直线l :,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l 的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA |取得最大值,最大值为.当sin(θ+α)=1时,|PA |取得最小值,最小值为.【点评】本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.选修4-5:不等式选讲24.【解答】解:(Ⅰ)∵a>0,b>0,且+=,∴=+≥2,∴ab≥2,当且仅当a=b=时取等号.∵a3+b3≥2≥2=4,当且仅当a=b=时取等号,∴a3+b3的最小值为4.关注公众号:麦田笔墨获取更多干货第11页(共11页)(Ⅱ)∵2a +3b ≥2=2,当且仅当2a=3b 时,取等号.而由(1)可知,2≥2=4>6,故不存在a ,b ,使得2a +3b=6成立.【点评】本题主要考查基本不等式在最值中的应用,要注意检验等号成立条件是否具备,属于基础题.。

2014年高考真题——理科数学(全国大纲卷)解析版 Word版含解析

2014年高考真题——理科数学(全国大纲卷)解析版 Word版含解析

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.设103i z i=+,则z 的共轭复数为 ( )A .13i -+B .13i --C .13i +D .13i -2.设集合2{|340}M x x x =--<,{|05}N x x =≤≤,则M N =I ( )A .(0,4]B .[0,4)C .[1,0)-D .(1,0]-3.设sin 33,cos55,tan 35,a b c =︒=︒=︒则 ( )A .a b c >>B .b c a >>C .c b a >>D .c a b >>4.若向量,a b r r 满足:()()1,,2,a a b a a b b =+⊥+⊥r r r r r r r 则b =r ( )A .2B .2C .1D .225.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种6.已知椭圆C :22221x y a b +=(0)a b >>的左、右焦点为1F 、2F 3,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为43C 的方程为 ( )A .22132x y +=B .2213x y +=C .221128x y +=D .221124x y +=7.曲线1x y xe-=在点(1, 1)处切线的斜率等于( ) A .2e B .e C .2 D .18.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为 ( )A .814πB .16πC .9πD .274π 【答案】A .【解析】考点:1.球的内接正四棱锥问题;2. 球的表面积的计算.9.已知双曲线C 的离心率为2,焦点为1F 、2F ,点A 在C 上,若122F A F A =,则21cos AF F ∠=( )A .14B .13C .24D .23 10.等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于 ( )图2A .6B .5C .4D .311.已知二面角l αβ--为60︒,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,135ACD ∠=︒,则异面直线AB 与CD 所成角的余弦值为 ( )A .14B 2C 3D .12【答案】B.【解析】12.函数()y f x =的图象与函数()y g x =的图象关于直线0x y +=对称,则()y f x =的反函数是( )A .()y g x =B .()y g x =-C .()y g x =-D .()y g x =--第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 8y x 的展开式中22x y 的系数为 . 【答案】70.14.设,x y 满足约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则4z x y =+的最大值为.15.直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为()1,3,则1l 与2l 的夹角的正切值等于 .2l的夹角的正切值:12124 tan13k kk kθ-==+.考点:1.直线与圆的位置关系(相切);2.两直线的夹角公式.16.若函数()cos2sinf x x a x=+在区间(,)62ππ是减函数,则a的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)ABC∆的内角A,B,C的对边分别为a,b,c,已知3cos2cosa C c A=,1tan3A=,求B.18. (本小题满分12分)等差数列{}na的前n项和为nS,已知110a=,2a为整数,且4nS S≤.(I )求{}n a 的通项公式; (II )设11n n n b a a +=,求数列{}n b 的前n 项和n T . 19. (本小题满分12分) 如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D 在AC 上,090ACB ∠=,11,2BC AC CC ===. (I )证明:11AC A B ⊥; (II )设直线1AA 与平面11BCC B 31A AB C --的大小.20. (本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(I)求同一工作日至少3人需使用设备的概率;(II)X表示同一工作日需使用设备的人数,求X的数学期望.21.(本小题满分12分)已知抛物线C :22(0)y px p =>的焦点为F ,直线4y =与y 轴的交点为P ,与C 的交点为Q ,且5||||4QF PQ =. (I )求C 的方程;(II )过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l '与C 相较于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.【答案】(I )24y x =;(II )直线l 的方程为10x y --=或10x y +-=.22. (本小题满分12分)函数()()()ln 11ax f x x a x a=+->+. (I )讨论()f x 的单调性;(II )设111,ln(1)n n a a a +==+,证明:23+22n a n n <≤+. 【答案】(I )(i )当12a <<时,()f x 在()21,2a a --上是增函数,在()22,0a a -上是减函数,在()0,+∞上是增函数;(ii )当2a =时,()f x 在()1,-+?上是增函数;(iii )当2a >时,()f x 在是()1,0-上是增函数,在()20,2a a -上是减函数,在()22,a a -+∞上是增函数;(II)详见试题分析.1n k=+时有2333kak k<?++,结论成立.根据(i)、(ii)知对任何n N*Î结论都成立.考点:1.利用导数研究函数的单调性;2.利用数学归纳法证明数列不等式.。

2014年全国统一高考数学试卷(理科)及答案

2014年全国统一高考数学试卷(理科)及答案

2014年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题,每小题5分)1.(5分)(2014•河南)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[﹣2,﹣1]B.[﹣1,2)C.[﹣1,1]D.[1,2)2.(5分)(2014•河南)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i3.(5分)(2014•河南)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数4.(5分)(2014•河南)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m5.(5分)(2014•河南)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.6.(5分)(2014•河南)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.7.(5分)(2014•河南)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.8.(5分)(2014•河南)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=9.(5分)(2014•河南)不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3 p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p310.(5分)(2014•河南)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.211.(5分)(2014•河南)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(2,+∞)B.(1,+∞)C.(﹣∞,﹣2)D.(﹣∞,﹣1)12.(5分)(2014•河南)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4二、填空题(共4小题,每小题5分)13.(5分)(2014•河南)(x﹣y)(x+y)8的展开式中x2y7的系数为_________.(用数字填写答案)14.(5分)(2014•河南)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为_________.15.(5分)(2014•河南)已知A,B,C为圆O上的三点,若=(+),则与的夹角为_________.16.(5分)(2014•河南)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为_________.三、解答题17.(12分)(2014•河南)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.(Ⅰ)证明:a n+2﹣a n=λ(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.18.(12分)(2014•河南)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z﹣N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.19.(12分)(2014•河南)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.20.(12分)(2014•河南)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的动直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.21.(12分)(2014•河南)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.四、选做题(22-24题任选一题作答,如果多做,则按所做的第一题计分)选修4-1:集合证明选讲22.(10分)(2014•河南)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.选修4-4:坐标系与参数方程23.(2014•河南)已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.选修4-5:不等式选讲24.(2014•河南)若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.2014年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分)1.(5分)(2014•河南)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[﹣2,﹣1]B.[﹣1,2)C.[﹣1,1]D.[1,2)考点:交集及其运算.专题:集合.分析:根据集合的基本运算即可得到结论.解答:解:A={x|x2﹣2x﹣3≥0}={x|x≥3或x≤﹣1},B={x|﹣2≤x<2},则A∩B={x|﹣2≤x≤﹣1},故选:A点评:本题主要考查集合的基本运算,比较基础.2.(5分)(2014•河南)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由条件利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.解答:解:==﹣(1+i)=﹣1﹣i,故选:D.点评:本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.3.(5分)(2014•河南)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数考点:函数奇偶性的判断;函数的定义域及其求法.专题:函数的性质及应用.分析:由题意可得,|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,从而得出结论.解答:解:∵f(x)是奇函数,g(x)是偶函数,∴|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,可得f(x)|g(x)|为奇函数,故选:C.点评:本题主要考查函数的奇偶性,注意利用函数的奇偶性规律,属于基础题.4.(5分)(2014•河南)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:双曲线方程化为标准方程,求出焦点坐标,一条渐近线方程,利用点到直线的距离公式,可得结论.解答:解:双曲线C:x2﹣my2=3m(m>0)可化为,∴一个焦点为(,0),一条渐近线方程为=0,∴点F到C 的一条渐近线的距离为=.故选:A.点评:本题考查双曲线的方程与性质,考查点到直线的距离公式,属于基础题.5.(5分)(2014•河南)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.考点:等可能事件的概率.专题:计算题;概率与统计.分析:求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.解答:解:4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为=.故选:D.点评:本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.6.(5分)(2014•河南)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x 的始边为射线OA,终边为射线OP,过点P 做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x 的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.考点:抽象函数及其应用.专题:三角函数的图像与性质.分析:在直角三角形OMP中,求出OM,注意长度、距离为正,再根据直角三角形的锐角三角函数的定义即可得到f(x)的表达式,然后化简,分析周期和最值,结合图象正确选择.解答:解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx|•|sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选C.点评:本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.7.(5分)(2014•河南)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.考点:程序框图.专题:概率与统计.分析:根据框图的流程模拟运行程序,直到不满足条件,计算输出M的值.解答:解:由程序框图知:第一次循环M=1+=,a=2,b=,n=2;第二次循环M=2+=,a=,b=,n=3;第三次循环M=+=,a=,b=,n=4.不满足条件n≤3,跳出循环体,输出M=.故选:D.点评:本题考查了当型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.8.(5分)(2014•河南)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=考点:三角函数的化简求值.专题:三角函数的求值.分析:化切为弦,整理后得到sin(α﹣β)=cosα,由该等式左右两边角的关系可排除选项A,B,然后验证C满足等式sin(α﹣β)=cosα,则答案可求.解答:解:由tanα=,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα.由等式右边为单角α,左边为角α与β的差,可知β与2α有关.排除选项A,B后验证C,当时,sin(α﹣β)=sin()=cosα成立.故选:C.点评:本题考查三角函数的化简求值,训练了利用排除法及验证法求解选择题,是基础题.9.(5分)(2014•河南)不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3 p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p3考点:命题的真假判断与应用.专题:不等式的解法及应用.分析:作出不等式组的表示的区域D,对四个选项逐一分析即可.解答:解:作出图形如下:由图知,区域D为直线x+y=1与x﹣2y=4相交的上部角型区域,显然,区域D在x+2y≥﹣2 区域的上方,故A:∀(x,y)∈D,x+2y≥﹣2成立;在直线x+2y=2的右上方区域,:∃(x,y)∈D,x+2y≥2,故p2:∃(x,y)∈D,x+2y≥2正确;由图知,p3:∀(x,y)∈D,x+2y≤3错误;x+2y≤﹣1的区域(左下方的虚线区域)恒在区域D下方,故p4:∃(x,y)∈D,x+2y≤﹣1错误;综上所述,p1、p2正确;故选:C.点评:本题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于难题.10.(5分)(2014•河南)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.2考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:求得直线PF的方程,与y2=8x联立可得x=1,利用|QF|=d可求.解答:解:设Q到l的距离为d,则|QF|=d,∵=4,∴|PQ|=3d,∴直线PF的斜率为﹣2,∵F(2,0),∴直线PF的方程为y=﹣2(x﹣2),与y2=8x联立可得x=1,∴|QF|=d=1+2=3,故选:B.点评:本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.11.(5分)(2014•河南)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(2,+∞)B.(1,+∞)C.(﹣∞,﹣2)D.(﹣∞,﹣1)考点:函数在某点取得极值的条件;函数的零点.专题:导数的综合应用.分析:分类讨论:当a≥0时,容易判断出不符合题意;当a<0时,由于而f(0)=1>0,x→+∞时,f(x)→﹣∞,可知:存在x0>0,使得f(x0)=0,要使满足条件f(x)存在唯一的零点x0,且x0>0,则必须极小值>0,解出即可.解答:解:当a=0时,f(x)=﹣3x2+1=0,解得x=,函数f(x)有两个零点,不符合题意,应舍去;当a>0时,令f′(x)=3ax2﹣6x=3ax=0,解得x=0或x=>0,列表如下:x (﹣∞,0)0f′(x)+0 ﹣0 +f(x)单调递增极大值单调递减极小值单调递增∵x→+∞,f(x)→+∞,而f(0)=1>0,∴存在x<0,使得f(x)=0,不符合条件:f(x)存在唯一的零点x0,且x0>0,应舍去.当a<0时,f′(x)=3ax2﹣6x=3ax=0,解得x=0或x=<0,列表如下:0 (0,+∞)x(﹣∞,)f′(x)﹣0 + 0 ﹣f(x)单调递减极小值单调递增极大值单调递减而f(0)=1>0,x→+∞时,f(x)→﹣∞,∴存在x0>0,使得f(x0)=0,∵f(x)存在唯一的零点x0,且x0>0,∴极小值=,化为a2>4,∵a<0,∴a<﹣2.综上可知:a的取值范围是(﹣∞,﹣2).故选:C.点评:本题考查了利用导数研究函数的单调性极值与最值、分类讨论的思想方法,考查了推理能力和计算能力,属于难题.12.(5分)(2014•河南)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:画出图形,结合三视图的数据求出棱长,推出结果即可.解答:解:几何体的直观图如图:AB=4,BD=4,C到BD的中点的距离为:4,∴.AC==6,AD=4,显然AC最长.长为6.故选:B.点评:本题考查三视图求解几何体的棱长,考查计算能力.二、填空题(共4小题,每小题5分)13.(5分)(2014•河南)(x﹣y)(x+y)8的展开式中x2y7的系数为﹣20.(用数字填写答案)考点:二项式定理的应用;二项式系数的性质.专题:二项式定理.分析:由题意依次求出(x+y)8中xy7,x2y6,项的系数,求和即可.解答:解:(x+y)8的展开式中,含xy7的系数是:=8.含x2y6的系数是=28,∴(x﹣y)(x+y)8的展开式中x2y7的系数为:8﹣28=﹣20.故答案为:﹣20点评:本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.14.(5分)(2014•河南)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为A.考点:进行简单的合情推理.专题:推理和证明.分析:可先由乙推出,可能去过A城市或B城市,再由甲推出只能是A,B中的一个,再由丙即可推出结论.解答:解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A.故答案为:A.点评:本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.15.(5分)(2014•河南)已知A,B,C为圆O上的三点,若=(+),则与的夹角为90°.考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:根据向量之间的关系,利用圆直径的性质,即可得到结论.解答:解:在圆中若=(+),即2=+,即+的和向量是过A,O的直径,则以AB,AC为临边的四边形是矩形,则⊥,即与的夹角为90°,故答案为:90°点评:本题主要考查平面向量的夹角的计算,利用圆直径的性质是解决本题的关键,比较基础.16.(5分)(2014•河南)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.考点:正弦定理.专题:解三角形.分析:由条件利用正弦定理可得b2+c2﹣bc=4.再利用基本不等式可得bc≤4,当且仅当b=c=2时,取等号,此时,△ABC为等边三角形,从而求得它的面积的值.解答:解:△ABC中,∵a=2,且(2+b)(sinA﹣sinB)=(c﹣b)sinC,∴利用正弦定理可得4﹣b2=(c﹣b)c,即b2+c2﹣bc=4.再利用基本不等式可得4≥2bc﹣bc=bc,∴bc≤4,当且仅当b=c=2时,取等号,此时,△ABC为等边三角形,它的面积为==,故答案为:.点评:本题主要考查正弦定理的应用,基本不等式,属于中档题.三、解答题17.(12分)(2014•河南)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.(Ⅰ)证明:a n+2﹣a n=λ(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.考点:数列递推式;等差关系的确定.专题:等差数列与等比数列.分析:(Ⅰ)利用a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,相减即可得出;(Ⅱ)对λ分类讨论:λ=0直接验证即可;λ≠0,假设存在λ,使得{a n}为等差数列,设公差为d.可得λ=a n+2﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,.得到λS n=,根据{a n}为等差数列的充要条件是,解得λ即可.解答:(Ⅰ)证明:∵a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,∴a n+1(a n+2﹣a n)=λa n+1∵a n+1≠0,∴a n+2﹣a n=λ.(Ⅱ)解:①当λ=0时,a n a n+1=﹣1,假设{a n}为等差数列,设公差为d.则a n+2﹣a n=0,∴2d=0,解得d=0,∴a n=a n+1=1,∴12=﹣1,矛盾,因此λ=0时{a n}不为等差数列.②当λ≠0时,假设存在λ,使得{a n}为等差数列,设公差为d.则λ=a n+2﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,∴.∴,,∴λS n=1+=,根据{a n}为等差数列的充要条件是,解得λ=4.此时可得,a n=2n﹣1.因此存在λ=4,使得{a n}为等差数列.点评:本题考查了递推式的意义、等差数列的通项公式及其前n项和公式、等差数列的充要条件等基础知识与基本技能方法,考查了推理能力和计算能力、分类讨论的思想方法,属于难题.18.(12分)(2014•河南)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z﹣N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.考点:正态分布曲线的特点及曲线所表示的意义;离散型随机变量的期望与方差.专题:计算题;概率与统计.分析:(Ⅰ)运用离散型随机变量的期望和方差公式,即可求出;(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而求出P(187.8<Z<212.2),注意运用所给数据;(ii)由(i)知X~B(100,0.6826),运用EX=np即可求得.解答:解:(Ⅰ)抽取产品的质量指标值的样本平均数和样本方差s2分别为:=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(﹣30)2×0.02+(﹣20)2×0.09+(﹣10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而P(187.8<Z<212.2)=P(200﹣12.2<Z<200+12.2)=0.6826;(ii)由(i)知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知X~B(100,0.6826),所以EX=100×0.6826=68.26.点评:本题主要考查离散型随机变量的期望和方差,以及正态分布的特点及概率求解,考查运算能力.19.(12分)(2014•河南)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.考点:用空间向量求平面间的夹角;空间向量的夹角与距离求解公式.专题:空间向量及应用.分析:(1)连结BC1,交B1C于点O,连结AO,可证B1C⊥平面ABO,可得B1C⊥AO,B10=CO,进而可得AC=AB1;(2)以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值.解答:解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO⊂平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC,∴A(0,0,),B(1,0,0,),B1(0,,0),C(0,,0)∴=(0,,),==(1,0,),==(﹣1,,0),设向量=(x,y,z)是平面AA1B1的法向量,则,可取=(1,,),同理可得平面A1B1C1的一个法向量=(1,﹣,),∴cos<,>==,∴二面角A﹣A1B1﹣C1的余弦值为点评:本题考查空间向量法解决立体几何问题,建立坐标系是解决问题的关键,属中档题.20.(12分)(2014•河南)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的动直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)设F(c,0),利用直线的斜率公式可得,可得c.又,b2=a2﹣c2,即可解得a,b;(Ⅱ)设P(x1,y1),Q(x2,y2).由题意可设直线l的方程为:y=kx﹣2.与椭圆的方程联立可得根与系数的关系,再利用弦长公式、点到直线的距离公式、三角形的面积计算公式即可得出S△OPQ.通过换元再利用基本不等式的性质即可得出.解答:解:(Ⅰ)设F(c,0),∵直线AF的斜率为,∴,解得c=.又,b2=a2﹣c2,解得a=2,b=1.∴椭圆E的方程为;(Ⅱ)设P(x1,y1),Q(x2,y2).由题意可设直线l的方程为:y=kx﹣2.联立,化为(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0时,即时,,.∴|PQ|===,点O到直线l的距离d=.∴S△OPQ==,设>0,则4k2=t2+3,∴==1,当且仅当t=2,即,解得时取等号.满足△>0,∴△OPQ的面积最大时直线l的方程为:.点评:本题综合考查了椭圆的标准方程及其性质、斜率计算公式、椭圆的方程联立可得根与系数的关系、弦长公式、点到直线的距离公式、三角形的面积计算公式、基本不等式的性质等基础知识与基本技能方法,考查了推理能力和计算能力,考查了换元法和转化方法,属于难题.21.(12分)(2014•河南)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x ﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.考点:导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.专题:综合题;导数的综合应用.分析:(Ⅰ)求出定义域,导数f′(x),根据题意有f(1)=2,f′(1)=e,解出即可;(Ⅱ)由(Ⅰ)知,f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,函数h(x)=,只需证明g(x)min>h(x)max,利用导数可分别求得g(x)min,h(x)max;解答:解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=+,由题意可得f(1)=2,f′(1)=e,故a=1,b=2;(Ⅱ)由(Ⅰ)知,f(x)=e x lnx+,从而f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,则g′(x)=1+lnx,∴当x∈(0,)时,g′(x)<0;当x∈(,+∞)时,g′(x)>0.故g(x)在(0,)上单调递减,在(,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g()=﹣.设函数h(x)=,则h′(x)=e﹣x(1﹣x).∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=﹣.综上,当x>0时,g(x)>h(x),即f(x)>1.点评:本题考查导数的几何意义、利用导数求函数的最值、证明不等式等,考查转化思想,考查学生分析解决问题的能力.四、选做题(22-24题任选一题作答,如果多做,则按所做的第一题计分)选修4-1:集合证明选讲22.(10分)(2014•河南)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.考点:与圆有关的比例线段.专题:选作题;几何证明.分析:(Ⅰ)利用四边形ABCD是⊙O的内接四边形,可得∠D=∠CBE,由CB=CE,可得∠E=∠CBE,即可证明:∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,证明AD∥BC,可得∠A=∠CBE,进而可得∠A=∠E,即可证明△ADE 为等边三角形.解答:证明:(Ⅰ)∵四边形ABCD是⊙O的内接四边形,∴∠D=∠CBE,∵CB=CE,∴∠E=∠CBE,∴∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,∴O在直线MN上,∵AD不是⊙O的直径,AD的中点为M,∴OM⊥AD,∴AD∥BC,∴∠A=∠CBE,∵∠CBE=∠E,∴∠A=∠E,由(Ⅰ)知,∠D=∠E,∴△ADE为等边三角形.点评:本题考查圆的内接四边形性质,考查学生分析解决问题的能力,属于中档题.选修4-4:坐标系与参数方程23.(2014•河南)已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.考点:参数方程化成普通方程;直线与圆锥曲线的关系.专题:坐标系和参数方程.分析:(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.解答:解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.点评:本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.选修4-5:不等式选讲24.(2014•河南)若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.考点:基本不等式;基本不等式在最值问题中的应用.专题:不等式的解法及应用.分析:(Ⅰ)由条件利用基本不等式求得ab≥4,再利用基本不等式求得a3+b3的最小值.(Ⅱ)根据ab≥4及基本不等式求的2a+3b>8,从而可得不存在a,b,使得2a+3b=6.解答:解:(Ⅰ)∵a>0,b>0,且+=,∴=+≥2,∴ab≥2,当且仅当a=b=时取等号.∵a3+b3 ≥2≥2=4,当且仅当a=b=时取等号,∴a3+b3的最小值为4.(Ⅱ)由(1)可知,2a+3b≥2=2≥4>6,故不存在a,b,使得2a+3b=6成立.点评:本题主要考查基本不等式在最值中的应用,要注意检验等号成立条件是否具备,属于基础题.参与本试卷答题和审题的老师有:lincy;caoqz;wyz123;刘长柏;sxs123;wfy814;孙佑中;minqi5;清风慕竹;maths;qiss(排名不分先后)菁优网2014年6月23日。

2014年高考全国Ⅰ理科数学试题及答案(word解析版)

2014 年一般高等学校招生全国一致考试(全国Ⅰ)数学(理科)第 Ⅰ 卷一、选择题:本大题共 12 小题,每题5 分,在每题给出的四个选项中,只有一项为哪一项吻合题目要求的.( 1)【 2014 年全国Ⅰ,理 1, 5 分】已知会集 Ax x 22x 30 , Bx 2x 2,则AB =()(A ) 2,1 (B ) 1,2 (C )1,1 (D ) 1,2【答案】 A【剖析】∵ Ax x 22x 3 0x x1 或 x3 , B x 2 x 2 ,∴ A B x 2 x 1 ,应选 A .3( 2)【 2014 年全国Ⅰ,理2,5 分】 1 i1 2i (A )1i ( B ) 1 i ( C ) 1i (D ) 【答案】 D()1 i【剖析】∵(1i) 32i(1 i)2 1 i ,应选 D . (1 i) 2i( 3)【 2014 年全国Ⅰ,理 3, 5 分】设函数 f x , g x 的定义域为 R ,且 fx 是奇函数, g x 是偶函数,则以下结论中正确的选项是()( A ) f ( x) g (x) 是偶函数( B ) f (x) g( x) 是奇函数( C ) f ( x) | g( x) |是奇函数( D ) | f (x)g ( x) | 是奇函数【答案】 C【剖析】∵ f x 是奇函数, g x 是偶函数,∴f (x) 为偶函数, g( x) 为偶函数.再依照两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,可得 f (x) | g (x) | 为奇函数,应选 C .( 4)【 2014 年全国Ⅰ,理 4, 5 分】已知 F 是双曲线 C : x 2my 23m(m 0) 的一个焦点,则点 F 到 C 的一条渐近线的距离为()( A ) 3 ( B ) 3(C ) 3m ( D ) 3m 【答案】 A 【剖析】由 C : x 2my 23m(m0) ,得 x 2y 2 1 , c 2 3m 3,c3m 3,设 F3m 3,0 ,一条渐近线3m3y3my0 ,则点 F 到 C 的一条渐近线的距离d3m33 ,应选 A .x ,即 x1 m3m( 5)【 2014 年全国Ⅰ,理 5, 5 分】 4 位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率() ( A ) 1(B ) 3(C )5(D )78 8 88 【答案】 D【剖析】由题知 F 13,0 , F 23,0 且x 02y 0 2 1,因此 MF 1 MF 23 x 0 , y 03 x 0 , y 02x 02 y 023 3y 021 0 ,解得3 y 0 3,应选 D .3 3( 6)【 2014 年全国Ⅰ,理 6,5 分】如图,圆 O 的半径为 1, A 是圆上的定点, P 是圆上的动点,角x 的始边为射线 OA ,终边为射线 OP ,过点 P 作直线 OA 的垂线,垂足为 M ,将点 M 到直线 OP的距离表示为 x 的函数 f (x) ,则 y f ( x) 在 0, 上的图像大体为()(A ) (B )( C )(D )【答案】 B【剖析】如图:过 M 作 MDOP 于D ,则 PM sin x , OMcos x ,在 Rt OMP 中,OM PMcos x sin x1 1 MDcos x sin x sin 2 x ,∴f xsin 2x (0 x ) ,OP122应选 B .( 7)【 2014 年全国Ⅰ,理 7, 5 分】执行以下列图的程序框图,若输入的 a,b,k 分别为 1,2,3,则输出的M ()( A ) 20(B ) 16(C ) 7 (D ) 1535 28【答案】 D【剖析】输入 a1, b 2, k 3 ; n 1时:M 11 3 , a 2,b 3 ;222n 2 时: M 228, a3,b8; n 3时: M3 3 15 , a 8,b 15 ;33 2328 8 38n 4 时:输出 M15,应选 D .81sin( 8)【 2014 年全国Ⅰ,理 8, 5分】设(0,) , (0, ) ,且 tan,则()cos22 (A ) 3(B ) 2(C ) 3 2 (D ) 2 2【答案】 B 22【剖析】∵ tansin 1 sin coscoscos sin, sincossin,coscos ,∴ sin222 ,0 2,∴2,即 2,应选 B .22x y 1的解集记为 D .有下面四个命题: p 1 : ( x, y) D , x 2 y 2 ,( 9【) 2014 年全国Ⅰ,理 9,5 分】不等式组2y 4 xp 2 : (x, y) D, x 2 y 2 , P 3 : ( x, y) D , x 2 y 3 , p 4 : (x, y)D , x 2 y 1 .其中真命题是()( A ) p 2 , p 3 ( B ) p 1 , p 4 (C ) p 1 , p 2 ( D ) p 1 ,p 3 【答案】 C【剖析】作出可行域如图: 设 x 2 y z ,即 y1x z,当直线过 A 2, 1 时,zmin2 2 0 ,2 2∴ z 0 ,∴命题 p 1 、 p 2 真命题,应选 C .( 10)【 2014 年全国Ⅰ,理 10,5 分】已知抛物线 C : y 28x 的焦点为 F ,准线为 l , P 是 l 上一点, Q 是直线 PF 与 C 的一个交点,若FP4FQ ,则 |QF |()( A ) 7 (B ) 5(C )3(D )22 2【答案】 C【剖析】过 Q 作 QMl 于 M ,∵ FPPQ 3 ,又QM PQ 3 3 ,4FQ ,∴44PF,∴ QMPF4由抛物线定义知 QF QM3,应选 C .( 11)【 2014 年全国Ⅰ,理 11,5 分】已知函数 fxax 3 3x 2 1 ,若 f ( x) 存在唯一的零点 x 0 ,且 x 00 ,则 a的取值范围为()(A ) 2,(B ), 2 (C ) 1,( D ), 1【答案】 B【剖析】解法一:由已知 a0 , f ( x)3ax 26 x ,令 f (x) 0 ,得 x 0 或 x2 ,a当 a0 时, x,0 , f (x) 0; x0,2, f ( x) 0; x2 , , f (x) 0 ;aa且 f (0) 10 , f (x) 有小于零的零点,不吻合题意.当 a0 时, x2 0; x2 , f (x) 0; x0,, f (x),, f ( x) ,0aa要使 f (x) 有唯一的零点x 0 且 x 00 ,只需 2) 0 ,即 a2, a2 ,应选 B .f ( 4a解法二:由已知 a0 , f x ax33x21 有唯一的正零点,等价于a 3 1 13 有唯一的正零根,令 t1,则t 3t 3 x xx 问题又等价于 a3t 有唯一的正零根,即y a 与 y3t 有唯一的交点且交点在在 y 轴右侧记f (t )t 3 3t , f (t)3t 2 3 ,由 f (t )0 , t 1 , t, 1 , f (t) 0;t1,1 , f (t )0; ,t 1,, f (t ) 0 ,要使 a33t 有唯一的正零根,只需 af ( 1)2 ,应选 B .t ( 12)【 2014 年全国Ⅰ,理 12, 5 分】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为()( A ) 6 2 (B ) 4 2 (C )6(D )4【答案】 C【剖析】以下列图,原几何体为三棱锥D ABC ,其中 ABBC 4,AC 4 2,DB DC 2 5,26 ,应选 C .DA4 24 6 ,故最长的棱的长度为 DA第II 卷本卷包括必考题和选考题两部分.第( 13)题 ~第( 21)题为必考题,每个试题考生都必定作答.第( 22)题 ~第( 24)题为选考题,考生依照要求作答.二、填空题:本大题共 4 小题,每题 5 分( 13)【 2014 年全国Ⅰ,理 13, 5 分】 (x y)( xy)8的张开式中 x 2 y 2 的系数为.(用数字填写答案)【答案】 20【剖析】 (x y)8 张开式的通项为T r 1 C 8r x 8 r y r (r0,1, ,8) ,∴ T 8C 87 xy 7 8xy 7 , T 7 C 86 x 2 y 628x 2 y 6 ,∴ (xy)( x y)8 的张开式中 x 2 y 7 的项为 x 8 xy 7 y 28 x 2 y 6 20 x 2 y 7 ,故系数为20 .( 14)【 2014 年全国Ⅰ,理 14, 5 分】甲、乙、丙三位同学被问到可否去过 A 、 B 、 C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市;由 此可判断乙去过的城市为. 【答案】 AA 城市或B 城市,但甲说:我去过的城市比乙多,但没去过B【剖析】由乙说:我没去过 C 城市,则乙可能去过 城市,则乙只能是去过 A , B 中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的 城市为 A . ( 15)【 2014 年全国Ⅰ,理 15,5 分】已知 A , B , C 是圆 O 上的三点,若 AO1(ABAC),则 AB 与 AC 的2夹角为.【答案】 900【剖析】∵ AO 1 ( AB AC) ,∴ O 为线段 BC 中点,故 BC 为 O 的直径,∴BAC 900,∴ AB 与 AC 的夹2角为 90 0 .a,b,c 分别为A,B,C 的对边, a( 16 )【 2014 年全国Ⅰ,理16, 5 分】已知ABC 的三个内角2 ,且(2 b )(sin AsinB ) c ( b ) sinC ,则 ABC 面积的最大值为.【答案】 3【剖析】由 a2且(2 b)(sin A sin B)(c b)sin C ,即 (a b)(sin A sin B) (cb)sin C ,由及正弦定理得:2221,∴(a b )(ab) (c b)c ,∴ b 2c 2 a 2bc ,故 cos Abc a A 600 ,∴ b 2c 2 4 bc ,12bc24 b 2 c 2 bcbc ,∴ S ABCbc sin A3 . 2三、解答题:解答应写出文字说明,证明过程或演算步骤.( 17)【 2014 年全国Ⅰ,理 17,12 分】已知数列 a n 的前 n 项和为 S n , a 11 , a n 0 , a n a n 1S n 1,其中为常数.( 1)证明: a n 2 a n;( 2)可否存在 ,使得 a n 为等差数列?并说明原由.解:( 1)由题设 a n a n 1S n 1 , a n 1 a n 2S n 1 1,两式相减 a n 1an 2a na n 1 ,由于 a n0 ,因此 a n 2 a n.6分( 2)由题设 a 1 1 , a 1a 2S 1 1,可得 a 211,由( 1)知 a 31假设 a n 为等差数列,则 a 1 ,a 2 ,a 3 成等差数列,∴ a 1 a 3 2a 2 ,解得4 ;证明4 时, a n 为等差数列:由 a n2a n 4 知:数列奇数项构成的数列a2 m 1是首项为 1,公差为4 的等差数列 a 2m14m 3 ,令 n 2m 1, 则 m n 1,∴ a n 2n 1 ( n 2m 1)2n ,数列偶数项构成的数列 a2m 是首项为 3,公差为 4 的等差数列 a 2m 4m 1 ,令 n 2m, 则 m ∴2 1 ,∴ ( * ),2a n n ( n 2m) a n2n 1 n n 1a n2N a因此,存在存在4 ,使得 a n 为等差数列.12 分( 18)【 2014 年全国Ⅰ,理 18, 12 分】从某企业的某种产品中抽取 500 件,测量这些产品的一项质量指标值,由测量结果得以下频率分布直方图:( 1)求这 500 件产质量量指标值的样本平均数x 和样本方差 s 2 (同一组数据用该区间的中点值作代表) ;( 2)由频率分布直方图可以认为,这种产品的质量指标值Z 遵从正态分布 N ( , 2 ) ,其中 近似为样本平均数 x , 2 近似为样本方差 s 2 .( i )利用该正态分布,求 P(187.8 Z 212.2) ;( ii )某用户从该企业购买了 100 件这种产品,记 X 表示 100 件产品中质量指标值为区间(187.8,212.2 )的产品件数,利用( i )的结果,求 EX .附: 15012.2 .若 Z N ( , 2) ,则 P(Z) 06826.,P(2Z2 ) =0.9544.解:( 1)抽取产质量量指标值的样本平均数x 和样本方差 s 2 分别为:x 170 0.02 1800.09 1900.22 200 0.33 2100.24 220 0.08 2300.02 200s 230 220.0920.22 00.33 10220.08302150 .0.0220100.24200.02 6 分( 2)(ⅰ)由(1)知 Z N(200,150),从而 P(187.8 Z212.2) P(200 12.2 Z200 12.2)0.6826. 9分(ⅱ)由(ⅰ)知,一件产品中质量指标值为于区间(187.8,212.2)的概率为 0.6826依题意知 X B(100,0.6826),因此 EX 100 0.6826 68.26 .12 分( 19)【 2014 年全国Ⅰ,理 19, 12 分】如图三棱柱ABC A 1 B 1C 1 中,侧面 BB 1C 1C 为菱形, ABB 1C .( 1)证明: AC AB 1 ;( 2)若 ACAB 1 ,CBB 1 60 o, AB BC ,求二面角 A A 1B 1 C 1 的余弦值.解:( 1)连结 BC 1 ,交 B 1C 于 O ,连结 AO .由于侧面 1 1 为菱形, 因此 B 1CBC 1 ,BBC C且O 为 B 1C 与 BC 1 的中点.又 AB B 1C ,因此 B 1C 平面 ABO ,故 B 1 C AO又 B 1O CO ,故 AC AB 1 . 6分( 2)由于 AC AB 1 且 O 为 B 1C 的中点,因此 AOCO ,又由于 AB BC ,因此 BOABOC ,故 OA OB ,从而 OA , OB , OB 1 两两互相垂直. 以 O 为坐标原点, OB 的方向为 x 轴正方 向,OB 为单位长,建立以下列图空间直角坐标系O xyz .由于CBB 1 600 , 因此 CBB 1 为等边三角形. 又 ABBC ,则 A 0,0,3,B 1,0,0, 0,3 ,B 1,033C 0,3 ,0 , AB 1 0, 3 , 3, A 1B 1 AB1,0,3 ,33 33B C1 BC1, 3 ,0 ,设 nx, y, z 是平面的法向量,则n AB 1,即13n A 1B 13y3 03zm A 1 B 13因此可取 n1, 3,3 ,设 m 是平面的法向量,则,同理可取3n B 1C 1xz 03m1,3, 3 ,则 cos n, mn m 1 ,因此二面角 AA 1B 1C 1 的余弦值为1.12分n m 77223,F 是( 20)【 2014 年全国Ⅰ,理 20, 12 分】已知点 A 0, 2 ,椭圆 E :xy 1(a b 0) 的离心率为a 2b 22椭圆的焦点,直线 AF 的斜率为23, O 为坐标原点.( 1)求 E 的方程;3( 2)设过点 A 的直线 l 与 E 订交于 P,Q 两点,当OPQ 的面积最大时,求 l 的方程.解:( 1)设 F c,0 ,由条件知2 2 3,得 c 3 ,又c3 ,c 3a 2因此 a2 , b2a2c21,故 E 的方程x 2y 21 . 6分42( 2)依题意当 lx 轴不合题意, 故设直线 l :y kx 2 ,设 P x 1y, 1 Q, x y 2 , 2,将 y kx 2 代入xy 2 1 ,4得 14k 2x216kx12 0 ,当16(4 k23)0 ,即 k23时, x 1,2 8k 2 4 k 2 341 4k 2从而 PQk21 x 1x 24 k21 4k 23,又点 O 到直线 PQ 的距离 d2 ,因此 OPQ 的1 4k 2k 2 1 面积 S OPQ14 4k 2 3,设4k 23 t ,则 t0 ,S OPQ4t41 ,d PQ12t 2 4424ktt当且仅当 t2 , k7等号建立,且满足0 ,因此当 OPQ 的面积最大时,l 的方程为:2y77x 2 或 yx 2 ..12 分22be x 1( 21)【 2014 年全国Ⅰ,理 21, 12 分】设函数 f xae x ln x,曲线 y f ( x) 在点 1, f 1 处的切线为xy e(x 1) 2 .( 1)求 a, b ;( 2)证明: f ( x) 1.解:( 1)函数 f (x) 的定义域为 0,,xa xb x 1 b x 1xex 2exef (x) ae ln x由题意可得 f (1)2, f (1) e ,故 a 1,b2 . 6分x2e x 1 x2( 2)由( 1)知, f (x)ln x,从而 f ( x) 1 等价于 x ln x xex ln x ,则ex,设函数 g( x)eg (x) xln x ,因此当 x0, 1 时, g ( x) 0 ,当 x1 ,时, g (x) 0,故 g( x) 在 0,1单调减,eee在1,单调递加,从而 g( x) 在 0,的最小值为g( 1)1. 8分eee设函数 h(x)xex2,则 h (x) ex1 x,因此当 x0,1 时, h (x)0 ,当 x1,时, h ( x) 0 ,e故 h(x) 在 0,1 单调递加,在 1,单调递减,从而 h( x) g( x) 在 0,的最小值为 h(1)1 . 综上:当 x0 时, g( x)h( x) ,即 f ( x) 1.12e分请考生在( 22)、( 23)、( 24)三题中任选一题作答.注意:只能做所选定的题目.若是多做,则按所做第一个题目计分,做答时,请用 2B 铅笔在答题卡大将所选题号后的方框涂黑. ABCD 是( 22)【 2014 年全国Ⅰ,理 22,10 分】(选修 4-1:几何证明选讲)如图,四边形O 的内接四边形, AB 的延长线与 DC 的延长线交于点 E ,且 CBCE .( 1)证明: D E ;( 2)设 AD 不是O 的直径, AD 的中点为 M ,且 MBMC ,证明: ABC 为等边三角形.解:( 1)由题设得, A , B , C , D 四点共圆,因此, D CBE又 CB CE , CBE E ,因此 D E5 分( 2)设 BC 的中点为 N ,连结 MN ,则由 MB MC 知MN BC ,故 O 在直线 MN 上,又AD 不是 O 的直径, M 为 AD 的中点,故 OM AD ,即 MN AD ,因此 AD / /BC ,故 A CBE ,又 CBE E ,故 A E ,由( 1)知, D E ,因此 ADE 为等边三角形.10 分2 2( 23)【 2014 年全国Ⅰ,理 23,10 分】(选修 4-4:坐标系与参数方程)已知曲线C :xy1 ,49直线 l : x 2 t ( t 为参数).y 2 2t( 1)写出曲线 C 的参数方程,直线l 的一般方程;( 2)过曲线 C 上任意一点 P 作与 l 夹角为 30°的直线,交 l 于点 A ,求 PA 的最大值与最小值.解:( 1)曲线 C 的参数方程为x 2cos (为参数)直线 l 的一般方程为 2xy 60 . 5分y3sin( 2)曲线 C 上任意一点 P(2cos,3sin) 到 l 的距离为 d5| 4cos3sin6 |,5则|PA|d2 5 | 5sin() 6| ,其中为锐角,且 tan4 ,sin3053当 sin()1时, | PA | 获取最大值,最大值为2255当 sin() 1时, | PA | 获取最小值,最小值为 25 .10 分50 且11( 24)【 2014 年全国Ⅰ,理 24, 10 分】(选修 4-5:不等式选讲)若 a0 , bab .( 1)求 a 3 b 3 的最小值;ab( 2)可否存在 a, b ,使得 2a 3b 6?并说明原由.解:( 1)由 ab 1 1 2,得 ab 2 ,且当 a b 2 时等号建立.a bab故 a 3 b 32 a3 b 34 2 ,且当 a b 2 时等号建立,因此a 3b 3 的最小值为 4 2 .5分( 2)由( 1)知, 2a 3b 2 6 ab 4 3,由于 4 3 6 ,从而不存在 a,b ,使得 2a 3b 6 .10 分。

2014年高考理科数学试题分类汇编_三角函数_word版含答案

2014年高考数学试题汇编 三角函数三.解答题2. (2014湖北)(本小题满分11分)某实验室一天的温度(单位:)随时间(单位:h )的变化近似满足函数关系:(Ⅰ)求实验室这一天的最大温差; (Ⅱ)若要求实验室温度不高于,则在哪段时间实验室需要降温? (Ⅰ)因为)12sin 2112cos 23(210)(t t t f ππ+-==)312sin(210ππ+-t ,由0≤t <24,所以373123ππππ<+≤t ,1)312sin(1≤+≤-ππt .当t=2时,1)312sin(=+ππt ;当t=14时,1)312sin(-=+ππt .于是f(t)在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12℃,最低温度为8℃,最大温差为4℃. (Ⅱ)依题意,当f(t)>11时,实验室需要降温. 由(Ⅰ)得)312sin(210)(ππ+-=t t f ,故有)312sin(210ππ+-t >11,即)312sin(ππ+t <21-.又0≤t <24,因此61131267ππππ<+<t ,即10<t <18.在10时至18时实验室需要降温.3. (2014江苏) (本小题满分14分)已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值; (2)求)265cos(απ-的值.7、(2014广东)(12分)已知函数R x x A x f ∈+=),4sin()(π,且23)125(=πf ,(1)求A 的值; (2)若23)()(=-+θθf f ,)2,0(πθ∈,求)43(θπ-f.55233:(1)()sin()sin ,12124322(2)(1):()sin(),4()()))44coscos sin ))cos cos()sin )44443sin 42cos (0,),2f A A A f xx f f πππππππθθθθππππθθθθπθθπθθ=+==∴=+∴+-+-++-+-==∴=∈解由得sin 33()sin())444f θπππθθπθθ∴=∴-=-+-==8、(2014四川) (本小题满分12分) 已知函数()sin(3)4f x x π=+(Ⅰ)求()f x 的单调递增区间;(Ⅱ)若α是第二象限角,4()cos()cos 2354f απαα=+,求cos sin αα-的值。

2014年高考新课标 I 数学(理)真题试题及答案

2014年普通高等学校招生全国统一考试(新课标Ⅰ卷)数学试题卷(理工类)注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答题前,考生务必将自己的姓名、准考证号填写在答题卡上. 2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效. 3.回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效. 4.考试结束,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.已知集合A={x |2230x x --≥},B={x |-2≤x <2﹜,则A B ⋂=A .[2,1]--B .[1,2)-C .[1,1]-D .[1,2)2.32(1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i --3.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A .3B .3C .3mD .3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为A .18B .38C .58D .786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点, 角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M .将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为M OPA7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M=A .203 B .165 C .72 D .1588.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-=B .32παβ+= C .22παβ-=D .22παβ+=9.不等式组⎩⎨⎧≤-≥+42,1y x y x 的解集记为D ,有下面四个命题:1p :(,),22x y D x y ∀∈+≥-;2p :(,),22x y D x y ∃∈+≥;3p :(,),23x y D x y ∀∈+≤;4p :(,),21x y D x y ∃∈+≤-.其中的真命题是A .2p ,3pB .1p ,2pC .1p ,4pD .1p ,3p10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =A .72 B .3 C .52D .2 11.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(1,+∞)C .(,2)-∞-D .(,1)-∞-12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多 面体的三视图,则该多面体的六条棱中,最长的棱的长度为A .62B .42C .6D .4开始 结束ba M 1+← n←n+1是n ≤k输出M 否n ←1 输入a ,b,k a ←b b ←M OAx y 1 π OBx y1π OCx y1π ODxy1π第Ⅱ卷本卷包括必考题和选考题两个部分.第13题-第21题为必考题,每个考生都必须作答.第22题-第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.8()()x y x y -+的展开式中72y x 的系数为 .(用数字填写答案) 14.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一个城市. 由此可判断乙去过的城市为 . 15.已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+,则AB 与AC 的夹角为 . 16.已知a ,b ,c 分别为ABC ∆的三个内角A ,B ,C 的对边,a =2,且(2)(s i n s i n )(b A B c b C +-=-,则ABC ∆面积的最大值为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知数列{n a }的前n 项和为n S ,1a =1,0n a ≠,11n n n a a S λ+=-,其中λ为常数.(Ⅰ)证明:2n n a a λ+-=;(Ⅱ)是否存在λ,使得{n a }为等差数列?并说明理由.18.(本小题满分12分)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z 服从正态分布2(,)N μδ,其中μ近似为样本平均数x ,2δ近似为样本方差2s .(i )利用该正态分布,求(187.8212.2)P Z <<;(ii )某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间)2.212,8.187(的产品件数,利用(i )的结果,求EX .附:150≈12.2.若Z ~2(,)N μδ,则()P Z μδμδ-<<+=0.6826,(22)P Z μδμδ-<<+=0.9544.19.(本小题满分12分)如图,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥. (Ⅰ)证明:1AC AB =;(Ⅱ)若1AC AB ⊥,o160CBB ∠=,AB =BC ,求二面角111A A B C --的余弦值.AA 1C 1B 1CB0.008 165 175 185 195 205 215 225 235 0.009 0.0220.024 0.033 质量指标值频率组距0.00220.(本小题满分12分)已知点(0,2)A -,椭圆E :22221(0)x y a b a b +=>>的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于P ,Q 两点,当OPQ ∆的面积最大时,求l 的方程.21.(本小题满分12分)设函数()xbe x ae x f x x1ln -+=,曲线()y f x =在点(1,(1)f )处的切线方程为(1)2y e x =-+. (Ⅰ)求a ,b ; (Ⅱ)证明:()1f x >.请考生从第22、23、24题中任选一题作答,如果多做,则按所做的第一个题计分.作答时请写清题号. 22.(本小题满分10分)选修4-1:几何证明选讲如图,四边形ABCD 是⊙O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB =CE . (Ⅰ)证明:∠D =∠E ;(Ⅱ)设AD 不是⊙O 的直径,AD 的中点为M ,且MB =MC ,证明:△ADE 为等边三角形.23.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C :22149x y +=,直线l :⎩⎨⎧-=+=ty t x 22,2(t 为参数). (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o30的直线,交l 于点A ,求||PA 的最大值与最小值.24.(本小题满分10分)选修4-5:不等式选讲 若0,0a b >>,且11ab a b+=. (Ⅰ)求33b a +的最小值;(Ⅱ)是否存在a ,b ,使得632=+b a ?并说明理由.AB EC DMO2014年普通高等学校招生全国统一考试(课标卷Ⅰ卷)数学(理科)参考答案一、选择题1.A 解析:{}{}223013A x x x x x x =--≥=≤-≥或,又{}22B x x =-≤<,AB =[]2,1--,故选A .2.D 解析:()()()()()()3222111211211i i i i i i i i i ⋅===---++++--,故选D . 3.C 解析:()f x 是奇函数,()g x 是偶函数,则()()f x g x 是奇函数,排除A .()f x 是奇函数,()f x 是偶函数,()g x 是偶函数,则()()f x g x 是偶函数,排除B . ()f x 是奇函数,()g x 是偶函数,则()()f x g x 是奇函数,C 正确.()f x 是奇函数,()g x 是偶函数,()()f x g x 是奇函数,则()()f x g x 是偶函数,排除D .4.A 解析:双曲线的焦点到渐近线的距离为虚半轴长b ,故距离为3,选A .5.D 解析:周六没有同学的方法数为1,周日没有同学的方法数为1,所以周六、周日都有同学参加公益活动的概率为4422728P -==,故选D . 6.C 解析:由已知1,sin ,cos OP PM x OM x ===.又()1122f x OP OM MP ⋅=, 所以()1sin cos sin 22f x x x x ==,故选C . 7.D 解析:当1n =时,1331,2,222M a b =+===;当2n =时,28382,,3323M a b =+===;当3n =时,3315815,,28838M a b =+===;当4n =时,结束,故158M =,选D . 8.C 解析:由1sin tan cos βαβ+=得sin 1sin ,sin cos cos cos sin ,cos cos αβαβααβαβ+=∴=+ 即()sin cos αβα-=,所以()sin sin 2παβα⎛⎫-=-⎪⎝⎭. 由已知0,,0,,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭所以,02222ππππαβα-<-<<-<, sin y x =在,22ππ⎡⎤-⎢⎥⎣⎦上单调递增,所以,222ππαβααβ-=--=,故选C .9.B 解析:令()()()()222x y m x y n x y m n x m n y +=++-=++-,所以1,22,m n m n +=⎧⎨-=⎩解得4,31,3m n ⎧=⎪⎪⎨⎪=-⎪⎩所以()()4122033x y x y x y +=+--≥,因而可以判断12,p p 为真,故选B .10.B 解析:由已知2,2,P F x x =-=又4FP FQ =,则()442Q x -=-,1Q x ∴=. 过Q 作QD 垂直于l ,垂足为D ,所以3QF QD ==,故选B .11.C 解析:'()3(2)f x x ax =-.当0a =时,2()13f x x =-,不合题意; 当0a >时,()f x 在(,0)-∞上是增函数,且(0)1f =,不合题意;当0a <时,()f x 在2(,)a -∞上是减函数,2(,0)a上是增函数,(0,)+∞是减函数,且(0)1f =,故只需2()0f a>,24a >,2a <-.选C .12.B 解析:几何体为如图所示的一个三棱锥P ABC -,底面ABC 为等腰三角形,,4,AB BC AC ==顶点B 到AC 的距离为4,面PAC ABC ⊥面,且三角形PAC 为以A 为直角的等腰直角三角形,所以棱PB 最长,长度为6,故选B .ACPB二、填空题13.20- 解析:888()()()()x y x y x x y y x y -+=+-+,故展开式中72y x 的系数为128882820C C -=-=-.14.A 解析:乙没去过C 城市,甲没去过B 城市,但去过的城市比乙多,所以甲去过A ,C ,三人都去过同一个城市,一定是A ,所以填A . 15.2π 解析:1()2AO AB AC =+,O 为BC 中点,即BC 为直径,所以AB 与AC 的夹角为2π.16.3 解析:222(2)(sin sin )()sin (2)()()b A B c b C b a b c b c a b c bc +-=-⇒+-=-⇒-=-,所以2222221cos 223b c a b c a bc A A bc π+-+-=⇒==⇒=. 又2244b c bc bc +-=⇒≤.所以13sin 324S bc A bc ==≤. 三、解答题17.解:(Ⅰ)由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1, 两式相减得a n +1(a n +2-a n )=λa n +1.因为a n +1≠0,所以a n +2-a n =λ. (Ⅱ)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1.由(Ⅰ)知,a 3=λ+1. 若{a n }为等差数列,则2a 2=a 1+a 3,解得λ=4,故a n +2-a n =4. 由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3; {a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.18.解:(Ⅰ)0.021700.091800.221900.332000.242100.082200.02230200x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=,()()()()()()()222222220.021702000.091802000.221902000.332002000.242102000.082202000.022********.s =⨯-+⨯-+⨯-+⨯-++⨯-+⨯-+⨯-=(Ⅱ)(i )由(Ⅰ)知,2δ=2s =150,所以15012.2δ=≈,(187.8212.2)(20012.220012.2)0.6826P Z P Z <<=-<<+=.(ii )100件产品中质量指标值位于区间(187.8,212.2)的产品件数X 服从二项分布()100,0.6826B ,所以1000.682668.26EX =⨯=.19.解:(Ⅰ)连结1BC ,交1B C 于点O ,连结AO . 侧面11BB C C 为菱形,∴11BC B C ⊥. 又1AB B C ⊥,1ABBC B =,11.B C ABC ∴⊥面1AO ABC ⊂面,1AO B C ∴⊥,又O 为1B C 中点,所以1AC AB =.(Ⅱ)1AC AB ⊥,且O 是B 1C 中点,所以AO =CO .又因为AB =BC ,所以BOA ∆BOC ≅∆,故OA OB ⊥,从而OA ,OB ,OB 1两两垂直. 以O 为坐标原点,OB 的方向为x 轴正方向,|OB |为单位长, 建立如图所示空间直角坐标系O xyz -.因为o 160CBB ∠=,所以1CBB ∆为等边三角形,又AB =BC , 则()13330,0,,1,0,0,0,,0,0,,0333A B B C ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 1330,,33AB ⎛⎫∴=- ⎪ ⎪⎝⎭,1131,0,3A B AB ⎛⎫==- ⎪ ⎪⎝⎭,1131,,03B C BC ⎛⎫==-- ⎪ ⎪⎝⎭.设(),,n x y z =为平面11AA B 的一个法向量,则()111330,0,331,3,30,30,3y z n AB n n A B x z ⎧-=⎪⎧⋅=⎪⎪=⎨⎨⋅=⎪⎪⎩-=⎪⎩即所以可取.设(),,m a b c =为平面111A B C 的一个法向量,则()11110,1,3,30.m B C m m A B ⎧⋅=⎪=-⎨⋅=⎪⎩同理可取. 则1cos ,7n m n m n m⋅<>==,所以二面角111A ABC --的余弦值为17. 20.解:(Ⅰ)由已知得223,2,2143,223,3c a x a E y c c⎧=⎪=⎧⎪⎪∴+=⎨⎨=⎪⎩⎪=⎪⎩解得椭圆的方程.(Ⅱ)当l x ⊥轴时不合题意,故设l :2y kx =-,()()1122,,,.P x y Q x y将2y kx =-代入2214x y +=得()224116120k x kx +-+=, 当()()222164411264480k k k ∆=--⨯+⨯=->,即234k >时, 21,22824341k k x k ±-=+,从而2121||PQ k x x =+-222414341k k k +-=+. AA 1C 1B 1CBOyx z又点O 到直线l 的距离221d k =+,所以OPQ ∆的面积()221443241k S k PQ d k -==+. 设()2430k t t -=>,()244712,424t S k t k t t t ⎛⎫==≤==± ⎪ ⎪+⎝⎭+当且仅当即时取到, 所以,当OPQ ∆的面积最大时,l 的方程为722y x =-或722y x =--. 21.解:(Ⅰ)函数()f x 的定义域为(0,+∞),f ′(x )=a e x ln x +a x e x -b x 2e x -1+b xe x -1. 由题意可得f (1)=2,f ′(1)=e ,故a =1,b =2.(Ⅱ)由(Ⅰ)知,f (x )=e x ln x +2x e x -1,从而f (x )>1等价于x ln x >x e -x -2e. 设函数g (x )=x ln x ,则g ′(x )=1+ln x ,所以当x ∈⎝⎛⎭⎫0,1e 时,g ′(x )<0;当x ∈⎝⎛⎭⎫1e ,+∞时,g ′(x )>0. 故g (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增. 从而g (x )在(0,+∞)上的最小值为g ⎝⎛⎭⎫1e =-1e. 设函数h (x )=x e -x -2e,则h ′(x )=e -x (1-x ), 所以当x ∈(0,1)时,h ′(x )>0;当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减.从而h (x )在(0,+∞)上的最大值为h (1)=-1e. 综上,当x >0时,()()g x h x >,即()1f x >.22.解:(Ⅰ)由题设知A ,B ,C ,D 四点共圆,所以D CBE ∠=∠,由已知得CBE E ∠=∠,故.D E ∠=∠(Ⅱ)设BC 的中点为N ,连接MN ,则由MB =MC 知MN BC ⊥,故O 在直线MN 上.又AD 不是⊙O 的直径,M 为AD 的中点,故OM AD ⊥,即.MN AD ⊥所以//AD BC ,故.A CBE ∠=∠又CBE E ∠=∠,故.A E ∠=∠由(Ⅰ)知,D E ∠=∠,所以ADE ∆为等边三角形. A B EC D M O N23.解:(Ⅰ)曲线C 的参数方程为2cos ,3sin .x y θθ=⎧⎨=⎩直线l 的普通方程为260x y +-=; (Ⅱ)令点P 坐标为()2cos ,3sin θθ,点P 到直线l 的距离为d . ()55sin 64cos 3sin 64tan 535d θφθθφ+-+-⎛⎫=== ⎪⎝⎭,||2sin 30d PA d ==︒, 所以()max max max 225||225PA d d ===;()min min min 25||225PA d d ===. 24.解析:(Ⅰ)由112ab a b ab=+≥得2ab ≥,且当2a b ==时等号成立. 故3333242a b a b +≥≥,且当2a b ==时等号成立.所以33a b +的最小值为42.(Ⅱ)由(Ⅰ)知,23264 3.a b ab +≥≥ 由于436>,从而不存在a ,b ,使得236a b +=.。

2014年高考全国Ⅰ卷理科数学试题(含答案解析)

绝密★启用前2014年普通高等学校招生全国统一考试理科数学注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至6页。

2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3.全部答案在答题卡上完成,答在本试题上无效。

4.考试结束后.将本试题和答题卡一并交回。

第Ⅰ卷一、选择题:共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

(1)已知集合A ={x |2230x x --≥},B ={x |−2≤x <2},则A∩B =(A )[−2, −1](B )[−1, 2)(C )[−1, 1](D )[1, 2)(2)32(1)(1)i i +-= (A )1i +(B )1i -(C )1i -+(D )1i --(3)设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是(A )()f x ()g x 是偶函数 (B )|()f x |()g x 是奇函数 (C )()f x |()g x |是奇函数(D )|()f x ()g x |是奇函数(4)已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为(A (B )3 (C (D )3m(5)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率(A )18(B )38(C )58(D )78(6)如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线, 垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为(A ) (B )(C ) (D )(7)执行下图的程序框图,若输入的,,a b k 分别为1, 2, 3,则输出的M = (A )203(B )165 (C )72(D )158(8)设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则(A )32παβ-= (B )32παβ+= (C )22παβ-=(D )22παβ+=(9)不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-. 其中真命题是(A )2p ,p 3 (B )1p ,4p (C )1p ,2p(D )1p ,p 310.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =,则||QF = (A )72(B )52(C )3 (D )211.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为(A )(2,+∞) (B )(−∞,−2) (C )(1,+∞)(D )(−∞,−1)12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为 (A )62 (B )42 (C )6 (D )4第Ⅱ卷本卷包括必考题和选考题两个部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年普通高等学校招生全国统一考试(湖北卷)数学(理科)试题及参考答案一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

1. i 为虚数单位,则=+-2)11(ii A. 1- B. 1 C. i - D. i 2. 若二项式7)2(xa x +的展开式中31x的系数是84,则实数=a A.2 B.54 C. 1 D.42 3. 设U 为全集,B A ,是集合,则“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A ”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件 4.根据如下样本数据A.0,0>>b aB.0,0<>b aC.0,0><b aD.0.0<<b a5.在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0), (1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为A. ①和②B.③和①C. ④和③D.④和② 6.若函数[]1,1)(),(,0)()()(),(11-=⎰-为区间则称满足x g x f dx x g x f x g x f 上的一组正交函数,给出三组函数:①x x g x x f 21cos )(,21sin)(==;②1)(,1)(-=+=x x g x x f ;③2)(,)(x x g x x f == 其中为区间]1,1[-的正交函数的组数是A.0B.1C.2D.37.由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为 A.81 B.41 C. 43 D.87 8.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为3.那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为 A.227 B.258C.15750D.355113 9.已知12,F F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123F PF π∠=,则椭圆和双曲线的离心率的倒数之和的最大值为A.3B.3C.3D.2 10.已知函数f (x )是定义在R 上的奇函数,当0x ≥时,2221()(||)|2|3).2f x x a x a a =-+--若,(1)(),x R f x f x ∀∈-≤则实数a 的取值范围为( )A.11[,]66-B.[C. 11[,]33-D.[二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分. (一)必考题(11—14题)11.设向量)3,3(=,)1,1(-=b ,若)()(b a b a λλ-⊥+,则实数λ= . 12.直线a x y l +=:1和b x y l +=:2将单位圆22:1C x y +=分成长度相等的四段弧,则22a b += .13.设a 是一个各位数字都不是0且没有重复数字的三位数.将组成a 的3个数字按从小到大排成的三位数记为()I a ,按从大到小排成的三位数记为()D a (例如815a =,则()158I a =,()851D a =).阅读如右图所示的程序框图,运行相应的程序,任意输入一个a ,输出的结果b =14.设()x f 是定义在()+∞,0上的函数,且()0>x f ,对任意0,0>>b a ,若经过点()()()()b f b a f a ,,,的直线与x 轴的交点为()0,c ,则称c 为b a ,关于函数()x f 的平均数,记为),(b a M f ,例如,当())0(1>=x x f 时,可得2),(ba cb a M f +==,即),(b a M f 为b a ,的算术平均数. (1)当())0_____(>=x x f 时,),(b a M f 为b a ,的几何平均数; (2)当())0_____(>=x x f 时,),(b a M f 为b a ,的调和平均数ba ab+2; (以上两空各只需写出一个符合要求的函数即可) (二)选考题15.(选修4-1:几何证明选讲)如图,P 为⊙O 的两条切线,切点分别为B A ,,过PA 的中点Q 作割线交⊙O 于D C ,两点,若,3,1==CD QC 则_____=PB16.(选修4-4:坐标系与参数方程)已知曲线1C 的参数方程是⎪⎩⎪⎨⎧==33t y t x ()为参数t ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ,则1C 与2C 交点的直角坐标为三、解答题:本大题共6小题,共75分.解答题应写出文字说明、证明过程或演算步骤..17、(本小题满分11分)某实验室一天的温度(单位:C ︒)随时间t (单位:h )的变化近似满足函数关系;)24,0[,12sin12cos310)(∈--=t t t t f ππ(1) 求实验室这一天的最大温差;(2) 若要求实验室温度不高于11C ︒,则在哪段时间实验室需要降温?18(本小题满分12分)已知等差数列}{n a 满足:21=a ,且321,,a a a 成等比数列. (1) 求数列}{n a 的通项公式.(2) 记n S 为数列}{n a 的前n 项和,是否存在正整数n ,使得80060+>n S n ?若存在,求n 的最小值;若不存在,说明理由.19(本小题满分12分)如图,在棱长为2的正方体1111D C B A ABCD -中,N M F E ,,,分别是棱1111,,,D A B A AD AB 的中点,点Q P ,分别在棱1DD ,1BB 上移动,且()20<<==λλBQ DP . (1)当1=λ时,证明:直线1BC 平面EFPQ ;(2)是否存在λ,使平面EFPQ 与面PQMN 所成的二面角?若存在,求出λ的值;若不存在,说明理由.20.(本小题满分12分)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立. (1)求未来4年中,至多1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系;若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?21.(本小题满分14分)在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,记点M 的轨迹为C . (1)求轨迹为C 的方程(2)设斜率为k 的直线l 过定点()2,1p -,求直线l 与轨迹C 恰好有一个公共点,两个公共点,三个公共点时k 的相应取值范围。

22.(本小题满分14分)π为圆周率,e =2.71828……为自然对数的底数 (1)求函数xxx f ln )(=的单调区间; (2)求33,3,,,3,ππππe e e e 这6个数中的最大数与最小数;(3)将33,3,,,3,ππππe e e e 这6个数按从小到大的顺序排列,并证明你的结论.答案1. i 为虚数单位,则=+-2)11(ii ( ) A. 1- B. 1 C. i - D.i3. 设3. U 为全集,B A ,是集合,则“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A ”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件4.根据如下样本数据得到的回归方程为a bx y+=ˆ,则( ) A.0,0>>b a B.0,0<>b a C.0,0><b a D.0.0<<b aO 中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,5.在如图所示的空间直角坐标系xyz1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C. ④和③D.④和②7.由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为( )8.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一. 该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为 3.那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为( ) A.227 B.258C.15750D.35511310.已知函数)(x f 是定义在R 上的奇函数,当0≥x 时,)3|2||(|21)(222a a x a x x f --+-=,若R ∈∀x ,)()1(x f x f ≤-,则实数a 的取值范围为( )二.填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案天灾答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分.(二)必考题(11—14题)11.设向量(3,3)a =,(1,1)b =-,若()()a b a b λλ+⊥-,则实数λ=________.13.设a 是一个各位数字都不是0且没有重复数字的三位数.将组成a 的3个数字按从小到大排成的三位数记为()I a ,按从大到小排成的三位数记为()D a (例如815a =,则()158I a =,()851D a =).阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,输出的结果b =________.14.设()x f 是定义在()+∞,0上的函数,且()0>x f ,对任意0,0>>b a ,若经过点()()()()b f b a f a ,,,的直线与x 轴的交点为()0,c ,则称c 为b a ,关于函数()x f 的平均数,记为),(b a M f ,例如,当())0(1>=x x f 时,可得2),(ba cb a M f +==,即),(b a M f 为b a ,的算术平均数. (3)当())0_____(>=x x f 时,),(b a M f 为b a ,的几何平均数; (4)当())0_____(>=x x f 时,),(b a M f 为b a ,的调和平均数ba ab+2; (以上两空各只需写出一个符合要求的函数即可)(二)选考题16.(选修4-1:几何证明选讲)如图,P 为⊙O 的两条切线,切点分别为B A ,,过PA 的中点Q 作割线交⊙O 于D C ,两点,若,3,1==CD QC 则_____=PB.16.(选修4-4:坐标系与参数方程)已知曲线1C 的参数方程是⎪⎩⎪⎨⎧==33t y t x ()为参数t ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ,则1C 与2C 交点的直角坐标为_______.三、解答题:本大题共6小题,共75分.17、(本小题满分11分)18(本小题满分12分)19(本小题满分12分)20.(本小题满分12分)21.(本小题满分14分)22.(本小题满分14分)。

相关文档
最新文档